geneve: avoid using stale geneve socket.
[cascardo/linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <asm/fpu.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgtable.h>
25
26 #include <linux/kvm_host.h>
27
28 #include "interrupt.h"
29 #include "commpage.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #ifndef VECTORSPACING
35 #define VECTORSPACING 0x100     /* for EI/VI mode */
36 #endif
37
38 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
39 struct kvm_stats_debugfs_item debugfs_entries[] = {
40         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
41         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
42         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
43         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
44         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
45         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
46         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
47         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
49         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
50         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
51         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
52         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
53         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
54         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
55         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
56         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
57         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
58         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
59         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
60         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
61         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
62         {NULL}
63 };
64
65 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
66 {
67         int i;
68
69         for_each_possible_cpu(i) {
70                 vcpu->arch.guest_kernel_asid[i] = 0;
71                 vcpu->arch.guest_user_asid[i] = 0;
72         }
73
74         return 0;
75 }
76
77 /*
78  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
79  * Config7, so we are "runnable" if interrupts are pending
80  */
81 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
82 {
83         return !!(vcpu->arch.pending_exceptions);
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return 1;
89 }
90
91 int kvm_arch_hardware_enable(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_hardware_setup(void)
97 {
98         return 0;
99 }
100
101 void kvm_arch_check_processor_compat(void *rtn)
102 {
103         *(int *)rtn = 0;
104 }
105
106 static void kvm_mips_init_tlbs(struct kvm *kvm)
107 {
108         unsigned long wired;
109
110         /*
111          * Add a wired entry to the TLB, it is used to map the commpage to
112          * the Guest kernel
113          */
114         wired = read_c0_wired();
115         write_c0_wired(wired + 1);
116         mtc0_tlbw_hazard();
117         kvm->arch.commpage_tlb = wired;
118
119         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
120                   kvm->arch.commpage_tlb);
121 }
122
123 static void kvm_mips_init_vm_percpu(void *arg)
124 {
125         struct kvm *kvm = (struct kvm *)arg;
126
127         kvm_mips_init_tlbs(kvm);
128         kvm_mips_callbacks->vm_init(kvm);
129
130 }
131
132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 {
134         if (atomic_inc_return(&kvm_mips_instance) == 1) {
135                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
136                           __func__);
137                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
138         }
139
140         return 0;
141 }
142
143 bool kvm_arch_has_vcpu_debugfs(void)
144 {
145         return false;
146 }
147
148 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
149 {
150         return 0;
151 }
152
153 void kvm_mips_free_vcpus(struct kvm *kvm)
154 {
155         unsigned int i;
156         struct kvm_vcpu *vcpu;
157
158         /* Put the pages we reserved for the guest pmap */
159         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
160                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
161                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
162         }
163         kfree(kvm->arch.guest_pmap);
164
165         kvm_for_each_vcpu(i, vcpu, kvm) {
166                 kvm_arch_vcpu_free(vcpu);
167         }
168
169         mutex_lock(&kvm->lock);
170
171         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
172                 kvm->vcpus[i] = NULL;
173
174         atomic_set(&kvm->online_vcpus, 0);
175
176         mutex_unlock(&kvm->lock);
177 }
178
179 static void kvm_mips_uninit_tlbs(void *arg)
180 {
181         /* Restore wired count */
182         write_c0_wired(0);
183         mtc0_tlbw_hazard();
184         /* Clear out all the TLBs */
185         kvm_local_flush_tlb_all();
186 }
187
188 void kvm_arch_destroy_vm(struct kvm *kvm)
189 {
190         kvm_mips_free_vcpus(kvm);
191
192         /* If this is the last instance, restore wired count */
193         if (atomic_dec_return(&kvm_mips_instance) == 0) {
194                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
195                           __func__);
196                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
197         }
198 }
199
200 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
201                         unsigned long arg)
202 {
203         return -ENOIOCTLCMD;
204 }
205
206 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
207                             unsigned long npages)
208 {
209         return 0;
210 }
211
212 int kvm_arch_prepare_memory_region(struct kvm *kvm,
213                                    struct kvm_memory_slot *memslot,
214                                    const struct kvm_userspace_memory_region *mem,
215                                    enum kvm_mr_change change)
216 {
217         return 0;
218 }
219
220 void kvm_arch_commit_memory_region(struct kvm *kvm,
221                                    const struct kvm_userspace_memory_region *mem,
222                                    const struct kvm_memory_slot *old,
223                                    const struct kvm_memory_slot *new,
224                                    enum kvm_mr_change change)
225 {
226         unsigned long npages = 0;
227         int i;
228
229         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
230                   __func__, kvm, mem->slot, mem->guest_phys_addr,
231                   mem->memory_size, mem->userspace_addr);
232
233         /* Setup Guest PMAP table */
234         if (!kvm->arch.guest_pmap) {
235                 if (mem->slot == 0)
236                         npages = mem->memory_size >> PAGE_SHIFT;
237
238                 if (npages) {
239                         kvm->arch.guest_pmap_npages = npages;
240                         kvm->arch.guest_pmap =
241                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
242
243                         if (!kvm->arch.guest_pmap) {
244                                 kvm_err("Failed to allocate guest PMAP\n");
245                                 return;
246                         }
247
248                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
249                                   npages, kvm->arch.guest_pmap);
250
251                         /* Now setup the page table */
252                         for (i = 0; i < npages; i++)
253                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
254                 }
255         }
256 }
257
258 static inline void dump_handler(const char *symbol, void *start, void *end)
259 {
260         u32 *p;
261
262         pr_debug("LEAF(%s)\n", symbol);
263
264         pr_debug("\t.set push\n");
265         pr_debug("\t.set noreorder\n");
266
267         for (p = start; p < (u32 *)end; ++p)
268                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
269
270         pr_debug("\t.set\tpop\n");
271
272         pr_debug("\tEND(%s)\n", symbol);
273 }
274
275 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
276 {
277         int err, size;
278         void *gebase, *p, *handler;
279         int i;
280
281         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
282
283         if (!vcpu) {
284                 err = -ENOMEM;
285                 goto out;
286         }
287
288         err = kvm_vcpu_init(vcpu, kvm, id);
289
290         if (err)
291                 goto out_free_cpu;
292
293         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
294
295         /*
296          * Allocate space for host mode exception handlers that handle
297          * guest mode exits
298          */
299         if (cpu_has_veic || cpu_has_vint)
300                 size = 0x200 + VECTORSPACING * 64;
301         else
302                 size = 0x4000;
303
304         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
305
306         if (!gebase) {
307                 err = -ENOMEM;
308                 goto out_uninit_cpu;
309         }
310         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
311                   ALIGN(size, PAGE_SIZE), gebase);
312
313         /*
314          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
315          * limits us to the low 512MB of physical address space. If the memory
316          * we allocate is out of range, just give up now.
