sparc64 mm: Fix base TSB sizing when hugetlb pages are used
[cascardo/linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
328 {
329         struct mm_struct *mm;
330         unsigned long flags;
331         pte_t pte = *ptep;
332
333         if (tlb_type != hypervisor) {
334                 unsigned long pfn = pte_pfn(pte);
335
336                 if (pfn_valid(pfn))
337                         flush_dcache(pfn);
338         }
339
340         mm = vma->vm_mm;
341
342         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
343         if (!pte_accessible(mm, pte))
344                 return;
345
346         spin_lock_irqsave(&mm->context.lock, flags);
347
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349         if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
350             is_hugetlb_pte(pte))
351                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
352                                         address, pte_val(pte));
353         else
354 #endif
355                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
356                                         address, pte_val(pte));
357
358         spin_unlock_irqrestore(&mm->context.lock, flags);
359 }
360
361 void flush_dcache_page(struct page *page)
362 {
363         struct address_space *mapping;
364         int this_cpu;
365
366         if (tlb_type == hypervisor)
367                 return;
368
369         /* Do not bother with the expensive D-cache flush if it
370          * is merely the zero page.  The 'bigcore' testcase in GDB
371          * causes this case to run millions of times.
372          */
373         if (page == ZERO_PAGE(0))
374                 return;
375
376         this_cpu = get_cpu();
377
378         mapping = page_mapping(page);
379         if (mapping && !mapping_mapped(mapping)) {
380                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
381                 if (dirty) {
382                         int dirty_cpu = dcache_dirty_cpu(page);
383
384                         if (dirty_cpu == this_cpu)
385                                 goto out;
386                         smp_flush_dcache_page_impl(page, dirty_cpu);
387                 }
388                 set_dcache_dirty(page, this_cpu);
389         } else {
390                 /* We could delay the flush for the !page_mapping
391                  * case too.  But that case is for exec env/arg
392                  * pages and those are %99 certainly going to get
393                  * faulted into the tlb (and thus flushed) anyways.
394                  */
395                 flush_dcache_page_impl(page);
396         }
397
398 out:
399         put_cpu();
400 }
401 EXPORT_SYMBOL(flush_dcache_page);
402
403 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
404 {
405         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
406         if (tlb_type == spitfire) {
407                 unsigned long kaddr;
408
409                 /* This code only runs on Spitfire cpus so this is
410                  * why we can assume _PAGE_PADDR_4U.
411                  */
412                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
413                         unsigned long paddr, mask = _PAGE_PADDR_4U;
414
415                         if (kaddr >= PAGE_OFFSET)
416                                 paddr = kaddr & mask;
417                         else {
418                                 pgd_t *pgdp = pgd_offset_k(kaddr);
419                                 pud_t *pudp = pud_offset(pgdp, kaddr);
420                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
421                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
422
423                                 paddr = pte_val(*ptep) & mask;
424                         }
425                         __flush_icache_page(paddr);
426                 }
427         }
428 }
429 EXPORT_SYMBOL(flush_icache_range);
430
431 void mmu_info(struct seq_file *m)
432 {
433         static const char *pgsz_strings[] = {
434                 "8K", "64K", "512K", "4MB", "32MB",
435                 "256MB", "2GB", "16GB",
436         };
437         int i, printed;
438
439         if (tlb_type == cheetah)
440                 seq_printf(m, "MMU Type\t: Cheetah\n");
441         else if (tlb_type == cheetah_plus)
442                 seq_printf(m, "MMU Type\t: Cheetah+\n");
443         else if (tlb_type == spitfire)
444                 seq_printf(m, "MMU Type\t: Spitfire\n");
445         else if (tlb_type == hypervisor)
446                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
447         else
448                 seq_printf(m, "MMU Type\t: ???\n");
449
450         seq_printf(m, "MMU PGSZs\t: ");
451         printed = 0;
452         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
453                 if (cpu_pgsz_mask & (1UL << i)) {
454                         seq_printf(m, "%s%s",
455                                    printed ? "," : "", pgsz_strings[i]);
456                         printed++;
457                 }
458         }
459         seq_putc(m, '\n');
460
461 #ifdef CONFIG_DEBUG_DCFLUSH
462         seq_printf(m, "DCPageFlushes\t: %d\n",
463                    atomic_read(&dcpage_flushes));
464 #ifdef CONFIG_SMP
465         seq_printf(m, "DCPageFlushesXC\t: %d\n",
466                    atomic_read(&dcpage_flushes_xcall));
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_DEBUG_DCFLUSH */
469 }
470
471 struct linux_prom_translation prom_trans[512] __read_mostly;
472 unsigned int prom_trans_ents __read_mostly;
473
474 unsigned long kern_locked_tte_data;
475
476 /* The obp translations are saved based on 8k pagesize, since obp can
477  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478  * HI_OBP_ADDRESS range are handled in ktlb.S.
479  */
480 static inline int in_obp_range(unsigned long vaddr)
481 {
482         return (vaddr >= LOW_OBP_ADDRESS &&
483                 vaddr < HI_OBP_ADDRESS);
484 }
485
486 static int cmp_ptrans(const void *a, const void *b)
487 {
488         const struct linux_prom_translation *x = a, *y = b;
489
490         if (x->virt > y->virt)
491                 return 1;
492         if (x->virt < y->virt)
493                 return -1;
494         return 0;
495 }
496
497 /* Read OBP translations property into 'prom_trans[]'.  */
498 static void __init read_obp_translations(void)
499 {
500         int n, node, ents, first, last, i;
501
502         node = prom_finddevice("/virtual-memory");
503         n = prom_getproplen(node, "translations");
504         if (unlikely(n == 0 || n == -1)) {
505                 prom_printf("prom_mappings: Couldn't get size.\n");
506                 prom_halt();
507         }
508         if (unlikely(n > sizeof(prom_trans))) {
509                 prom_printf("prom_mappings: Size %d is too big.\n", n);
510                 prom_halt();
511         }
512
513         if ((n = prom_getproperty(node, "translations",
514                                   (char *)&prom_trans[0],
515                                   sizeof(prom_trans))) == -1) {
516                 prom_printf("prom_mappings: Couldn't get property.\n");
517                 prom_halt();
518         }
519
520         n = n / sizeof(struct linux_prom_translation);
521
522         ents = n;
523
524         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525              cmp_ptrans, NULL);
526
527         /* Now kick out all the non-OBP entries.  */
528         for (i = 0; i < ents; i++) {
529                 if (in_obp_range(prom_trans[i].virt))
530                         break;
531         }
532         first = i;
533         for (; i < ents; i++) {
534                 if (!in_obp_range(prom_trans[i].virt))
535                         break;
536         }
537         last = i;
538
539         for (i = 0; i < (last - first); i++) {
540                 struct linux_prom_translation *src = &prom_trans[i + first];
541                 struct linux_prom_translation *dest = &prom_trans[i];
542
543                 *dest = *src;
544         }
545         for (; i < ents; i++) {
546                 struct linux_prom_translation *dest = &prom_trans[i];
547                 dest->virt = dest->size = dest->data = 0x0UL;
548         }
549
550         prom_trans_ents = last - first;
551
552         if (tlb_type == spitfire) {
553                 /* Clear diag TTE bits. */
554                 for (i = 0; i < prom_trans_ents; i++)
555                         prom_trans[i].data &= ~0x0003fe0000000000UL;
556         }
557
558         /* Force execute bit on.  */
559         for (i = 0; i < prom_trans_ents; i++)
560                 prom_trans[i].data |= (tlb_type == hypervisor ?
