powerpc: Update kernel VSID range
[cascardo/linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/tlbflush.h>
47 #include <asm/io.h>
48 #include <asm/eeh.h>
49 #include <asm/tlb.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/spu.h>
54 #include <asm/udbg.h>
55 #include <asm/code-patching.h>
56 #include <asm/fadump.h>
57 #include <asm/firmware.h>
58 #include <asm/tm.h>
59
60 #ifdef DEBUG
61 #define DBG(fmt...) udbg_printf(fmt)
62 #else
63 #define DBG(fmt...)
64 #endif
65
66 #ifdef DEBUG_LOW
67 #define DBG_LOW(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG_LOW(fmt...)
70 #endif
71
72 #define KB (1024)
73 #define MB (1024*KB)
74 #define GB (1024L*MB)
75
76 /*
77  * Note:  pte   --> Linux PTE
78  *        HPTE  --> PowerPC Hashed Page Table Entry
79  *
80  * Execution context:
81  *   htab_initialize is called with the MMU off (of course), but
82  *   the kernel has been copied down to zero so it can directly
83  *   reference global data.  At this point it is very difficult
84  *   to print debug info.
85  *
86  */
87
88 #ifdef CONFIG_U3_DART
89 extern unsigned long dart_tablebase;
90 #endif /* CONFIG_U3_DART */
91
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94
95 struct hash_pte *htab_address;
96 unsigned long htab_size_bytes;
97 unsigned long htab_hash_mask;
98 EXPORT_SYMBOL_GPL(htab_hash_mask);
99 int mmu_linear_psize = MMU_PAGE_4K;
100 int mmu_virtual_psize = MMU_PAGE_4K;
101 int mmu_vmalloc_psize = MMU_PAGE_4K;
102 #ifdef CONFIG_SPARSEMEM_VMEMMAP
103 int mmu_vmemmap_psize = MMU_PAGE_4K;
104 #endif
105 int mmu_io_psize = MMU_PAGE_4K;
106 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
107 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
108 u16 mmu_slb_size = 64;
109 EXPORT_SYMBOL_GPL(mmu_slb_size);
110 #ifdef CONFIG_PPC_64K_PAGES
111 int mmu_ci_restrictions;
112 #endif
113 #ifdef CONFIG_DEBUG_PAGEALLOC
114 static u8 *linear_map_hash_slots;
115 static unsigned long linear_map_hash_count;
116 static DEFINE_SPINLOCK(linear_map_hash_lock);
117 #endif /* CONFIG_DEBUG_PAGEALLOC */
118
119 /* There are definitions of page sizes arrays to be used when none
120  * is provided by the firmware.
121  */
122
123 /* Pre-POWER4 CPUs (4k pages only)
124  */
125 static struct mmu_psize_def mmu_psize_defaults_old[] = {
126         [MMU_PAGE_4K] = {
127                 .shift  = 12,
128                 .sllp   = 0,
129                 .penc   = 0,
130                 .avpnm  = 0,
131                 .tlbiel = 0,
132         },
133 };
134
135 /* POWER4, GPUL, POWER5
136  *
137  * Support for 16Mb large pages
138  */
139 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
140         [MMU_PAGE_4K] = {
141                 .shift  = 12,
142                 .sllp   = 0,
143                 .penc   = 0,
144                 .avpnm  = 0,
145                 .tlbiel = 1,
146         },
147         [MMU_PAGE_16M] = {
148                 .shift  = 24,
149                 .sllp   = SLB_VSID_L,
150                 .penc   = 0,
151                 .avpnm  = 0x1UL,
152                 .tlbiel = 0,
153         },
154 };
155
156 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
157 {
158         unsigned long rflags = pteflags & 0x1fa;
159
160         /* _PAGE_EXEC -> NOEXEC */
161         if ((pteflags & _PAGE_EXEC) == 0)
162                 rflags |= HPTE_R_N;
163
164         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
165          * need to add in 0x1 if it's a read-only user page
166          */
167         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
168                                          (pteflags & _PAGE_DIRTY)))
169                 rflags |= 1;
170
171         /* Always add C */
172         return rflags | HPTE_R_C;
173 }
174
175 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
176                       unsigned long pstart, unsigned long prot,
177                       int psize, int ssize)
178 {
179         unsigned long vaddr, paddr;
180         unsigned int step, shift;
181         int ret = 0;
182
183         shift = mmu_psize_defs[psize].shift;
184         step = 1 << shift;
185
186         prot = htab_convert_pte_flags(prot);
187
188         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
189             vstart, vend, pstart, prot, psize, ssize);
190
191         for (vaddr = vstart, paddr = pstart; vaddr < vend;
192              vaddr += step, paddr += step) {
193                 unsigned long hash, hpteg;
194                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
195                 unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
196                 unsigned long tprot = prot;
197
198                 /*
199                  * If we hit a bad address return error.