317          */
318         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
319                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
320                         gebase);
321                 err = -ENOMEM;
322                 goto out_free_gebase;
323         }
324
325         /* Save new ebase */
326         vcpu->arch.guest_ebase = gebase;
327
328         /* Build guest exception vectors dynamically in unmapped memory */
329         handler = gebase + 0x2000;
330
331         /* TLB Refill, EXL = 0 */
332         kvm_mips_build_exception(gebase, handler);
333
334         /* General Exception Entry point */
335         kvm_mips_build_exception(gebase + 0x180, handler);
336
337         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
338         for (i = 0; i < 8; i++) {
339                 kvm_debug("L1 Vectored handler @ %p\n",
340                           gebase + 0x200 + (i * VECTORSPACING));
341                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
342                                          handler);
343         }
344
345         /* General exit handler */
346         p = handler;
347         p = kvm_mips_build_exit(p);
348
349         /* Guest entry routine */
350         vcpu->arch.vcpu_run = p;
351         p = kvm_mips_build_vcpu_run(p);
352
353         /* Dump the generated code */
354         pr_debug("#include <asm/asm.h>\n");
355         pr_debug("#include <asm/regdef.h>\n");
356         pr_debug("\n");
357         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
358         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
359         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
360
361         /* Invalidate the icache for these ranges */
362         local_flush_icache_range((unsigned long)gebase,
363                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
364
365         /*
366          * Allocate comm page for guest kernel, a TLB will be reserved for
367          * mapping GVA @ 0xFFFF8000 to this page
368          */
369         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
370
371         if (!vcpu->arch.kseg0_commpage) {
372                 err = -ENOMEM;
373                 goto out_free_gebase;
374         }
375
376         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
377         kvm_mips_commpage_init(vcpu);
378
379         /* Init */
380         vcpu->arch.last_sched_cpu = -1;
381
382         /* Start off the timer */
383         kvm_mips_init_count(vcpu);
384
385         return vcpu;
386
387 out_free_gebase:
388         kfree(gebase);
389
390 out_uninit_cpu:
391         kvm_vcpu_uninit(vcpu);
392
393 out_free_cpu:
394         kfree(vcpu);
395
396 out:
397         return ERR_PTR(err);
398 }
399
400 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
401 {
402         hrtimer_cancel(&vcpu->arch.comparecount_timer);
403
404         kvm_vcpu_uninit(vcpu);
405
406         kvm_mips_dump_stats(vcpu);
407
408         kfree(vcpu->arch.guest_ebase);
409         kfree(vcpu->arch.kseg0_commpage);
410         kfree(vcpu);
411 }
412
413 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
414 {
415         kvm_arch_vcpu_free(vcpu);
416 }
417
418 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
419                                         struct kvm_guest_debug *dbg)
420 {
421         return -ENOIOCTLCMD;
422 }
423
424 /* Must be called with preemption disabled, just before entering guest */
425 static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
426 {
427         struct mips_coproc *cop0 = vcpu->arch.cop0;
428         int cpu = smp_processor_id();
429         unsigned int gasid;
430
431         /*
432          * Lazy host ASID regeneration for guest user mode.
433          * If the guest ASID has changed since the last guest usermode
434          * execution, regenerate the host ASID so as to invalidate stale TLB
435          * entries.
436          */
437         if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
438                 gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
439                 if (gasid != vcpu->arch.last_user_gasid) {
440                         kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
441                                                 vcpu);
442                         vcpu->arch.guest_user_asid[cpu] =
443                                 vcpu->arch.guest_user_mm.context.asid[cpu];
444                         vcpu->arch.last_user_gasid = gasid;
445                 }
446         }
447 }
448
449 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
450 {
451         int r = 0;
452         sigset_t sigsaved;
453
454         if (vcpu->sigset_active)
455                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
456
457         if (vcpu->mmio_needed) {
458                 if (!vcpu->mmio_is_write)
459                         kvm_mips_complete_mmio_load(vcpu, run);
460                 vcpu->mmio_needed = 0;
461         }
462
463         lose_fpu(1);
464
465         local_irq_disable();
466         /* Check if we have any exceptions/interrupts pending */
467         kvm_mips_deliver_interrupts(vcpu,
468                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
469
470         guest_enter_irqoff();
471
472         /* Disable hardware page table walking while in guest */
473         htw_stop();
474
475         trace_kvm_enter(vcpu);
476
477         kvm_mips_check_asids(vcpu);
478
479         r = vcpu->arch.vcpu_run(run, vcpu);
480         trace_kvm_out(vcpu);
481
482         /* Re-enable HTW before enabling interrupts */
483         htw_start();
484
485         guest_exit_irqoff();
486         local_irq_enable();
487
488         if (vcpu->sigset_active)
489                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
490
491         return r;
492 }
493
494 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
495                              struct kvm_mips_interrupt *irq)
496 {
497         int intr = (int)irq->irq;
498         struct kvm_vcpu *dvcpu = NULL;
499
500         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
501                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
502                           (int)intr);
503
504         if (irq->cpu == -1)
505                 dvcpu = vcpu;
506         else
507                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
508
509         if (intr == 2 || intr == 3 || intr == 4) {
510                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
511
512         } else if (intr == -2 || intr == -3 || intr == -4) {
513                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
514         } else {
515                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
516                         irq->cpu, irq->irq);
517                 return -EINVAL;
518         }
519
520         dvcpu->arch.wait = 0;
521
522         if (swait_active(&dvcpu->wq))
523                 swake_up(&dvcpu->wq);
524
525         return 0;
526 }
527
528 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
529                                     struct kvm_mp_state *mp_state)
530 {
531         return -ENOIOCTLCMD;
532 }
533
534 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
535                                     struct kvm_mp_state *mp_state)
536 {
537         return -ENOIOCTLCMD;
538 }
539
540 static u64 kvm_mips_get_one_regs[] = {
541         KVM_REG_MIPS_R0,
542         KVM_REG_MIPS_R1,
543         KVM_REG_MIPS_R2,
544         KVM_REG_MIPS_R3,
545         KVM_REG_MIPS_R4,
546         KVM_REG_MIPS_R5,
547         KVM_REG_MIPS_R6,
548         KVM_REG_MIPS_R7,
549         KVM_REG_MIPS_R8,
550         KVM_REG_MIPS_R9,
551         KVM_REG_MIPS_R10,
552         KVM_REG_MIPS_R11,
553         KVM_REG_MIPS_R12,
554         KVM_REG_MIPS_R13,
555         KVM_REG_MIPS_R14,
556         KVM_REG_MIPS_R15,
557         KVM_REG_MIPS_R16,
558         KVM_REG_MIPS_R17,
559         KVM_REG_MIPS_R18,
560         KVM_REG_MIPS_R19,
561         KVM_REG_MIPS_R20,
562         KVM_REG_MIPS_R21,
563         KVM_REG_MIPS_R22,
564         KVM_REG_MIPS_R23,
565         KVM_REG_MIPS_R24,
566         KVM_REG_MIPS_R25,