561                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
562 }
563
564 static void __init hypervisor_tlb_lock(unsigned long vaddr,
565                                        unsigned long pte,
566                                        unsigned long mmu)
567 {
568         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
569
570         if (ret != 0) {
571                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
572                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
573                 prom_halt();
574         }
575 }
576
577 static unsigned long kern_large_tte(unsigned long paddr);
578
579 static void __init remap_kernel(void)
580 {
581         unsigned long phys_page, tte_vaddr, tte_data;
582         int i, tlb_ent = sparc64_highest_locked_tlbent();
583
584         tte_vaddr = (unsigned long) KERNBASE;
585         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
586         tte_data = kern_large_tte(phys_page);
587
588         kern_locked_tte_data = tte_data;
589
590         /* Now lock us into the TLBs via Hypervisor or OBP. */
591         if (tlb_type == hypervisor) {
592                 for (i = 0; i < num_kernel_image_mappings; i++) {
593                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
594                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
595                         tte_vaddr += 0x400000;
596                         tte_data += 0x400000;
597                 }
598         } else {
599                 for (i = 0; i < num_kernel_image_mappings; i++) {
600                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
601                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
602                         tte_vaddr += 0x400000;
603                         tte_data += 0x400000;
604                 }
605                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
606         }
607         if (tlb_type == cheetah_plus) {
608                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
609                                             CTX_CHEETAH_PLUS_NUC);
610                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
611                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
612         }
613 }
614
615
616 static void __init inherit_prom_mappings(void)
617 {
618         /* Now fixup OBP's idea about where we really are mapped. */
619         printk("Remapping the kernel... ");
620         remap_kernel();
621         printk("done.\n");
622 }
623
624 void prom_world(int enter)
625 {
626         if (!enter)
627                 set_fs(get_fs());
628
629         __asm__ __volatile__("flushw");
630 }
631
632 void __flush_dcache_range(unsigned long start, unsigned long end)
633 {
634         unsigned long va;
635
636         if (tlb_type == spitfire) {
637                 int n = 0;
638
639                 for (va = start; va < end; va += 32) {
640                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
641                         if (++n >= 512)
642                                 break;
643                 }
644         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
645                 start = __pa(start);
646                 end = __pa(end);
647                 for (va = start; va < end; va += 32)
648                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
649                                              "membar #Sync"
650                                              : /* no outputs */
651                                              : "r" (va),
652                                                "i" (ASI_DCACHE_INVALIDATE));
653         }
654 }
655 EXPORT_SYMBOL(__flush_dcache_range);
656
657 /* get_new_mmu_context() uses "cache + 1".  */
658 DEFINE_SPINLOCK(ctx_alloc_lock);
659 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
660 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
661 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
662 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
663
664 /* Caller does TLB context flushing on local CPU if necessary.
665  * The caller also ensures that CTX_VALID(mm->context) is false.
666  *
667  * We must be careful about boundary cases so that we never
668  * let the user have CTX 0 (nucleus) or we ever use a CTX
669  * version of zero (and thus NO_CONTEXT would not be caught
670  * by version mis-match tests in mmu_context.h).
671  *
672  * Always invoked with interrupts disabled.
673  */
674 void get_new_mmu_context(struct mm_struct *mm)
675 {
676         unsigned long ctx, new_ctx;
677         unsigned long orig_pgsz_bits;
678         int new_version;
679
680         spin_lock(&ctx_alloc_lock);
681         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
682         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
683         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
684         new_version = 0;
685         if (new_ctx >= (1 << CTX_NR_BITS)) {
686                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
687                 if (new_ctx >= ctx) {
688                         int i;
689                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
690                                 CTX_FIRST_VERSION;
691                         if (new_ctx == 1)
692                                 new_ctx = CTX_FIRST_VERSION;
693
694                         /* Don't call memset, for 16 entries that's just
695                          * plain silly...
696                          */
697                         mmu_context_bmap[0] = 3;
698                         mmu_context_bmap[1] = 0;
699                         mmu_context_bmap[2] = 0;
700                         mmu_context_bmap[3] = 0;
701                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
702                                 mmu_context_bmap[i + 0] = 0;
703                                 mmu_context_bmap[i + 1] = 0;
704                                 mmu_context_bmap[i + 2] = 0;
705                                 mmu_context_bmap[i + 3] = 0;
706                         }
707                         new_version = 1;
708                         goto out;
709                 }
710         }
711         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
712         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
713 out:
714         tlb_context_cache = new_ctx;
715         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
716         spin_unlock(&ctx_alloc_lock);
717
718         if (unlikely(new_version))
719                 smp_new_mmu_context_version();
720 }
721
722 static int numa_enabled = 1;
723 static int numa_debug;
724
725 static int __init early_numa(char *p)
726 {
727         if (!p)
728                 return 0;
729
730         if (strstr(p, "off"))
731                 numa_enabled = 0;
732
733         if (strstr(p, "debug"))
734                 numa_debug = 1;
735
736         return 0;
737 }
738 early_param("numa", early_numa);
739
740 #define numadbg(f, a...) \
741 do {    if (numa_debug) \
742                 printk(KERN_INFO f, ## a); \
743 } while (0)
744
745 static void __init find_ramdisk(unsigned long phys_base)
746 {
747 #ifdef CONFIG_BLK_DEV_INITRD
748         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
749                 unsigned long ramdisk_image;
750
751                 /* Older versions of the bootloader only supported a
752                  * 32-bit physical address for the ramdisk image
753                  * location, stored at sparc_ramdisk_image.  Newer
754                  * SILO versions set sparc_ramdisk_image to zero and
755                  * provide a full 64-bit physical address at
756                  * sparc_ramdisk_image64.
757                  */
758                 ramdisk_image = sparc_ramdisk_image;
759                 if (!ramdisk_image)
760                         ramdisk_image = sparc_ramdisk_image64;
761
762                 /* Another bootloader quirk.  The bootloader normalizes
763                  * the physical address to KERNBASE, so we have to
764                  * factor that back out and add in the lowest valid
765                  * physical page address to get the true physical address.
