8182f7caf5b1faa0b5d3cdc3a767411da4ad9f2a
[cascardo/linux.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55
56 #include "cpumap.h"
57 #include "kernel.h"
58
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64         [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
66 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
67         [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
68
69 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
70 EXPORT_SYMBOL(cpu_core_map);
71 EXPORT_SYMBOL(cpu_core_sib_map);
72 EXPORT_SYMBOL(cpu_core_sib_cache_map);
73
74 static cpumask_t smp_commenced_mask;
75
76 void smp_info(struct seq_file *m)
77 {
78         int i;
79         
80         seq_printf(m, "State:\n");
81         for_each_online_cpu(i)
82                 seq_printf(m, "CPU%d:\t\tonline\n", i);
83 }
84
85 void smp_bogo(struct seq_file *m)
86 {
87         int i;
88         
89         for_each_online_cpu(i)
90                 seq_printf(m,
91                            "Cpu%dClkTck\t: %016lx\n",
92                            i, cpu_data(i).clock_tick);
93 }
94
95 extern void setup_sparc64_timer(void);
96
97 static volatile unsigned long callin_flag = 0;
98
99 void smp_callin(void)
100 {
101         int cpuid = hard_smp_processor_id();
102
103         __local_per_cpu_offset = __per_cpu_offset(cpuid);
104
105         if (tlb_type == hypervisor)
106                 sun4v_ktsb_register();
107
108         __flush_tlb_all();
109
110         setup_sparc64_timer();
111
112         if (cheetah_pcache_forced_on)
113                 cheetah_enable_pcache();
114
115         callin_flag = 1;
116         __asm__ __volatile__("membar #Sync\n\t"
117                              "flush  %%g6" : : : "memory");
118
119         /* Clear this or we will die instantly when we
120          * schedule back to this idler...
121          */
122         current_thread_info()->new_child = 0;
123
124         /* Attach to the address space of init_task. */
125         atomic_inc(&init_mm.mm_count);
126         current->active_mm = &init_mm;
127
128         /* inform the notifiers about the new cpu */
129         notify_cpu_starting(cpuid);
130
131         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
132                 rmb();
133
134         set_cpu_online(cpuid, true);
135
136         /* idle thread is expected to have preempt disabled */
137         preempt_disable();
138
139         local_irq_enable();
140
141         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
142 }
143
144 void cpu_panic(void)
145 {
146         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147         panic("SMP bolixed\n");
148 }
149
150 /* This tick register synchronization scheme is taken entirely from
151  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
152  *
153  * The only change I've made is to rework it so that the master
154  * initiates the synchonization instead of the slave. -DaveM
155  */
156
157 #define MASTER  0
158 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
159
160 #define NUM_ROUNDS      64      /* magic value */
161 #define NUM_ITERS       5       /* likewise */
162
163 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
164 static unsigned long go[SLAVE + 1];
165
166 #define DEBUG_TICK_SYNC 0
167
168 static inline long get_delta (long *rt, long *master)
169 {
170         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
171         unsigned long tcenter, t0, t1, tm;
172         unsigned long i;
173
174         for (i = 0; i < NUM_ITERS; i++) {
175                 t0 = tick_ops->get_tick();
176                 go[MASTER] = 1;
177                 membar_safe("#StoreLoad");
178                 while (!(tm = go[SLAVE]))
179                         rmb();
180                 go[SLAVE] = 0;
181                 wmb();
182                 t1 = tick_ops->get_tick();
183
184                 if (t1 - t0 < best_t1 - best_t0)
185                         best_t0 = t0, best_t1 = t1, best_tm = tm;
186         }
187
188         *rt = best_t1 - best_t0;
189         *master = best_tm - best_t0;
190
191         /* average best_t0 and best_t1 without overflow: */
192         tcenter = (best_t0/2 + best_t1/2);
193         if (best_t0 % 2 + best_t1 % 2 == 2)
194                 tcenter++;
195         return tcenter - best_tm;
196 }
197
198 void smp_synchronize_tick_client(void)
199 {
200         long i, delta, adj, adjust_latency = 0, done = 0;
201         unsigned long flags, rt, master_time_stamp;
202 #if DEBUG_TICK_SYNC
203         struct {
204                 long rt;        /* roundtrip time */
205                 long master;    /* master's timestamp */
206                 long diff;      /* difference between midpoint and master's timestamp */
207                 long lat;       /* estimate of itc adjustment latency */
208         } t[NUM_ROUNDS];
209 #endif
210
211         go[MASTER] = 1;
212
213         while (go[MASTER])
214                 rmb();
215
216         local_irq_save(flags);
217         {
218                 for (i = 0; i < NUM_ROUNDS; i++) {
219                         delta = get_delta(&rt, &master_time_stamp);
220                         if (delta == 0)
221                                 done = 1;       /* let's lock on to this... */
222
223                         if (!done) {
224                                 if (i > 0) {
225                                         adjust_latency += -delta;
226                                         adj = -delta + adjust_latency/4;
227                                 } else
228                                         adj = -delta;
229
230                                 tick_ops->add_tick(adj);
231                         }
232 #if DEBUG_TICK_SYNC
233                         t[i].rt = rt;
234                         t[i].master = master_time_stamp;