567         KVM_REG_MIPS_R26,
568         KVM_REG_MIPS_R27,
569         KVM_REG_MIPS_R28,
570         KVM_REG_MIPS_R29,
571         KVM_REG_MIPS_R30,
572         KVM_REG_MIPS_R31,
573
574 #ifndef CONFIG_CPU_MIPSR6
575         KVM_REG_MIPS_HI,
576         KVM_REG_MIPS_LO,
577 #endif
578         KVM_REG_MIPS_PC,
579
580         KVM_REG_MIPS_CP0_INDEX,
581         KVM_REG_MIPS_CP0_CONTEXT,
582         KVM_REG_MIPS_CP0_USERLOCAL,
583         KVM_REG_MIPS_CP0_PAGEMASK,
584         KVM_REG_MIPS_CP0_WIRED,
585         KVM_REG_MIPS_CP0_HWRENA,
586         KVM_REG_MIPS_CP0_BADVADDR,
587         KVM_REG_MIPS_CP0_COUNT,
588         KVM_REG_MIPS_CP0_ENTRYHI,
589         KVM_REG_MIPS_CP0_COMPARE,
590         KVM_REG_MIPS_CP0_STATUS,
591         KVM_REG_MIPS_CP0_CAUSE,
592         KVM_REG_MIPS_CP0_EPC,
593         KVM_REG_MIPS_CP0_PRID,
594         KVM_REG_MIPS_CP0_CONFIG,
595         KVM_REG_MIPS_CP0_CONFIG1,
596         KVM_REG_MIPS_CP0_CONFIG2,
597         KVM_REG_MIPS_CP0_CONFIG3,
598         KVM_REG_MIPS_CP0_CONFIG4,
599         KVM_REG_MIPS_CP0_CONFIG5,
600         KVM_REG_MIPS_CP0_CONFIG7,
601         KVM_REG_MIPS_CP0_ERROREPC,
602
603         KVM_REG_MIPS_COUNT_CTL,
604         KVM_REG_MIPS_COUNT_RESUME,
605         KVM_REG_MIPS_COUNT_HZ,
606 };
607
608 static u64 kvm_mips_get_one_regs_fpu[] = {
609         KVM_REG_MIPS_FCR_IR,
610         KVM_REG_MIPS_FCR_CSR,
611 };
612
613 static u64 kvm_mips_get_one_regs_msa[] = {
614         KVM_REG_MIPS_MSA_IR,
615         KVM_REG_MIPS_MSA_CSR,
616 };
617
618 static u64 kvm_mips_get_one_regs_kscratch[] = {
619         KVM_REG_MIPS_CP0_KSCRATCH1,
620         KVM_REG_MIPS_CP0_KSCRATCH2,
621         KVM_REG_MIPS_CP0_KSCRATCH3,
622         KVM_REG_MIPS_CP0_KSCRATCH4,
623         KVM_REG_MIPS_CP0_KSCRATCH5,
624         KVM_REG_MIPS_CP0_KSCRATCH6,
625 };
626
627 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
628 {
629         unsigned long ret;
630
631         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
632         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
633                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
634                 /* odd doubles */
635                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
636                         ret += 16;
637         }
638         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
639                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
640         ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
641         ret += kvm_mips_callbacks->num_regs(vcpu);
642
643         return ret;
644 }
645
646 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
647 {
648         u64 index;
649         unsigned int i;
650
651         if (copy_to_user(indices, kvm_mips_get_one_regs,
652                          sizeof(kvm_mips_get_one_regs)))
653                 return -EFAULT;
654         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
655
656         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
657                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
658                                  sizeof(kvm_mips_get_one_regs_fpu)))
659                         return -EFAULT;
660                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
661
662                 for (i = 0; i < 32; ++i) {
663                         index = KVM_REG_MIPS_FPR_32(i);
664                         if (copy_to_user(indices, &index, sizeof(index)))
665                                 return -EFAULT;
666                         ++indices;
667
668                         /* skip odd doubles if no F64 */
669                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
670                                 continue;
671
672                         index = KVM_REG_MIPS_FPR_64(i);
673                         if (copy_to_user(indices, &index, sizeof(index)))
674                                 return -EFAULT;
675                         ++indices;
676                 }
677         }
678
679         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
680                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
681                                  sizeof(kvm_mips_get_one_regs_msa)))
682                         return -EFAULT;
683                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
684
685                 for (i = 0; i < 32; ++i) {
686                         index = KVM_REG_MIPS_VEC_128(i);
687                         if (copy_to_user(indices, &index, sizeof(index)))
688                                 return -EFAULT;
689                         ++indices;
690                 }
691         }
692
693         for (i = 0; i < 6; ++i) {
694                 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
695                         continue;
696
697                 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
698                                  sizeof(kvm_mips_get_one_regs_kscratch[i])))
699                         return -EFAULT;
700                 ++indices;
701         }
702
703         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
704 }
705
706 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
707                             const struct kvm_one_reg *reg)
708 {
709         struct mips_coproc *cop0 = vcpu->arch.cop0;
710         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
711         int ret;
712         s64 v;
713         s64 vs[2];
714         unsigned int idx;
715
716         switch (reg->id) {
717         /* General purpose registers */
718         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
719                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
720                 break;
721 #ifndef CONFIG_CPU_MIPSR6
722         case KVM_REG_MIPS_HI:
723                 v = (long)vcpu->arch.hi;
724                 break;
725         case KVM_REG_MIPS_LO:
726                 v = (long)vcpu->arch.lo;
727                 break;
728 #endif
729         case KVM_REG_MIPS_PC:
730                 v = (long)vcpu->arch.pc;
731                 break;
732
733         /* Floating point registers */
734         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
735                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
736                         return -EINVAL;
737                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
738                 /* Odd singles in top of even double when FR=0 */
739                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
740                         v = get_fpr32(&fpu->fpr[idx], 0);
741                 else
742                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
743                 break;
744         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
745                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
746                         return -EINVAL;
747                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
748                 /* Can't access odd doubles in FR=0 mode */
749                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
750                         return -EINVAL;
751                 v = get_fpr64(&fpu->fpr[idx], 0);
752                 break;
753         case KVM_REG_MIPS_FCR_IR:
754                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
755                         return -EINVAL;
756                 v = boot_cpu_data.fpu_id;
757                 break;
758         case KVM_REG_MIPS_FCR_CSR:
759                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
760                         return -EINVAL;
761                 v = fpu->fcr31;
762                 break;
763
764         /* MIPS SIMD Architecture (MSA) registers */
765         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
766                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
767                         return -EINVAL;
768                 /* Can't access MSA registers in FR=0 mode */
769                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
770                         return -EINVAL;
771                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
772 #ifdef CONFIG_CPU_LITTLE_ENDIAN