200                  */
201                 if (!vsid)
202                         return -1;
203                 /* Make kernel text executable */
204                 if (overlaps_kernel_text(vaddr, vaddr + step))
205                         tprot &= ~HPTE_R_N;
206
207                 hash = hpt_hash(vpn, shift, ssize);
208                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
209
210                 BUG_ON(!ppc_md.hpte_insert);
211                 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
212                                          HPTE_V_BOLTED, psize, ssize);
213
214                 if (ret < 0)
215                         break;
216 #ifdef CONFIG_DEBUG_PAGEALLOC
217                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
218                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
219 #endif /* CONFIG_DEBUG_PAGEALLOC */
220         }
221         return ret < 0 ? ret : 0;
222 }
223
224 #ifdef CONFIG_MEMORY_HOTPLUG
225 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
226                       int psize, int ssize)
227 {
228         unsigned long vaddr;
229         unsigned int step, shift;
230
231         shift = mmu_psize_defs[psize].shift;
232         step = 1 << shift;
233
234         if (!ppc_md.hpte_removebolted) {
235                 printk(KERN_WARNING "Platform doesn't implement "
236                                 "hpte_removebolted\n");
237                 return -EINVAL;
238         }
239
240         for (vaddr = vstart; vaddr < vend; vaddr += step)
241                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
242
243         return 0;
244 }
245 #endif /* CONFIG_MEMORY_HOTPLUG */
246
247 static int __init htab_dt_scan_seg_sizes(unsigned long node,
248                                          const char *uname, int depth,
249                                          void *data)
250 {
251         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
252         u32 *prop;
253         unsigned long size = 0;
254
255         /* We are scanning "cpu" nodes only */
256         if (type == NULL || strcmp(type, "cpu") != 0)
257                 return 0;
258
259         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
260                                           &size);
261         if (prop == NULL)
262                 return 0;
263         for (; size >= 4; size -= 4, ++prop) {
264                 if (prop[0] == 40) {
265                         DBG("1T segment support detected\n");
266                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
267                         return 1;
268                 }
269         }
270         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
271         return 0;
272 }
273
274 static void __init htab_init_seg_sizes(void)
275 {
276         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
277 }
278
279 static int __init htab_dt_scan_page_sizes(unsigned long node,
280                                           const char *uname, int depth,
281                                           void *data)
282 {
283         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
284         u32 *prop;
285         unsigned long size = 0;
286
287         /* We are scanning "cpu" nodes only */
288         if (type == NULL || strcmp(type, "cpu") != 0)
289                 return 0;
290
291         prop = (u32 *)of_get_flat_dt_prop(node,
292                                           "ibm,segment-page-sizes", &size);
293         if (prop != NULL) {
294                 DBG("Page sizes from device-tree:\n");
295                 size /= 4;
296                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
297                 while(size > 0) {
298                         unsigned int shift = prop[0];
299                         unsigned int slbenc = prop[1];
300                         unsigned int lpnum = prop[2];
301                         unsigned int lpenc = 0;
302                         struct mmu_psize_def *def;
303                         int idx = -1;
304
305                         size -= 3; prop += 3;
306                         while(size > 0 && lpnum) {
307                                 if (prop[0] == shift)
308                                         lpenc = prop[1];
309                                 prop += 2; size -= 2;
310                                 lpnum--;
311                         }
312                         switch(shift) {
313                         case 0xc:
314                                 idx = MMU_PAGE_4K;
315                                 break;
316                         case 0x10:
317                                 idx = MMU_PAGE_64K;
318                                 break;
319                         case 0x14:
320                                 idx = MMU_PAGE_1M;
321                                 break;
322                         case 0x18:
323                                 idx = MMU_PAGE_16M;
324                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
325                                 break;
326                         case 0x22:
327                                 idx = MMU_PAGE_16G;
328                                 break;
329                         }
330                         if (idx < 0)
331                                 continue;
332                         def = &mmu_psize_defs[idx];
333                         def->shift = shift;
334                         if (shift <= 23)
335                                 def->avpnm = 0;
336                         else
337                                 def->avpnm = (1 << (shift - 23)) - 1;
338                         def->sllp = slbenc;
339                         def->penc = lpenc;
340                         /* We don't know for sure what's up with tlbiel, so
341                          * for now we only set it for 4K and 64K pages
342                          */
343                         if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
344                                 def->tlbiel = 1;
345                         else
346                                 def->tlbiel = 0;
347
348                         DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
349                             "tlbiel=%d, penc=%d\n",
350                             idx, shift, def->sllp, def->avpnm, def->tlbiel,
351                             def->penc);
352                 }
353                 return 1;
354         }
355         return 0;
356 }
357
358 #ifdef CONFIG_HUGETLB_PAGE
359 /* Scan for 16G memory blocks that have been set aside for huge pages
360  * and reserve those blocks for 16G huge pages.