235                         t[i].diff = delta;
236                         t[i].lat = adjust_latency/4;
237 #endif
238                 }
239         }
240         local_irq_restore(flags);
241
242 #if DEBUG_TICK_SYNC
243         for (i = 0; i < NUM_ROUNDS; i++)
244                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
246 #endif
247
248         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
249                "(last diff %ld cycles, maxerr %lu cycles)\n",
250                smp_processor_id(), delta, rt);
251 }
252
253 static void smp_start_sync_tick_client(int cpu);
254
255 static void smp_synchronize_one_tick(int cpu)
256 {
257         unsigned long flags, i;
258
259         go[MASTER] = 0;
260
261         smp_start_sync_tick_client(cpu);
262
263         /* wait for client to be ready */
264         while (!go[MASTER])
265                 rmb();
266
267         /* now let the client proceed into his loop */
268         go[MASTER] = 0;
269         membar_safe("#StoreLoad");
270
271         raw_spin_lock_irqsave(&itc_sync_lock, flags);
272         {
273                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
274                         while (!go[MASTER])
275                                 rmb();
276                         go[MASTER] = 0;
277                         wmb();
278                         go[SLAVE] = tick_ops->get_tick();
279                         membar_safe("#StoreLoad");
280                 }
281         }
282         raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
283 }
284
285 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
286 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
287                                 void **descrp)
288 {
289         extern unsigned long sparc64_ttable_tl0;
290         extern unsigned long kern_locked_tte_data;
291         struct hvtramp_descr *hdesc;
292         unsigned long trampoline_ra;
293         struct trap_per_cpu *tb;
294         u64 tte_vaddr, tte_data;
295         unsigned long hv_err;
296         int i;
297
298         hdesc = kzalloc(sizeof(*hdesc) +
299                         (sizeof(struct hvtramp_mapping) *
300                          num_kernel_image_mappings - 1),
301                         GFP_KERNEL);
302         if (!hdesc) {
303                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304                        "hvtramp_descr.\n");
305                 return;
306         }
307         *descrp = hdesc;
308
309         hdesc->cpu = cpu;
310         hdesc->num_mappings = num_kernel_image_mappings;
311
312         tb = &trap_block[cpu];
313
314         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316
317         hdesc->thread_reg = thread_reg;
318
319         tte_vaddr = (unsigned long) KERNBASE;
320         tte_data = kern_locked_tte_data;
321
322         for (i = 0; i < hdesc->num_mappings; i++) {
323                 hdesc->maps[i].vaddr = tte_vaddr;
324                 hdesc->maps[i].tte   = tte_data;
325                 tte_vaddr += 0x400000;
326                 tte_data  += 0x400000;
327         }
328
329         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330
331         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
333                                  __pa(hdesc));
334         if (hv_err)
335                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336                        "gives error %lu\n", hv_err);
337 }
338 #endif
339
340 extern unsigned long sparc64_cpu_startup;
341
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343  * 32-bits (I think) so to be safe we have it read the pointer
344  * contained here so we work on >4GB machines. -DaveM
345  */
346 static struct thread_info *cpu_new_thread = NULL;
347
348 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349 {
350         unsigned long entry =
351                 (unsigned long)(&sparc64_cpu_startup);
352         unsigned long cookie =
353                 (unsigned long)(&cpu_new_thread);
354         void *descr = NULL;
355         int timeout, ret;
356
357         callin_flag = 0;
358         cpu_new_thread = task_thread_info(idle);
359
360         if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362                 if (ldom_domaining_enabled)
363                         ldom_startcpu_cpuid(cpu,
364                                             (unsigned long) cpu_new_thread,
365                                             &descr);
366                 else
367 #endif
368                         prom_startcpu_cpuid(cpu, entry, cookie);
369         } else {
370                 struct device_node *dp = of_find_node_by_cpuid(cpu);
371
372                 prom_startcpu(dp->phandle, entry, cookie);
373         }
374
375         for (timeout = 0; timeout < 50000; timeout++) {
376                 if (callin_flag)
377                         break;
378                 udelay(100);
379         }
380
381         if (callin_flag) {
382                 ret = 0;
383         } else {
384                 printk("Processor %d is stuck.\n", cpu);
385                 ret = -ENODEV;
386         }
387         cpu_new_thread = NULL;
388
389         kfree(descr);
390
391         return ret;
392 }
393
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396         u64 result, target;
397         int stuck, tmp;
398
399         if (this_is_starfire) {
400                 /* map to real upaid */
401                 cpu = (((cpu & 0x3c) << 1) |
402                         ((cpu & 0x40) >> 4) |
403                         (cpu & 0x3));
404         }
405
406         target = (cpu << 14) | 0x70;
407 again:
408         /* Ok, this is the real Spitfire Errata #54.
409          * One must read back from a UDB internal register
410          * after writes to the UDB interrupt dispatch, but
411          * before the membar Sync for that write.