773                 /* least significant byte first */
774                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
775                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
776 #else
777                 /* most significant byte first */
778                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
779                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
780 #endif
781                 break;
782         case KVM_REG_MIPS_MSA_IR:
783                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
784                         return -EINVAL;
785                 v = boot_cpu_data.msa_id;
786                 break;
787         case KVM_REG_MIPS_MSA_CSR:
788                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
789                         return -EINVAL;
790                 v = fpu->msacsr;
791                 break;
792
793         /* Co-processor 0 registers */
794         case KVM_REG_MIPS_CP0_INDEX:
795                 v = (long)kvm_read_c0_guest_index(cop0);
796                 break;
797         case KVM_REG_MIPS_CP0_CONTEXT:
798                 v = (long)kvm_read_c0_guest_context(cop0);
799                 break;
800         case KVM_REG_MIPS_CP0_USERLOCAL:
801                 v = (long)kvm_read_c0_guest_userlocal(cop0);
802                 break;
803         case KVM_REG_MIPS_CP0_PAGEMASK:
804                 v = (long)kvm_read_c0_guest_pagemask(cop0);
805                 break;
806         case KVM_REG_MIPS_CP0_WIRED:
807                 v = (long)kvm_read_c0_guest_wired(cop0);
808                 break;
809         case KVM_REG_MIPS_CP0_HWRENA:
810                 v = (long)kvm_read_c0_guest_hwrena(cop0);
811                 break;
812         case KVM_REG_MIPS_CP0_BADVADDR:
813                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
814                 break;
815         case KVM_REG_MIPS_CP0_ENTRYHI:
816                 v = (long)kvm_read_c0_guest_entryhi(cop0);
817                 break;
818         case KVM_REG_MIPS_CP0_COMPARE:
819                 v = (long)kvm_read_c0_guest_compare(cop0);
820                 break;
821         case KVM_REG_MIPS_CP0_STATUS:
822                 v = (long)kvm_read_c0_guest_status(cop0);
823                 break;
824         case KVM_REG_MIPS_CP0_CAUSE:
825                 v = (long)kvm_read_c0_guest_cause(cop0);
826                 break;
827         case KVM_REG_MIPS_CP0_EPC:
828                 v = (long)kvm_read_c0_guest_epc(cop0);
829                 break;
830         case KVM_REG_MIPS_CP0_PRID:
831                 v = (long)kvm_read_c0_guest_prid(cop0);
832                 break;
833         case KVM_REG_MIPS_CP0_CONFIG:
834                 v = (long)kvm_read_c0_guest_config(cop0);
835                 break;
836         case KVM_REG_MIPS_CP0_CONFIG1:
837                 v = (long)kvm_read_c0_guest_config1(cop0);
838                 break;
839         case KVM_REG_MIPS_CP0_CONFIG2:
840                 v = (long)kvm_read_c0_guest_config2(cop0);
841                 break;
842         case KVM_REG_MIPS_CP0_CONFIG3:
843                 v = (long)kvm_read_c0_guest_config3(cop0);
844                 break;
845         case KVM_REG_MIPS_CP0_CONFIG4:
846                 v = (long)kvm_read_c0_guest_config4(cop0);
847                 break;
848         case KVM_REG_MIPS_CP0_CONFIG5:
849                 v = (long)kvm_read_c0_guest_config5(cop0);
850                 break;
851         case KVM_REG_MIPS_CP0_CONFIG7:
852                 v = (long)kvm_read_c0_guest_config7(cop0);
853                 break;
854         case KVM_REG_MIPS_CP0_ERROREPC:
855                 v = (long)kvm_read_c0_guest_errorepc(cop0);
856                 break;
857         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
858                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
859                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
860                         return -EINVAL;
861                 switch (idx) {
862                 case 2:
863                         v = (long)kvm_read_c0_guest_kscratch1(cop0);
864                         break;
865                 case 3:
866                         v = (long)kvm_read_c0_guest_kscratch2(cop0);
867                         break;
868                 case 4:
869                         v = (long)kvm_read_c0_guest_kscratch3(cop0);
870                         break;
871                 case 5:
872                         v = (long)kvm_read_c0_guest_kscratch4(cop0);
873                         break;
874                 case 6:
875                         v = (long)kvm_read_c0_guest_kscratch5(cop0);
876                         break;
877                 case 7:
878                         v = (long)kvm_read_c0_guest_kscratch6(cop0);
879                         break;
880                 }
881                 break;
882         /* registers to be handled specially */
883         default:
884                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
885                 if (ret)
886                         return ret;
887                 break;
888         }
889         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
890                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
891
892                 return put_user(v, uaddr64);
893         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
894                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
895                 u32 v32 = (u32)v;
896
897                 return put_user(v32, uaddr32);
898         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
899                 void __user *uaddr = (void __user *)(long)reg->addr;
900
901                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
902         } else {
903                 return -EINVAL;
904         }
905 }
906
907 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
908                             const struct kvm_one_reg *reg)
909 {
910         struct mips_coproc *cop0 = vcpu->arch.cop0;
911         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
912         s64 v;
913         s64 vs[2];
914         unsigned int idx;
915
916         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
917                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
918
919                 if (get_user(v, uaddr64) != 0)
920                         return -EFAULT;
921         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
922                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
923                 s32 v32;
924
925                 if (get_user(v32, uaddr32) != 0)
926                         return -EFAULT;
927                 v = (s64)v32;
928         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
929                 void __user *uaddr = (void __user *)(long)reg->addr;
930
931                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
932         } else {
933                 return -EINVAL;
934         }
935
936         switch (reg->id) {
937         /* General purpose registers */
938         case KVM_REG_MIPS_R0:
939                 /* Silently ignore requests to set $0 */
940                 break;
941         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
942                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
943                 break;
944 #ifndef CONFIG_CPU_MIPSR6
945         case KVM_REG_MIPS_HI:
946                 vcpu->arch.hi = v;
947                 break;
948         case KVM_REG_MIPS_LO:
949                 vcpu->arch.lo = v;
950                 break;
951 #endif
952         case KVM_REG_MIPS_PC:
953                 vcpu->arch.pc = v;
954                 break;
955
956         /* Floating point registers */
957         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
958                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
959                         return -EINVAL;
960                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
961                 /* Odd singles in top of even double when FR=0 */
962                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