361  */
362 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
363                                         const char *uname, int depth,
364                                         void *data) {
365         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
366         unsigned long *addr_prop;
367         u32 *page_count_prop;
368         unsigned int expected_pages;
369         long unsigned int phys_addr;
370         long unsigned int block_size;
371
372         /* We are scanning "memory" nodes only */
373         if (type == NULL || strcmp(type, "memory") != 0)
374                 return 0;
375
376         /* This property is the log base 2 of the number of virtual pages that
377          * will represent this memory block. */
378         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
379         if (page_count_prop == NULL)
380                 return 0;
381         expected_pages = (1 << page_count_prop[0]);
382         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
383         if (addr_prop == NULL)
384                 return 0;
385         phys_addr = addr_prop[0];
386         block_size = addr_prop[1];
387         if (block_size != (16 * GB))
388                 return 0;
389         printk(KERN_INFO "Huge page(16GB) memory: "
390                         "addr = 0x%lX size = 0x%lX pages = %d\n",
391                         phys_addr, block_size, expected_pages);
392         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
393                 memblock_reserve(phys_addr, block_size * expected_pages);
394                 add_gpage(phys_addr, block_size, expected_pages);
395         }
396         return 0;
397 }
398 #endif /* CONFIG_HUGETLB_PAGE */
399
400 static void __init htab_init_page_sizes(void)
401 {
402         int rc;
403
404         /* Default to 4K pages only */
405         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
406                sizeof(mmu_psize_defaults_old));
407
408         /*
409          * Try to find the available page sizes in the device-tree
410          */
411         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
412         if (rc != 0)  /* Found */
413                 goto found;
414
415         /*
416          * Not in the device-tree, let's fallback on known size
417          * list for 16M capable GP & GR
418          */
419         if (mmu_has_feature(MMU_FTR_16M_PAGE))
420                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
421                        sizeof(mmu_psize_defaults_gp));
422  found:
423 #ifndef CONFIG_DEBUG_PAGEALLOC
424         /*
425          * Pick a size for the linear mapping. Currently, we only support
426          * 16M, 1M and 4K which is the default
427          */
428         if (mmu_psize_defs[MMU_PAGE_16M].shift)
429                 mmu_linear_psize = MMU_PAGE_16M;
430         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
431                 mmu_linear_psize = MMU_PAGE_1M;
432 #endif /* CONFIG_DEBUG_PAGEALLOC */
433
434 #ifdef CONFIG_PPC_64K_PAGES
435         /*
436          * Pick a size for the ordinary pages. Default is 4K, we support
437          * 64K for user mappings and vmalloc if supported by the processor.
438          * We only use 64k for ioremap if the processor
439          * (and firmware) support cache-inhibited large pages.
440          * If not, we use 4k and set mmu_ci_restrictions so that
441          * hash_page knows to switch processes that use cache-inhibited
442          * mappings to 4k pages.
443          */
444         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
445                 mmu_virtual_psize = MMU_PAGE_64K;
446                 mmu_vmalloc_psize = MMU_PAGE_64K;
447                 if (mmu_linear_psize == MMU_PAGE_4K)
448                         mmu_linear_psize = MMU_PAGE_64K;
449                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
450                         /*
451                          * Don't use 64k pages for ioremap on pSeries, since
452                          * that would stop us accessing the HEA ethernet.
453                          */
454                         if (!machine_is(pseries))
455                                 mmu_io_psize = MMU_PAGE_64K;
456                 } else
457                         mmu_ci_restrictions = 1;
458         }
459 #endif /* CONFIG_PPC_64K_PAGES */
460
461 #ifdef CONFIG_SPARSEMEM_VMEMMAP
462         /* We try to use 16M pages for vmemmap if that is supported
463          * and we have at least 1G of RAM at boot
464          */
465         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
466             memblock_phys_mem_size() >= 0x40000000)
467                 mmu_vmemmap_psize = MMU_PAGE_16M;
468         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
469                 mmu_vmemmap_psize = MMU_PAGE_64K;
470         else
471                 mmu_vmemmap_psize = MMU_PAGE_4K;
472 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
473
474         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
475                "virtual = %d, io = %d"
476 #ifdef CONFIG_SPARSEMEM_VMEMMAP
477                ", vmemmap = %d"
478 #endif
479                "\n",
480                mmu_psize_defs[mmu_linear_psize].shift,
481                mmu_psize_defs[mmu_virtual_psize].shift,
482                mmu_psize_defs[mmu_io_psize].shift
483 #ifdef CONFIG_SPARSEMEM_VMEMMAP
484                ,mmu_psize_defs[mmu_vmemmap_psize].shift
485 #endif
486                );
487
488 #ifdef CONFIG_HUGETLB_PAGE
489         /* Reserve 16G huge page memory sections for huge pages */
490         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
491 #endif /* CONFIG_HUGETLB_PAGE */
492 }
493
494 static int __init htab_dt_scan_pftsize(unsigned long node,
495                                        const char *uname, int depth,
496                                        void *data)
497 {