412          * So we use the high UDB control register (ASI 0x7f,
413          * ADDR 0x20) for the dummy read. -DaveM
414          */
415         tmp = 0x40;
416         __asm__ __volatile__(
417         "wrpr   %1, %2, %%pstate\n\t"
418         "stxa   %4, [%0] %3\n\t"
419         "stxa   %5, [%0+%8] %3\n\t"
420         "add    %0, %8, %0\n\t"
421         "stxa   %6, [%0+%8] %3\n\t"
422         "membar #Sync\n\t"
423         "stxa   %%g0, [%7] %3\n\t"
424         "membar #Sync\n\t"
425         "mov    0x20, %%g1\n\t"
426         "ldxa   [%%g1] 0x7f, %%g0\n\t"
427         "membar #Sync"
428         : "=r" (tmp)
429         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430           "r" (data0), "r" (data1), "r" (data2), "r" (target),
431           "r" (0x10), "0" (tmp)
432         : "g1");
433
434         /* NOTE: PSTATE_IE is still clear. */
435         stuck = 100000;
436         do {
437                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438                         : "=r" (result)
439                         : "i" (ASI_INTR_DISPATCH_STAT));
440                 if (result == 0) {
441                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442                                              : : "r" (pstate));
443                         return;
444                 }
445                 stuck -= 1;
446                 if (stuck == 0)
447                         break;
448         } while (result & 0x1);
449         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450                              : : "r" (pstate));
451         if (stuck == 0) {
452                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453                        smp_processor_id(), result);
454         } else {
455                 udelay(2);
456                 goto again;
457         }
458 }
459
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462         u64 *mondo, data0, data1, data2;
463         u16 *cpu_list;
464         u64 pstate;
465         int i;
466
467         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468         cpu_list = __va(tb->cpu_list_pa);
469         mondo = __va(tb->cpu_mondo_block_pa);
470         data0 = mondo[0];
471         data1 = mondo[1];
472         data2 = mondo[2];
473         for (i = 0; i < cnt; i++)
474                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478  * packet, but we have no use for that.  However we do take advantage of
479  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480  */
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483         int nack_busy_id, is_jbus, need_more;
484         u64 *mondo, pstate, ver, busy_mask;
485         u16 *cpu_list;
486
487         cpu_list = __va(tb->cpu_list_pa);
488         mondo = __va(tb->cpu_mondo_block_pa);
489
490         /* Unfortunately, someone at Sun had the brilliant idea to make the
491          * busy/nack fields hard-coded by ITID number for this Ultra-III
492          * derivative processor.
493          */
494         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496                    (ver >> 32) == __SERRANO_ID);
497
498         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499
500 retry:
501         need_more = 0;
502         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503                              : : "r" (pstate), "i" (PSTATE_IE));
504
505         /* Setup the dispatch data registers. */
506         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
507                              "stxa      %1, [%4] %6\n\t"
508                              "stxa      %2, [%5] %6\n\t"
509                              "membar    #Sync\n\t"
510                              : /* no outputs */
511                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512                                "r" (0x40), "r" (0x50), "r" (0x60),
513                                "i" (ASI_INTR_W));
514
515         nack_busy_id = 0;
516         busy_mask = 0;
517         {
518                 int i;
519
520                 for (i = 0; i < cnt; i++) {
521                         u64 target, nr;
522
523                         nr = cpu_list[i];
524                         if (nr == 0xffff)
525                                 continue;
526
527                         target = (nr << 14) | 0x70;
528                         if (is_jbus) {
529                                 busy_mask |= (0x1UL << (nr * 2));
530                         } else {
531                                 target |= (nack_busy_id << 24);
532                                 busy_mask |= (0x1UL <<
533                                               (nack_busy_id * 2));
534                         }
535                         __asm__ __volatile__(
536                                 "stxa   %%g0, [%0] %1\n\t"
537                                 "membar #Sync\n\t"
538                                 : /* no outputs */
539                                 : "r" (target), "i" (ASI_INTR_W));
540                         nack_busy_id++;
541                         if (nack_busy_id == 32) {
542                                 need_more = 1;
543                                 break;
544                         }
545                 }
546         }
547
548         /* Now, poll for completion. */
549         {
550                 u64 dispatch_stat, nack_mask;
551                 long stuck;
552
553                 stuck = 100000 * nack_busy_id;
554                 nack_mask = busy_mask << 1;
555                 do {
556                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
557                                              : "=r" (dispatch_stat)
558                                              : "i" (ASI_INTR_DISPATCH_STAT));
559                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
560                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561                                                      : : "r" (pstate));
562                                 if (unlikely(need_more)) {
563                                         int i, this_cnt = 0;
564                                         for (i = 0; i < cnt; i++) {
565                                                 if (cpu_list[i] == 0xffff)
566                                                         continue;
567                                                 cpu_list[i] = 0xffff;
568                                                 this_cnt++;
569                                                 if (this_cnt == 32)
570                                                         break;
571                                         }
572                                         goto retry;
573                                 }
574                                 return;
575                         }
576                         if (!--stuck)
577                                 break;
578                 } while (dispatch_stat & busy_mask);
579
580                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581                                      : : "r" (pstate));
582
583                 if (dispatch_stat & busy_mask) {
584                         /* Busy bits will not clear, continue instead
585                          * of freezing up on this cpu.
586                          */
587                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588                                smp_processor_id(), dispatch_stat);
589                 } else {
590                         int i, this_busy_nack = 0;
591
592                         /* Delay some random time with interrupts enabled
593                          * to prevent deadlock.
594                          */
595                         udelay(2 * nack_busy_id);
596
597                         /* Clear out the mask bits for cpus which did not
598                          * NACK us.
599                          */
600                         for (i = 0; i < cnt; i++) {
601                                 u64 check_mask, nr;
602
603                                 nr = cpu_list[i];
604                                 if (nr == 0xffff)
605                                         continue;
606
607                                 if (is_jbus)
608                                         check_mask = (0x2UL << (2*nr));
609                                 else
610                                         check_mask = (0x2UL <<
611                                                       this_busy_nack);
612                                 if ((dispatch_stat & check_mask) == 0)
613                                         cpu_list[i] = 0xffff;
614                                 this_busy_nack += 2;
615                                 if (this_busy_nack == 64)
616                                         break;
617                         }
618
619                         goto retry;
620                 }
621         }
622 }
623
624 /* Multi-cpu list version.  */
625 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
626 {
627         int retries, this_cpu, prev_sent, i, saw_cpu_error;
628         unsigned long status;
629         u16 *cpu_list;
630
631         this_cpu = smp_processor_id();
632
633         cpu_list = __va(tb->cpu_list_pa);
634
635         saw_cpu_error = 0;
636         retries = 0;
637         prev_sent = 0;
638         do {
639                 int forward_progress, n_sent;
640
641                 status = sun4v_cpu_mondo_send(cnt,
642                                               tb->cpu_list_pa,
643                                               tb->cpu_mondo_block_pa);
644
645                 /* HV_EOK means all cpus received the xcall, we're done.  */
646                 if (likely(status == HV_EOK))
647                         break;
648
649                 /* First, see if we made any forward progress.