963                         set_fpr32(&fpu->fpr[idx], 0, v);
964                 else
965                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
966                 break;
967         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
968                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
969                         return -EINVAL;
970                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
971                 /* Can't access odd doubles in FR=0 mode */
972                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
973                         return -EINVAL;
974                 set_fpr64(&fpu->fpr[idx], 0, v);
975                 break;
976         case KVM_REG_MIPS_FCR_IR:
977                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
978                         return -EINVAL;
979                 /* Read-only */
980                 break;
981         case KVM_REG_MIPS_FCR_CSR:
982                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
983                         return -EINVAL;
984                 fpu->fcr31 = v;
985                 break;
986
987         /* MIPS SIMD Architecture (MSA) registers */
988         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
989                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
990                         return -EINVAL;
991                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
992 #ifdef CONFIG_CPU_LITTLE_ENDIAN
993                 /* least significant byte first */
994                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
995                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
996 #else
997                 /* most significant byte first */
998                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
999                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1000 #endif
1001                 break;
1002         case KVM_REG_MIPS_MSA_IR:
1003                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1004                         return -EINVAL;
1005                 /* Read-only */
1006                 break;
1007         case KVM_REG_MIPS_MSA_CSR:
1008                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1009                         return -EINVAL;
1010                 fpu->msacsr = v;
1011                 break;
1012
1013         /* Co-processor 0 registers */
1014         case KVM_REG_MIPS_CP0_INDEX:
1015                 kvm_write_c0_guest_index(cop0, v);
1016                 break;
1017         case KVM_REG_MIPS_CP0_CONTEXT:
1018                 kvm_write_c0_guest_context(cop0, v);
1019                 break;
1020         case KVM_REG_MIPS_CP0_USERLOCAL:
1021                 kvm_write_c0_guest_userlocal(cop0, v);
1022                 break;
1023         case KVM_REG_MIPS_CP0_PAGEMASK:
1024                 kvm_write_c0_guest_pagemask(cop0, v);
1025                 break;
1026         case KVM_REG_MIPS_CP0_WIRED:
1027                 kvm_write_c0_guest_wired(cop0, v);
1028                 break;
1029         case KVM_REG_MIPS_CP0_HWRENA:
1030                 kvm_write_c0_guest_hwrena(cop0, v);
1031                 break;
1032         case KVM_REG_MIPS_CP0_BADVADDR:
1033                 kvm_write_c0_guest_badvaddr(cop0, v);
1034                 break;
1035         case KVM_REG_MIPS_CP0_ENTRYHI:
1036                 kvm_write_c0_guest_entryhi(cop0, v);
1037                 break;
1038         case KVM_REG_MIPS_CP0_STATUS:
1039                 kvm_write_c0_guest_status(cop0, v);
1040                 break;
1041         case KVM_REG_MIPS_CP0_EPC:
1042                 kvm_write_c0_guest_epc(cop0, v);
1043                 break;
1044         case KVM_REG_MIPS_CP0_PRID:
1045                 kvm_write_c0_guest_prid(cop0, v);
1046                 break;
1047         case KVM_REG_MIPS_CP0_ERROREPC:
1048                 kvm_write_c0_guest_errorepc(cop0, v);
1049                 break;
1050         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1051                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1052                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1053                         return -EINVAL;
1054                 switch (idx) {
1055                 case 2:
1056                         kvm_write_c0_guest_kscratch1(cop0, v);
1057                         break;
1058                 case 3:
1059                         kvm_write_c0_guest_kscratch2(cop0, v);
1060                         break;
1061                 case 4:
1062                         kvm_write_c0_guest_kscratch3(cop0, v);
1063                         break;
1064                 case 5:
1065                         kvm_write_c0_guest_kscratch4(cop0, v);
1066                         break;
1067                 case 6:
1068                         kvm_write_c0_guest_kscratch5(cop0, v);
1069                         break;
1070                 case 7:
1071                         kvm_write_c0_guest_kscratch6(cop0, v);
1072                         break;
1073                 }
1074                 break;
1075         /* registers to be handled specially */
1076         default:
1077                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1078         }
1079         return 0;
1080 }
1081
1082 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1083                                      struct kvm_enable_cap *cap)
1084 {
1085         int r = 0;
1086
1087         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1088                 return -EINVAL;
1089         if (cap->flags)
1090                 return -EINVAL;
1091         if (cap->args[0])
1092                 return -EINVAL;
1093
1094         switch (cap->cap) {
1095         case KVM_CAP_MIPS_FPU:
1096                 vcpu->arch.fpu_enabled = true;
1097                 break;
1098         case KVM_CAP_MIPS_MSA:
1099                 vcpu->arch.msa_enabled = true;
1100                 break;
1101         default:
1102                 r = -EINVAL;
1103                 break;
1104         }
1105
1106         return r;
1107 }
1108
1109 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1110                          unsigned long arg)
1111 {
1112         struct kvm_vcpu *vcpu = filp->private_data;
1113         void __user *argp = (void __user *)arg;
1114         long r;
1115
1116         switch (ioctl) {
1117         case KVM_SET_ONE_REG:
1118         case KVM_GET_ONE_REG: {
1119                 struct kvm_one_reg reg;
1120
1121                 if (copy_from_user(&reg, argp, sizeof(reg)))
1122                         return -EFAULT;
1123                 if (ioctl == KVM_SET_ONE_REG)
1124                         return kvm_mips_set_reg(vcpu, &reg);
1125                 else
1126                         return kvm_mips_get_reg(vcpu, &reg);
1127         }
1128         case KVM_GET_REG_LIST: {
1129                 struct kvm_reg_list __user *user_list = argp;
1130                 struct kvm_reg_list reg_list;
1131                 unsigned n;
1132
1133                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1134                         return -EFAULT;
1135                 n = reg_list.n;
1136                 reg_list.n = kvm_mips_num_regs(vcpu);
1137                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1138                         return -EFAULT;
1139                 if (n < reg_list.n)
1140                         return -E2BIG;
1141                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1142         }
1143         case KVM_NMI:
1144                 /* Treat the NMI as a CPU reset */
1145                 r = kvm_mips_reset_vcpu(vcpu);
1146                 break;
1147         case KVM_INTERRUPT:
1148                 {
1149                         struct kvm_mips_interrupt irq;
1150
1151                         r = -EFAULT;
1152                         if (copy_from_user(&irq, argp, sizeof(irq)))
1153                                 goto out;
1154
1155                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1156                                   irq.irq);
1157
1158                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1159                         break;