498         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
499         u32 *prop;
500
501         /* We are scanning "cpu" nodes only */
502         if (type == NULL || strcmp(type, "cpu") != 0)
503                 return 0;
504
505         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
506         if (prop != NULL) {
507                 /* pft_size[0] is the NUMA CEC cookie */
508                 ppc64_pft_size = prop[1];
509                 return 1;
510         }
511         return 0;
512 }
513
514 static unsigned long __init htab_get_table_size(void)
515 {
516         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
517
518         /* If hash size isn't already provided by the platform, we try to
519          * retrieve it from the device-tree. If it's not there neither, we
520          * calculate it now based on the total RAM size
521          */
522         if (ppc64_pft_size == 0)
523                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
524         if (ppc64_pft_size)
525                 return 1UL << ppc64_pft_size;
526
527         /* round mem_size up to next power of 2 */
528         mem_size = memblock_phys_mem_size();
529         rnd_mem_size = 1UL << __ilog2(mem_size);
530         if (rnd_mem_size < mem_size)
531                 rnd_mem_size <<= 1;
532
533         /* # pages / 2 */
534         psize = mmu_psize_defs[mmu_virtual_psize].shift;
535         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
536
537         return pteg_count << 7;
538 }
539
540 #ifdef CONFIG_MEMORY_HOTPLUG
541 int create_section_mapping(unsigned long start, unsigned long end)
542 {
543         return htab_bolt_mapping(start, end, __pa(start),
544                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
545                                  mmu_kernel_ssize);
546 }
547
548 int remove_section_mapping(unsigned long start, unsigned long end)
549 {
550         return htab_remove_mapping(start, end, mmu_linear_psize,
551                         mmu_kernel_ssize);
552 }
553 #endif /* CONFIG_MEMORY_HOTPLUG */
554
555 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
556
557 static void __init htab_finish_init(void)
558 {
559         extern unsigned int *htab_call_hpte_insert1;
560         extern unsigned int *htab_call_hpte_insert2;
561         extern unsigned int *htab_call_hpte_remove;
562         extern unsigned int *htab_call_hpte_updatepp;
563
564 #ifdef CONFIG_PPC_HAS_HASH_64K
565         extern unsigned int *ht64_call_hpte_insert1;
566         extern unsigned int *ht64_call_hpte_insert2;
567         extern unsigned int *ht64_call_hpte_remove;
568         extern unsigned int *ht64_call_hpte_updatepp;
569
570         patch_branch(ht64_call_hpte_insert1,
571                 FUNCTION_TEXT(ppc_md.hpte_insert),
572                 BRANCH_SET_LINK);
573         patch_branch(ht64_call_hpte_insert2,
574                 FUNCTION_TEXT(ppc_md.hpte_insert),
575                 BRANCH_SET_LINK);
576         patch_branch(ht64_call_hpte_remove,
577                 FUNCTION_TEXT(ppc_md.hpte_remove),
578                 BRANCH_SET_LINK);
579         patch_branch(ht64_call_hpte_updatepp,
580                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
581                 BRANCH_SET_LINK);
582
583 #endif /* CONFIG_PPC_HAS_HASH_64K */
584
585         patch_branch(htab_call_hpte_insert1,
586                 FUNCTION_TEXT(ppc_md.hpte_insert),
587                 BRANCH_SET_LINK);
588         patch_branch(htab_call_hpte_insert2,
589                 FUNCTION_TEXT(ppc_md.hpte_insert),
590                 BRANCH_SET_LINK);
591         patch_branch(htab_call_hpte_remove,
592                 FUNCTION_TEXT(ppc_md.hpte_remove),
593                 BRANCH_SET_LINK);
594         patch_branch(htab_call_hpte_updatepp,
595                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
596                 BRANCH_SET_LINK);
597 }
598
599 static void __init htab_initialize(void)
600 {
601         unsigned long table;
602         unsigned long pteg_count;
603         unsigned long prot;
604         unsigned long base = 0, size = 0, limit;
605         struct memblock_region *reg;
606
607         DBG(" -> htab_initialize()\n");
608
609         /* Initialize segment sizes */
610         htab_init_seg_sizes();
611
612         /* Initialize page sizes */
613         htab_init_page_sizes();
614
615         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
616                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
617                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
618                 printk(KERN_INFO "Using 1TB segments\n");
619         }
620
621         /*
622          * Calculate the required size of the htab.  We want the number of
623          * PTEGs to equal one half the number of real pages.
624          */ 
625         htab_size_bytes = htab_get_table_size();
626         pteg_count = htab_size_bytes >> 7;
627
628         htab_hash_mask = pteg_count - 1;
629
630         if (firmware_has_feature(FW_FEATURE_LPAR)) {
631                 /* Using a hypervisor which owns the htab */
632                 htab_address = NULL;
633                 _SDR1 = 0; 
634 #ifdef CONFIG_FA_DUMP
635                 /*
636                  * If firmware assisted dump is active firmware preserves
637                  * the contents of htab along with entire partition memory.
638                  * Clear the htab if firmware assisted dump is active so
639                  * that we dont end up using old mappings.
640                  */
641                 if (is_fadump_active() && ppc_md.hpte_clear_all)
642                         ppc_md.hpte_clear_all();
643 #endif
644         } else {
645                 /* Find storage for the HPT.  Must be contiguous in
646                  * the absolute address space. On cell we want it to be
647                  * in the first 2 Gig so we can use it for IOMMU hacks.
