powerpc/powernv: Use PE instead of number during setup and release
[cascardo/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
52 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
56 #define POWERNV_IOMMU_MAX_LEVELS        5
57
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59
60 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61                             const char *fmt, ...)
62 {
63         struct va_format vaf;
64         va_list args;
65         char pfix[32];
66
67         va_start(args, fmt);
68
69         vaf.fmt = fmt;
70         vaf.va = &args;
71
72         if (pe->flags & PNV_IODA_PE_DEV)
73                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75                 sprintf(pfix, "%04x:%02x     ",
76                         pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78         else if (pe->flags & PNV_IODA_PE_VF)
79                 sprintf(pfix, "%04x:%02x:%2x.%d",
80                         pci_domain_nr(pe->parent_dev->bus),
81                         (pe->rid & 0xff00) >> 8,
82                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84
85         printk("%spci %s: [PE# %.3d] %pV",
86                level, pfix, pe->pe_number, &vaf);
87
88         va_end(args);
89 }
90
91 #define pe_err(pe, fmt, ...)                                    \
92         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
93 #define pe_warn(pe, fmt, ...)                                   \
94         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
95 #define pe_info(pe, fmt, ...)                                   \
96         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
97
98 static bool pnv_iommu_bypass_disabled __read_mostly;
99
100 static int __init iommu_setup(char *str)
101 {
102         if (!str)
103                 return -EINVAL;
104
105         while (*str) {
106                 if (!strncmp(str, "nobypass", 8)) {
107                         pnv_iommu_bypass_disabled = true;
108                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
109                         break;
110                 }
111                 str += strcspn(str, ",");
112                 if (*str == ',')
113                         str++;
114         }
115
116         return 0;
117 }
118 early_param("iommu", iommu_setup);
119
120 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
121 {
122         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
123                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
124 }
125
126 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
127 {
128         phb->ioda.pe_array[pe_no].phb = phb;
129         phb->ioda.pe_array[pe_no].pe_number = pe_no;
130
131         return &phb->ioda.pe_array[pe_no];
132 }
133
134 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
135 {
136         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
137                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
138                         __func__, pe_no, phb->hose->global_number);
139                 return;
140         }
141
142         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
143                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
144                          __func__, pe_no, phb->hose->global_number);
145
146         pnv_ioda_init_pe(phb, pe_no);
147 }
148
149 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
150 {
151         unsigned long pe;
152
153         do {
154                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
155                                         phb->ioda.total_pe_num, 0);
156                 if (pe >= phb->ioda.total_pe_num)
157                         return NULL;
158         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
159
160         return pnv_ioda_init_pe(phb, pe);
161 }
162
163 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
164 {
165         struct pnv_phb *phb = pe->phb;
166
167         WARN_ON(pe->pdev);
168
169         memset(pe, 0, sizeof(struct pnv_ioda_pe));
170         clear_bit(pe->pe_number, phb->ioda.pe_alloc);
171 }
172
173 /* The default M64 BAR is shared by all PEs */
174 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
175 {
176         const char *desc;
177         struct resource *r;
178         s64 rc;
179
180         /* Configure the default M64 BAR */
181         rc = opal_pci_set_phb_mem_window(phb->opal_id,
182                                          OPAL_M64_WINDOW_TYPE,
183                                          phb->ioda.m64_bar_idx,
184                                          phb->ioda.m64_base,
185                                          0, /* unused */
186                                          phb->ioda.m64_size);
187         if (rc != OPAL_SUCCESS) {
188                 desc = "configuring";
189                 goto fail;
190         }
191
192         /* Enable the default M64 BAR */
193         rc = opal_pci_phb_mmio_enable(phb->opal_id,
194                                       OPAL_M64_WINDOW_TYPE,
195                                       phb->ioda.m64_bar_idx,
196                                       OPAL_ENABLE_M64_SPLIT);
197         if (rc != OPAL_SUCCESS) {
198                 desc = "enabling";
199                 goto fail;
200         }
201
202         /* Mark the M64 BAR assigned */
203         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
204
205         /*
206          * Strip off the segment used by the reserved PE, which is
207          * expected to be 0 or last one of PE capabicity.
208          */
209         r = &phb->hose->mem_resources[1];
210         if (phb->ioda.reserved_pe_idx == 0)
211                 r->start += phb->ioda.m64_segsize;
212         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
213                 r->end -= phb->ioda.m64_segsize;
214         else
215                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
216                         phb->ioda.reserved_pe_idx);
217
218         return 0;
219
220 fail:
221         pr_warn("  Failure %lld %s M64 BAR#%d\n",
222                 rc, desc, phb->ioda.m64_bar_idx);
223         opal_pci_phb_mmio_enable(phb->opal_id,
224                                  OPAL_M64_WINDOW_TYPE,
225                                  phb->ioda.m64_bar_idx,
226                                  OPAL_DISABLE_M64);
227         return -EIO;
228 }
229
230 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
231                                          unsigned long *pe_bitmap)
232 {
233         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
234         struct pnv_phb *phb = hose->private_data;
235         struct resource *r;
236         resource_size_t base, sgsz, start, end;
237         int segno, i;
238
239         base = phb->ioda.m64_base;
240         sgsz = phb->ioda.m64_segsize;
241         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
242                 r = &pdev->resource[i];
243                 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
244                         continue;
245
246                 start = _ALIGN_DOWN(r->start - base, sgsz);
247                 end = _ALIGN_UP(r->end - base, sgsz);
248                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
249                         if (pe_bitmap)
250                                 set_bit(segno, pe_bitmap);
251                         else
252                                 pnv_ioda_reserve_pe(phb, segno);
253                 }
254         }
255 }
256
257 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
258 {
259         struct resource *r;
260         int index;
261
262         /*
263          * There are 16 M64 BARs, each of which has 8 segments. So
264          * there are as many M64 segments as the maximum number of
265          * PEs, which is 128.
266          */
267         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
268                 unsigned long base, segsz = phb->ioda.m64_segsize;
269                 int64_t rc;
270
271                 base = phb->ioda.m64_base +
272                        index * PNV_IODA1_M64_SEGS * segsz;
273                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
274                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
275                                 PNV_IODA1_M64_SEGS * segsz);
276                 if (rc != OPAL_SUCCESS) {
277                         pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
278                                 rc, phb->hose->global_number, index);
279                         goto fail;
280                 }
281
282                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
283                                 OPAL_M64_WINDOW_TYPE, index,
284                                 OPAL_ENABLE_M64_SPLIT);
285                 if (rc != OPAL_SUCCESS) {
286                         pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
287                                 rc, phb->hose->global_number, index);
288                         goto fail;
289                 }
290         }
291
292         /*
293          * Exclude the segment used by the reserved PE, which
294          * is expected to be 0 or last supported PE#.
295          */
296         r = &phb->hose->mem_resources[1];
297         if (phb->ioda.reserved_pe_idx == 0)
298                 r->start += phb->ioda.m64_segsize;
299         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
300                 r->end -= phb->ioda.m64_segsize;
301         else
302                 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
303                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
304
305         return 0;
306
307 fail:
308         for ( ; index >= 0; index--)
309                 opal_pci_phb_mmio_enable(phb->opal_id,
310                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
311
312         return -EIO;
313 }
314
315 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
316                                     unsigned long *pe_bitmap,
317                                     bool all)
318 {
319         struct pci_dev *pdev;
320
321         list_for_each_entry(pdev, &bus->devices, bus_list) {
322                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
323
324                 if (all && pdev->subordinate)
325                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
326                                                 pe_bitmap, all);
327         }
328 }
329
330 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
331 {
332         struct pci_controller *hose = pci_bus_to_host(bus);
333         struct pnv_phb *phb = hose->private_data;
334         struct pnv_ioda_pe *master_pe, *pe;
335         unsigned long size, *pe_alloc;
336         int i;
337
338         /* Root bus shouldn't use M64 */
339         if (pci_is_root_bus(bus))
340                 return NULL;
341
342         /* Allocate bitmap */
343         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
344         pe_alloc = kzalloc(size, GFP_KERNEL);
345         if (!pe_alloc) {
346                 pr_warn("%s: Out of memory !\n",
347                         __func__);
348                 return NULL;
349         }
350
351         /* Figure out reserved PE numbers by the PE */
352         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
353
354         /*
355          * the current bus might not own M64 window and that's all
356          * contributed by its child buses. For the case, we needn't
357          * pick M64 dependent PE#.
358          */
359         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
360                 kfree(pe_alloc);
361                 return NULL;
362         }
363
364         /*
365          * Figure out the master PE and put all slave PEs to master
366          * PE's list to form compound PE.
367          */
368         master_pe = NULL;
369         i = -1;
370         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
371                 phb->ioda.total_pe_num) {
372                 pe = &phb->ioda.pe_array[i];
373
374                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
375                 if (!master_pe) {
376                         pe->flags |= PNV_IODA_PE_MASTER;
377                         INIT_LIST_HEAD(&pe->slaves);
378                         master_pe = pe;
379                 } else {
380                         pe->flags |= PNV_IODA_PE_SLAVE;
381                         pe->master = master_pe;
382                         list_add_tail(&pe->list, &master_pe->slaves);
383                 }
384
385                 /*
386                  * P7IOC supports M64DT, which helps mapping M64 segment
387                  * to one particular PE#. However, PHB3 has fixed mapping
388                  * between M64 segment and PE#. In order to have same logic
389                  * for P7IOC and PHB3, we enforce fixed mapping between M64
390                  * segment and PE# on P7IOC.
391                  */
392                 if (phb->type == PNV_PHB_IODA1) {
393                         int64_t rc;
394
395                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
396                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
397                                         pe->pe_number / PNV_IODA1_M64_SEGS,
398                                         pe->pe_number % PNV_IODA1_M64_SEGS);
399                         if (rc != OPAL_SUCCESS)
400                                 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
401                                         __func__, rc, phb->hose->global_number,
402                                         pe->pe_number);
403                 }
404         }
405
406         kfree(pe_alloc);
407         return master_pe;
408 }
409
410 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
411 {
412         struct pci_controller *hose = phb->hose;
413         struct device_node *dn = hose->dn;
414         struct resource *res;
415         const u32 *r;
416         u64 pci_addr;
417
418         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
419                 pr_info("  Not support M64 window\n");
420                 return;
421         }
422
423         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
424                 pr_info("  Firmware too old to support M64 window\n");
425                 return;
426         }
427
428         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
429         if (!r) {
430                 pr_info("  No <ibm,opal-m64-window> on %s\n",
431                         dn->full_name);
432                 return;
433         }
434
435         res = &hose->mem_resources[1];
436         res->name = dn->full_name;
437         res->start = of_translate_address(dn, r + 2);
438         res->end = res->start + of_read_number(r + 4, 2) - 1;
439         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
440         pci_addr = of_read_number(r, 2);
441         hose->mem_offset[1] = res->start - pci_addr;
442
443         phb->ioda.m64_size = resource_size(res);
444         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
445         phb->ioda.m64_base = pci_addr;
446
447         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
448                         res->start, res->end, pci_addr);
449
450         /* Use last M64 BAR to cover M64 window */
451         phb->ioda.m64_bar_idx = 15;
452         if (phb->type == PNV_PHB_IODA1)
453                 phb->init_m64 = pnv_ioda1_init_m64;
454         else
455                 phb->init_m64 = pnv_ioda2_init_m64;
456         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
457         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
458 }
459
460 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
461 {
462         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
463         struct pnv_ioda_pe *slave;
464         s64 rc;
465
466         /* Fetch master PE */
467         if (pe->flags & PNV_IODA_PE_SLAVE) {
468                 pe = pe->master;
469                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
470                         return;
471
472                 pe_no = pe->pe_number;
473         }
474
475         /* Freeze master PE */
476         rc = opal_pci_eeh_freeze_set(phb->opal_id,
477                                      pe_no,
478                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
479         if (rc != OPAL_SUCCESS) {
480                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
481                         __func__, rc, phb->hose->global_number, pe_no);
482                 return;
483         }
484
485         /* Freeze slave PEs */
486         if (!(pe->flags & PNV_IODA_PE_MASTER))
487                 return;
488
489         list_for_each_entry(slave, &pe->slaves, list) {
490                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
491                                              slave->pe_number,
492                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
493                 if (rc != OPAL_SUCCESS)
494                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
495                                 __func__, rc, phb->hose->global_number,
496                                 slave->pe_number);
497         }
498 }
499
500 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
501 {
502         struct pnv_ioda_pe *pe, *slave;
503         s64 rc;
504
505         /* Find master PE */
506         pe = &phb->ioda.pe_array[pe_no];
507         if (pe->flags & PNV_IODA_PE_SLAVE) {
508                 pe = pe->master;
509                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
510                 pe_no = pe->pe_number;
511         }
512
513         /* Clear frozen state for master PE */
514         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
515         if (rc != OPAL_SUCCESS) {
516                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
517                         __func__, rc, opt, phb->hose->global_number, pe_no);
518                 return -EIO;
519         }
520
521         if (!(pe->flags & PNV_IODA_PE_MASTER))
522                 return 0;
523
524         /* Clear frozen state for slave PEs */
525         list_for_each_entry(slave, &pe->slaves, list) {
526                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
527                                              slave->pe_number,
528                                              opt);
529                 if (rc != OPAL_SUCCESS) {
530                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
531                                 __func__, rc, opt, phb->hose->global_number,
532                                 slave->pe_number);
533                         return -EIO;
534                 }
535         }
536
537         return 0;
538 }
539
540 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
541 {
542         struct pnv_ioda_pe *slave, *pe;
543         u8 fstate, state;
544         __be16 pcierr;
545         s64 rc;
546
547         /* Sanity check on PE number */
548         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
549                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
550
551         /*
552          * Fetch the master PE and the PE instance might be
553          * not initialized yet.