1160                 }
1161         case KVM_ENABLE_CAP: {
1162                 struct kvm_enable_cap cap;
1163
1164                 r = -EFAULT;
1165                 if (copy_from_user(&cap, argp, sizeof(cap)))
1166                         goto out;
1167                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1168                 break;
1169         }
1170         default:
1171                 r = -ENOIOCTLCMD;
1172         }
1173
1174 out:
1175         return r;
1176 }
1177
1178 /* Get (and clear) the dirty memory log for a memory slot. */
1179 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1180 {
1181         struct kvm_memslots *slots;
1182         struct kvm_memory_slot *memslot;
1183         unsigned long ga, ga_end;
1184         int is_dirty = 0;
1185         int r;
1186         unsigned long n;
1187
1188         mutex_lock(&kvm->slots_lock);
1189
1190         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1191         if (r)
1192                 goto out;
1193
1194         /* If nothing is dirty, don't bother messing with page tables. */
1195         if (is_dirty) {
1196                 slots = kvm_memslots(kvm);
1197                 memslot = id_to_memslot(slots, log->slot);
1198
1199                 ga = memslot->base_gfn << PAGE_SHIFT;
1200                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1201
1202                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1203                          ga_end);
1204
1205                 n = kvm_dirty_bitmap_bytes(memslot);
1206                 memset(memslot->dirty_bitmap, 0, n);
1207         }
1208
1209         r = 0;
1210 out:
1211         mutex_unlock(&kvm->slots_lock);
1212         return r;
1213
1214 }
1215
1216 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1217 {
1218         long r;
1219
1220         switch (ioctl) {
1221         default:
1222                 r = -ENOIOCTLCMD;
1223         }
1224
1225         return r;
1226 }
1227
1228 int kvm_arch_init(void *opaque)
1229 {
1230         if (kvm_mips_callbacks) {
1231                 kvm_err("kvm: module already exists\n");
1232                 return -EEXIST;
1233         }
1234
1235         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1236 }
1237
1238 void kvm_arch_exit(void)
1239 {
1240         kvm_mips_callbacks = NULL;
1241 }
1242
1243 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1244                                   struct kvm_sregs *sregs)
1245 {
1246         return -ENOIOCTLCMD;
1247 }
1248
1249 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1250                                   struct kvm_sregs *sregs)
1251 {
1252         return -ENOIOCTLCMD;
1253 }
1254
1255 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1256 {
1257 }
1258
1259 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1260 {
1261         return -ENOIOCTLCMD;
1262 }
1263
1264 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1265 {
1266         return -ENOIOCTLCMD;
1267 }
1268
1269 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1270 {
1271         return VM_FAULT_SIGBUS;
1272 }
1273
1274 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1275 {
1276         int r;
1277
1278         switch (ext) {
1279         case KVM_CAP_ONE_REG:
1280         case KVM_CAP_ENABLE_CAP:
1281                 r = 1;
1282                 break;
1283         case KVM_CAP_COALESCED_MMIO:
1284                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1285                 break;
1286         case KVM_CAP_MIPS_FPU:
1287                 /* We don't handle systems with inconsistent cpu_has_fpu */
1288                 r = !!raw_cpu_has_fpu;
1289                 break;
1290         case KVM_CAP_MIPS_MSA:
1291                 /*
1292                  * We don't support MSA vector partitioning yet:
1293                  * 1) It would require explicit support which can't be tested
1294                  *    yet due to lack of support in current hardware.
1295                  * 2) It extends the state that would need to be saved/restored
1296                  *    by e.g. QEMU for migration.
1297                  *
1298                  * When vector partitioning hardware becomes available, support
1299                  * could be added by requiring a flag when enabling
1300                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1301                  * to save/restore the appropriate extra state.
1302                  */
1303                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1304                 break;
1305         default:
1306                 r = 0;
1307                 break;
1308         }
1309         return r;
1310 }
1311
1312 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1313 {
1314         return kvm_mips_pending_timer(vcpu);
1315 }
1316
1317 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1318 {
1319         int i;
1320         struct mips_coproc *cop0;
1321
1322         if (!vcpu)
1323                 return -1;
1324
1325         kvm_debug("VCPU Register Dump:\n");
1326         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1327         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1328
1329         for (i = 0; i < 32; i += 4) {
1330                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1331                        vcpu->arch.gprs[i],
1332                        vcpu->arch.gprs[i + 1],
1333                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1334         }
1335         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1336         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1337
1338         cop0 = vcpu->arch.cop0;
1339         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1340                   kvm_read_c0_guest_status(cop0),
1341                   kvm_read_c0_guest_cause(cop0));
1342
1343         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1344
1345         return 0;
1346 }
1347
1348 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1349 {
1350         int i;
1351
1352         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1353                 vcpu->arch.gprs[i] = regs->gpr[i];
1354         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1355         vcpu->arch.hi = regs->hi;
1356         vcpu->arch.lo = regs->lo;
1357         vcpu->arch.pc = regs->pc;
1358
1359         return 0;
1360 }
1361
1362 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1363 {
1364         int i;
1365
1366         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1367                 regs->gpr[i] = vcpu->arch.gprs[i];
1368
1369         regs->hi = vcpu->arch.hi;
1370         regs->lo = vcpu->arch.lo;
1371         regs->pc = vcpu->arch.pc;
1372
1373         return 0;
1374 }
1375
1376 static void kvm_mips_comparecount_func(unsigned long data)
1377 {
1378         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1379
1380         kvm_mips_callbacks->queue_timer_int(vcpu);
1381
1382         vcpu->arch.wait = 0;
1383         if (swait_active(&vcpu->wq))
1384                 swake_up(&vcpu->wq);
1385 }
1386
1387 /* low level hrtimer wake routine */
1388 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1389 {
1390         struct kvm_vcpu *vcpu;
1391
1392         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1393         kvm_mips_comparecount_func((unsigned long) vcpu);
1394         return kvm_mips_count_timeout(vcpu);
1395 }
1396
1397 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1398 {
1399         kvm_mips_callbacks->vcpu_init(vcpu);
1400         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1401                      HRTIMER_MODE_REL);
1402         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1403         return 0;
1404 }
1405
1406 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1407                                   struct kvm_translation *tr)
1408 {
1409         return 0;
1410 }
1411
1412 /* Initial guest state */
1413 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1414 {
1415         return kvm_mips_callbacks->vcpu_setup(vcpu);
1416 }
1417
1418 static void kvm_mips_set_c0_status(void)
1419 {