648                  */
649                 if (machine_is(cell))
650                         limit = 0x80000000;
651                 else
652                         limit = MEMBLOCK_ALLOC_ANYWHERE;
653
654                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
655
656                 DBG("Hash table allocated at %lx, size: %lx\n", table,
657                     htab_size_bytes);
658
659                 htab_address = __va(table);
660
661                 /* htab absolute addr + encoded htabsize */
662                 _SDR1 = table + __ilog2(pteg_count) - 11;
663
664                 /* Initialize the HPT with no entries */
665                 memset((void *)table, 0, htab_size_bytes);
666
667                 /* Set SDR1 */
668                 mtspr(SPRN_SDR1, _SDR1);
669         }
670
671         prot = pgprot_val(PAGE_KERNEL);
672
673 #ifdef CONFIG_DEBUG_PAGEALLOC
674         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
675         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
676                                                     1, ppc64_rma_size));
677         memset(linear_map_hash_slots, 0, linear_map_hash_count);
678 #endif /* CONFIG_DEBUG_PAGEALLOC */
679
680         /* On U3 based machines, we need to reserve the DART area and
681          * _NOT_ map it to avoid cache paradoxes as it's remapped non
682          * cacheable later on
683          */
684
685         /* create bolted the linear mapping in the hash table */
686         for_each_memblock(memory, reg) {
687                 base = (unsigned long)__va(reg->base);
688                 size = reg->size;
689
690                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
691                     base, size, prot);
692
693 #ifdef CONFIG_U3_DART
694                 /* Do not map the DART space. Fortunately, it will be aligned
695                  * in such a way that it will not cross two memblock regions and
696                  * will fit within a single 16Mb page.
697                  * The DART space is assumed to be a full 16Mb region even if
698                  * we only use 2Mb of that space. We will use more of it later
699                  * for AGP GART. We have to use a full 16Mb large page.
700                  */
701                 DBG("DART base: %lx\n", dart_tablebase);
702
703                 if (dart_tablebase != 0 && dart_tablebase >= base
704                     && dart_tablebase < (base + size)) {
705                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
706                         if (base != dart_tablebase)
707                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
708                                                         __pa(base), prot,
709                                                         mmu_linear_psize,
710                                                         mmu_kernel_ssize));
711                         if ((base + size) > dart_table_end)
712                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
713                                                         base + size,
714                                                         __pa(dart_table_end),
715                                                          prot,
716                                                          mmu_linear_psize,
717                                                          mmu_kernel_ssize));
718                         continue;
719                 }
720 #endif /* CONFIG_U3_DART */
721                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
722                                 prot, mmu_linear_psize, mmu_kernel_ssize));
723         }
724         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
725
726         /*
727          * If we have a memory_limit and we've allocated TCEs then we need to
728          * explicitly map the TCE area at the top of RAM. We also cope with the
729          * case that the TCEs start below memory_limit.
730          * tce_alloc_start/end are 16MB aligned so the mapping should work
731          * for either 4K or 16MB pages.
732          */
733         if (tce_alloc_start) {
734                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
735                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
736
737                 if (base + size >= tce_alloc_start)
738                         tce_alloc_start = base + size + 1;
739
740                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
741                                          __pa(tce_alloc_start), prot,
742                                          mmu_linear_psize, mmu_kernel_ssize));
743         }
744
745         htab_finish_init();
746
747         DBG(" <- htab_initialize()\n");
748 }
749 #undef KB
750 #undef MB
751
752 void __init early_init_mmu(void)
753 {
754         /* Setup initial STAB address in the PACA */
755         get_paca()->stab_real = __pa((u64)&initial_stab);
756         get_paca()->stab_addr = (u64)&initial_stab;
757
758         /* Initialize the MMU Hash table and create the linear mapping
759          * of memory. Has to be done before stab/slb initialization as
760          * this is currently where the page size encoding is obtained
761          */
762         htab_initialize();
763
764         /* Initialize stab / SLB management */
765         if (mmu_has_feature(MMU_FTR_SLB))
766                 slb_initialize();
767         else
768                 stab_initialize(get_paca()->stab_real);
769 }
770
771 #ifdef CONFIG_SMP
772 void __cpuinit early_init_mmu_secondary(void)
773 {
774         /* Initialize hash table for that CPU */
775         if (!firmware_has_feature(FW_FEATURE_LPAR))
776                 mtspr(SPRN_SDR1, _SDR1);
777
778         /* Initialize STAB/SLB. We use a virtual address as it works
779          * in real mode on pSeries.
780          */
781         if (mmu_has_feature(MMU_FTR_SLB))
782                 slb_initialize();
783         else
784                 stab_initialize(get_paca()->stab_addr);
785 }
786 #endif /* CONFIG_SMP */
787
788 /*
789  * Called by asm hashtable.S for doing lazy icache flush
790  */
791 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
792 {
793         struct page *page;
794
795         if (!pfn_valid(pte_pfn(pte)))
796                 return pp;
797
798         page = pte_page(pte);
799
800         /* page is dirty */
801         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
802                 if (trap == 0x400) {
803                         flush_dcache_icache_page(page);
804                         set_bit(PG_arch_1, &page->flags);
805                 } else
806                         pp |= HPTE_R_N;
807         }
808         return pp;
809 }
810
811 #ifdef CONFIG_PPC_MM_SLICES
812 unsigned int get_paca_psize(unsigned long addr)
813 {
814         u64 lpsizes;
815         unsigned char *hpsizes;
816         unsigned long index, mask_index;
817
818         if (addr < SLICE_LOW_TOP) {
819                 lpsizes = get_paca()->context.low_slices_psize;
820                 index = GET_LOW_SLICE_INDEX(addr);
821                 return (lpsizes >> (index * 4)) & 0xF;
822         }
823         hpsizes = get_paca()->context.high_slices_psize;
824         index = GET_HIGH_SLICE_INDEX(addr);
825         mask_index = index & 0x1;
826         return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
827 }
828
829 #else
830 unsigned int get_paca_psize(unsigned long addr)
831 {
832         return get_paca()->context.user_psize;
833 }
834 #endif
835
836 /*
837  * Demote a segment to using 4k pages.