650                  *
651                  * The hypervisor indicates successful sends by setting
652                  * cpu list entries to the value 0xffff.
653                  */
654                 n_sent = 0;
655                 for (i = 0; i < cnt; i++) {
656                         if (likely(cpu_list[i] == 0xffff))
657                                 n_sent++;
658                 }
659
660                 forward_progress = 0;
661                 if (n_sent > prev_sent)
662                         forward_progress = 1;
663
664                 prev_sent = n_sent;
665
666                 /* If we get a HV_ECPUERROR, then one or more of the cpus
667                  * in the list are in error state.  Use the cpu_state()
668                  * hypervisor call to find out which cpus are in error state.
669                  */
670                 if (unlikely(status == HV_ECPUERROR)) {
671                         for (i = 0; i < cnt; i++) {
672                                 long err;
673                                 u16 cpu;
674
675                                 cpu = cpu_list[i];
676                                 if (cpu == 0xffff)
677                                         continue;
678
679                                 err = sun4v_cpu_state(cpu);
680                                 if (err == HV_CPU_STATE_ERROR) {
681                                         saw_cpu_error = (cpu + 1);
682                                         cpu_list[i] = 0xffff;
683                                 }
684                         }
685                 } else if (unlikely(status != HV_EWOULDBLOCK))
686                         goto fatal_mondo_error;
687
688                 /* Don't bother rewriting the CPU list, just leave the
689                  * 0xffff and non-0xffff entries in there and the
690                  * hypervisor will do the right thing.
691                  *
692                  * Only advance timeout state if we didn't make any
693                  * forward progress.
694                  */
695                 if (unlikely(!forward_progress)) {
696                         if (unlikely(++retries > 10000))
697                                 goto fatal_mondo_timeout;
698
699                         /* Delay a little bit to let other cpus catch up
700                          * on their cpu mondo queue work.
701                          */
702                         udelay(2 * cnt);
703                 }
704         } while (1);
705
706         if (unlikely(saw_cpu_error))
707                 goto fatal_mondo_cpu_error;
708
709         return;
710
711 fatal_mondo_cpu_error:
712         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
713                "(including %d) were in error state\n",
714                this_cpu, saw_cpu_error - 1);
715         return;
716
717 fatal_mondo_timeout:
718         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
719                " progress after %d retries.\n",
720                this_cpu, retries);
721         goto dump_cpu_list_and_out;
722
723 fatal_mondo_error:
724         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
725                this_cpu, status);
726         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
727                "mondo_block_pa(%lx)\n",
728                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
729
730 dump_cpu_list_and_out:
731         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
732         for (i = 0; i < cnt; i++)
733                 printk("%u ", cpu_list[i]);
734         printk("]\n");
735 }
736
737 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
738
739 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
740 {
741         struct trap_per_cpu *tb;
742         int this_cpu, i, cnt;
743         unsigned long flags;
744         u16 *cpu_list;
745         u64 *mondo;
746
747         /* We have to do this whole thing with interrupts fully disabled.
748          * Otherwise if we send an xcall from interrupt context it will
749          * corrupt both our mondo block and cpu list state.
750          *
751          * One consequence of this is that we cannot use timeout mechanisms
752          * that depend upon interrupts being delivered locally.  So, for
753          * example, we cannot sample jiffies and expect it to advance.
754          *
755          * Fortunately, udelay() uses %stick/%tick so we can use that.
756          */
757         local_irq_save(flags);
758
759         this_cpu = smp_processor_id();
760         tb = &trap_block[this_cpu];
761
762         mondo = __va(tb->cpu_mondo_block_pa);
763         mondo[0] = data0;
764         mondo[1] = data1;
765         mondo[2] = data2;
766         wmb();
767
768         cpu_list = __va(tb->cpu_list_pa);
769
770         /* Setup the initial cpu list.  */
771         cnt = 0;
772         for_each_cpu(i, mask) {
773                 if (i == this_cpu || !cpu_online(i))
774                         continue;
775                 cpu_list[cnt++] = i;
776         }
777
778         if (cnt)
779                 xcall_deliver_impl(tb, cnt);
780
781         local_irq_restore(flags);
782 }
783
784 /* Send cross call to all processors mentioned in MASK_P
785  * except self.  Really, there are only two cases currently,
786  * "cpu_online_mask" and "mm_cpumask(mm)".