766                  */
767                 ramdisk_image -= KERNBASE;
768                 ramdisk_image += phys_base;
769
770                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
771                         ramdisk_image, sparc_ramdisk_size);
772
773                 initrd_start = ramdisk_image;
774                 initrd_end = ramdisk_image + sparc_ramdisk_size;
775
776                 memblock_reserve(initrd_start, sparc_ramdisk_size);
777
778                 initrd_start += PAGE_OFFSET;
779                 initrd_end += PAGE_OFFSET;
780         }
781 #endif
782 }
783
784 struct node_mem_mask {
785         unsigned long mask;
786         unsigned long val;
787 };
788 static struct node_mem_mask node_masks[MAX_NUMNODES];
789 static int num_node_masks;
790
791 #ifdef CONFIG_NEED_MULTIPLE_NODES
792
793 int numa_cpu_lookup_table[NR_CPUS];
794 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
795
796 struct mdesc_mblock {
797         u64     base;
798         u64     size;
799         u64     offset; /* RA-to-PA */
800 };
801 static struct mdesc_mblock *mblocks;
802 static int num_mblocks;
803
804 static unsigned long ra_to_pa(unsigned long addr)
805 {
806         int i;
807
808         for (i = 0; i < num_mblocks; i++) {
809                 struct mdesc_mblock *m = &mblocks[i];
810
811                 if (addr >= m->base &&
812                     addr < (m->base + m->size)) {
813                         addr += m->offset;
814                         break;
815                 }
816         }
817         return addr;
818 }
819
820 static int find_node(unsigned long addr)
821 {
822         int i;
823
824         addr = ra_to_pa(addr);
825         for (i = 0; i < num_node_masks; i++) {
826                 struct node_mem_mask *p = &node_masks[i];
827
828                 if ((addr & p->mask) == p->val)
829                         return i;
830         }
831         /* The following condition has been observed on LDOM guests.*/
832         WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
833                 " rule. Some physical memory will be owned by node 0.");
834         return 0;
835 }
836
837 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
838 {
839         *nid = find_node(start);
840         start += PAGE_SIZE;
841         while (start < end) {
842                 int n = find_node(start);
843
844                 if (n != *nid)
845                         break;
846                 start += PAGE_SIZE;
847         }
848
849         if (start > end)
850                 start = end;
851
852         return start;
853 }
854 #endif
855
856 /* This must be invoked after performing all of the necessary
857  * memblock_set_node() calls for 'nid'.  We need to be able to get
858  * correct data from get_pfn_range_for_nid().
859  */
860 static void __init allocate_node_data(int nid)
861 {
862         struct pglist_data *p;
863         unsigned long start_pfn, end_pfn;
864 #ifdef CONFIG_NEED_MULTIPLE_NODES
865         unsigned long paddr;
866
867         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
868         if (!paddr) {
869                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
870                 prom_halt();
871         }
872         NODE_DATA(nid) = __va(paddr);
873         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
874
875         NODE_DATA(nid)->node_id = nid;
876 #endif
877
878         p = NODE_DATA(nid);
879
880         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
881         p->node_start_pfn = start_pfn;
882         p->node_spanned_pages = end_pfn - start_pfn;
883 }
884
885 static void init_node_masks_nonnuma(void)
886 {
887 #ifdef CONFIG_NEED_MULTIPLE_NODES
888         int i;
889 #endif
890
891         numadbg("Initializing tables for non-numa.\n");
892
893         node_masks[0].mask = node_masks[0].val = 0;
894         num_node_masks = 1;
895
896 #ifdef CONFIG_NEED_MULTIPLE_NODES
897         for (i = 0; i < NR_CPUS; i++)
898                 numa_cpu_lookup_table[i] = 0;
899
900         cpumask_setall(&numa_cpumask_lookup_table[0]);
901 #endif
902 }
903
904 #ifdef CONFIG_NEED_MULTIPLE_NODES
905 struct pglist_data *node_data[MAX_NUMNODES];
906
907 EXPORT_SYMBOL(numa_cpu_lookup_table);
908 EXPORT_SYMBOL(numa_cpumask_lookup_table);
909 EXPORT_SYMBOL(node_data);
910
911 struct mdesc_mlgroup {
912         u64     node;
913         u64     latency;
914         u64     match;
915         u64     mask;
916 };
917 static struct mdesc_mlgroup *mlgroups;
918 static int num_mlgroups;
919
920 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
921                                    u32 cfg_handle)
922 {
923         u64 arc;
924
925         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
926                 u64 target = mdesc_arc_target(md, arc);
927                 const u64 *val;
928
929                 val = mdesc_get_property(md, target,
930                                          "cfg-handle", NULL);
931                 if (val && *val == cfg_handle)
932                         return 0;
933         }
934         return -ENODEV;
935 }
936
937 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
938                                     u32 cfg_handle)
939 {
940         u64 arc, candidate, best_latency = ~(u64)0;
941
942         candidate = MDESC_NODE_NULL;
943         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
944                 u64 target = mdesc_arc_target(md, arc);
945                 const char *name = mdesc_node_name(md, target);
946                 const u64 *val;
947
948                 if (strcmp(name, "pio-latency-group"))
949                         continue;
950
951                 val = mdesc_get_property(md, target, "latency", NULL);
952                 if (!val)
953                         continue;
954
955                 if (*val < best_latency) {
956                         candidate = target;
957                         best_latency = *val;
958                 }
959         }
960
961         if (candidate == MDESC_NODE_NULL)
962                 return -ENODEV;
963
964         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
965 }
966
967 int of_node_to_nid(struct device_node *dp)
968 {
969         const struct linux_prom64_registers *regs;
970         struct mdesc_handle *md;
971         u32 cfg_handle;
972         int count, nid;
973         u64 grp;
974
975         /* This is the right thing to do on currently supported
976          * SUN4U NUMA platforms as well, as the PCI controller does
977          * not sit behind any particular memory controller.
978          */
979         if (!mlgroups)
980                 return -1;
981
982         regs = of_get_property(dp, "reg", NULL);
983         if (!regs)
984                 return -1;
985
986         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
987
988         md = mdesc_grab();
989
990         count = 0;
991         nid = -1;
992         mdesc_for_each_node_by_name(md, grp, "group") {
993                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
994                         nid = count;
995                         break;
996                 }
997                 count++;
998         }
999
1000         mdesc_release(md);
1001
1002         return nid;
1003 }
1004
1005 static void __init add_node_ranges(void)
1006 {
1007         struct memblock_region *reg;
1008
1009         for_each_memblock(memory, reg) {
1010                 unsigned long size = reg->size;
1011                 unsigned long start, end;
1012
1013                 start = reg->base;
1014                 end = start + size;
1015                 while (start < end) {
1016                         unsigned long this_end;
1017                         int nid;
1018
1019                         this_end = memblock_nid_range(start, end, &nid);
1020
1021                         numadbg("Setting memblock NUMA node nid[%d] "
1022                                 "start[%lx] end[%lx]\n",
1023                                 nid, start, this_end);
1024
1025                         memblock_set_node(start, this_end - start,
1026                                           &memblock.memory, nid);
1027                         start = this_end;
1028                 }
1029         }
1030 }
1031
1032 static int __init grab_mlgroups(struct mdesc_handle *md)
1033 {
1034         unsigned long paddr;
1035         int count = 0;
1036         u64 node;
1037
1038         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1039                 count++;
1040         if (!count)
1041                 return -ENOENT;
1042
1043         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1044                           SMP_CACHE_BYTES);
1045         if (!paddr)
1046                 return -ENOMEM;
1047
1048         mlgroups = __va(paddr);
1049         num_mlgroups = count;
1050
1051         count = 0;
1052         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1053                 struct mdesc_mlgroup *m = &mlgroups[count++];
1054                 const u64 *val;
1055
1056                 m->node = node;
1057
1058                 val = mdesc_get_property(md, node, "latency", NULL);
1059                 m->latency = *val;
1060                 val = mdesc_get_property(md, node, "address-match", NULL);
1061                 m->match = *val;
1062                 val = mdesc_get_property(md, node, "address-mask", NULL);
1063                 m->mask = *val;
1064
1065                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1066                         "match[%llx] mask[%llx]\n",
1067                         count - 1, m->node, m->latency, m->match, m->mask);
1068         }
1069
1070         return 0;
1071 }
1072
1073 static int __init grab_mblocks(struct mdesc_handle *md)
1074 {
1075         unsigned long paddr;
1076         int count = 0;
1077         u64 node;
1078
1079         mdesc_for_each_node_by_name(md, node, "mblock")
1080                 count++;
1081         if (!count)
1082                 return -ENOENT;
1083
1084         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1085                           SMP_CACHE_BYTES);
1086         if (!paddr)
1087                 return -ENOMEM;
1088
1089         mblocks = __va(paddr);
1090         num_mblocks = count;
1091
1092         count = 0;
1093         mdesc_for_each_node_by_name(md, node, "mblock") {
1094                 struct mdesc_mblock *m = &mblocks[count++];
1095                 const u64 *val;
1096
1097                 val = mdesc_get_property(md, node, "base", NULL);
1098                 m->base = *val;
1099                 val = mdesc_get_property(md, node, "size", NULL);
1100                 m->size = *val;
1101                 val = mdesc_get_property(md, node,
1102                                          "address-congruence-offset", NULL);
1103
1104                 /* The address-congruence-offset property is optional.