554          */
555         pe = &phb->ioda.pe_array[pe_no];
556         if (pe->flags & PNV_IODA_PE_SLAVE) {
557                 pe = pe->master;
558                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
559                 pe_no = pe->pe_number;
560         }
561
562         /* Check the master PE */
563         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
564                                         &state, &pcierr, NULL);
565         if (rc != OPAL_SUCCESS) {
566                 pr_warn("%s: Failure %lld getting "
567                         "PHB#%x-PE#%x state\n",
568                         __func__, rc,
569                         phb->hose->global_number, pe_no);
570                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
571         }
572
573         /* Check the slave PE */
574         if (!(pe->flags & PNV_IODA_PE_MASTER))
575                 return state;
576
577         list_for_each_entry(slave, &pe->slaves, list) {
578                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
579                                                 slave->pe_number,
580                                                 &fstate,
581                                                 &pcierr,
582                                                 NULL);
583                 if (rc != OPAL_SUCCESS) {
584                         pr_warn("%s: Failure %lld getting "
585                                 "PHB#%x-PE#%x state\n",
586                                 __func__, rc,
587                                 phb->hose->global_number, slave->pe_number);
588                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
589                 }
590
591                 /*
592                  * Override the result based on the ascending
593                  * priority.
594                  */
595                 if (fstate > state)
596                         state = fstate;
597         }
598
599         return state;
600 }
601
602 /* Currently those 2 are only used when MSIs are enabled, this will change
603  * but in the meantime, we need to protect them to avoid warnings
604  */
605 #ifdef CONFIG_PCI_MSI
606 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
607 {
608         struct pci_controller *hose = pci_bus_to_host(dev->bus);
609         struct pnv_phb *phb = hose->private_data;
610         struct pci_dn *pdn = pci_get_pdn(dev);
611
612         if (!pdn)
613                 return NULL;
614         if (pdn->pe_number == IODA_INVALID_PE)
615                 return NULL;
616         return &phb->ioda.pe_array[pdn->pe_number];
617 }
618 #endif /* CONFIG_PCI_MSI */
619
620 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
621                                   struct pnv_ioda_pe *parent,
622                                   struct pnv_ioda_pe *child,
623                                   bool is_add)
624 {
625         const char *desc = is_add ? "adding" : "removing";
626         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
627                               OPAL_REMOVE_PE_FROM_DOMAIN;
628         struct pnv_ioda_pe *slave;
629         long rc;
630
631         /* Parent PE affects child PE */
632         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
633                                 child->pe_number, op);
634         if (rc != OPAL_SUCCESS) {
635                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
636                         rc, desc);
637                 return -ENXIO;
638         }
639
640         if (!(child->flags & PNV_IODA_PE_MASTER))
641                 return 0;
642
643         /* Compound case: parent PE affects slave PEs */
644         list_for_each_entry(slave, &child->slaves, list) {
645                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
646                                         slave->pe_number, op);
647                 if (rc != OPAL_SUCCESS) {
648                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
649                                 rc, desc);
650                         return -ENXIO;
651                 }
652         }
653
654         return 0;
655 }
656
657 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
658                               struct pnv_ioda_pe *pe,
659                               bool is_add)
660 {
661         struct pnv_ioda_pe *slave;
662         struct pci_dev *pdev = NULL;
663         int ret;
664
665         /*
666          * Clear PE frozen state. If it's master PE, we need
667          * clear slave PE frozen state as well.
668          */
669         if (is_add) {
670                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
671                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
672                 if (pe->flags & PNV_IODA_PE_MASTER) {
673                         list_for_each_entry(slave, &pe->slaves, list)
674                                 opal_pci_eeh_freeze_clear(phb->opal_id,
675                                                           slave->pe_number,
676                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
677                 }
678         }
679
680         /*
681          * Associate PE in PELT. We need add the PE into the
682          * corresponding PELT-V as well. Otherwise, the error
683          * originated from the PE might contribute to other
684          * PEs.
685          */
686         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
687         if (ret)
688                 return ret;
689
690         /* For compound PEs, any one affects all of them */
691         if (pe->flags & PNV_IODA_PE_MASTER) {
692                 list_for_each_entry(slave, &pe->slaves, list) {
693                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
694                         if (ret)
695                                 return ret;
696                 }
697         }
698
699         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
700                 pdev = pe->pbus->self;
701         else if (pe->flags & PNV_IODA_PE_DEV)
702                 pdev = pe->pdev->bus->self;
703 #ifdef CONFIG_PCI_IOV
704         else if (pe->flags & PNV_IODA_PE_VF)
705                 pdev = pe->parent_dev;
706 #endif /* CONFIG_PCI_IOV */
707         while (pdev) {
708                 struct pci_dn *pdn = pci_get_pdn(pdev);
709                 struct pnv_ioda_pe *parent;
710
711                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
712                         parent = &phb->ioda.pe_array[pdn->pe_number];
713                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
714                         if (ret)
715                                 return ret;
716                 }
717
718                 pdev = pdev->bus->self;
719         }
720
721         return 0;
722 }
723
724 #ifdef CONFIG_PCI_IOV
725 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
726 {
727         struct pci_dev *parent;
728         uint8_t bcomp, dcomp, fcomp;
729         int64_t rc;
730         long rid_end, rid;
731
732         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
733         if (pe->pbus) {
734                 int count;
735
736                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
737                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
738                 parent = pe->pbus->self;
739                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
740                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
741                 else
742                         count = 1;
743
744                 switch(count) {
745                 case  1: bcomp = OpalPciBusAll;         break;
746                 case  2: bcomp = OpalPciBus7Bits;       break;
747                 case  4: bcomp = OpalPciBus6Bits;       break;
748                 case  8: bcomp = OpalPciBus5Bits;       break;
749                 case 16: bcomp = OpalPciBus4Bits;       break;
750                 case 32: bcomp = OpalPciBus3Bits;       break;
751                 default:
752                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
753                                 count);
754                         /* Do an exact match only */
755                         bcomp = OpalPciBusAll;
756                 }
757                 rid_end = pe->rid + (count << 8);
758         } else {
759                 if (pe->flags & PNV_IODA_PE_VF)
760                         parent = pe->parent_dev;
761                 else
762                         parent = pe->pdev->bus->self;
763                 bcomp = OpalPciBusAll;
764                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
765                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
766                 rid_end = pe->rid + 1;
767         }
768
769         /* Clear the reverse map */
770         for (rid = pe->rid; rid < rid_end; rid++)
771                 phb->ioda.pe_rmap[rid] = 0;
772
773         /* Release from all parents PELT-V */
774         while (parent) {
775                 struct pci_dn *pdn = pci_get_pdn(parent);
776                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
777                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
778                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
779                         /* XXX What to do in case of error ? */
780                 }
781                 parent = parent->bus->self;
782         }
783
784         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
785                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
786
787         /* Disassociate PE in PELT */
788         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
789                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
790         if (rc)
791                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
792         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
793                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
794         if (rc)
795                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
796
797         pe->pbus = NULL;
798         pe->pdev = NULL;
799         pe->parent_dev = NULL;
800
801         return 0;
802 }
803 #endif /* CONFIG_PCI_IOV */
804
805 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
806 {
807         struct pci_dev *parent;
808         uint8_t bcomp, dcomp, fcomp;
809         long rc, rid_end, rid;
810
811         /* Bus validation ? */
812         if (pe->pbus) {
813                 int count;
814
815                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
816                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
817                 parent = pe->pbus->self;
818                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
819                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
820                 else
821                         count = 1;
822
823                 switch(count) {
824                 case  1: bcomp = OpalPciBusAll;         break;
825                 case  2: bcomp = OpalPciBus7Bits;       break;
826                 case  4: bcomp = OpalPciBus6Bits;       break;
827                 case  8: bcomp = OpalPciBus5Bits;       break;
828                 case 16: bcomp = OpalPciBus4Bits;       break;
829                 case 32: bcomp = OpalPciBus3Bits;       break;
830                 default:
831                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
832                                 count);
833                         /* Do an exact match only */
834                         bcomp = OpalPciBusAll;
835                 }
836                 rid_end = pe->rid + (count << 8);
837         } else {
838 #ifdef CONFIG_PCI_IOV
839                 if (pe->flags & PNV_IODA_PE_VF)
840                         parent = pe->parent_dev;
841                 else
842 #endif /* CONFIG_PCI_IOV */
843                         parent = pe->pdev->bus->self;
844                 bcomp = OpalPciBusAll;
845                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
846                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
847                 rid_end = pe->rid + 1;
848         }
849
850         /*
851          * Associate PE in PELT. We need add the PE into the
852          * corresponding PELT-V as well. Otherwise, the error
853          * originated from the PE might contribute to other
854          * PEs.
855          */
856         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
857                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
858         if (rc) {
859                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
860                 return -ENXIO;
861         }
862
863         /*
864          * Configure PELTV. NPUs don't have a PELTV table so skip
865          * configuration on them.
866          */
867         if (phb->type != PNV_PHB_NPU)
868                 pnv_ioda_set_peltv(phb, pe, true);
869
870         /* Setup reverse map */
871         for (rid = pe->rid; rid < rid_end; rid++)
872                 phb->ioda.pe_rmap[rid] = pe->pe_number;
873
874         /* Setup one MVTs on IODA1 */
875         if (phb->type != PNV_PHB_IODA1) {
876                 pe->mve_number = 0;
877                 goto out;
878         }
879
880         pe->mve_number = pe->pe_number;
881         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
882         if (rc != OPAL_SUCCESS) {
883                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
884                        rc, pe->mve_number);
885                 pe->mve_number = -1;
886         } else {
887                 rc = opal_pci_set_mve_enable(phb->opal_id,
888                                              pe->mve_number, OPAL_ENABLE_MVE);
889                 if (rc) {
890                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
891                                rc, pe->mve_number);
892                         pe->mve_number = -1;
893                 }
894         }
895
896 out:
897         return 0;
898 }
899
900 #ifdef CONFIG_PCI_IOV
901 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
902 {
903         struct pci_dn *pdn = pci_get_pdn(dev);
904         int i;
905         struct resource *res, res2;
906         resource_size_t size;
907         u16 num_vfs;
908
909         if (!dev->is_physfn)
910                 return -EINVAL;
911
912         /*
913          * "offset" is in VFs.  The M64 windows are sized so that when they
914          * are segmented, each segment is the same size as the IOV BAR.
915          * Each segment is in a separate PE, and the high order bits of the
916          * address are the PE number.  Therefore, each VF's BAR is in a
917          * separate PE, and changing the IOV BAR start address changes the
918          * range of PEs the VFs are in.
919          */
920         num_vfs = pdn->num_vfs;
921         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
922                 res = &dev->resource[i + PCI_IOV_RESOURCES];
923                 if (!res->flags || !res->parent)
924                         continue;
925
926                 /*
927                  * The actual IOV BAR range is determined by the start address
928                  * and the actual size for num_vfs VFs BAR.  This check is to
929                  * make sure that after shifting, the range will not overlap
930                  * with another device.