787  */
788 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
789 {
790         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
791
792         xcall_deliver(data0, data1, data2, mask);
793 }
794
795 /* Send cross call to all processors except self. */
796 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
797 {
798         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
799 }
800
801 extern unsigned long xcall_sync_tick;
802
803 static void smp_start_sync_tick_client(int cpu)
804 {
805         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
806                       cpumask_of(cpu));
807 }
808
809 extern unsigned long xcall_call_function;
810
811 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
812 {
813         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
814 }
815
816 extern unsigned long xcall_call_function_single;
817
818 void arch_send_call_function_single_ipi(int cpu)
819 {
820         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
821                       cpumask_of(cpu));
822 }
823
824 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
825 {
826         clear_softint(1 << irq);
827         irq_enter();
828         generic_smp_call_function_interrupt();
829         irq_exit();
830 }
831
832 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
833 {
834         clear_softint(1 << irq);
835         irq_enter();
836         generic_smp_call_function_single_interrupt();
837         irq_exit();
838 }
839
840 static void tsb_sync(void *info)
841 {
842         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
843         struct mm_struct *mm = info;
844
845         /* It is not valid to test "current->active_mm == mm" here.
846          *
847          * The value of "current" is not changed atomically with
848          * switch_mm().  But that's OK, we just need to check the
849          * current cpu's trap block PGD physical address.
850          */
851         if (tp->pgd_paddr == __pa(mm->pgd))
852                 tsb_context_switch(mm);
853 }
854
855 void smp_tsb_sync(struct mm_struct *mm)
856 {
857         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
858 }
859
860 extern unsigned long xcall_flush_tlb_mm;
861 extern unsigned long xcall_flush_tlb_page;
862 extern unsigned long xcall_flush_tlb_kernel_range;
863 extern unsigned long xcall_fetch_glob_regs;
864 extern unsigned long xcall_fetch_glob_pmu;
865 extern unsigned long xcall_fetch_glob_pmu_n4;
866 extern unsigned long xcall_receive_signal;
867 extern unsigned long xcall_new_mmu_context_version;
868 #ifdef CONFIG_KGDB
869 extern unsigned long xcall_kgdb_capture;
870 #endif
871
872 #ifdef DCACHE_ALIASING_POSSIBLE
873 extern unsigned long xcall_flush_dcache_page_cheetah;
874 #endif
875 extern unsigned long xcall_flush_dcache_page_spitfire;
876
877 static inline void __local_flush_dcache_page(struct page *page)
878 {
879 #ifdef DCACHE_ALIASING_POSSIBLE
880         __flush_dcache_page(page_address(page),
881                             ((tlb_type == spitfire) &&
882                              page_mapping(page) != NULL));
883 #else
884         if (page_mapping(page) != NULL &&
885             tlb_type == spitfire)
886                 __flush_icache_page(__pa(page_address(page)));
887 #endif
888 }
889
890 void smp_flush_dcache_page_impl(struct page *page, int cpu)
891 {
892         int this_cpu;
893
894         if (tlb_type == hypervisor)
895                 return;
896
897 #ifdef CONFIG_DEBUG_DCFLUSH
898         atomic_inc(&dcpage_flushes);
899 #endif
900
901         this_cpu = get_cpu();
902
903         if (cpu == this_cpu) {
904                 __local_flush_dcache_page(page);
905         } else if (cpu_online(cpu)) {
906                 void *pg_addr = page_address(page);
907                 u64 data0 = 0;
908
909                 if (tlb_type == spitfire) {
910                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
911                         if (page_mapping(page) != NULL)
912                                 data0 |= ((u64)1 << 32);
913                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
916 #endif
917                 }
918                 if (data0) {
919                         xcall_deliver(data0, __pa(pg_addr),
920                                       (u64) pg_addr, cpumask_of(cpu));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922                         atomic_inc(&dcpage_flushes_xcall);
923 #endif
924                 }
925         }
926
927         put_cpu();
928 }
929
930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
931 {
932         void *pg_addr;
933         u64 data0;
934
935         if (tlb_type == hypervisor)
936                 return;
937
938         preempt_disable();
939
940 #ifdef CONFIG_DEBUG_DCFLUSH
941         atomic_inc(&dcpage_flushes);
942 #endif
943         data0 = 0;
944         pg_addr = page_address(page);
945         if (tlb_type == spitfire) {
946                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947                 if (page_mapping(page) != NULL)
948                         data0 |= ((u64)1 << 32);
949         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
953         }
954         if (data0) {
955                 xcall_deliver(data0, __pa(pg_addr),
956                               (u64) pg_addr, cpu_online_mask);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958                 atomic_inc(&dcpage_flushes_xcall);
959 #endif
960         }
961         __local_flush_dcache_page(page);
962
963         preempt_enable();
964 }
965
966 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
967 {
968         struct mm_struct *mm;
969         unsigned long flags;
970
971         clear_softint(1 << irq);
972
973         /* See if we need to allocate a new TLB context because
974          * the version of the one we are using is now out of date.
975          */
976         mm = current->active_mm;
977         if (unlikely(!mm || (mm == &init_mm)))
978                 return;
979
980         spin_lock_irqsave(&mm->context.lock, flags);
981
982         if (unlikely(!CTX_VALID(mm->context)))
983                 get_new_mmu_context(mm);
984
985         spin_unlock_irqrestore(&mm->context.lock, flags);
986
987         load_secondary_context(mm);
988         __flush_tlb_mm(CTX_HWBITS(mm->context),
989                        SECONDARY_CONTEXT);
990 }
991
992 void smp_new_mmu_context_version(void)
993 {
994         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
995 }
996
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
999 {
1000         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001 }
1002 #endif
1003
1004 void smp_fetch_global_regs(void)
1005 {
1006         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007 }
1008
1009 void smp_fetch_global_pmu(void)
1010 {
1011         if (tlb_type == hypervisor &&
1012             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014         else
1015                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016 }
1017
1018 /* We know that the window frames of the user have been flushed
1019  * to the stack before we get here because all callers of us
1020  * are flush_tlb_*() routines, and these run after flush_cache_*()
1021  * which performs the flushw.