1105                  * Explicity zero it be identifty this.
1106                  */
1107                 if (val)
1108                         m->offset = *val;
1109                 else
1110                         m->offset = 0UL;
1111
1112                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1113                         count - 1, m->base, m->size, m->offset);
1114         }
1115
1116         return 0;
1117 }
1118
1119 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1120                                                u64 grp, cpumask_t *mask)
1121 {
1122         u64 arc;
1123
1124         cpumask_clear(mask);
1125
1126         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1127                 u64 target = mdesc_arc_target(md, arc);
1128                 const char *name = mdesc_node_name(md, target);
1129                 const u64 *id;
1130
1131                 if (strcmp(name, "cpu"))
1132                         continue;
1133                 id = mdesc_get_property(md, target, "id", NULL);
1134                 if (*id < nr_cpu_ids)
1135                         cpumask_set_cpu(*id, mask);
1136         }
1137 }
1138
1139 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1140 {
1141         int i;
1142
1143         for (i = 0; i < num_mlgroups; i++) {
1144                 struct mdesc_mlgroup *m = &mlgroups[i];
1145                 if (m->node == node)
1146                         return m;
1147         }
1148         return NULL;
1149 }
1150
1151 int __node_distance(int from, int to)
1152 {
1153         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1154                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1155                         from, to);
1156                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1157         }
1158         return numa_latency[from][to];
1159 }
1160
1161 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1162 {
1163         int i;
1164
1165         for (i = 0; i < MAX_NUMNODES; i++) {
1166                 struct node_mem_mask *n = &node_masks[i];
1167
1168                 if ((grp->mask == n->mask) && (grp->match == n->val))
1169                         break;
1170         }
1171         return i;
1172 }
1173
1174 static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1175                                           int index)
1176 {
1177         u64 arc;
1178
1179         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1180                 int tnode;
1181                 u64 target = mdesc_arc_target(md, arc);
1182                 struct mdesc_mlgroup *m = find_mlgroup(target);
1183
1184                 if (!m)
1185                         continue;
1186                 tnode = find_best_numa_node_for_mlgroup(m);
1187                 if (tnode == MAX_NUMNODES)
1188                         continue;
1189                 numa_latency[index][tnode] = m->latency;
1190         }
1191 }
1192
1193 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1194                                       int index)
1195 {
1196         struct mdesc_mlgroup *candidate = NULL;
1197         u64 arc, best_latency = ~(u64)0;
1198         struct node_mem_mask *n;
1199
1200         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1201                 u64 target = mdesc_arc_target(md, arc);
1202                 struct mdesc_mlgroup *m = find_mlgroup(target);
1203                 if (!m)
1204                         continue;
1205                 if (m->latency < best_latency) {
1206                         candidate = m;
1207                         best_latency = m->latency;
1208                 }
1209         }
1210         if (!candidate)
1211                 return -ENOENT;
1212
1213         if (num_node_masks != index) {
1214                 printk(KERN_ERR "Inconsistent NUMA state, "
1215                        "index[%d] != num_node_masks[%d]\n",
1216                        index, num_node_masks);
1217                 return -EINVAL;
1218         }
1219
1220         n = &node_masks[num_node_masks++];
1221
1222         n->mask = candidate->mask;
1223         n->val = candidate->match;
1224
1225         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1226                 index, n->mask, n->val, candidate->latency);
1227
1228         return 0;
1229 }
1230
1231 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1232                                          int index)
1233 {
1234         cpumask_t mask;
1235         int cpu;
1236
1237         numa_parse_mdesc_group_cpus(md, grp, &mask);
1238
1239         for_each_cpu(cpu, &mask)
1240                 numa_cpu_lookup_table[cpu] = index;
1241         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1242
1243         if (numa_debug) {
1244                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1245                 for_each_cpu(cpu, &mask)
1246                         printk("%d ", cpu);
1247                 printk("]\n");
1248         }
1249
1250         return numa_attach_mlgroup(md, grp, index);
1251 }
1252
1253 static int __init numa_parse_mdesc(void)
1254 {
1255         struct mdesc_handle *md = mdesc_grab();
1256         int i, j, err, count;
1257         u64 node;
1258
1259         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1260         if (node == MDESC_NODE_NULL) {
1261                 mdesc_release(md);
1262                 return -ENOENT;
1263         }
1264
1265         err = grab_mblocks(md);
1266         if (err < 0)
1267                 goto out;
1268
1269         err = grab_mlgroups(md);
1270         if (err < 0)
1271                 goto out;
1272
1273         count = 0;
1274         mdesc_for_each_node_by_name(md, node, "group") {
1275                 err = numa_parse_mdesc_group(md, node, count);
1276                 if (err < 0)
1277                         break;
1278                 count++;
1279         }
1280
1281         count = 0;
1282         mdesc_for_each_node_by_name(md, node, "group") {
1283                 find_numa_latencies_for_group(md, node, count);
1284                 count++;
1285         }
1286
1287         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1288         for (i = 0; i < MAX_NUMNODES; i++) {
1289                 u64 self_latency = numa_latency[i][i];
1290
1291                 for (j = 0; j < MAX_NUMNODES; j++) {
1292                         numa_latency[i][j] =
1293                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1294                                 self_latency;
1295                 }
1296         }
1297
1298         add_node_ranges();
1299
1300         for (i = 0; i < num_node_masks; i++) {
1301                 allocate_node_data(i);
1302                 node_set_online(i);
1303         }
1304
1305         err = 0;
1306 out:
1307         mdesc_release(md);
1308         return err;
1309 }
1310
1311 static int __init numa_parse_jbus(void)
1312 {
1313         unsigned long cpu, index;
1314
1315         /* NUMA node id is encoded in bits 36 and higher, and there is
1316          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1317          */
1318         index = 0;
1319         for_each_present_cpu(cpu) {
1320                 numa_cpu_lookup_table[cpu] = index;
1321                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1322                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1323                 node_masks[index].val = cpu << 36UL;
1324
1325                 index++;
1326         }
1327         num_node_masks = index;
1328
1329         add_node_ranges();
1330
1331         for (index = 0; index < num_node_masks; index++) {
1332                 allocate_node_data(index);
1333                 node_set_online(index);
1334         }
1335
1336         return 0;
1337 }
1338
1339 static int __init numa_parse_sun4u(void)
1340 {
1341         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1342                 unsigned long ver;
1343
1344                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1345                 if ((ver >> 32UL) == __JALAPENO_ID ||
1346                     (ver >> 32UL) == __SERRANO_ID)
1347                         return numa_parse_jbus();
1348         }
1349         return -1;
1350 }
1351
1352 static int __init bootmem_init_numa(void)
1353 {
1354         int i, j;
1355         int err = -1;
1356
1357         numadbg("bootmem_init_numa()\n");
1358
1359         /* Some sane defaults for numa latency values */
1360         for (i = 0; i < MAX_NUMNODES; i++) {
1361                 for (j = 0; j < MAX_NUMNODES; j++)
1362                         numa_latency[i][j] = (i == j) ?