931                  */
932                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
933                 res2.flags = res->flags;
934                 res2.start = res->start + (size * offset);
935                 res2.end = res2.start + (size * num_vfs) - 1;
936
937                 if (res2.end > res->end) {
938                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
939                                 i, &res2, res, num_vfs, offset);
940                         return -EBUSY;
941                 }
942         }
943
944         /*
945          * After doing so, there would be a "hole" in the /proc/iomem when
946          * offset is a positive value. It looks like the device return some
947          * mmio back to the system, which actually no one could use it.
948          */
949         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
950                 res = &dev->resource[i + PCI_IOV_RESOURCES];
951                 if (!res->flags || !res->parent)
952                         continue;
953
954                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
955                 res2 = *res;
956                 res->start += size * offset;
957
958                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
959                          i, &res2, res, (offset > 0) ? "En" : "Dis",
960                          num_vfs, offset);
961                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
962         }
963         return 0;
964 }
965 #endif /* CONFIG_PCI_IOV */
966
967 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
968 {
969         struct pci_controller *hose = pci_bus_to_host(dev->bus);
970         struct pnv_phb *phb = hose->private_data;
971         struct pci_dn *pdn = pci_get_pdn(dev);
972         struct pnv_ioda_pe *pe;
973
974         if (!pdn) {
975                 pr_err("%s: Device tree node not associated properly\n",
976                            pci_name(dev));
977                 return NULL;
978         }
979         if (pdn->pe_number != IODA_INVALID_PE)
980                 return NULL;
981
982         pe = pnv_ioda_alloc_pe(phb);
983         if (!pe) {
984                 pr_warning("%s: Not enough PE# available, disabling device\n",
985                            pci_name(dev));
986                 return NULL;
987         }
988
989         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
990          * pointer in the PE data structure, both should be destroyed at the
991          * same time. However, this needs to be looked at more closely again
992          * once we actually start removing things (Hotplug, SR-IOV, ...)
993          *
994          * At some point we want to remove the PDN completely anyways
995          */
996         pci_dev_get(dev);
997         pdn->pcidev = dev;
998         pdn->pe_number = pe->pe_number;
999         pe->flags = PNV_IODA_PE_DEV;
1000         pe->pdev = dev;
1001         pe->pbus = NULL;
1002         pe->mve_number = -1;
1003         pe->rid = dev->bus->number << 8 | pdn->devfn;
1004
1005         pe_info(pe, "Associated device to PE\n");
1006
1007         if (pnv_ioda_configure_pe(phb, pe)) {
1008                 /* XXX What do we do here ? */
1009                 pnv_ioda_free_pe(pe);
1010                 pdn->pe_number = IODA_INVALID_PE;
1011                 pe->pdev = NULL;
1012                 pci_dev_put(dev);
1013                 return NULL;
1014         }
1015
1016         return pe;
1017 }
1018
1019 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1020 {
1021         struct pci_dev *dev;
1022
1023         list_for_each_entry(dev, &bus->devices, bus_list) {
1024                 struct pci_dn *pdn = pci_get_pdn(dev);
1025
1026                 if (pdn == NULL) {
1027                         pr_warn("%s: No device node associated with device !\n",
1028                                 pci_name(dev));
1029                         continue;
1030                 }
1031                 pdn->pcidev = dev;
1032                 pdn->pe_number = pe->pe_number;
1033                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1034                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1035         }
1036 }
1037
1038 /*
1039  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1040  * single PCI bus. Another one that contains the primary PCI bus and its
1041  * subordinate PCI devices and buses. The second type of PE is normally
1042  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1043  */
1044 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1045 {
1046         struct pci_controller *hose = pci_bus_to_host(bus);
1047         struct pnv_phb *phb = hose->private_data;
1048         struct pnv_ioda_pe *pe = NULL;
1049
1050         /* Check if PE is determined by M64 */
1051         if (phb->pick_m64_pe)
1052                 pe = phb->pick_m64_pe(bus, all);
1053
1054         /* The PE number isn't pinned by M64 */
1055         if (!pe)
1056                 pe = pnv_ioda_alloc_pe(phb);
1057
1058         if (!pe) {
1059                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1060                         __func__, pci_domain_nr(bus), bus->number);
1061                 return NULL;
1062         }
1063
1064         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1065         pe->pbus = bus;
1066         pe->pdev = NULL;
1067         pe->mve_number = -1;
1068         pe->rid = bus->busn_res.start << 8;
1069
1070         if (all)
1071                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1072                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1073         else
1074                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1075                         bus->busn_res.start, pe->pe_number);
1076
1077         if (pnv_ioda_configure_pe(phb, pe)) {
1078                 /* XXX What do we do here ? */
1079                 pnv_ioda_free_pe(pe);
1080                 pe->pbus = NULL;
1081                 return NULL;
1082         }
1083
1084         /* Associate it with all child devices */
1085         pnv_ioda_setup_same_PE(bus, pe);
1086
1087         /* Put PE to the list */
1088         list_add_tail(&pe->list, &phb->ioda.pe_list);
1089
1090         return pe;
1091 }
1092
1093 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1094 {
1095         int pe_num, found_pe = false, rc;
1096         long rid;
1097         struct pnv_ioda_pe *pe;
1098         struct pci_dev *gpu_pdev;
1099         struct pci_dn *npu_pdn;
1100         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1101         struct pnv_phb *phb = hose->private_data;
1102
1103         /*
1104          * Due to a hardware errata PE#0 on the NPU is reserved for
1105          * error handling. This means we only have three PEs remaining
1106          * which need to be assigned to four links, implying some
1107          * links must share PEs.
1108          *
1109          * To achieve this we assign PEs such that NPUs linking the
1110          * same GPU get assigned the same PE.
1111          */
1112         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1113         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1114                 pe = &phb->ioda.pe_array[pe_num];
1115                 if (!pe->pdev)
1116                         continue;
1117
1118                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1119                         /*
1120                          * This device has the same peer GPU so should
1121                          * be assigned the same PE as the existing
1122                          * peer NPU.
1123                          */
1124                         dev_info(&npu_pdev->dev,
1125                                 "Associating to existing PE %d\n", pe_num);
1126                         pci_dev_get(npu_pdev);
1127                         npu_pdn = pci_get_pdn(npu_pdev);
1128                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1129                         npu_pdn->pcidev = npu_pdev;
1130                         npu_pdn->pe_number = pe_num;
1131                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1132
1133                         /* Map the PE to this link */
1134                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1135                                         OpalPciBusAll,
1136                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1137                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1138                                         OPAL_MAP_PE);
1139                         WARN_ON(rc != OPAL_SUCCESS);
1140                         found_pe = true;
1141                         break;
1142                 }
1143         }
1144
1145         if (!found_pe)
1146                 /*
1147                  * Could not find an existing PE so allocate a new
1148                  * one.
1149                  */
1150                 return pnv_ioda_setup_dev_PE(npu_pdev);
1151         else
1152                 return pe;
1153 }
1154
1155 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1156 {
1157         struct pci_dev *pdev;
1158
1159         list_for_each_entry(pdev, &bus->devices, bus_list)
1160                 pnv_ioda_setup_npu_PE(pdev);
1161 }
1162
1163 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1164 {
1165         struct pci_dev *dev;
1166
1167         pnv_ioda_setup_bus_PE(bus, false);
1168
1169         list_for_each_entry(dev, &bus->devices, bus_list) {
1170                 if (dev->subordinate) {
1171                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1172                                 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1173                         else
1174                                 pnv_ioda_setup_PEs(dev->subordinate);
1175                 }
1176         }
1177 }
1178
1179 /*
1180  * Configure PEs so that the downstream PCI buses and devices
1181  * could have their associated PE#. Unfortunately, we didn't
1182  * figure out the way to identify the PLX bridge yet. So we
1183  * simply put the PCI bus and the subordinate behind the root
1184  * port to PE# here. The game rule here is expected to be changed
1185  * as soon as we can detected PLX bridge correctly.
1186  */
1187 static void pnv_pci_ioda_setup_PEs(void)
1188 {
1189         struct pci_controller *hose, *tmp;
1190         struct pnv_phb *phb;
1191
1192         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1193                 phb = hose->private_data;
1194
1195                 /* M64 layout might affect PE allocation */
1196                 if (phb->reserve_m64_pe)
1197                         phb->reserve_m64_pe(hose->bus, NULL, true);
1198
1199                 /*
1200                  * On NPU PHB, we expect separate PEs for individual PCI
1201                  * functions. PCI bus dependent PEs are required for the
1202                  * remaining types of PHBs.
1203                  */
1204                 if (phb->type == PNV_PHB_NPU) {
1205                         /* PE#0 is needed for error reporting */
1206                         pnv_ioda_reserve_pe(phb, 0);
1207                         pnv_ioda_setup_npu_PEs(hose->bus);
1208                 } else
1209                         pnv_ioda_setup_PEs(hose->bus);
1210         }
1211 }
1212
1213 #ifdef CONFIG_PCI_IOV
1214 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1215 {
1216         struct pci_bus        *bus;
1217         struct pci_controller *hose;
1218         struct pnv_phb        *phb;
1219         struct pci_dn         *pdn;
1220         int                    i, j;
1221         int                    m64_bars;
1222
1223         bus = pdev->bus;
1224         hose = pci_bus_to_host(bus);
1225         phb = hose->private_data;
1226         pdn = pci_get_pdn(pdev);
1227
1228         if (pdn->m64_single_mode)
1229                 m64_bars = num_vfs;
1230         else
1231                 m64_bars = 1;
1232
1233         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1234                 for (j = 0; j < m64_bars; j++) {
1235                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1236                                 continue;
1237                         opal_pci_phb_mmio_enable(phb->opal_id,
1238                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1239                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1240                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1241                 }
1242
1243         kfree(pdn->m64_map);
1244         return 0;
1245 }
1246
1247 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1248 {
1249         struct pci_bus        *bus;
1250         struct pci_controller *hose;
1251         struct pnv_phb        *phb;
1252         struct pci_dn         *pdn;
1253         unsigned int           win;
1254         struct resource       *res;
1255         int                    i, j;
1256         int64_t                rc;
1257         int                    total_vfs;
1258         resource_size_t        size, start;
1259         int                    pe_num;
1260         int                    m64_bars;
1261
1262         bus = pdev->bus;
1263         hose = pci_bus_to_host(bus);
1264         phb = hose->private_data;
1265         pdn = pci_get_pdn(pdev);
1266         total_vfs = pci_sriov_get_totalvfs(pdev);
1267
1268         if (pdn->m64_single_mode)
1269                 m64_bars = num_vfs;
1270         else
1271                 m64_bars = 1;
1272
1273         pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1274         if (!pdn->m64_map)
1275                 return -ENOMEM;
1276         /* Initialize the m64_map to IODA_INVALID_M64 */
1277         for (i = 0; i < m64_bars ; i++)
1278                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1279                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1280
1281
1282         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1283                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1284                 if (!res->flags || !res->parent)
1285                         continue;
1286
1287                 for (j = 0; j < m64_bars; j++) {
1288                         do {
1289                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1290                                                 phb->ioda.m64_bar_idx + 1, 0);
1291
1292                                 if (win >= phb->ioda.m64_bar_idx + 1)
1293                                         goto m64_failed;
1294                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1295
1296                         pdn->m64_map[j][i] = win;
1297
1298                         if (pdn->m64_single_mode) {
1299                                 size = pci_iov_resource_size(pdev,
1300                                                         PCI_IOV_RESOURCES + i);
1301                                 start = res->start + size * j;
1302                         } else {
1303                                 size = resource_size(res);
1304                                 start = res->start;
1305                         }
1306
1307                         /* Map the M64 here */
1308                         if (pdn->m64_single_mode) {
1309                                 pe_num = pdn->pe_num_map[j];
1310                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1311                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1312                                                 pdn->m64_map[j][i], 0);
1313                         }
1314
1315                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1316                                                  OPAL_M64_WINDOW_TYPE,
1317                                                  pdn->m64_map[j][i],
1318                                                  start,
1319                                                  0, /* unused */
1320                                                  size);
1321
1322
1323                         if (rc != OPAL_SUCCESS) {
1324                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1325                                         win, rc);
1326                                 goto m64_failed;
1327                         }
1328
1329                         if (pdn->m64_single_mode)
1330                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1331                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1332                         else