1022  *
1023  * The SMP TLB coherency scheme we use works as follows:
1024  *
1025  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026  *    space has (potentially) executed on, this is the heuristic
1027  *    we use to avoid doing cross calls.
1028  *
1029  *    Also, for flushing from kswapd and also for clones, we
1030  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031  *
1032  * 2) TLB context numbers are shared globally across all processors
1033  *    in the system, this allows us to play several games to avoid
1034  *    cross calls.
1035  *
1036  *    One invariant is that when a cpu switches to a process, and
1037  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038  *    current cpu's bit set, that tlb context is flushed locally.
1039  *
1040  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041  *    cross calls when we want to flush the currently running process's
1042  *    tlb state.  This is done by clearing all cpu bits except the current
1043  *    processor's in current->mm->cpu_vm_mask and performing the
1044  *    flush locally only.  This will force any subsequent cpus which run
1045  *    this task to flush the context from the local tlb if the process
1046  *    migrates to another cpu (again).
1047  *
1048  * 3) For shared address spaces (threads) and swapping we bite the
1049  *    bullet for most cases and perform the cross call (but only to
1050  *    the cpus listed in cpu_vm_mask).
1051  *
1052  *    The performance gain from "optimizing" away the cross call for threads is
1053  *    questionable (in theory the big win for threads is the massive sharing of
1054  *    address space state across processors).
1055  */
1056
1057 /* This currently is only used by the hugetlb arch pre-fault
1058  * hook on UltraSPARC-III+ and later when changing the pagesize
1059  * bits of the context register for an address space.
1060  */
1061 void smp_flush_tlb_mm(struct mm_struct *mm)
1062 {
1063         u32 ctx = CTX_HWBITS(mm->context);
1064         int cpu = get_cpu();
1065
1066         if (atomic_read(&mm->mm_users) == 1) {
1067                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068                 goto local_flush_and_out;
1069         }
1070
1071         smp_cross_call_masked(&xcall_flush_tlb_mm,
1072                               ctx, 0, 0,
1073                               mm_cpumask(mm));
1074
1075 local_flush_and_out:
1076         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077
1078         put_cpu();
1079 }
1080
1081 struct tlb_pending_info {
1082         unsigned long ctx;
1083         unsigned long nr;
1084         unsigned long *vaddrs;
1085 };
1086
1087 static void tlb_pending_func(void *info)
1088 {
1089         struct tlb_pending_info *t = info;
1090
1091         __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092 }
1093
1094 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095 {
1096         u32 ctx = CTX_HWBITS(mm->context);
1097         struct tlb_pending_info info;
1098         int cpu = get_cpu();
1099
1100         info.ctx = ctx;
1101         info.nr = nr;
1102         info.vaddrs = vaddrs;
1103
1104         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106         else
1107                 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108                                        &info, 1);
1109
1110         __flush_tlb_pending(ctx, nr, vaddrs);
1111
1112         put_cpu();
1113 }
1114
1115 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116 {
1117         unsigned long context = CTX_HWBITS(mm->context);
1118         int cpu = get_cpu();
1119
1120         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122         else
1123                 smp_cross_call_masked(&xcall_flush_tlb_page,
1124                                       context, vaddr, 0,
1125                                       mm_cpumask(mm));
1126         __flush_tlb_page(context, vaddr);
1127
1128         put_cpu();
1129 }
1130
1131 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132 {
1133         start &= PAGE_MASK;
1134         end    = PAGE_ALIGN(end);
1135         if (start != end) {
1136                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1137                                0, start, end);
1138
1139                 __flush_tlb_kernel_range(start, end);
1140         }
1141 }
1142
1143 /* CPU capture. */
1144 /* #define CAPTURE_DEBUG */
1145 extern unsigned long xcall_capture;
1146
1147 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149 static unsigned long penguins_are_doing_time;
1150
1151 void smp_capture(void)
1152 {
1153         int result = atomic_add_return(1, &smp_capture_depth);
1154
1155         if (result == 1) {
1156                 int ncpus = num_online_cpus();
1157
1158 #ifdef CAPTURE_DEBUG
1159                 printk("CPU[%d]: Sending penguins to jail...",
1160                        smp_processor_id());
1161 #endif
1162                 penguins_are_doing_time = 1;
1163                 atomic_inc(&smp_capture_registry);
1164                 smp_cross_call(&xcall_capture, 0, 0, 0);
1165                 while (atomic_read(&smp_capture_registry) != ncpus)
1166                         rmb();
1167 #ifdef CAPTURE_DEBUG
1168                 printk("done\n");
1169 #endif
1170         }
1171 }
1172
1173 void smp_release(void)
1174 {
1175         if (atomic_dec_and_test(&smp_capture_depth)) {
1176 #ifdef CAPTURE_DEBUG
1177                 printk("CPU[%d]: Giving pardon to "
1178                        "imprisoned penguins\n",
1179                        smp_processor_id());
1180 #endif
1181                 penguins_are_doing_time = 0;
1182                 membar_safe("#StoreLoad");
1183                 atomic_dec(&smp_capture_registry);
1184         }
1185 }
1186
1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188  * set, so they can service tlb flush xcalls...