838  * For now this makes the whole process use 4k pages.
839  */
840 #ifdef CONFIG_PPC_64K_PAGES
841 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
842 {
843         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
844                 return;
845         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
846 #ifdef CONFIG_SPU_BASE
847         spu_flush_all_slbs(mm);
848 #endif
849         if (get_paca_psize(addr) != MMU_PAGE_4K) {
850                 get_paca()->context = mm->context;
851                 slb_flush_and_rebolt();
852         }
853 }
854 #endif /* CONFIG_PPC_64K_PAGES */
855
856 #ifdef CONFIG_PPC_SUBPAGE_PROT
857 /*
858  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
859  * Userspace sets the subpage permissions using the subpage_prot system call.
860  *
861  * Result is 0: full permissions, _PAGE_RW: read-only,
862  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
863  */
864 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
865 {
866         struct subpage_prot_table *spt = &mm->context.spt;
867         u32 spp = 0;
868         u32 **sbpm, *sbpp;
869
870         if (ea >= spt->maxaddr)
871                 return 0;
872         if (ea < 0x100000000) {
873                 /* addresses below 4GB use spt->low_prot */
874                 sbpm = spt->low_prot;
875         } else {
876                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
877                 if (!sbpm)
878                         return 0;
879         }
880         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
881         if (!sbpp)
882                 return 0;
883         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
884
885         /* extract 2-bit bitfield for this 4k subpage */
886         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
887
888         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
889         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
890         return spp;
891 }
892
893 #else /* CONFIG_PPC_SUBPAGE_PROT */
894 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
895 {
896         return 0;
897 }
898 #endif
899
900 void hash_failure_debug(unsigned long ea, unsigned long access,
901                         unsigned long vsid, unsigned long trap,
902                         int ssize, int psize, unsigned long pte)
903 {
904         if (!printk_ratelimit())
905                 return;
906         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
907                 ea, access, current->comm);
908         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
909                 trap, vsid, ssize, psize, pte);
910 }
911
912 /* Result code is:
913  *  0 - handled
914  *  1 - normal page fault
915  * -1 - critical hash insertion error
916  * -2 - access not permitted by subpage protection mechanism
917  */
918 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
919 {
920         pgd_t *pgdir;
921         unsigned long vsid;
922         struct mm_struct *mm;
923         pte_t *ptep;
924         unsigned hugeshift;
925         const struct cpumask *tmp;
926         int rc, user_region = 0, local = 0;
927         int psize, ssize;
928
929         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
930                 ea, access, trap);
931
932         /* Get region & vsid */
933         switch (REGION_ID(ea)) {
934         case USER_REGION_ID:
935                 user_region = 1;
936                 mm = current->mm;
937                 if (! mm) {
938                         DBG_LOW(" user region with no mm !\n");
939                         return 1;
940                 }
941                 psize = get_slice_psize(mm, ea);
942                 ssize = user_segment_size(ea);
943                 vsid = get_vsid(mm->context.id, ea, ssize);
944                 break;
945         case VMALLOC_REGION_ID:
946                 mm = &init_mm;
947                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
948                 if (ea < VMALLOC_END)
949                         psize = mmu_vmalloc_psize;
950                 else
951                         psize = mmu_io_psize;
952                 ssize = mmu_kernel_ssize;
953                 break;
954         default:
955                 /* Not a valid range
956                  * Send the problem up to do_page_fault 
957                  */
958                 return 1;
959         }
960         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
961
962         /* Bad address. */
963         if (!vsid) {
964                 DBG_LOW("Bad address!\n");
965                 return 1;
966         }
967         /* Get pgdir */
968         pgdir = mm->pgd;
969         if (pgdir == NULL)
970                 return 1;
971
972         /* Check CPU locality */
973         tmp = cpumask_of(smp_processor_id());
974         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
975                 local = 1;
976
977 #ifndef CONFIG_PPC_64K_PAGES
978         /* If we use 4K pages and our psize is not 4K, then we might
979          * be hitting a special driver mapping, and need to align the
980          * address before we fetch the PTE.
981          *
982          * It could also be a hugepage mapping, in which case this is
983          * not necessary, but it's not harmful, either.