1333                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1334                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1335
1336                         if (rc != OPAL_SUCCESS) {
1337                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1338                                         win, rc);
1339                                 goto m64_failed;
1340                         }
1341                 }
1342         }
1343         return 0;
1344
1345 m64_failed:
1346         pnv_pci_vf_release_m64(pdev, num_vfs);
1347         return -EBUSY;
1348 }
1349
1350 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1351                 int num);
1352 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1353
1354 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1355 {
1356         struct iommu_table    *tbl;
1357         int64_t               rc;
1358
1359         tbl = pe->table_group.tables[0];
1360         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1361         if (rc)
1362                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1363
1364         pnv_pci_ioda2_set_bypass(pe, false);
1365         if (pe->table_group.group) {
1366                 iommu_group_put(pe->table_group.group);
1367                 BUG_ON(pe->table_group.group);
1368         }
1369         pnv_pci_ioda2_table_free_pages(tbl);
1370         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1371 }
1372
1373 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1374 {
1375         struct pci_bus        *bus;
1376         struct pci_controller *hose;
1377         struct pnv_phb        *phb;
1378         struct pnv_ioda_pe    *pe, *pe_n;
1379         struct pci_dn         *pdn;
1380
1381         bus = pdev->bus;
1382         hose = pci_bus_to_host(bus);
1383         phb = hose->private_data;
1384         pdn = pci_get_pdn(pdev);
1385
1386         if (!pdev->is_physfn)
1387                 return;
1388
1389         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1390                 if (pe->parent_dev != pdev)
1391                         continue;
1392
1393                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1394
1395                 /* Remove from list */
1396                 mutex_lock(&phb->ioda.pe_list_mutex);
1397                 list_del(&pe->list);
1398                 mutex_unlock(&phb->ioda.pe_list_mutex);
1399
1400                 pnv_ioda_deconfigure_pe(phb, pe);
1401
1402                 pnv_ioda_free_pe(pe);
1403         }
1404 }
1405
1406 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1407 {
1408         struct pci_bus        *bus;
1409         struct pci_controller *hose;
1410         struct pnv_phb        *phb;
1411         struct pnv_ioda_pe    *pe;
1412         struct pci_dn         *pdn;
1413         struct pci_sriov      *iov;
1414         u16                    num_vfs, i;
1415
1416         bus = pdev->bus;
1417         hose = pci_bus_to_host(bus);
1418         phb = hose->private_data;
1419         pdn = pci_get_pdn(pdev);
1420         iov = pdev->sriov;
1421         num_vfs = pdn->num_vfs;
1422
1423         /* Release VF PEs */
1424         pnv_ioda_release_vf_PE(pdev);
1425
1426         if (phb->type == PNV_PHB_IODA2) {
1427                 if (!pdn->m64_single_mode)
1428                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1429
1430                 /* Release M64 windows */
1431                 pnv_pci_vf_release_m64(pdev, num_vfs);
1432
1433                 /* Release PE numbers */
1434                 if (pdn->m64_single_mode) {
1435                         for (i = 0; i < num_vfs; i++) {
1436                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1437                                         continue;
1438
1439                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1440                                 pnv_ioda_free_pe(pe);
1441                         }
1442                 } else
1443                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1444                 /* Releasing pe_num_map */
1445                 kfree(pdn->pe_num_map);
1446         }
1447 }
1448
1449 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1450                                        struct pnv_ioda_pe *pe);
1451 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1452 {
1453         struct pci_bus        *bus;
1454         struct pci_controller *hose;
1455         struct pnv_phb        *phb;
1456         struct pnv_ioda_pe    *pe;
1457         int                    pe_num;
1458         u16                    vf_index;
1459         struct pci_dn         *pdn;
1460
1461         bus = pdev->bus;
1462         hose = pci_bus_to_host(bus);
1463         phb = hose->private_data;
1464         pdn = pci_get_pdn(pdev);
1465
1466         if (!pdev->is_physfn)
1467                 return;
1468
1469         /* Reserve PE for each VF */
1470         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1471                 if (pdn->m64_single_mode)
1472                         pe_num = pdn->pe_num_map[vf_index];
1473                 else
1474                         pe_num = *pdn->pe_num_map + vf_index;
1475
1476                 pe = &phb->ioda.pe_array[pe_num];
1477                 pe->pe_number = pe_num;
1478                 pe->phb = phb;
1479                 pe->flags = PNV_IODA_PE_VF;
1480                 pe->pbus = NULL;
1481                 pe->parent_dev = pdev;
1482                 pe->mve_number = -1;
1483                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1484                            pci_iov_virtfn_devfn(pdev, vf_index);
1485
1486                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1487                         hose->global_number, pdev->bus->number,
1488                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1489                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1490
1491                 if (pnv_ioda_configure_pe(phb, pe)) {
1492                         /* XXX What do we do here ? */
1493                         pnv_ioda_free_pe(pe);
1494                         pe->pdev = NULL;
1495                         continue;
1496                 }
1497
1498                 /* Put PE to the list */
1499                 mutex_lock(&phb->ioda.pe_list_mutex);
1500                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1501                 mutex_unlock(&phb->ioda.pe_list_mutex);
1502
1503                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1504         }
1505 }
1506
1507 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509         struct pci_bus        *bus;
1510         struct pci_controller *hose;
1511         struct pnv_phb        *phb;
1512         struct pnv_ioda_pe    *pe;
1513         struct pci_dn         *pdn;
1514         int                    ret;
1515         u16                    i;
1516
1517         bus = pdev->bus;
1518         hose = pci_bus_to_host(bus);
1519         phb = hose->private_data;
1520         pdn = pci_get_pdn(pdev);
1521
1522         if (phb->type == PNV_PHB_IODA2) {
1523                 if (!pdn->vfs_expanded) {
1524                         dev_info(&pdev->dev, "don't support this SRIOV device"
1525                                 " with non 64bit-prefetchable IOV BAR\n");
1526                         return -ENOSPC;
1527                 }
1528
1529                 /*
1530                  * When M64 BARs functions in Single PE mode, the number of VFs
1531                  * could be enabled must be less than the number of M64 BARs.
1532                  */
1533                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1534                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1535                         return -EBUSY;
1536                 }
1537
1538                 /* Allocating pe_num_map */
1539                 if (pdn->m64_single_mode)
1540                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1541                                         GFP_KERNEL);
1542                 else
1543                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1544
1545                 if (!pdn->pe_num_map)
1546                         return -ENOMEM;
1547
1548                 if (pdn->m64_single_mode)
1549                         for (i = 0; i < num_vfs; i++)
1550                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1551
1552                 /* Calculate available PE for required VFs */
1553                 if (pdn->m64_single_mode) {
1554                         for (i = 0; i < num_vfs; i++) {
1555                                 pe = pnv_ioda_alloc_pe(phb);
1556                                 if (!pe) {
1557                                         ret = -EBUSY;
1558                                         goto m64_failed;
1559                                 }
1560
1561                                 pdn->pe_num_map[i] = pe->pe_number;
1562                         }
1563                 } else {
1564                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1565                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1566                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1567                                 0, num_vfs, 0);
1568                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1569                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1570                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1571                                 kfree(pdn->pe_num_map);
1572                                 return -EBUSY;
1573                         }
1574                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1575                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1576                 }
1577                 pdn->num_vfs = num_vfs;
1578
1579                 /* Assign M64 window accordingly */
1580                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1581                 if (ret) {
1582                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1583                         goto m64_failed;
1584                 }
1585
1586                 /*
1587                  * When using one M64 BAR to map one IOV BAR, we need to shift
1588                  * the IOV BAR according to the PE# allocated to the VFs.
1589                  * Otherwise, the PE# for the VF will conflict with others.
1590                  */
1591                 if (!pdn->m64_single_mode) {
1592                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1593                         if (ret)
1594                                 goto m64_failed;
1595                 }
1596         }
1597
1598         /* Setup VF PEs */
1599         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1600
1601         return 0;
1602
1603 m64_failed:
1604         if (pdn->m64_single_mode) {
1605                 for (i = 0; i < num_vfs; i++) {
1606                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1607                                 continue;
1608
1609                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1610                         pnv_ioda_free_pe(pe);
1611                 }
1612         } else
1613                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1614
1615         /* Releasing pe_num_map */
1616         kfree(pdn->pe_num_map);
1617
1618         return ret;
1619 }
1620
1621 int pcibios_sriov_disable(struct pci_dev *pdev)
1622 {
1623         pnv_pci_sriov_disable(pdev);
1624
1625         /* Release PCI data */
1626         remove_dev_pci_data(pdev);
1627         return 0;
1628 }
1629
1630 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1631 {
1632         /* Allocate PCI data */
1633         add_dev_pci_data(pdev);
1634
1635         return pnv_pci_sriov_enable(pdev, num_vfs);
1636 }
1637 #endif /* CONFIG_PCI_IOV */
1638
1639 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1640 {
1641         struct pci_dn *pdn = pci_get_pdn(pdev);
1642         struct pnv_ioda_pe *pe;
1643
1644         /*
1645          * The function can be called while the PE#
1646          * hasn't been assigned. Do nothing for the
1647          * case.
1648          */
1649         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1650                 return;
1651
1652         pe = &phb->ioda.pe_array[pdn->pe_number];
1653         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1654         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1655         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1656         /*
1657          * Note: iommu_add_device() will fail here as
1658          * for physical PE: the device is already added by now;
1659          * for virtual PE: sysfs entries are not ready yet and
1660          * tce_iommu_bus_notifier will add the device to a group later.
1661          */
1662 }
1663
1664 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1665 {
1666         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1667         struct pnv_phb *phb = hose->private_data;
1668         struct pci_dn *pdn = pci_get_pdn(pdev);
1669         struct pnv_ioda_pe *pe;
1670         uint64_t top;
1671         bool bypass = false;
1672         struct pci_dev *linked_npu_dev;
1673         int i;
1674
1675         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1676                 return -ENODEV;;
1677
1678         pe = &phb->ioda.pe_array[pdn->pe_number];
1679         if (pe->tce_bypass_enabled) {
1680                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1681                 bypass = (dma_mask >= top);
1682         }
1683
1684         if (bypass) {
1685                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1686                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1687         } else {
1688                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1689                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1690         }
1691         *pdev->dev.dma_mask = dma_mask;
1692
1693         /* Update peer npu devices */
1694         if (pe->flags & PNV_IODA_PE_PEER)
1695                 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1696                         if (!pe->peers[i])
1697                                 continue;
1698
1699                         linked_npu_dev = pe->peers[i]->pdev;
1700                         if (dma_get_mask(&linked_npu_dev->dev) != dma_mask)
1701                                 dma_set_mask(&linked_npu_dev->dev, dma_mask);
1702                 }
1703
1704         return 0;
1705 }
1706
1707 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1708 {
1709         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1710         struct pnv_phb *phb = hose->private_data;
1711         struct pci_dn *pdn = pci_get_pdn(pdev);
1712         struct pnv_ioda_pe *pe;
1713         u64 end, mask;
1714
1715         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1716                 return 0;
1717
1718         pe = &phb->ioda.pe_array[pdn->pe_number];
1719         if (!pe->tce_bypass_enabled)
1720                 return __dma_get_required_mask(&pdev->dev);
1721
1722
1723         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1724         mask = 1ULL << (fls64(end) - 1);
1725         mask += mask - 1;
1726
1727         return mask;
1728 }
1729
1730 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1731                                    struct pci_bus *bus)
1732 {
1733         struct pci_dev *dev;
1734
1735         list_for_each_entry(dev, &bus->devices, bus_list) {
1736                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1737                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1738                 iommu_add_device(&dev->dev);
1739
1740                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1741                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1742         }
1743 }
1744
1745 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1746                 unsigned long index, unsigned long npages, bool rm)
1747 {
1748         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1749                         &tbl->it_group_list, struct iommu_table_group_link,
1750                         next);
1751         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1752                         struct pnv_ioda_pe, table_group);
1753         __be64 __iomem *invalidate = rm ?