1189  */
1190 extern void prom_world(int);
1191
1192 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193 {
1194         clear_softint(1 << irq);
1195
1196         preempt_disable();
1197
1198         __asm__ __volatile__("flushw");
1199         prom_world(1);
1200         atomic_inc(&smp_capture_registry);
1201         membar_safe("#StoreLoad");
1202         while (penguins_are_doing_time)
1203                 rmb();
1204         atomic_dec(&smp_capture_registry);
1205         prom_world(0);
1206
1207         preempt_enable();
1208 }
1209
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 int setup_profiling_timer(unsigned int multiplier)
1212 {
1213         return -EINVAL;
1214 }
1215
1216 void __init smp_prepare_cpus(unsigned int max_cpus)
1217 {
1218 }
1219
1220 void smp_prepare_boot_cpu(void)
1221 {
1222 }
1223
1224 void __init smp_setup_processor_id(void)
1225 {
1226         if (tlb_type == spitfire)
1227                 xcall_deliver_impl = spitfire_xcall_deliver;
1228         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229                 xcall_deliver_impl = cheetah_xcall_deliver;
1230         else
1231                 xcall_deliver_impl = hypervisor_xcall_deliver;
1232 }
1233
1234 void __init smp_fill_in_cpu_possible_map(void)
1235 {
1236         int possible_cpus = num_possible_cpus();
1237         int i;
1238
1239         if (possible_cpus > nr_cpu_ids)
1240                 possible_cpus = nr_cpu_ids;
1241
1242         for (i = 0; i < possible_cpus; i++)
1243                 set_cpu_possible(i, true);
1244         for (; i < NR_CPUS; i++)
1245                 set_cpu_possible(i, false);
1246 }
1247
1248 void smp_fill_in_sib_core_maps(void)
1249 {
1250         unsigned int i;
1251
1252         for_each_present_cpu(i) {
1253                 unsigned int j;
1254
1255                 cpumask_clear(&cpu_core_map[i]);
1256                 if (cpu_data(i).core_id == 0) {
1257                         cpumask_set_cpu(i, &cpu_core_map[i]);
1258                         continue;
1259                 }
1260
1261                 for_each_present_cpu(j) {
1262                         if (cpu_data(i).core_id ==
1263                             cpu_data(j).core_id)
1264                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1265                 }
1266         }
1267
1268         for_each_present_cpu(i)  {
1269                 unsigned int j;
1270
1271                 for_each_present_cpu(j)  {
1272                         if (cpu_data(i).max_cache_id ==
1273                             cpu_data(j).max_cache_id)
1274                                 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1275
1276                         if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1277                                 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1278                 }
1279         }
1280
1281         for_each_present_cpu(i) {
1282                 unsigned int j;
1283
1284                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1285                 if (cpu_data(i).proc_id == -1) {
1286                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1287                         continue;
1288                 }
1289
1290                 for_each_present_cpu(j) {
1291                         if (cpu_data(i).proc_id ==
1292                             cpu_data(j).proc_id)
1293                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1294                 }
1295         }
1296 }
1297
1298 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1299 {
1300         int ret = smp_boot_one_cpu(cpu, tidle);
1301
1302         if (!ret) {
1303                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1304                 while (!cpu_online(cpu))
1305                         mb();
1306                 if (!cpu_online(cpu)) {
1307                         ret = -ENODEV;
1308                 } else {
1309                         /* On SUN4V, writes to %tick and %stick are
1310                          * not allowed.
1311                          */
1312                         if (tlb_type != hypervisor)
1313                                 smp_synchronize_one_tick(cpu);
1314                 }
1315         }
1316         return ret;
1317 }
1318
1319 #ifdef CONFIG_HOTPLUG_CPU
1320 void cpu_play_dead(void)
1321 {
1322         int cpu = smp_processor_id();
1323         unsigned long pstate;
1324
1325         idle_task_exit();
1326
1327         if (tlb_type == hypervisor) {
1328                 struct trap_per_cpu *tb = &trap_block[cpu];
1329
1330                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1331                                 tb->cpu_mondo_pa, 0);
1332                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1333                                 tb->dev_mondo_pa, 0);
1334                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1335                                 tb->resum_mondo_pa, 0);
1336                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1337                                 tb->nonresum_mondo_pa, 0);
1338         }
1339
1340         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1341         membar_safe("#Sync");
1342
1343         local_irq_disable();
1344
1345         __asm__ __volatile__(
1346                 "rdpr   %%pstate, %0\n\t"
1347                 "wrpr   %0, %1, %%pstate"
1348                 : "=r" (pstate)
1349                 : "i" (PSTATE_IE));
1350
1351         while (1)
1352                 barrier();
1353 }
1354
1355 int __cpu_disable(void)
1356 {
1357         int cpu = smp_processor_id();
1358         cpuinfo_sparc *c;
1359         int i;
1360
1361         for_each_cpu(i, &cpu_core_map[cpu])
1362                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1363         cpumask_clear(&cpu_core_map[cpu]);
1364
1365         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1366                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1367         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1368
1369         c = &cpu_data(cpu);
1370
1371         c->core_id = 0;
1372         c->proc_id = -1;
1373
1374         smp_wmb();
1375
1376         /* Make sure no interrupts point to this cpu.  */
1377         fixup_irqs();
1378
1379         local_irq_enable();
1380         mdelay(1);
1381         local_irq_disable();
1382
1383         set_cpu_online(cpu, false);
1384
1385         cpu_map_rebuild();
1386
1387         return 0;
1388 }
1389
1390 void __cpu_die(unsigned int cpu)
1391 {
1392         int i;
1393
1394         for (i = 0; i < 100; i++) {
1395                 smp_rmb();
1396                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1397                         break;
1398                 msleep(100);
1399         }