1363                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1364         }
1365
1366         if (numa_enabled) {
1367                 if (tlb_type == hypervisor)
1368                         err = numa_parse_mdesc();
1369                 else
1370                         err = numa_parse_sun4u();
1371         }
1372         return err;
1373 }
1374
1375 #else
1376
1377 static int bootmem_init_numa(void)
1378 {
1379         return -1;
1380 }
1381
1382 #endif
1383
1384 static void __init bootmem_init_nonnuma(void)
1385 {
1386         unsigned long top_of_ram = memblock_end_of_DRAM();
1387         unsigned long total_ram = memblock_phys_mem_size();
1388
1389         numadbg("bootmem_init_nonnuma()\n");
1390
1391         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1392                top_of_ram, total_ram);
1393         printk(KERN_INFO "Memory hole size: %ldMB\n",
1394                (top_of_ram - total_ram) >> 20);
1395
1396         init_node_masks_nonnuma();
1397         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1398         allocate_node_data(0);
1399         node_set_online(0);
1400 }
1401
1402 static unsigned long __init bootmem_init(unsigned long phys_base)
1403 {
1404         unsigned long end_pfn;
1405
1406         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1407         max_pfn = max_low_pfn = end_pfn;
1408         min_low_pfn = (phys_base >> PAGE_SHIFT);
1409
1410         if (bootmem_init_numa() < 0)
1411                 bootmem_init_nonnuma();
1412
1413         /* Dump memblock with node info. */
1414         memblock_dump_all();
1415
1416         /* XXX cpu notifier XXX */
1417
1418         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1419         sparse_init();
1420
1421         return end_pfn;
1422 }
1423
1424 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1425 static int pall_ents __initdata;
1426
1427 static unsigned long max_phys_bits = 40;
1428
1429 bool kern_addr_valid(unsigned long addr)
1430 {
1431         pgd_t *pgd;
1432         pud_t *pud;
1433         pmd_t *pmd;
1434         pte_t *pte;
1435
1436         if ((long)addr < 0L) {
1437                 unsigned long pa = __pa(addr);
1438
1439                 if ((addr >> max_phys_bits) != 0UL)
1440                         return false;
1441
1442                 return pfn_valid(pa >> PAGE_SHIFT);
1443         }
1444
1445         if (addr >= (unsigned long) KERNBASE &&
1446             addr < (unsigned long)&_end)
1447                 return true;
1448
1449         pgd = pgd_offset_k(addr);
1450         if (pgd_none(*pgd))
1451                 return 0;
1452
1453         pud = pud_offset(pgd, addr);
1454         if (pud_none(*pud))
1455                 return 0;
1456
1457         if (pud_large(*pud))
1458                 return pfn_valid(pud_pfn(*pud));
1459
1460         pmd = pmd_offset(pud, addr);
1461         if (pmd_none(*pmd))
1462                 return 0;
1463
1464         if (pmd_large(*pmd))
1465                 return pfn_valid(pmd_pfn(*pmd));
1466
1467         pte = pte_offset_kernel(pmd, addr);
1468         if (pte_none(*pte))
1469                 return 0;
1470
1471         return pfn_valid(pte_pfn(*pte));
1472 }
1473 EXPORT_SYMBOL(kern_addr_valid);
1474
1475 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1476                                               unsigned long vend,
1477                                               pud_t *pud)
1478 {
1479         const unsigned long mask16gb = (1UL << 34) - 1UL;
1480         u64 pte_val = vstart;
1481
1482         /* Each PUD is 8GB */
1483         if ((vstart & mask16gb) ||
1484             (vend - vstart <= mask16gb)) {
1485                 pte_val ^= kern_linear_pte_xor[2];
1486                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1487
1488                 return vstart + PUD_SIZE;
1489         }
1490
1491         pte_val ^= kern_linear_pte_xor[3];
1492         pte_val |= _PAGE_PUD_HUGE;
1493
1494         vend = vstart + mask16gb + 1UL;
1495         while (vstart < vend) {
1496                 pud_val(*pud) = pte_val;
1497
1498                 pte_val += PUD_SIZE;
1499                 vstart += PUD_SIZE;
1500                 pud++;
1501         }
1502         return vstart;
1503 }
1504
1505 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1506                                    bool guard)
1507 {
1508         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1509                 return true;
1510
1511         return false;
1512 }
1513
1514 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1515                                               unsigned long vend,
1516                                               pmd_t *pmd)
1517 {
1518         const unsigned long mask256mb = (1UL << 28) - 1UL;
1519         const unsigned long mask2gb = (1UL << 31) - 1UL;
1520         u64 pte_val = vstart;
1521
1522         /* Each PMD is 8MB */
1523         if ((vstart & mask256mb) ||
1524             (vend - vstart <= mask256mb)) {
1525                 pte_val ^= kern_linear_pte_xor[0];
1526                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1527
1528                 return vstart + PMD_SIZE;
1529         }
1530
1531         if ((vstart & mask2gb) ||
1532             (vend - vstart <= mask2gb)) {
1533                 pte_val ^= kern_linear_pte_xor[1];
1534                 pte_val |= _PAGE_PMD_HUGE;
1535                 vend = vstart + mask256mb + 1UL;
1536         } else {
1537                 pte_val ^= kern_linear_pte_xor[2];
1538                 pte_val |= _PAGE_PMD_HUGE;
1539                 vend = vstart + mask2gb + 1UL;
1540         }
1541
1542         while (vstart < vend) {
1543                 pmd_val(*pmd) = pte_val;
1544
1545                 pte_val += PMD_SIZE;
1546                 vstart += PMD_SIZE;
1547                 pmd++;
1548         }
1549
1550         return vstart;
1551 }
1552
1553 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1554                                    bool guard)
1555 {
1556         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1557                 return true;
1558
1559         return false;
1560 }
1561
1562 static unsigned long __ref kernel_map_range(unsigned long pstart,
1563                                             unsigned long pend, pgprot_t prot,
1564                                             bool use_huge)
1565 {
1566         unsigned long vstart = PAGE_OFFSET + pstart;
1567         unsigned long vend = PAGE_OFFSET + pend;
1568         unsigned long alloc_bytes = 0UL;
1569
1570         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1571                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1572                             vstart, vend);
1573                 prom_halt();
1574         }
1575
1576         while (vstart < vend) {
1577                 unsigned long this_end, paddr = __pa(vstart);
1578                 pgd_t *pgd = pgd_offset_k(vstart);
1579                 pud_t *pud;
1580                 pmd_t *pmd;
1581                 pte_t *pte;
1582
1583                 if (pgd_none(*pgd)) {
1584                         pud_t *new;
1585
1586                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1587                         alloc_bytes += PAGE_SIZE;
1588                         pgd_populate(&init_mm, pgd, new);
1589                 }
1590                 pud = pud_offset(pgd, vstart);
1591                 if (pud_none(*pud)) {
1592                         pmd_t *new;
1593
1594                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1595                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1596                                 continue;
1597                         }
1598                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1599                         alloc_bytes += PAGE_SIZE;
1600                         pud_populate(&init_mm, pud, new);
1601                 }
1602
1603                 pmd = pmd_offset(pud, vstart);
1604                 if (pmd_none(*pmd)) {
1605                         pte_t *new;
1606
1607                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1608                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1609                                 continue;
1610                         }
1611                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1612                         alloc_bytes += PAGE_SIZE;
1613                         pmd_populate_kernel(&init_mm, pmd, new);
1614                 }
1615
1616                 pte = pte_offset_kernel(pmd, vstart);