1754                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1755                 pe->phb->ioda.tce_inval_reg;
1756         unsigned long start, end, inc;
1757         const unsigned shift = tbl->it_page_shift;
1758
1759         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1760         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1761                         npages - 1);
1762
1763         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1764         if (tbl->it_busno) {
1765                 start <<= shift;
1766                 end <<= shift;
1767                 inc = 128ull << shift;
1768                 start |= tbl->it_busno;
1769                 end |= tbl->it_busno;
1770         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1771                 /* p7ioc-style invalidation, 2 TCEs per write */
1772                 start |= (1ull << 63);
1773                 end |= (1ull << 63);
1774                 inc = 16;
1775         } else {
1776                 /* Default (older HW) */
1777                 inc = 128;
1778         }
1779
1780         end |= inc - 1; /* round up end to be different than start */
1781
1782         mb(); /* Ensure above stores are visible */
1783         while (start <= end) {
1784                 if (rm)
1785                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1786                 else
1787                         __raw_writeq(cpu_to_be64(start), invalidate);
1788                 start += inc;
1789         }
1790
1791         /*
1792          * The iommu layer will do another mb() for us on build()
1793          * and we don't care on free()
1794          */
1795 }
1796
1797 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1798                 long npages, unsigned long uaddr,
1799                 enum dma_data_direction direction,
1800                 struct dma_attrs *attrs)
1801 {
1802         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1803                         attrs);
1804
1805         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1806                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1807
1808         return ret;
1809 }
1810
1811 #ifdef CONFIG_IOMMU_API
1812 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1813                 unsigned long *hpa, enum dma_data_direction *direction)
1814 {
1815         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1816
1817         if (!ret && (tbl->it_type &
1818                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1819                 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1820
1821         return ret;
1822 }
1823 #endif
1824
1825 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1826                 long npages)
1827 {
1828         pnv_tce_free(tbl, index, npages);
1829
1830         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1831                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1832 }
1833
1834 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1835         .set = pnv_ioda1_tce_build,
1836 #ifdef CONFIG_IOMMU_API
1837         .exchange = pnv_ioda1_tce_xchg,
1838 #endif
1839         .clear = pnv_ioda1_tce_free,
1840         .get = pnv_tce_get,
1841 };
1842
1843 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1844 {
1845         /* 01xb - invalidate TCEs that match the specified PE# */
1846         unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1847         struct pnv_phb *phb = pe->phb;
1848         struct pnv_ioda_pe *npe;
1849         int i;
1850
1851         if (!phb->ioda.tce_inval_reg)
1852                 return;
1853
1854         mb(); /* Ensure above stores are visible */
1855         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1856
1857         if (pe->flags & PNV_IODA_PE_PEER)
1858                 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1859                         npe = pe->peers[i];
1860                         if (!npe || npe->phb->type != PNV_PHB_NPU)
1861                                 continue;
1862
1863                         pnv_npu_tce_invalidate_entire(npe);
1864                 }
1865 }
1866
1867 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1868                 __be64 __iomem *invalidate, unsigned shift,
1869                 unsigned long index, unsigned long npages)
1870 {
1871         unsigned long start, end, inc;
1872
1873         /* We'll invalidate DMA address in PE scope */
1874         start = 0x2ull << 60;
1875         start |= (pe_number & 0xFF);
1876         end = start;
1877
1878         /* Figure out the start, end and step */
1879         start |= (index << shift);
1880         end |= ((index + npages - 1) << shift);
1881         inc = (0x1ull << shift);
1882         mb();
1883
1884         while (start <= end) {
1885                 if (rm)
1886                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1887                 else
1888                         __raw_writeq(cpu_to_be64(start), invalidate);
1889                 start += inc;
1890         }
1891 }
1892
1893 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1894                 unsigned long index, unsigned long npages, bool rm)
1895 {
1896         struct iommu_table_group_link *tgl;
1897
1898         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1899                 struct pnv_ioda_pe *npe;
1900                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1901                                 struct pnv_ioda_pe, table_group);
1902                 __be64 __iomem *invalidate = rm ?
1903                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1904                         pe->phb->ioda.tce_inval_reg;
1905                 int i;
1906
1907                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1908                         invalidate, tbl->it_page_shift,
1909                         index, npages);
1910
1911                 if (pe->flags & PNV_IODA_PE_PEER)
1912                         /* Invalidate PEs using the same TCE table */
1913                         for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1914                                 npe = pe->peers[i];
1915                                 if (!npe || npe->phb->type != PNV_PHB_NPU)
1916                                         continue;
1917
1918                                 pnv_npu_tce_invalidate(npe, tbl, index,
1919                                                         npages, rm);
1920                         }
1921         }
1922 }
1923
1924 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1925                 long npages, unsigned long uaddr,
1926                 enum dma_data_direction direction,
1927                 struct dma_attrs *attrs)
1928 {
1929         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1930                         attrs);
1931
1932         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1933                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1934
1935         return ret;
1936 }
1937
1938 #ifdef CONFIG_IOMMU_API
1939 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1940                 unsigned long *hpa, enum dma_data_direction *direction)
1941 {
1942         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1943
1944         if (!ret && (tbl->it_type &
1945                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1946                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1947
1948         return ret;
1949 }
1950 #endif
1951
1952 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1953                 long npages)
1954 {
1955         pnv_tce_free(tbl, index, npages);
1956
1957         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1958                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1959 }
1960
1961 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1962 {
1963         pnv_pci_ioda2_table_free_pages(tbl);
1964         iommu_free_table(tbl, "pnv");
1965 }
1966
1967 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1968         .set = pnv_ioda2_tce_build,
1969 #ifdef CONFIG_IOMMU_API
1970         .exchange = pnv_ioda2_tce_xchg,
1971 #endif
1972         .clear = pnv_ioda2_tce_free,
1973         .get = pnv_tce_get,
1974         .free = pnv_ioda2_table_free,
1975 };
1976
1977 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1978 {
1979         unsigned int *weight = (unsigned int *)data;
1980
1981         /* This is quite simplistic. The "base" weight of a device
1982          * is 10. 0 means no DMA is to be accounted for it.
1983          */
1984         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1985                 return 0;
1986
1987         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1988             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1989             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1990                 *weight += 3;
1991         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1992                 *weight += 15;
1993         else
1994                 *weight += 10;
1995
1996         return 0;
1997 }
1998
1999 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2000 {
2001         unsigned int weight = 0;
2002
2003         /* SRIOV VF has same DMA32 weight as its PF */
2004 #ifdef CONFIG_PCI_IOV
2005         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2006                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2007                 return weight;
2008         }
2009 #endif
2010
2011         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2012                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2013         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2014                 struct pci_dev *pdev;
2015
2016                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2017                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2018         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2019                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2020         }
2021
2022         return weight;
2023 }
2024
2025 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2026                                        struct pnv_ioda_pe *pe)
2027 {
2028
2029         struct page *tce_mem = NULL;
2030         struct iommu_table *tbl;
2031         unsigned int weight, total_weight = 0;
2032         unsigned int tce32_segsz, base, segs, avail, i;
2033         int64_t rc;
2034         void *addr;
2035
2036         /* XXX FIXME: Handle 64-bit only DMA devices */
2037         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2038         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2039         weight = pnv_pci_ioda_pe_dma_weight(pe);
2040         if (!weight)
2041                 return;
2042
2043         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2044                      &total_weight);
2045         segs = (weight * phb->ioda.dma32_count) / total_weight;
2046         if (!segs)
2047                 segs = 1;
2048
2049         /*
2050          * Allocate contiguous DMA32 segments. We begin with the expected
2051          * number of segments. With one more attempt, the number of DMA32
2052          * segments to be allocated is decreased by one until one segment
2053          * is allocated successfully.
2054          */
2055         do {
2056                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2057                         for (avail = 0, i = base; i < base + segs; i++) {
2058                                 if (phb->ioda.dma32_segmap[i] ==
2059                                     IODA_INVALID_PE)
2060                                         avail++;
2061                         }
2062
2063                         if (avail == segs)
2064                                 goto found;
2065                 }
2066         } while (--segs);
2067
2068         if (!segs) {
2069                 pe_warn(pe, "No available DMA32 segments\n");
2070                 return;
2071         }
2072
2073 found:
2074         tbl = pnv_pci_table_alloc(phb->hose->node);
2075         iommu_register_group(&pe->table_group, phb->hose->global_number,
2076                         pe->pe_number);
2077         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2078
2079         /* Grab a 32-bit TCE table */
2080         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2081                 weight, total_weight, base, segs);
2082         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2083                 base * PNV_IODA1_DMA32_SEGSIZE,
2084                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2085
2086         /* XXX Currently, we allocate one big contiguous table for the
2087          * TCEs. We only really need one chunk per 256M of TCE space
2088          * (ie per segment) but that's an optimization for later, it
2089          * requires some added smarts with our get/put_tce implementation
2090          *
2091          * Each TCE page is 4KB in size and each TCE entry occupies 8
2092          * bytes
2093          */
2094         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2095         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2096                                    get_order(tce32_segsz * segs));
2097         if (!tce_mem) {
2098                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2099                 goto fail;
2100         }
2101         addr = page_address(tce_mem);
2102         memset(addr, 0, tce32_segsz * segs);
2103
2104         /* Configure HW */
2105         for (i = 0; i < segs; i++) {
2106                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2107                                               pe->pe_number,
2108                                               base + i, 1,
2109                                               __pa(addr) + tce32_segsz * i,
2110                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2111                 if (rc) {
2112                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2113                                " err %ld\n", rc);
2114                         goto fail;
2115                 }
2116         }
2117
2118         /* Setup DMA32 segment mapping */
2119         for (i = base; i < base + segs; i++)
2120                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2121
2122         /* Setup linux iommu table */
2123         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2124                                   base * PNV_IODA1_DMA32_SEGSIZE,
2125                                   IOMMU_PAGE_SHIFT_4K);
2126
2127         /* OPAL variant of P7IOC SW invalidated TCEs */
2128         if (phb->ioda.tce_inval_reg)
2129                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2130                                  TCE_PCI_SWINV_FREE   |
2131                                  TCE_PCI_SWINV_PAIR);
2132
2133         tbl->it_ops = &pnv_ioda1_iommu_ops;
2134         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2135         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2136         iommu_init_table(tbl, phb->hose->node);
2137
2138         if (pe->flags & PNV_IODA_PE_DEV) {
2139                 /*
2140                  * Setting table base here only for carrying iommu_group
2141                  * further down to let iommu_add_device() do the job.
2142                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2143                  */
2144                 set_iommu_table_base(&pe->pdev->dev, tbl);
2145                 iommu_add_device(&pe->pdev->dev);
2146         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2147                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2148
2149         return;
2150  fail:
2151         /* XXX Failure: Try to fallback to 64-bit only ? */
2152         if (tce_mem)
2153                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2154         if (tbl) {
2155                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2156                 iommu_free_table(tbl, "pnv");
2157         }
2158 }
2159
2160 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2161                 int num, struct iommu_table *tbl)
2162 {
2163         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2164                         table_group);
2165         struct pnv_phb *phb = pe->phb;
2166         int64_t rc;
2167         const unsigned long size = tbl->it_indirect_levels ?
2168                         tbl->it_level_size : tbl->it_size;
2169         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2170         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2171
2172         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2173                         start_addr, start_addr + win_size - 1,
2174                         IOMMU_PAGE_SIZE(tbl));
2175
2176         /*
2177          * Map TCE table through TVT. The TVE index is the PE number
2178          * shifted by 1 bit for 32-bits DMA space.
2179          */
2180         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2181                         pe->pe_number,
2182                         (pe->pe_number << 1) + num,
2183                         tbl->it_indirect_levels + 1,
2184                         __pa(tbl->it_base),
2185                         size << 3,
2186                         IOMMU_PAGE_SIZE(tbl));
2187         if (rc) {
2188                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2189                 return rc;
2190         }
2191
2192         pnv_pci_link_table_and_group(phb->hose->node, num,
2193                         tbl, &pe->table_group);
2194         pnv_pci_ioda2_tce_invalidate_entire(pe);
2195
2196         return 0;
2197 }
2198
2199 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2200 {
2201         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2202         int64_t rc;
2203
2204         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2205         if (enable) {
2206                 phys_addr_t top = memblock_end_of_DRAM();
2207
2208                 top = roundup_pow_of_two(top);
2209                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2210                                                      pe->pe_number,
2211                                                      window_id,
2212                                                      pe->tce_bypass_base,
2213                                                      top);
2214         } else {
2215                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2216                                                      pe->pe_number,
2217                                                      window_id,
2218                                                      pe->tce_bypass_base,
2219                                                      0);
2220         }
2221         if (rc)
2222                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2223         else
2224                 pe->tce_bypass_enabled = enable;
2225 }
2226
2227 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2228                 __u32 page_shift, __u64 window_size, __u32 levels,
2229                 struct iommu_table *tbl);
2230
2231 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2232                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2233                 struct iommu_table **ptbl)
2234 {
2235         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2236                         table_group);
2237         int nid = pe->phb->hose->node;
2238         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2239         long ret;
2240         struct iommu_table *tbl;
2241
2242         tbl = pnv_pci_table_alloc(nid);
2243         if (!tbl)
2244                 return -ENOMEM;
2245
2246         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2247                         bus_offset, page_shift, window_size,
2248                         levels, tbl);
2249         if (ret) {
2250                 iommu_free_table(tbl, "pnv");
2251                 return ret;
2252         }
2253
2254         tbl->it_ops = &pnv_ioda2_iommu_ops;
2255         if (pe->phb->ioda.tce_inval_reg)
2256                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2257
2258         *ptbl = tbl;
2259
2260         return 0;
2261 }
2262
2263 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2264 {
2265         struct iommu_table *tbl = NULL;
2266         long rc;
2267
2268         /*
2269          * crashkernel= specifies the kdump kernel's maximum memory at
2270          * some offset and there is no guaranteed the result is a power
2271          * of 2, which will cause errors later.