1420         u32 status = read_c0_status();
1421
1422         if (cpu_has_dsp)
1423                 status |= (ST0_MX);
1424
1425         write_c0_status(status);
1426         ehb();
1427 }
1428
1429 /*
1430  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1431  */
1432 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1433 {
1434         u32 cause = vcpu->arch.host_cp0_cause;
1435         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1436         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1437         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1438         enum emulation_result er = EMULATE_DONE;
1439         int ret = RESUME_GUEST;
1440
1441         /* re-enable HTW before enabling interrupts */
1442         htw_start();
1443
1444         /* Set a default exit reason */
1445         run->exit_reason = KVM_EXIT_UNKNOWN;
1446         run->ready_for_interrupt_injection = 1;
1447
1448         /*
1449          * Set the appropriate status bits based on host CPU features,
1450          * before we hit the scheduler
1451          */
1452         kvm_mips_set_c0_status();
1453
1454         local_irq_enable();
1455
1456         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1457                         cause, opc, run, vcpu);
1458         trace_kvm_exit(vcpu, exccode);
1459
1460         /*
1461          * Do a privilege check, if in UM most of these exit conditions end up
1462          * causing an exception to be delivered to the Guest Kernel
1463          */
1464         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1465         if (er == EMULATE_PRIV_FAIL) {
1466                 goto skip_emul;
1467         } else if (er == EMULATE_FAIL) {
1468                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1469                 ret = RESUME_HOST;
1470                 goto skip_emul;
1471         }
1472
1473         switch (exccode) {
1474         case EXCCODE_INT:
1475                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1476
1477                 ++vcpu->stat.int_exits;
1478
1479                 if (need_resched())
1480                         cond_resched();
1481
1482                 ret = RESUME_GUEST;
1483                 break;
1484
1485         case EXCCODE_CPU:
1486                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1487
1488                 ++vcpu->stat.cop_unusable_exits;
1489                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1490                 /* XXXKYMA: Might need to return to user space */
1491                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1492                         ret = RESUME_HOST;
1493                 break;
1494
1495         case EXCCODE_MOD:
1496                 ++vcpu->stat.tlbmod_exits;
1497                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1498                 break;
1499
1500         case EXCCODE_TLBS:
1501                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1502                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1503                           badvaddr);
1504
1505                 ++vcpu->stat.tlbmiss_st_exits;
1506                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1507                 break;
1508
1509         case EXCCODE_TLBL:
1510                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1511                           cause, opc, badvaddr);
1512
1513                 ++vcpu->stat.tlbmiss_ld_exits;
1514                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1515                 break;
1516
1517         case EXCCODE_ADES:
1518                 ++vcpu->stat.addrerr_st_exits;
1519                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1520                 break;
1521
1522         case EXCCODE_ADEL:
1523                 ++vcpu->stat.addrerr_ld_exits;
1524                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1525                 break;
1526
1527         case EXCCODE_SYS:
1528                 ++vcpu->stat.syscall_exits;
1529                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1530                 break;
1531
1532         case EXCCODE_RI:
1533                 ++vcpu->stat.resvd_inst_exits;
1534                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1535                 break;
1536
1537         case EXCCODE_BP:
1538                 ++vcpu->stat.break_inst_exits;
1539                 ret = kvm_mips_callbacks->handle_break(vcpu);
1540                 break;
1541
1542         case EXCCODE_TR:
1543                 ++vcpu->stat.trap_inst_exits;
1544                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1545                 break;
1546
1547         case EXCCODE_MSAFPE:
1548                 ++vcpu->stat.msa_fpe_exits;
1549                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1550                 break;
1551
1552         case EXCCODE_FPE:
1553                 ++vcpu->stat.fpe_exits;
1554                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1555                 break;
1556
1557         case EXCCODE_MSADIS:
1558                 ++vcpu->stat.msa_disabled_exits;
1559                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1560                 break;
1561
1562         default:
1563                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1564                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1565                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1566                 kvm_arch_vcpu_dump_regs(vcpu);
1567                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1568                 ret = RESUME_HOST;
1569                 break;
1570
1571         }
1572
1573 skip_emul:
1574         local_irq_disable();
1575
1576         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1577                 kvm_mips_deliver_interrupts(vcpu, cause);
1578
1579         if (!(ret & RESUME_HOST)) {
1580                 /* Only check for signals if not already exiting to userspace */
1581                 if (signal_pending(current)) {
1582                         run->exit_reason = KVM_EXIT_INTR;
1583                         ret = (-EINTR << 2) | RESUME_HOST;
1584                         ++vcpu->stat.signal_exits;
1585                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1586                 }
1587         }
1588
1589         if (ret == RESUME_GUEST) {
1590                 trace_kvm_reenter(vcpu);
1591
1592                 kvm_mips_check_asids(vcpu);
1593
1594                 /*
1595                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1596                  * is live), restore FCR31 / MSACSR.
1597                  *
1598                  * This should be before returning to the guest exception
1599                  * vector, as it may well cause an [MSA] FP exception if there
1600                  * are pending exception bits unmasked. (see
1601                  * kvm_mips_csr_die_notifier() for how that is handled).
1602                  */
1603                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1604                     read_c0_status() & ST0_CU1)
1605                         __kvm_restore_fcsr(&vcpu->arch);
1606
1607                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1608                     read_c0_config5() & MIPS_CONF5_MSAEN)
1609                         __kvm_restore_msacsr(&vcpu->arch);
1610         }
1611
1612         /* Disable HTW before returning to guest or host */
1613         htw_stop();
1614
1615         return ret;
1616 }
1617
1618 /* Enable FPU for guest and restore context */
1619 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1620 {
1621         struct mips_coproc *cop0 = vcpu->arch.cop0;
1622         unsigned int sr, cfg5;
1623
1624         preempt_disable();
1625
1626         sr = kvm_read_c0_guest_status(cop0);
1627
1628         /*
1629          * If MSA state is already live, it is undefined how it interacts with
1630          * FR=0 FPU state, and we don't want to hit reserved instruction
1631          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1632          * play it safe and save it first.