1617                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1618                 if (this_end > vend)
1619                         this_end = vend;
1620
1621                 while (vstart < this_end) {
1622                         pte_val(*pte) = (paddr | pgprot_val(prot));
1623
1624                         vstart += PAGE_SIZE;
1625                         paddr += PAGE_SIZE;
1626                         pte++;
1627                 }
1628         }
1629
1630         return alloc_bytes;
1631 }
1632
1633 static void __init flush_all_kernel_tsbs(void)
1634 {
1635         int i;
1636
1637         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1638                 struct tsb *ent = &swapper_tsb[i];
1639
1640                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1641         }
1642 #ifndef CONFIG_DEBUG_PAGEALLOC
1643         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1644                 struct tsb *ent = &swapper_4m_tsb[i];
1645
1646                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1647         }
1648 #endif
1649 }
1650
1651 extern unsigned int kvmap_linear_patch[1];
1652
1653 static void __init kernel_physical_mapping_init(void)
1654 {
1655         unsigned long i, mem_alloced = 0UL;
1656         bool use_huge = true;
1657
1658 #ifdef CONFIG_DEBUG_PAGEALLOC
1659         use_huge = false;
1660 #endif
1661         for (i = 0; i < pall_ents; i++) {
1662                 unsigned long phys_start, phys_end;
1663
1664                 phys_start = pall[i].phys_addr;
1665                 phys_end = phys_start + pall[i].reg_size;
1666
1667                 mem_alloced += kernel_map_range(phys_start, phys_end,
1668                                                 PAGE_KERNEL, use_huge);
1669         }
1670
1671         printk("Allocated %ld bytes for kernel page tables.\n",
1672                mem_alloced);
1673
1674         kvmap_linear_patch[0] = 0x01000000; /* nop */
1675         flushi(&kvmap_linear_patch[0]);
1676
1677         flush_all_kernel_tsbs();
1678
1679         __flush_tlb_all();
1680 }
1681
1682 #ifdef CONFIG_DEBUG_PAGEALLOC
1683 void __kernel_map_pages(struct page *page, int numpages, int enable)
1684 {
1685         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1686         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1687
1688         kernel_map_range(phys_start, phys_end,
1689                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1690
1691         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1692                                PAGE_OFFSET + phys_end);
1693
1694         /* we should perform an IPI and flush all tlbs,
1695          * but that can deadlock->flush only current cpu.
1696          */
1697         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1698                                  PAGE_OFFSET + phys_end);
1699 }
1700 #endif
1701
1702 unsigned long __init find_ecache_flush_span(unsigned long size)
1703 {
1704         int i;
1705
1706         for (i = 0; i < pavail_ents; i++) {
1707                 if (pavail[i].reg_size >= size)
1708                         return pavail[i].phys_addr;
1709         }
1710
1711         return ~0UL;
1712 }
1713
1714 unsigned long PAGE_OFFSET;
1715 EXPORT_SYMBOL(PAGE_OFFSET);
1716
1717 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1718 EXPORT_SYMBOL(VMALLOC_END);
1719
1720 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1721 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1722
1723 static void __init setup_page_offset(void)
1724 {
1725         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1726                 /* Cheetah/Panther support a full 64-bit virtual
1727                  * address, so we can use all that our page tables
1728                  * support.
1729                  */
1730                 sparc64_va_hole_top =    0xfff0000000000000UL;
1731                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1732
1733                 max_phys_bits = 42;
1734         } else if (tlb_type == hypervisor) {
1735                 switch (sun4v_chip_type) {
1736                 case SUN4V_CHIP_NIAGARA1:
1737                 case SUN4V_CHIP_NIAGARA2:
1738                         /* T1 and T2 support 48-bit virtual addresses.  */
1739                         sparc64_va_hole_top =    0xffff800000000000UL;
1740                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1741
1742                         max_phys_bits = 39;
1743                         break;
1744                 case SUN4V_CHIP_NIAGARA3:
1745                         /* T3 supports 48-bit virtual addresses.  */
1746                         sparc64_va_hole_top =    0xffff800000000000UL;
1747                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1748
1749                         max_phys_bits = 43;
1750                         break;
1751                 case SUN4V_CHIP_NIAGARA4:
1752                 case SUN4V_CHIP_NIAGARA5:
1753                 case SUN4V_CHIP_SPARC64X:
1754                 case SUN4V_CHIP_SPARC_M6:
1755                         /* T4 and later support 52-bit virtual addresses.  */
1756                         sparc64_va_hole_top =    0xfff8000000000000UL;
1757                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1758                         max_phys_bits = 47;
1759                         break;
1760                 case SUN4V_CHIP_SPARC_M7:
1761                 case SUN4V_CHIP_SPARC_SN:
1762                 default:
1763                         /* M7 and later support 52-bit virtual addresses.  */
1764                         sparc64_va_hole_top =    0xfff8000000000000UL;
1765                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1766                         max_phys_bits = 49;
1767                         break;
1768                 }
1769         }
1770
1771         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1772                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1773                             max_phys_bits);
1774                 prom_halt();
1775         }
1776
1777         PAGE_OFFSET = sparc64_va_hole_top;
1778         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1779                        (sparc64_va_hole_bottom >> 2));
1780
1781         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1782                 PAGE_OFFSET, max_phys_bits);
1783         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1784                 VMALLOC_START, VMALLOC_END);
1785         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1786                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1787 }
1788
1789 static void __init tsb_phys_patch(void)
1790 {
1791         struct tsb_ldquad_phys_patch_entry *pquad;
1792         struct tsb_phys_patch_entry *p;
1793
1794         pquad = &__tsb_ldquad_phys_patch;
1795         while (pquad < &__tsb_ldquad_phys_patch_end) {
1796                 unsigned long addr = pquad->addr;
1797
1798                 if (tlb_type == hypervisor)
1799                         *(unsigned int *) addr = pquad->sun4v_insn;
1800                 else
1801                         *(unsigned int *) addr = pquad->sun4u_insn;
1802                 wmb();
1803                 __asm__ __volatile__("flush     %0"
1804                                      : /* no outputs */
1805                                      : "r" (addr));
1806
1807                 pquad++;
1808         }
1809
1810         p = &__tsb_phys_patch;
1811         while (p < &__tsb_phys_patch_end) {
1812                 unsigned long addr = p->addr;
1813
1814                 *(unsigned int *) addr = p->insn;
1815                 wmb();
1816                 __asm__ __volatile__("flush     %0"
1817                                      : /* no outputs */
1818                                      : "r" (addr));
1819
1820                 p++;
1821         }
1822 }
1823
1824 /* Don't mark as init, we give this to the Hypervisor.  */
1825 #ifndef CONFIG_DEBUG_PAGEALLOC
1826 #define NUM_KTSB_DESCR  2
1827 #else
1828 #define NUM_KTSB_DESCR  1
1829 #endif
1830 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1831
1832 /* The swapper TSBs are loaded with a base sequence of:
1833  *
1834  *      sethi   %uhi(SYMBOL), REG1
1835  *      sethi   %hi(SYMBOL), REG2
1836  *      or      REG1, %ulo(SYMBOL), REG1
1837  *      or      REG2, %lo(SYMBOL), REG2
1838  *      sllx    REG1, 32, REG1
1839  *      or      REG1, REG2, REG1
1840  *
1841  * When we use physical addressing for the TSB accesses, we patch the
1842  * first four instructions in the above sequence.