2272          */
2273         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2274
2275         /*
2276          * In memory constrained environments, e.g. kdump kernel, the
2277          * DMA window can be larger than available memory, which will
2278          * cause errors later.
2279          */
2280         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2281
2282         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2283                         IOMMU_PAGE_SHIFT_4K,
2284                         window_size,
2285                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2286         if (rc) {
2287                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2288                                 rc);
2289                 return rc;
2290         }
2291
2292         iommu_init_table(tbl, pe->phb->hose->node);
2293
2294         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2295         if (rc) {
2296                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2297                                 rc);
2298                 pnv_ioda2_table_free(tbl);
2299                 return rc;
2300         }
2301
2302         if (!pnv_iommu_bypass_disabled)
2303                 pnv_pci_ioda2_set_bypass(pe, true);
2304
2305         /* OPAL variant of PHB3 invalidated TCEs */
2306         if (pe->phb->ioda.tce_inval_reg)
2307                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2308
2309         /*
2310          * Setting table base here only for carrying iommu_group
2311          * further down to let iommu_add_device() do the job.
2312          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2313          */
2314         if (pe->flags & PNV_IODA_PE_DEV)
2315                 set_iommu_table_base(&pe->pdev->dev, tbl);
2316
2317         return 0;
2318 }
2319
2320 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2321 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2322                 int num)
2323 {
2324         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2325                         table_group);
2326         struct pnv_phb *phb = pe->phb;
2327         long ret;
2328
2329         pe_info(pe, "Removing DMA window #%d\n", num);
2330
2331         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2332                         (pe->pe_number << 1) + num,
2333                         0/* levels */, 0/* table address */,
2334                         0/* table size */, 0/* page size */);
2335         if (ret)
2336                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2337         else
2338                 pnv_pci_ioda2_tce_invalidate_entire(pe);
2339
2340         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2341
2342         return ret;
2343 }
2344 #endif
2345
2346 #ifdef CONFIG_IOMMU_API
2347 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2348                 __u64 window_size, __u32 levels)
2349 {
2350         unsigned long bytes = 0;
2351         const unsigned window_shift = ilog2(window_size);
2352         unsigned entries_shift = window_shift - page_shift;
2353         unsigned table_shift = entries_shift + 3;
2354         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2355         unsigned long direct_table_size;
2356
2357         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2358                         (window_size > memory_hotplug_max()) ||
2359                         !is_power_of_2(window_size))
2360                 return 0;
2361
2362         /* Calculate a direct table size from window_size and levels */
2363         entries_shift = (entries_shift + levels - 1) / levels;
2364         table_shift = entries_shift + 3;
2365         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2366         direct_table_size =  1UL << table_shift;
2367
2368         for ( ; levels; --levels) {
2369                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2370
2371                 tce_table_size /= direct_table_size;
2372                 tce_table_size <<= 3;
2373                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2374         }
2375
2376         return bytes;
2377 }
2378
2379 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2380 {
2381         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2382                                                 table_group);
2383         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2384         struct iommu_table *tbl = pe->table_group.tables[0];
2385
2386         pnv_pci_ioda2_set_bypass(pe, false);
2387         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2388         pnv_ioda2_table_free(tbl);
2389 }
2390
2391 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2392 {
2393         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2394                                                 table_group);
2395
2396         pnv_pci_ioda2_setup_default_config(pe);
2397 }
2398
2399 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2400         .get_table_size = pnv_pci_ioda2_get_table_size,
2401         .create_table = pnv_pci_ioda2_create_table,
2402         .set_window = pnv_pci_ioda2_set_window,
2403         .unset_window = pnv_pci_ioda2_unset_window,
2404         .take_ownership = pnv_ioda2_take_ownership,
2405         .release_ownership = pnv_ioda2_release_ownership,
2406 };
2407 #endif
2408
2409 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2410 {
2411         const __be64 *swinvp;
2412
2413         /* OPAL variant of PHB3 invalidated TCEs */
2414         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2415         if (!swinvp)
2416                 return;
2417
2418         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2419         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2420 }
2421
2422 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2423                 unsigned levels, unsigned long limit,
2424                 unsigned long *current_offset, unsigned long *total_allocated)
2425 {
2426         struct page *tce_mem = NULL;
2427         __be64 *addr, *tmp;
2428         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2429         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2430         unsigned entries = 1UL << (shift - 3);
2431         long i;
2432
2433         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2434         if (!tce_mem) {
2435                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2436                 return NULL;
2437         }
2438         addr = page_address(tce_mem);
2439         memset(addr, 0, allocated);
2440         *total_allocated += allocated;
2441
2442         --levels;
2443         if (!levels) {
2444                 *current_offset += allocated;
2445                 return addr;
2446         }
2447
2448         for (i = 0; i < entries; ++i) {
2449                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2450                                 levels, limit, current_offset, total_allocated);
2451                 if (!tmp)
2452                         break;
2453
2454                 addr[i] = cpu_to_be64(__pa(tmp) |
2455                                 TCE_PCI_READ | TCE_PCI_WRITE);
2456
2457                 if (*current_offset >= limit)
2458                         break;
2459         }
2460
2461         return addr;
2462 }
2463
2464 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2465                 unsigned long size, unsigned level);
2466
2467 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2468                 __u32 page_shift, __u64 window_size, __u32 levels,
2469                 struct iommu_table *tbl)
2470 {
2471         void *addr;
2472         unsigned long offset = 0, level_shift, total_allocated = 0;
2473         const unsigned window_shift = ilog2(window_size);
2474         unsigned entries_shift = window_shift - page_shift;
2475         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2476         const unsigned long tce_table_size = 1UL << table_shift;
2477
2478         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2479                 return -EINVAL;
2480
2481         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2482                 return -EINVAL;
2483
2484         /* Adjust direct table size from window_size and levels */
2485         entries_shift = (entries_shift + levels - 1) / levels;
2486         level_shift = entries_shift + 3;
2487         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2488
2489         /* Allocate TCE table */
2490         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2491                         levels, tce_table_size, &offset, &total_allocated);
2492
2493         /* addr==NULL means that the first level allocation failed */
2494         if (!addr)
2495                 return -ENOMEM;
2496
2497         /*
2498          * First level was allocated but some lower level failed as
2499          * we did not allocate as much as we wanted,
2500          * release partially allocated table.
2501          */
2502         if (offset < tce_table_size) {
2503                 pnv_pci_ioda2_table_do_free_pages(addr,
2504                                 1ULL << (level_shift - 3), levels - 1);
2505                 return -ENOMEM;
2506         }
2507
2508         /* Setup linux iommu table */
2509         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2510                         page_shift);
2511         tbl->it_level_size = 1ULL << (level_shift - 3);
2512         tbl->it_indirect_levels = levels - 1;
2513         tbl->it_allocated_size = total_allocated;
2514
2515         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2516                         window_size, tce_table_size, bus_offset);
2517
2518         return 0;
2519 }
2520
2521 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2522                 unsigned long size, unsigned level)
2523 {
2524         const unsigned long addr_ul = (unsigned long) addr &
2525                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2526
2527         if (level) {
2528                 long i;
2529                 u64 *tmp = (u64 *) addr_ul;
2530
2531                 for (i = 0; i < size; ++i) {
2532                         unsigned long hpa = be64_to_cpu(tmp[i]);
2533
2534                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2535                                 continue;
2536
2537                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2538                                         level - 1);
2539                 }
2540         }
2541
2542         free_pages(addr_ul, get_order(size << 3));
2543 }
2544
2545 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2546 {
2547         const unsigned long size = tbl->it_indirect_levels ?
2548                         tbl->it_level_size : tbl->it_size;
2549
2550         if (!tbl->it_size)
2551                 return;
2552
2553         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2554                         tbl->it_indirect_levels);
2555 }
2556
2557 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2558                                        struct pnv_ioda_pe *pe)
2559 {
2560         int64_t rc;
2561
2562         /* TVE #1 is selected by PCI address bit 59 */
2563         pe->tce_bypass_base = 1ull << 59;
2564
2565         iommu_register_group(&pe->table_group, phb->hose->global_number,
2566                         pe->pe_number);
2567
2568         /* The PE will reserve all possible 32-bits space */
2569         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2570                 phb->ioda.m32_pci_base);
2571
2572         /* Setup linux iommu table */
2573         pe->table_group.tce32_start = 0;
2574         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2575         pe->table_group.max_dynamic_windows_supported =
2576                         IOMMU_TABLE_GROUP_MAX_TABLES;
2577         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2578         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2579 #ifdef CONFIG_IOMMU_API
2580         pe->table_group.ops = &pnv_pci_ioda2_ops;
2581 #endif
2582
2583         rc = pnv_pci_ioda2_setup_default_config(pe);
2584         if (rc)
2585                 return;
2586
2587         if (pe->flags & PNV_IODA_PE_DEV)
2588                 iommu_add_device(&pe->pdev->dev);
2589         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2590                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2591 }
2592
2593 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2594 {
2595         struct pci_controller *hose = phb->hose;
2596         struct pnv_ioda_pe *pe;
2597         unsigned int weight;
2598
2599         /* If we have more PE# than segments available, hand out one
2600          * per PE until we run out and let the rest fail. If not,
2601          * then we assign at least one segment per PE, plus more based
2602          * on the amount of devices under that PE
2603          */
2604         pr_info("PCI: Domain %04x has %d available 32-bit DMA segments\n",
2605                 hose->global_number, phb->ioda.dma32_count);
2606
2607         pnv_pci_ioda_setup_opal_tce_kill(phb);
2608
2609         /* Walk our PE list and configure their DMA segments */
2610         list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2611                 weight = pnv_pci_ioda_pe_dma_weight(pe);
2612                 if (!weight)
2613                         continue;
2614
2615                 /*
2616                  * For IODA2 compliant PHB3, we needn't care about the weight.
2617                  * The all available 32-bits DMA space will be assigned to
2618                  * the specific PE.
2619                  */
2620                 if (phb->type == PNV_PHB_IODA1) {
2621                         pnv_pci_ioda1_setup_dma_pe(phb, pe);
2622                 } else if (phb->type == PNV_PHB_IODA2) {
2623                         pe_info(pe, "Assign DMA32 space\n");
2624                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2625                 } else if (phb->type == PNV_PHB_NPU) {
2626                         /*
2627                          * We initialise the DMA space for an NPU PHB
2628                          * after setup of the PHB is complete as we
2629                          * point the NPU TVT to the the same location
2630                          * as the PHB3 TVT.
2631                          */
2632                 }
2633         }
2634 }
2635
2636 #ifdef CONFIG_PCI_MSI
2637 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2638 {
2639         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2640         struct irq_chip *chip = irq_data_get_irq_chip(d);
2641         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2642                                            ioda.irq_chip);
2643         int64_t rc;
2644
2645         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2646         WARN_ON_ONCE(rc);
2647
2648         icp_native_eoi(d);
2649 }
2650
2651
2652 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2653 {
2654         struct irq_data *idata;
2655         struct irq_chip *ichip;
2656
2657         if (phb->type != PNV_PHB_IODA2)
2658                 return;
2659
2660         if (!phb->ioda.irq_chip_init) {
2661                 /*
2662                  * First time we setup an MSI IRQ, we need to setup the
2663                  * corresponding IRQ chip to route correctly.
2664                  */
2665                 idata = irq_get_irq_data(virq);
2666                 ichip = irq_data_get_irq_chip(idata);
2667                 phb->ioda.irq_chip_init = 1;
2668                 phb->ioda.irq_chip = *ichip;
2669                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2670         }
2671         irq_set_chip(virq, &phb->ioda.irq_chip);
2672 }
2673
2674 #ifdef CONFIG_CXL_BASE
2675
2676 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2677 {
2678         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2679
2680         return of_node_get(hose->dn);
2681 }
2682 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2683
2684 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2685 {
2686         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2687         struct pnv_phb *phb = hose->private_data;
2688         struct pnv_ioda_pe *pe;
2689         int rc;
2690
2691         pe = pnv_ioda_get_pe(dev);
2692         if (!pe)
2693                 return -ENODEV;
2694
2695         pe_info(pe, "Switching PHB to CXL\n");
2696
2697         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2698         if (rc)
2699                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2700
2701         return rc;
2702 }
2703 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2704
2705 /* Find PHB for cxl dev and allocate MSI hwirqs?