1633          *
1634          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1635          * get called when guest CU1 is set, however we can't trust the guest
1636          * not to clobber the status register directly via the commpage.
1637          */
1638         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1639             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1640                 kvm_lose_fpu(vcpu);
1641
1642         /*
1643          * Enable FPU for guest
1644          * We set FR and FRE according to guest context
1645          */
1646         change_c0_status(ST0_CU1 | ST0_FR, sr);
1647         if (cpu_has_fre) {
1648                 cfg5 = kvm_read_c0_guest_config5(cop0);
1649                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1650         }
1651         enable_fpu_hazard();
1652
1653         /* If guest FPU state not active, restore it now */
1654         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1655                 __kvm_restore_fpu(&vcpu->arch);
1656                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1657                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1658         } else {
1659                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1660         }
1661
1662         preempt_enable();
1663 }
1664
1665 #ifdef CONFIG_CPU_HAS_MSA
1666 /* Enable MSA for guest and restore context */
1667 void kvm_own_msa(struct kvm_vcpu *vcpu)
1668 {
1669         struct mips_coproc *cop0 = vcpu->arch.cop0;
1670         unsigned int sr, cfg5;
1671
1672         preempt_disable();
1673
1674         /*
1675          * Enable FPU if enabled in guest, since we're restoring FPU context
1676          * anyway. We set FR and FRE according to guest context.
1677          */
1678         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1679                 sr = kvm_read_c0_guest_status(cop0);
1680
1681                 /*
1682                  * If FR=0 FPU state is already live, it is undefined how it
1683                  * interacts with MSA state, so play it safe and save it first.
1684                  */
1685                 if (!(sr & ST0_FR) &&
1686                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1687                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1688                         kvm_lose_fpu(vcpu);
1689
1690                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1691                 if (sr & ST0_CU1 && cpu_has_fre) {
1692                         cfg5 = kvm_read_c0_guest_config5(cop0);
1693                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1694                 }
1695         }
1696
1697         /* Enable MSA for guest */
1698         set_c0_config5(MIPS_CONF5_MSAEN);
1699         enable_fpu_hazard();
1700
1701         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1702         case KVM_MIPS_AUX_FPU:
1703                 /*
1704                  * Guest FPU state already loaded, only restore upper MSA state
1705                  */
1706                 __kvm_restore_msa_upper(&vcpu->arch);
1707                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1708                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1709                 break;
1710         case 0:
1711                 /* Neither FPU or MSA already active, restore full MSA state */
1712                 __kvm_restore_msa(&vcpu->arch);
1713                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1714                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1715                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1716                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1717                               KVM_TRACE_AUX_FPU_MSA);
1718                 break;
1719         default:
1720                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1721                 break;
1722         }
1723
1724         preempt_enable();
1725 }
1726 #endif
1727
1728 /* Drop FPU & MSA without saving it */
1729 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1730 {
1731         preempt_disable();
1732         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1733                 disable_msa();
1734                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1735                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1736         }
1737         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1738                 clear_c0_status(ST0_CU1 | ST0_FR);
1739                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1740                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1741         }
1742         preempt_enable();
1743 }
1744
1745 /* Save and disable FPU & MSA */
1746 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1747 {
1748         /*
1749          * FPU & MSA get disabled in root context (hardware) when it is disabled
1750          * in guest context (software), but the register state in the hardware
1751          * may still be in use. This is why we explicitly re-enable the hardware
1752          * before saving.
1753          */
1754
1755         preempt_disable();
1756         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1757                 set_c0_config5(MIPS_CONF5_MSAEN);
1758                 enable_fpu_hazard();
1759
1760                 __kvm_save_msa(&vcpu->arch);
1761                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1762
1763                 /* Disable MSA & FPU */
1764                 disable_msa();
1765                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1766                         clear_c0_status(ST0_CU1 | ST0_FR);
1767                         disable_fpu_hazard();
1768                 }
1769                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1770         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1771                 set_c0_status(ST0_CU1);
1772                 enable_fpu_hazard();
1773
1774                 __kvm_save_fpu(&vcpu->arch);
1775                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1776                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1777
1778                 /* Disable FPU */
1779                 clear_c0_status(ST0_CU1 | ST0_FR);
1780                 disable_fpu_hazard();
1781         }
1782         preempt_enable();
1783 }
1784
1785 /*
1786  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1787  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1788  * exception if cause bits are set in the value being written.
1789  */
1790 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1791                                    unsigned long cmd, void *ptr)
1792 {
1793         struct die_args *args = (struct die_args *)ptr;
1794         struct pt_regs *regs = args->regs;
1795         unsigned long pc;
1796
1797         /* Only interested in FPE and MSAFPE */
1798         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1799                 return NOTIFY_DONE;
1800
1801         /* Return immediately if guest context isn't active */
1802         if (!(current->flags & PF_VCPU))
1803                 return NOTIFY_DONE;
1804
1805         /* Should never get here from user mode */
1806         BUG_ON(user_mode(regs));
1807
1808         pc = instruction_pointer(regs);
1809         switch (cmd) {
1810         case DIE_FP:
1811                 /* match 2nd instruction in __kvm_restore_fcsr */
1812                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1813                         return NOTIFY_DONE;
1814                 break;
1815         case DIE_MSAFP:
1816                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1817                 if (!cpu_has_msa ||
1818                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1819                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1820                         return NOTIFY_DONE;
1821                 break;
1822         }
1823
1824         /* Move PC forward a little and continue executing */
1825         instruction_pointer(regs) += 4;
1826
1827         return NOTIFY_STOP;
1828 }
1829
1830 static struct notifier_block kvm_mips_csr_die_notifier = {
1831         .notifier_call = kvm_mips_csr_die_notify,
1832 };
1833
1834 static int __init kvm_mips_init(void)
1835 {
1836         int ret;
1837
1838         ret = kvm_mips_entry_setup();
1839         if (ret)
1840                 return ret;
1841
1842         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1843
1844         if (ret)
1845                 return ret;
1846
1847         register_die_notifier(&kvm_mips_csr_die_notifier);
1848
1849         return 0;
1850 }
1851
1852 static void __exit kvm_mips_exit(void)
1853 {
1854         kvm_exit();
1855
1856         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1857 }
1858
1859 module_init(kvm_mips_init);
1860 module_exit(kvm_mips_exit);
1861
1862 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);