1843  */
1844
1845 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1846 {
1847         unsigned long high_bits, low_bits;
1848
1849         high_bits = (pa >> 32) & 0xffffffff;
1850         low_bits = (pa >> 0) & 0xffffffff;
1851
1852         while (start < end) {
1853                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1854
1855                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1856                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1857
1858                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1859                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1860
1861                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1862                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1863
1864                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1865                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1866
1867                 start++;
1868         }
1869 }
1870
1871 static void ktsb_phys_patch(void)
1872 {
1873         extern unsigned int __swapper_tsb_phys_patch;
1874         extern unsigned int __swapper_tsb_phys_patch_end;
1875         unsigned long ktsb_pa;
1876
1877         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1878         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1879                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1880 #ifndef CONFIG_DEBUG_PAGEALLOC
1881         {
1882         extern unsigned int __swapper_4m_tsb_phys_patch;
1883         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1884         ktsb_pa = (kern_base +
1885                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1886         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1887                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1888         }
1889 #endif
1890 }
1891
1892 static void __init sun4v_ktsb_init(void)
1893 {
1894         unsigned long ktsb_pa;
1895
1896         /* First KTSB for PAGE_SIZE mappings.  */
1897         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1898
1899         switch (PAGE_SIZE) {
1900         case 8 * 1024:
1901         default:
1902                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1903                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1904                 break;
1905
1906         case 64 * 1024:
1907                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1908                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1909                 break;
1910
1911         case 512 * 1024:
1912                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1913                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1914                 break;
1915
1916         case 4 * 1024 * 1024:
1917                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1918                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1919                 break;
1920         }
1921
1922         ktsb_descr[0].assoc = 1;
1923         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1924         ktsb_descr[0].ctx_idx = 0;
1925         ktsb_descr[0].tsb_base = ktsb_pa;
1926         ktsb_descr[0].resv = 0;
1927
1928 #ifndef CONFIG_DEBUG_PAGEALLOC
1929         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1930         ktsb_pa = (kern_base +
1931                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1932
1933         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1934         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1935                                     HV_PGSZ_MASK_256MB |
1936                                     HV_PGSZ_MASK_2GB |
1937                                     HV_PGSZ_MASK_16GB) &
1938                                    cpu_pgsz_mask);
1939         ktsb_descr[1].assoc = 1;
1940         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1941         ktsb_descr[1].ctx_idx = 0;
1942         ktsb_descr[1].tsb_base = ktsb_pa;
1943         ktsb_descr[1].resv = 0;
1944 #endif
1945 }
1946
1947 void sun4v_ktsb_register(void)
1948 {
1949         unsigned long pa, ret;
1950
1951         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1952
1953         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1954         if (ret != 0) {
1955                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1956                             "errors with %lx\n", pa, ret);
1957                 prom_halt();
1958         }
1959 }
1960
1961 static void __init sun4u_linear_pte_xor_finalize(void)
1962 {
1963 #ifndef CONFIG_DEBUG_PAGEALLOC
1964         /* This is where we would add Panther support for
1965          * 32MB and 256MB pages.
1966          */
1967 #endif
1968 }
1969
1970 static void __init sun4v_linear_pte_xor_finalize(void)
1971 {
1972         unsigned long pagecv_flag;
1973
1974         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1975          * enables MCD error. Do not set bit 9 on M7 processor.
1976          */
1977         switch (sun4v_chip_type) {
1978         case SUN4V_CHIP_SPARC_M7:
1979         case SUN4V_CHIP_SPARC_SN:
1980                 pagecv_flag = 0x00;
1981                 break;
1982         default:
1983                 pagecv_flag = _PAGE_CV_4V;
1984                 break;
1985         }
1986 #ifndef CONFIG_DEBUG_PAGEALLOC
1987         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1988                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1989                         PAGE_OFFSET;
1990                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
1991                                            _PAGE_P_4V | _PAGE_W_4V);
1992         } else {
1993                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1994         }
1995
1996         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1997                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1998                         PAGE_OFFSET;
1999                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2000                                            _PAGE_P_4V | _PAGE_W_4V);
2001         } else {
2002                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2003         }
2004
2005         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2006                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2007                         PAGE_OFFSET;
2008                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2009                                            _PAGE_P_4V | _PAGE_W_4V);
2010         } else {
2011                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2012         }
2013 #endif
2014 }
2015
2016 /* paging_init() sets up the page tables */
2017
2018 static unsigned long last_valid_pfn;
2019
2020 static void sun4u_pgprot_init(void);
2021 static void sun4v_pgprot_init(void);
2022
2023 static phys_addr_t __init available_memory(void)
2024 {
2025         phys_addr_t available = 0ULL;
2026         phys_addr_t pa_start, pa_end;
2027         u64 i;
2028
2029         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2030                                 &pa_end, NULL)
2031                 available = available + (pa_end  - pa_start);
2032
2033         return available;
2034 }
2035
2036 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2037 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2038 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2039 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2040 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2041 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2042
2043 /* We need to exclude reserved regions. This exclusion will include
2044  * vmlinux and initrd. To be more precise the initrd size could be used to
2045  * compute a new lower limit because it is freed later during initialization.
2046  */
2047 static void __init reduce_memory(phys_addr_t limit_ram)
2048 {
2049         phys_addr_t avail_ram = available_memory();
2050         phys_addr_t pa_start, pa_end;
2051         u64 i;
2052
2053         if (limit_ram >= avail_ram)
2054                 return;
2055
2056         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2057                                 &pa_end, NULL) {
2058                 phys_addr_t region_size = pa_end - pa_start;
2059                 phys_addr_t clip_start = pa_start;
2060
2061                 avail_ram = avail_ram - region_size;
2062                 /* Are we consuming too much? */
2063                 if (avail_ram < limit_ram) {
2064                         phys_addr_t give_back = limit_ram - avail_ram;
2065
2066                         region_size = region_size - give_back;
2067                         clip_start = clip_start + give_back;
2068                 }
2069
2070                 memblock_remove(clip_start, region_size);
2071
2072                 if (avail_ram <= limit_ram)
2073                         break;
2074                 i = 0UL;
2075         }
2076 }
2077
2078 void __init paging_init(void)
2079 {
2080         unsigned long end_pfn, shift, phys_base;
2081         unsigned long real_end, i;
2082         int node;
2083
2084         setup_page_offset();
2085
2086         /* These build time checkes make sure that the dcache_dirty_cpu()
2087          * page->flags usage will work.
2088          *
2089          * When a page gets marked as dcache-dirty, we store the
2090          * cpu number starting at bit 32 in the page->flags.  Also,
2091          * functions like clear_dcache_dirty_cpu use the cpu mask
2092          * in 13-bit signed-immediate instruction fields.