984          */
985         if (psize != MMU_PAGE_4K)
986                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
987 #endif /* CONFIG_PPC_64K_PAGES */
988
989         /* Get PTE and page size from page tables */
990         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
991         if (ptep == NULL || !pte_present(*ptep)) {
992                 DBG_LOW(" no PTE !\n");
993                 return 1;
994         }
995
996         /* Add _PAGE_PRESENT to the required access perm */
997         access |= _PAGE_PRESENT;
998
999         /* Pre-check access permissions (will be re-checked atomically
1000          * in __hash_page_XX but this pre-check is a fast path
1001          */
1002         if (access & ~pte_val(*ptep)) {
1003                 DBG_LOW(" no access !\n");
1004                 return 1;
1005         }
1006
1007 #ifdef CONFIG_HUGETLB_PAGE
1008         if (hugeshift)
1009                 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1010                                         ssize, hugeshift, psize);
1011 #endif /* CONFIG_HUGETLB_PAGE */
1012
1013 #ifndef CONFIG_PPC_64K_PAGES
1014         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1015 #else
1016         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1017                 pte_val(*(ptep + PTRS_PER_PTE)));
1018 #endif
1019         /* Do actual hashing */
1020 #ifdef CONFIG_PPC_64K_PAGES
1021         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1022         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1023                 demote_segment_4k(mm, ea);
1024                 psize = MMU_PAGE_4K;
1025         }
1026
1027         /* If this PTE is non-cacheable and we have restrictions on
1028          * using non cacheable large pages, then we switch to 4k
1029          */
1030         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1031             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1032                 if (user_region) {
1033                         demote_segment_4k(mm, ea);
1034                         psize = MMU_PAGE_4K;
1035                 } else if (ea < VMALLOC_END) {
1036                         /*
1037                          * some driver did a non-cacheable mapping
1038                          * in vmalloc space, so switch vmalloc
1039                          * to 4k pages
1040                          */
1041                         printk(KERN_ALERT "Reducing vmalloc segment "
1042                                "to 4kB pages because of "
1043                                "non-cacheable mapping\n");
1044                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1045 #ifdef CONFIG_SPU_BASE
1046                         spu_flush_all_slbs(mm);
1047 #endif
1048                 }
1049         }
1050         if (user_region) {
1051                 if (psize != get_paca_psize(ea)) {
1052                         get_paca()->context = mm->context;
1053                         slb_flush_and_rebolt();
1054                 }
1055         } else if (get_paca()->vmalloc_sllp !=
1056                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1057                 get_paca()->vmalloc_sllp =
1058                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1059                 slb_vmalloc_update();
1060         }
1061 #endif /* CONFIG_PPC_64K_PAGES */
1062
1063 #ifdef CONFIG_PPC_HAS_HASH_64K
1064         if (psize == MMU_PAGE_64K)
1065                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1066         else
1067 #endif /* CONFIG_PPC_HAS_HASH_64K */
1068         {
1069                 int spp = subpage_protection(mm, ea);
1070                 if (access & spp)
1071                         rc = -2;
1072                 else
1073                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1074                                             local, ssize, spp);
1075         }
1076
1077         /* Dump some info in case of hash insertion failure, they should
1078          * never happen so it is really useful to know if/when they do
1079          */
1080         if (rc == -1)
1081                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1082                                    pte_val(*ptep));
1083 #ifndef CONFIG_PPC_64K_PAGES
1084         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1085 #else
1086         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1087                 pte_val(*(ptep + PTRS_PER_PTE)));
1088 #endif
1089         DBG_LOW(" -> rc=%d\n", rc);
1090         return rc;
1091 }
1092 EXPORT_SYMBOL_GPL(hash_page);
1093
1094 void hash_preload(struct mm_struct *mm, unsigned long ea,
1095                   unsigned long access, unsigned long trap)
1096 {
1097         unsigned long vsid;
1098         pgd_t *pgdir;
1099         pte_t *ptep;
1100         unsigned long flags;
1101         int rc, ssize, local = 0;
1102
1103         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1104
1105 #ifdef CONFIG_PPC_MM_SLICES
1106         /* We only prefault standard pages for now */
1107         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1108                 return;
1109 #endif
1110
1111         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1112                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1113
1114         /* Get Linux PTE if available */
1115         pgdir = mm->pgd;
1116         if (pgdir == NULL)
1117                 return;
1118         ptep = find_linux_pte(pgdir, ea);
1119         if (!ptep)
1120                 return;
1121
1122 #ifdef CONFIG_PPC_64K_PAGES
1123         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1124          * a 64K kernel), then we don't preload, hash_page() will take
1125          * care of it once we actually try to access the page.
1126          * That way we don't have to duplicate all of the logic for segment
1127          * page size demotion here
1128          */
1129         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1130                 return;
1131 #endif /* CONFIG_PPC_64K_PAGES */
1132
1133         /* Get VSID */
1134         ssize = user_segment_size(ea);
1135         vsid = get_vsid(mm->context.id, ea, ssize);
1136         if (!vsid)
1137                 return;
1138
1139         /* Hash doesn't like irqs */
1140         local_irq_save(flags);
1141
1142         /* Is that local to this CPU ? */
1143         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1144                 local = 1;
1145
1146         /* Hash it in */
1147 #ifdef CONFIG_PPC_HAS_HASH_64K
1148         if (mm->context.user_psize == MMU_PAGE_64K)
1149                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1150         else
1151 #endif /* CONFIG_PPC_HAS_HASH_64K */
1152                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1153                                     subpage_protection(mm, ea));
1154
1155         /* Dump some info in case of hash insertion failure, they should
1156          * never happen so it is really useful to know if/when they do
1157          */
1158         if (rc == -1)
1159                 hash_failure_debug(ea, access, vsid, trap, ssize,
1160                                    mm->context.user_psize, pte_val(*ptep));
1161
1162         local_irq_restore(flags);
1163 }
1164
1165 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1166  *          do not forget to update the assembly call site !