2706  * Returns the absolute hardware IRQ number
2707  */
2708 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2709 {
2710         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2711         struct pnv_phb *phb = hose->private_data;
2712         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2713
2714         if (hwirq < 0) {
2715                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2716                 return -ENOSPC;
2717         }
2718
2719         return phb->msi_base + hwirq;
2720 }
2721 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2722
2723 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2724 {
2725         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2726         struct pnv_phb *phb = hose->private_data;
2727
2728         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2729 }
2730 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2731
2732 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2733                                   struct pci_dev *dev)
2734 {
2735         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2736         struct pnv_phb *phb = hose->private_data;
2737         int i, hwirq;
2738
2739         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2740                 if (!irqs->range[i])
2741                         continue;
2742                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2743                          i, irqs->offset[i],
2744                          irqs->range[i]);
2745                 hwirq = irqs->offset[i] - phb->msi_base;
2746                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2747                                        irqs->range[i]);
2748         }
2749 }
2750 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2751
2752 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2753                                struct pci_dev *dev, int num)
2754 {
2755         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2756         struct pnv_phb *phb = hose->private_data;
2757         int i, hwirq, try;
2758
2759         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2760
2761         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2762         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2763                 try = num;
2764                 while (try) {
2765                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2766                         if (hwirq >= 0)
2767                                 break;
2768                         try /= 2;
2769                 }
2770                 if (!try)
2771                         goto fail;
2772
2773                 irqs->offset[i] = phb->msi_base + hwirq;
2774                 irqs->range[i] = try;
2775                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2776                          i, irqs->offset[i], irqs->range[i]);
2777                 num -= try;
2778         }
2779         if (num)
2780                 goto fail;
2781
2782         return 0;
2783 fail:
2784         pnv_cxl_release_hwirq_ranges(irqs, dev);
2785         return -ENOSPC;
2786 }
2787 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2788
2789 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2790 {
2791         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2792         struct pnv_phb *phb = hose->private_data;
2793
2794         return phb->msi_bmp.irq_count;
2795 }
2796 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2797
2798 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2799                            unsigned int virq)
2800 {
2801         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2802         struct pnv_phb *phb = hose->private_data;
2803         unsigned int xive_num = hwirq - phb->msi_base;
2804         struct pnv_ioda_pe *pe;
2805         int rc;
2806
2807         if (!(pe = pnv_ioda_get_pe(dev)))
2808                 return -ENODEV;
2809
2810         /* Assign XIVE to PE */
2811         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2812         if (rc) {
2813                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2814                         "hwirq 0x%x XIVE 0x%x PE\n",
2815                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2816                 return -EIO;
2817         }
2818         set_msi_irq_chip(phb, virq);
2819
2820         return 0;
2821 }
2822 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2823 #endif
2824
2825 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2826                                   unsigned int hwirq, unsigned int virq,
2827                                   unsigned int is_64, struct msi_msg *msg)
2828 {
2829         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2830         unsigned int xive_num = hwirq - phb->msi_base;
2831         __be32 data;
2832         int rc;
2833
2834         /* No PE assigned ? bail out ... no MSI for you ! */
2835         if (pe == NULL)
2836                 return -ENXIO;
2837
2838         /* Check if we have an MVE */
2839         if (pe->mve_number < 0)
2840                 return -ENXIO;
2841
2842         /* Force 32-bit MSI on some broken devices */
2843         if (dev->no_64bit_msi)
2844                 is_64 = 0;
2845
2846         /* Assign XIVE to PE */
2847         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2848         if (rc) {
2849                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2850                         pci_name(dev), rc, xive_num);
2851                 return -EIO;
2852         }
2853
2854         if (is_64) {
2855                 __be64 addr64;
2856
2857                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2858                                      &addr64, &data);
2859                 if (rc) {
2860                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2861                                 pci_name(dev), rc);
2862                         return -EIO;
2863                 }
2864                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2865                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2866         } else {
2867                 __be32 addr32;
2868
2869                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2870                                      &addr32, &data);
2871                 if (rc) {
2872                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2873                                 pci_name(dev), rc);
2874                         return -EIO;
2875                 }
2876                 msg->address_hi = 0;
2877                 msg->address_lo = be32_to_cpu(addr32);
2878         }
2879         msg->data = be32_to_cpu(data);
2880
2881         set_msi_irq_chip(phb, virq);
2882
2883         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2884                  " address=%x_%08x data=%x PE# %d\n",
2885                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2886                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2887
2888         return 0;
2889 }
2890
2891 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2892 {
2893         unsigned int count;
2894         const __be32 *prop = of_get_property(phb->hose->dn,
2895                                              "ibm,opal-msi-ranges", NULL);
2896         if (!prop) {
2897                 /* BML Fallback */
2898                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2899         }
2900         if (!prop)
2901                 return;
2902
2903         phb->msi_base = be32_to_cpup(prop);
2904         count = be32_to_cpup(prop + 1);
2905         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2906                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2907                        phb->hose->global_number);
2908                 return;
2909         }
2910
2911         phb->msi_setup = pnv_pci_ioda_msi_setup;
2912         phb->msi32_support = 1;
2913         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2914                 count, phb->msi_base);
2915 }
2916 #else
2917 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2918 #endif /* CONFIG_PCI_MSI */
2919
2920 #ifdef CONFIG_PCI_IOV
2921 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2922 {
2923         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2924         struct pnv_phb *phb = hose->private_data;
2925         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2926         struct resource *res;
2927         int i;
2928         resource_size_t size, total_vf_bar_sz;
2929         struct pci_dn *pdn;
2930         int mul, total_vfs;
2931
2932         if (!pdev->is_physfn || pdev->is_added)
2933                 return;
2934
2935         pdn = pci_get_pdn(pdev);
2936         pdn->vfs_expanded = 0;
2937         pdn->m64_single_mode = false;
2938
2939         total_vfs = pci_sriov_get_totalvfs(pdev);
2940         mul = phb->ioda.total_pe_num;
2941         total_vf_bar_sz = 0;
2942
2943         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2944                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2945                 if (!res->flags || res->parent)
2946                         continue;
2947                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2948                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
2949                                         " non M64 VF BAR%d: %pR. \n",
2950                                  i, res);
2951                         goto truncate_iov;
2952                 }
2953
2954                 total_vf_bar_sz += pci_iov_resource_size(pdev,
2955                                 i + PCI_IOV_RESOURCES);
2956
2957                 /*
2958                  * If bigger than quarter of M64 segment size, just round up
2959                  * power of two.
2960                  *
2961                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2962                  * with other devices, IOV BAR size is expanded to be
2963                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2964                  * segment size , the expanded size would equal to half of the
2965                  * whole M64 space size, which will exhaust the M64 Space and
2966                  * limit the system flexibility.  This is a design decision to
2967                  * set the boundary to quarter of the M64 segment size.
2968                  */
2969                 if (total_vf_bar_sz > gate) {
2970                         mul = roundup_pow_of_two(total_vfs);
2971                         dev_info(&pdev->dev,
2972                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2973                                 total_vf_bar_sz, gate, mul);
2974                         pdn->m64_single_mode = true;
2975                         break;
2976                 }
2977         }
2978
2979         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2980                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2981                 if (!res->flags || res->parent)
2982                         continue;
2983
2984                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2985                 /*
2986                  * On PHB3, the minimum size alignment of M64 BAR in single
2987                  * mode is 32MB.
2988                  */
2989                 if (pdn->m64_single_mode && (size < SZ_32M))
2990                         goto truncate_iov;
2991                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2992                 res->end = res->start + size * mul - 1;
2993                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2994                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2995                          i, res, mul);
2996         }
2997         pdn->vfs_expanded = mul;
2998
2999         return;
3000
3001 truncate_iov:
3002         /* To save MMIO space, IOV BAR is truncated. */
3003         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3004                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3005                 res->flags = 0;
3006                 res->end = res->start - 1;
3007         }
3008 }
3009 #endif /* CONFIG_PCI_IOV */
3010
3011 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3012                                   struct resource *res)
3013 {
3014         struct pnv_phb *phb = pe->phb;
3015         struct pci_bus_region region;
3016         int index;
3017         int64_t rc;
3018
3019         if (!res || !res->flags || res->start > res->end)
3020                 return;
3021
3022         if (res->flags & IORESOURCE_IO) {
3023                 region.start = res->start - phb->ioda.io_pci_base;
3024                 region.end   = res->end - phb->ioda.io_pci_base;
3025                 index = region.start / phb->ioda.io_segsize;
3026
3027                 while (index < phb->ioda.total_pe_num &&
3028                        region.start <= region.end) {
3029                         phb->ioda.io_segmap[index] = pe->pe_number;
3030                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3031                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3032                         if (rc != OPAL_SUCCESS) {
3033                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3034                                        __func__, rc, index, pe->pe_number);
3035                                 break;
3036                         }
3037
3038                         region.start += phb->ioda.io_segsize;
3039                         index++;
3040                 }
3041         } else if ((res->flags & IORESOURCE_MEM) &&
3042                    !pnv_pci_is_mem_pref_64(res->flags)) {
3043                 region.start = res->start -
3044                                phb->hose->mem_offset[0] -
3045                                phb->ioda.m32_pci_base;
3046                 region.end   = res->end -
3047                                phb->hose->mem_offset[0] -
3048                                phb->ioda.m32_pci_base;
3049                 index = region.start / phb->ioda.m32_segsize;
3050
3051                 while (index < phb->ioda.total_pe_num &&
3052                        region.start <= region.end) {
3053                         phb->ioda.m32_segmap[index] = pe->pe_number;
3054                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3055                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3056                         if (rc != OPAL_SUCCESS) {
3057                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3058                                        __func__, rc, index, pe->pe_number);
3059                                 break;
3060                         }
3061
3062                         region.start += phb->ioda.m32_segsize;
3063                         index++;
3064                 }
3065         }
3066 }
3067
3068 /*
3069  * This function is supposed to be called on basis of PE from top
3070  * to bottom style. So the the I/O or MMIO segment assigned to
3071  * parent PE could be overrided by its child PEs if necessary.
3072  */
3073 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3074 {
3075         struct pci_dev *pdev;
3076         int i;
3077
3078         /*
3079          * NOTE: We only care PCI bus based PE for now. For PCI
3080          * device based PE, for example SRIOV sensitive VF should
3081          * be figured out later.
3082          */
3083         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3084
3085         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3086                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3087                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3088
3089                 /*
3090                  * If the PE contains all subordinate PCI buses, the
3091                  * windows of the child bridges should be mapped to
3092                  * the PE as well.
3093                  */
3094                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3095                         continue;
3096                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3097                         pnv_ioda_setup_pe_res(pe,
3098                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3099         }
3100 }
3101
3102 static void pnv_pci_ioda_setup_seg(void)
3103 {
3104         struct pci_controller *tmp, *hose;
3105         struct pnv_phb *phb;
3106         struct pnv_ioda_pe *pe;
3107
3108         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3109                 phb = hose->private_data;
3110
3111                 /* NPU PHB does not support IO or MMIO segmentation */
3112                 if (phb->type == PNV_PHB_NPU)
3113                         continue;
3114
3115                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3116                         pnv_ioda_setup_pe_seg(pe);
3117                 }
3118         }
3119 }
3120
3121 static void pnv_pci_ioda_setup_DMA(void)
3122 {
3123         struct pci_controller *hose, *tmp;
3124         struct pnv_phb *phb;
3125
3126         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3127                 pnv_ioda_setup_dma(hose->private_data);
3128
3129                 /* Mark the PHB initialization done */
3130                 phb = hose->private_data;
3131                 phb->initialized = 1;
3132         }
3133 }
3134
3135 static void pnv_pci_ioda_create_dbgfs(void)
3136 {
3137 #ifdef CONFIG_DEBUG_FS
3138         struct pci_controller *hose, *tmp;
3139         struct pnv_phb *phb;
3140         char name[16];
3141
3142         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3143                 phb = hose->private_data;
3144
3145                 sprintf(name, "PCI%04x", hose->global_number);
3146                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3147                 if (!phb->dbgfs)
3148                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3149                                 __func__, hose->global_number);
3150         }
3151 #endif /* CONFIG_DEBUG_FS */
3152 }
3153
3154 static void pnv_npu_ioda_fixup(void)
3155 {
3156         bool enable_bypass;
3157         struct pci_controller *hose, *tmp;
3158         struct pnv_phb *phb;
3159         struct pnv_ioda_pe *pe;
3160         unsigned int weight;
3161
3162         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3163                 phb = hose->private_data;
3164                 if (phb->type != PNV_PHB_NPU)
3165                         continue;
3166
3167                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3168                         weight = pnv_pci_ioda_pe_dma_weight(pe);
3169                         if (WARN_ON(!weight))
3170                                 continue;
3171
3172                         enable_bypass = dma_get_mask(&pe->pdev->dev) ==
3173                                 DMA_BIT_MASK(64);
3174                         pnv_npu_init_dma_pe(pe);
3175                         pnv_npu_dma_set_bypass(pe, enable_bypass);
3176                 }
3177         }
3178 }
3179
3180 static void pnv_pci_ioda_fixup(void)
3181 {
3182         pnv_pci_ioda_setup_PEs();
3183         pnv_pci_ioda_setup_seg();
3184         pnv_pci_ioda_setup_DMA();
3185
3186         pnv_pci_ioda_create_dbgfs();
3187
3188 #ifdef CONFIG_EEH
3189         eeh_init();
3190         eeh_addr_cache_build();
3191 #endif
3192
3193         /* Link NPU IODA tables to their PCI devices. */
3194         pnv_npu_ioda_fixup();
3195 }
3196
3197 /*
3198  * Returns the alignment for I/O or memory windows for P2P
3199  * bridges. That actually depends on how PEs are segmented.