1400         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1401                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1402         } else {
1403 #if defined(CONFIG_SUN_LDOMS)
1404                 unsigned long hv_err;
1405                 int limit = 100;
1406
1407                 do {
1408                         hv_err = sun4v_cpu_stop(cpu);
1409                         if (hv_err == HV_EOK) {
1410                                 set_cpu_present(cpu, false);
1411                                 break;
1412                         }
1413                 } while (--limit > 0);
1414                 if (limit <= 0) {
1415                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1416                                hv_err);
1417                 }
1418 #endif
1419         }
1420 }
1421 #endif
1422
1423 void __init smp_cpus_done(unsigned int max_cpus)
1424 {
1425 }
1426
1427 void smp_send_reschedule(int cpu)
1428 {
1429         if (cpu == smp_processor_id()) {
1430                 WARN_ON_ONCE(preemptible());
1431                 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432         } else {
1433                 xcall_deliver((u64) &xcall_receive_signal,
1434                               0, 0, cpumask_of(cpu));
1435         }
1436 }
1437
1438 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1439 {
1440         clear_softint(1 << irq);
1441         scheduler_ipi();
1442 }
1443
1444 static void stop_this_cpu(void *dummy)
1445 {
1446         prom_stopself();
1447 }
1448
1449 void smp_send_stop(void)
1450 {
1451         int cpu;
1452
1453         if (tlb_type == hypervisor) {
1454                 for_each_online_cpu(cpu) {
1455                         if (cpu == smp_processor_id())
1456                                 continue;
1457 #ifdef CONFIG_SUN_LDOMS
1458                         if (ldom_domaining_enabled) {
1459                                 unsigned long hv_err;
1460                                 hv_err = sun4v_cpu_stop(cpu);
1461                                 if (hv_err)
1462                                         printk(KERN_ERR "sun4v_cpu_stop() "
1463                                                "failed err=%lu\n", hv_err);
1464                         } else
1465 #endif
1466                                 prom_stopcpu_cpuid(cpu);
1467                 }
1468         } else
1469                 smp_call_function(stop_this_cpu, NULL, 0);
1470 }
1471
1472 /**
1473  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1474  * @cpu: cpu to allocate for
1475  * @size: size allocation in bytes
1476  * @align: alignment
1477  *
1478  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1479  * does the right thing for NUMA regardless of the current
1480  * configuration.
1481  *
1482  * RETURNS:
1483  * Pointer to the allocated area on success, NULL on failure.
1484  */
1485 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1486                                         size_t align)
1487 {
1488         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1489 #ifdef CONFIG_NEED_MULTIPLE_NODES
1490         int node = cpu_to_node(cpu);
1491         void *ptr;
1492
1493         if (!node_online(node) || !NODE_DATA(node)) {
1494                 ptr = __alloc_bootmem(size, align, goal);
1495                 pr_info("cpu %d has no node %d or node-local memory\n",
1496                         cpu, node);
1497                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1498                          cpu, size, __pa(ptr));
1499         } else {
1500                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1501                                            size, align, goal);
1502                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1503                          "%016lx\n", cpu, size, node, __pa(ptr));
1504         }
1505         return ptr;
1506 #else
1507         return __alloc_bootmem(size, align, goal);
1508 #endif
1509 }
1510
1511 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1512 {
1513         free_bootmem(__pa(ptr), size);
1514 }
1515
1516 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1517 {
1518         if (cpu_to_node(from) == cpu_to_node(to))
1519                 return LOCAL_DISTANCE;
1520         else
1521                 return REMOTE_DISTANCE;
1522 }
1523
1524 static void __init pcpu_populate_pte(unsigned long addr)
1525 {
1526         pgd_t *pgd = pgd_offset_k(addr);
1527         pud_t *pud;
1528         pmd_t *pmd;
1529
1530         if (pgd_none(*pgd)) {
1531                 pud_t *new;
1532
1533                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1534                 pgd_populate(&init_mm, pgd, new);
1535         }
1536
1537         pud = pud_offset(pgd, addr);
1538         if (pud_none(*pud)) {
1539                 pmd_t *new;
1540
1541                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1542                 pud_populate(&init_mm, pud, new);
1543         }
1544
1545         pmd = pmd_offset(pud, addr);
1546         if (!pmd_present(*pmd)) {
1547                 pte_t *new;
1548
1549                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1550                 pmd_populate_kernel(&init_mm, pmd, new);
1551         }
1552 }
1553
1554 void __init setup_per_cpu_areas(void)
1555 {
1556         unsigned long delta;
1557         unsigned int cpu;
1558         int rc = -EINVAL;
1559
1560         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1561                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1562                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1563                                             pcpu_cpu_distance,
1564                                             pcpu_alloc_bootmem,
1565                                             pcpu_free_bootmem);
1566                 if (rc)
1567                         pr_warning("PERCPU: %s allocator failed (%d), "
1568                                    "falling back to page size\n",
1569                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1570         }
1571         if (rc < 0)
1572                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1573                                            pcpu_alloc_bootmem,
1574                                            pcpu_free_bootmem,
1575                                            pcpu_populate_pte);
1576         if (rc < 0)
1577                 panic("cannot initialize percpu area (err=%d)", rc);
1578
1579         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1580         for_each_possible_cpu(cpu)
1581                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1582
1583         /* Setup %g5 for the boot cpu.  */
1584         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1585
1586         of_fill_in_cpu_data();
1587         if (tlb_type == hypervisor)
1588                 mdesc_fill_in_cpu_data(cpu_all_mask);
1589 }