1167  */
1168 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1169                      int local)
1170 {
1171         unsigned long hash, index, shift, hidx, slot;
1172
1173         DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1174         pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1175                 hash = hpt_hash(vpn, shift, ssize);
1176                 hidx = __rpte_to_hidx(pte, index);
1177                 if (hidx & _PTEIDX_SECONDARY)
1178                         hash = ~hash;
1179                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1180                 slot += hidx & _PTEIDX_GROUP_IX;
1181                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1182                 ppc_md.hpte_invalidate(slot, vpn, psize, ssize, local);
1183         } pte_iterate_hashed_end();
1184
1185 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1186         /* Transactions are not aborted by tlbiel, only tlbie.
1187          * Without, syncing a page back to a block device w/ PIO could pick up
1188          * transactional data (bad!) so we force an abort here.  Before the
1189          * sync the page will be made read-only, which will flush_hash_page.
1190          * BIG ISSUE here: if the kernel uses a page from userspace without
1191          * unmapping it first, it may see the speculated version.
1192          */
1193         if (local && cpu_has_feature(CPU_FTR_TM) &&
1194             MSR_TM_ACTIVE(current->thread.regs->msr)) {
1195                 tm_enable();
1196                 tm_abort(TM_CAUSE_TLBI);
1197         }
1198 #endif
1199 }
1200
1201 void flush_hash_range(unsigned long number, int local)
1202 {
1203         if (ppc_md.flush_hash_range)
1204                 ppc_md.flush_hash_range(number, local);
1205         else {
1206                 int i;
1207                 struct ppc64_tlb_batch *batch =
1208                         &__get_cpu_var(ppc64_tlb_batch);
1209
1210                 for (i = 0; i < number; i++)
1211                         flush_hash_page(batch->vpn[i], batch->pte[i],
1212                                         batch->psize, batch->ssize, local);
1213         }
1214 }
1215
1216 /*
1217  * low_hash_fault is called when we the low level hash code failed
1218  * to instert a PTE due to an hypervisor error
1219  */
1220 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1221 {
1222         if (user_mode(regs)) {
1223 #ifdef CONFIG_PPC_SUBPAGE_PROT
1224                 if (rc == -2)
1225                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1226                 else
1227 #endif
1228                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1229         } else
1230                 bad_page_fault(regs, address, SIGBUS);
1231 }
1232
1233 #ifdef CONFIG_DEBUG_PAGEALLOC
1234 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1235 {
1236         unsigned long hash, hpteg;
1237         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1238         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1239         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1240         int ret;
1241
1242         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1243         hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1244
1245         /* Don't create HPTE entries for bad address */
1246         if (!vsid)
1247                 return;
1248         ret = ppc_md.hpte_insert(hpteg, vpn, __pa(vaddr),
1249                                  mode, HPTE_V_BOLTED,
1250                                  mmu_linear_psize, mmu_kernel_ssize);
1251         BUG_ON (ret < 0);
1252         spin_lock(&linear_map_hash_lock);
1253         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1254         linear_map_hash_slots[lmi] = ret | 0x80;
1255         spin_unlock(&linear_map_hash_lock);
1256 }
1257
1258 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1259 {
1260         unsigned long hash, hidx, slot;
1261         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1262         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1263
1264         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1265         spin_lock(&linear_map_hash_lock);
1266         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1267         hidx = linear_map_hash_slots[lmi] & 0x7f;
1268         linear_map_hash_slots[lmi] = 0;
1269         spin_unlock(&linear_map_hash_lock);
1270         if (hidx & _PTEIDX_SECONDARY)
1271                 hash = ~hash;
1272         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1273         slot += hidx & _PTEIDX_GROUP_IX;
1274         ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_kernel_ssize, 0);
1275 }
1276
1277 void kernel_map_pages(struct page *page, int numpages, int enable)
1278 {
1279         unsigned long flags, vaddr, lmi;
1280         int i;
1281
1282         local_irq_save(flags);
1283         for (i = 0; i < numpages; i++, page++) {
1284                 vaddr = (unsigned long)page_address(page);
1285                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1286                 if (lmi >= linear_map_hash_count)
1287                         continue;
1288                 if (enable)
1289                         kernel_map_linear_page(vaddr, lmi);
1290                 else
1291                         kernel_unmap_linear_page(vaddr, lmi);
1292         }
1293         local_irq_restore(flags);
1294 }
1295 #endif /* CONFIG_DEBUG_PAGEALLOC */
1296
1297 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1298                                 phys_addr_t first_memblock_size)
1299 {
1300         /* We don't currently support the first MEMBLOCK not mapping 0
1301          * physical on those processors
1302          */
1303         BUG_ON(first_memblock_base != 0);
1304
1305         /* On LPAR systems, the first entry is our RMA region,
1306          * non-LPAR 64-bit hash MMU systems don't have a limitation
1307          * on real mode access, but using the first entry works well
1308          * enough. We also clamp it to 1G to avoid some funky things
1309          * such as RTAS bugs etc...
1310          */
1311         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1312
1313         /* Finally limit subsequent allocations */
1314         memblock_set_current_limit(ppc64_rma_size);
1315 }