3200  * For now, we return I/O or M32 segment size for PE sensitive
3201  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3202  * 1MiB for memory) will be returned.
3203  *
3204  * The current PCI bus might be put into one PE, which was
3205  * create against the parent PCI bridge. For that case, we
3206  * needn't enlarge the alignment so that we can save some
3207  * resources.
3208  */
3209 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3210                                                 unsigned long type)
3211 {
3212         struct pci_dev *bridge;
3213         struct pci_controller *hose = pci_bus_to_host(bus);
3214         struct pnv_phb *phb = hose->private_data;
3215         int num_pci_bridges = 0;
3216
3217         bridge = bus->self;
3218         while (bridge) {
3219                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3220                         num_pci_bridges++;
3221                         if (num_pci_bridges >= 2)
3222                                 return 1;
3223                 }
3224
3225                 bridge = bridge->bus->self;
3226         }
3227
3228         /* We fail back to M32 if M64 isn't supported */
3229         if (phb->ioda.m64_segsize &&
3230             pnv_pci_is_mem_pref_64(type))
3231                 return phb->ioda.m64_segsize;
3232         if (type & IORESOURCE_MEM)
3233                 return phb->ioda.m32_segsize;
3234
3235         return phb->ioda.io_segsize;
3236 }
3237
3238 #ifdef CONFIG_PCI_IOV
3239 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3240                                                       int resno)
3241 {
3242         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3243         struct pnv_phb *phb = hose->private_data;
3244         struct pci_dn *pdn = pci_get_pdn(pdev);
3245         resource_size_t align;
3246
3247         /*
3248          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3249          * SR-IOV. While from hardware perspective, the range mapped by M64
3250          * BAR should be size aligned.
3251          *
3252          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3253          * powernv-specific hardware restriction is gone. But if just use the
3254          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3255          * in one segment of M64 #15, which introduces the PE conflict between
3256          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3257          * m64_segsize.
3258          *
3259          * This function returns the total IOV BAR size if M64 BAR is in
3260          * Shared PE mode or just VF BAR size if not.
3261          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3262          * M64 segment size if IOV BAR size is less.
3263          */
3264         align = pci_iov_resource_size(pdev, resno);
3265         if (!pdn->vfs_expanded)
3266                 return align;
3267         if (pdn->m64_single_mode)
3268                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3269
3270         return pdn->vfs_expanded * align;
3271 }
3272 #endif /* CONFIG_PCI_IOV */
3273
3274 /* Prevent enabling devices for which we couldn't properly
3275  * assign a PE
3276  */
3277 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3278 {
3279         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3280         struct pnv_phb *phb = hose->private_data;
3281         struct pci_dn *pdn;
3282
3283         /* The function is probably called while the PEs have
3284          * not be created yet. For example, resource reassignment
3285          * during PCI probe period. We just skip the check if
3286          * PEs isn't ready.
3287          */
3288         if (!phb->initialized)
3289                 return true;
3290
3291         pdn = pci_get_pdn(dev);
3292         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3293                 return false;
3294
3295         return true;
3296 }
3297
3298 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3299 {
3300         struct pnv_phb *phb = hose->private_data;
3301
3302         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3303                        OPAL_ASSERT_RESET);
3304 }
3305
3306 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3307         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3308         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3309 #ifdef CONFIG_PCI_MSI
3310         .setup_msi_irqs         = pnv_setup_msi_irqs,
3311         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3312 #endif
3313         .enable_device_hook     = pnv_pci_enable_device_hook,
3314         .window_alignment       = pnv_pci_window_alignment,
3315         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3316         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3317         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3318         .shutdown               = pnv_pci_ioda_shutdown,
3319 };
3320
3321 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3322         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3323 #ifdef CONFIG_PCI_MSI
3324         .setup_msi_irqs         = pnv_setup_msi_irqs,
3325         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3326 #endif
3327         .enable_device_hook     = pnv_pci_enable_device_hook,
3328         .window_alignment       = pnv_pci_window_alignment,
3329         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3330         .dma_set_mask           = pnv_npu_dma_set_mask,
3331         .shutdown               = pnv_pci_ioda_shutdown,
3332 };
3333
3334 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3335                                          u64 hub_id, int ioda_type)
3336 {
3337         struct pci_controller *hose;
3338         struct pnv_phb *phb;
3339         unsigned long size, m64map_off, m32map_off, pemap_off;
3340         unsigned long iomap_off = 0, dma32map_off = 0;
3341         const __be64 *prop64;
3342         const __be32 *prop32;
3343         int len;
3344         unsigned int segno;
3345         u64 phb_id;
3346         void *aux;
3347         long rc;
3348
3349         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3350
3351         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3352         if (!prop64) {
3353                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3354                 return;
3355         }
3356         phb_id = be64_to_cpup(prop64);
3357         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3358
3359         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3360
3361         /* Allocate PCI controller */
3362         phb->hose = hose = pcibios_alloc_controller(np);
3363         if (!phb->hose) {
3364                 pr_err("  Can't allocate PCI controller for %s\n",
3365                        np->full_name);
3366                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3367                 return;
3368         }
3369
3370         spin_lock_init(&phb->lock);
3371         prop32 = of_get_property(np, "bus-range", &len);
3372         if (prop32 && len == 8) {
3373                 hose->first_busno = be32_to_cpu(prop32[0]);
3374                 hose->last_busno = be32_to_cpu(prop32[1]);
3375         } else {
3376                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3377                 hose->first_busno = 0;
3378                 hose->last_busno = 0xff;
3379         }
3380         hose->private_data = phb;
3381         phb->hub_id = hub_id;
3382         phb->opal_id = phb_id;
3383         phb->type = ioda_type;
3384         mutex_init(&phb->ioda.pe_alloc_mutex);
3385
3386         /* Detect specific models for error handling */
3387         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3388                 phb->model = PNV_PHB_MODEL_P7IOC;
3389         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3390                 phb->model = PNV_PHB_MODEL_PHB3;
3391         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3392                 phb->model = PNV_PHB_MODEL_NPU;
3393         else
3394                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3395
3396         /* Parse 32-bit and IO ranges (if any) */
3397         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3398
3399         /* Get registers */
3400         phb->regs = of_iomap(np, 0);
3401         if (phb->regs == NULL)
3402                 pr_err("  Failed to map registers !\n");
3403
3404         /* Initialize more IODA stuff */
3405         phb->ioda.total_pe_num = 1;
3406         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3407         if (prop32)
3408                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3409         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3410         if (prop32)
3411                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3412
3413         /* Parse 64-bit MMIO range */
3414         pnv_ioda_parse_m64_window(phb);
3415
3416         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3417         /* FW Has already off top 64k of M32 space (MSI space) */
3418         phb->ioda.m32_size += 0x10000;
3419
3420         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3421         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3422         phb->ioda.io_size = hose->pci_io_size;
3423         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3424         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3425
3426         /* Calculate how many 32-bit TCE segments we have */
3427         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3428                                 PNV_IODA1_DMA32_SEGSIZE;
3429
3430         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3431         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
3432         m64map_off = size;
3433         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3434         m32map_off = size;
3435         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3436         if (phb->type == PNV_PHB_IODA1) {
3437                 iomap_off = size;
3438                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3439                 dma32map_off = size;
3440                 size += phb->ioda.dma32_count *
3441                         sizeof(phb->ioda.dma32_segmap[0]);
3442         }
3443         pemap_off = size;
3444         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3445         aux = memblock_virt_alloc(size, 0);
3446         phb->ioda.pe_alloc = aux;
3447         phb->ioda.m64_segmap = aux + m64map_off;
3448         phb->ioda.m32_segmap = aux + m32map_off;
3449         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3450                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3451                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3452         }
3453         if (phb->type == PNV_PHB_IODA1) {
3454                 phb->ioda.io_segmap = aux + iomap_off;
3455                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3456                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3457
3458                 phb->ioda.dma32_segmap = aux + dma32map_off;
3459                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3460                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3461         }
3462         phb->ioda.pe_array = aux + pemap_off;
3463         set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3464
3465         INIT_LIST_HEAD(&phb->ioda.pe_list);
3466         mutex_init(&phb->ioda.pe_list_mutex);
3467
3468         /* Calculate how many 32-bit TCE segments we have */
3469         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3470                                 PNV_IODA1_DMA32_SEGSIZE;
3471
3472 #if 0 /* We should really do that ... */
3473         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3474                                          window_type,
3475                                          window_num,
3476                                          starting_real_address,
3477                                          starting_pci_address,
3478                                          segment_size);
3479 #endif
3480
3481         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3482                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3483                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3484         if (phb->ioda.m64_size)
3485                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3486                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3487         if (phb->ioda.io_size)
3488                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3489                         phb->ioda.io_size, phb->ioda.io_segsize);
3490
3491
3492         phb->hose->ops = &pnv_pci_ops;
3493         phb->get_pe_state = pnv_ioda_get_pe_state;
3494         phb->freeze_pe = pnv_ioda_freeze_pe;
3495         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3496
3497         /* Setup TCEs */
3498         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3499
3500         /* Setup MSI support */
3501         pnv_pci_init_ioda_msis(phb);
3502
3503         /*
3504          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3505          * to let the PCI core do resource assignment. It's supposed
3506          * that the PCI core will do correct I/O and MMIO alignment
3507          * for the P2P bridge bars so that each PCI bus (excluding
3508          * the child P2P bridges) can form individual PE.
3509          */
3510         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3511
3512         if (phb->type == PNV_PHB_NPU)
3513                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3514         else
3515                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3516
3517 #ifdef CONFIG_PCI_IOV
3518         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3519         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3520 #endif
3521
3522         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3523
3524         /* Reset IODA tables to a clean state */
3525         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3526         if (rc)
3527                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3528
3529         /* If we're running in kdump kerenl, the previous kerenl never
3530          * shutdown PCI devices correctly. We already got IODA table
3531          * cleaned out. So we have to issue PHB reset to stop all PCI
3532          * transactions from previous kerenl.
3533          */
3534         if (is_kdump_kernel()) {
3535                 pr_info("  Issue PHB reset ...\n");
3536                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3537                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3538         }
3539
3540         /* Remove M64 resource if we can't configure it successfully */
3541         if (!phb->init_m64 || phb->init_m64(phb))
3542                 hose->mem_resources[1].flags = 0;
3543 }
3544
3545 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3546 {
3547         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3548 }
3549
3550 void __init pnv_pci_init_npu_phb(struct device_node *np)
3551 {
3552         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3553 }
3554
3555 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3556 {
3557         struct device_node *phbn;
3558         const __be64 *prop64;
3559         u64 hub_id;
3560
3561         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3562
3563         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3564         if (!prop64) {
3565                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3566                 return;
3567         }
3568         hub_id = be64_to_cpup(prop64);
3569         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3570
3571         /* Count child PHBs */
3572         for_each_child_of_node(np, phbn) {
3573                 /* Look for IODA1 PHBs */
3574                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3575                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3576         }
3577 }