2093          */
2094
2095         /*
2096          * Page flags must not reach into upper 32 bits that are used
2097          * for the cpu number
2098          */
2099         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2100
2101         /*
2102          * The bit fields placed in the high range must not reach below
2103          * the 32 bit boundary. Otherwise we cannot place the cpu field
2104          * at the 32 bit boundary.
2105          */
2106         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2107                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2108
2109         BUILD_BUG_ON(NR_CPUS > 4096);
2110
2111         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2112         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2113
2114         /* Invalidate both kernel TSBs.  */
2115         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2116 #ifndef CONFIG_DEBUG_PAGEALLOC
2117         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2118 #endif
2119
2120         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2121          * bit on M7 processor. This is a conflicting usage of the same
2122          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2123          * Detection error on all pages and this will lead to problems
2124          * later. Kernel does not run with MCD enabled and hence rest
2125          * of the required steps to fully configure memory corruption
2126          * detection are not taken. We need to ensure TTE.mcde is not
2127          * set on M7 processor. Compute the value of cacheability
2128          * flag for use later taking this into consideration.
2129          */
2130         switch (sun4v_chip_type) {
2131         case SUN4V_CHIP_SPARC_M7:
2132         case SUN4V_CHIP_SPARC_SN:
2133                 page_cache4v_flag = _PAGE_CP_4V;
2134                 break;
2135         default:
2136                 page_cache4v_flag = _PAGE_CACHE_4V;
2137                 break;
2138         }
2139
2140         if (tlb_type == hypervisor)
2141                 sun4v_pgprot_init();
2142         else
2143                 sun4u_pgprot_init();
2144
2145         if (tlb_type == cheetah_plus ||
2146             tlb_type == hypervisor) {
2147                 tsb_phys_patch();
2148                 ktsb_phys_patch();
2149         }
2150
2151         if (tlb_type == hypervisor)
2152                 sun4v_patch_tlb_handlers();
2153
2154         /* Find available physical memory...
2155          *
2156          * Read it twice in order to work around a bug in openfirmware.
2157          * The call to grab this table itself can cause openfirmware to
2158          * allocate memory, which in turn can take away some space from
2159          * the list of available memory.  Reading it twice makes sure
2160          * we really do get the final value.
2161          */
2162         read_obp_translations();
2163         read_obp_memory("reg", &pall[0], &pall_ents);
2164         read_obp_memory("available", &pavail[0], &pavail_ents);
2165         read_obp_memory("available", &pavail[0], &pavail_ents);
2166
2167         phys_base = 0xffffffffffffffffUL;
2168         for (i = 0; i < pavail_ents; i++) {
2169                 phys_base = min(phys_base, pavail[i].phys_addr);
2170                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2171         }
2172
2173         memblock_reserve(kern_base, kern_size);
2174
2175         find_ramdisk(phys_base);
2176
2177         if (cmdline_memory_size)
2178                 reduce_memory(cmdline_memory_size);
2179
2180         memblock_allow_resize();
2181         memblock_dump_all();
2182
2183         set_bit(0, mmu_context_bmap);
2184
2185         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2186
2187         real_end = (unsigned long)_end;
2188         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2189         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2190                num_kernel_image_mappings);
2191
2192         /* Set kernel pgd to upper alias so physical page computations
2193          * work.
2194          */
2195         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2196         
2197         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2198
2199         inherit_prom_mappings();
2200         
2201         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2202         setup_tba();
2203
2204         __flush_tlb_all();
2205
2206         prom_build_devicetree();
2207         of_populate_present_mask();
2208 #ifndef CONFIG_SMP
2209         of_fill_in_cpu_data();
2210 #endif
2211
2212         if (tlb_type == hypervisor) {
2213                 sun4v_mdesc_init();
2214                 mdesc_populate_present_mask(cpu_all_mask);
2215 #ifndef CONFIG_SMP
2216                 mdesc_fill_in_cpu_data(cpu_all_mask);
2217 #endif
2218                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2219
2220                 sun4v_linear_pte_xor_finalize();
2221
2222                 sun4v_ktsb_init();
2223                 sun4v_ktsb_register();
2224         } else {
2225                 unsigned long impl, ver;
2226
2227                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2228                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2229
2230                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2231                 impl = ((ver >> 32) & 0xffff);
2232                 if (impl == PANTHER_IMPL)
2233                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2234                                           HV_PGSZ_MASK_256MB);
2235
2236                 sun4u_linear_pte_xor_finalize();
2237         }
2238
2239         /* Flush the TLBs and the 4M TSB so that the updated linear
2240          * pte XOR settings are realized for all mappings.
2241          */
2242         __flush_tlb_all();
2243 #ifndef CONFIG_DEBUG_PAGEALLOC
2244         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2245 #endif
2246         __flush_tlb_all();
2247
2248         /* Setup bootmem... */
2249         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2250
2251         /* Once the OF device tree and MDESC have been setup, we know
2252          * the list of possible cpus.  Therefore we can allocate the
2253          * IRQ stacks.
2254          */
2255         for_each_possible_cpu(i) {
2256                 node = cpu_to_node(i);
2257
2258                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2259                                                         THREAD_SIZE,
2260                                                         THREAD_SIZE, 0);
2261                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2262                                                         THREAD_SIZE,
2263                                                         THREAD_SIZE, 0);
2264         }
2265
2266         kernel_physical_mapping_init();
2267
2268         {
2269                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2270
2271                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2272
2273                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2274
2275                 free_area_init_nodes(max_zone_pfns);
2276         }
2277
2278         printk("Booting Linux...\n");
2279 }
2280
2281 int page_in_phys_avail(unsigned long paddr)
2282 {
2283         int i;
2284
2285         paddr &= PAGE_MASK;
2286
2287         for (i = 0; i < pavail_ents; i++) {
2288                 unsigned long start, end;
2289
2290                 start = pavail[i].phys_addr;
2291                 end = start + pavail[i].reg_size;
2292
2293                 if (paddr >= start && paddr < end)
2294                         return 1;
2295         }
2296         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2297                 return 1;
2298 #ifdef CONFIG_BLK_DEV_INITRD
2299         if (paddr >= __pa(initrd_start) &&
2300             paddr < __pa(PAGE_ALIGN(initrd_end)))
2301                 return 1;
2302 #endif
2303
2304         return 0;
2305 }
2306
2307 static void __init register_page_bootmem_info(void)
2308 {
2309 #ifdef CONFIG_NEED_MULTIPLE_NODES
2310         int i;
2311
2312         for_each_online_node(i)
2313                 if (NODE_DATA(i)->node_spanned_pages)
2314                         register_page_bootmem_info_node(NODE_DATA(i));
2315 #endif
2316 }
2317 void __init mem_init(void)
2318 {
2319         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2320
2321         register_page_bootmem_info();
2322         free_all_bootmem();
2323
2324         /*
2325          * Set up the zero page, mark it reserved, so that page count
2326          * is not manipulated when freeing the page from user ptes.
2327          */
2328         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2329         if (mem_map_zero == NULL) {
2330                 prom_printf("paging_init: Cannot alloc zero page.\n");
2331                 prom_halt();
2332         }
2333         mark_page_reserved(mem_map_zero);
2334
2335         mem_init_print_info(NULL);
2336
2337         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2338                 cheetah_ecache_flush_init();
2339 }
2340
2341 void free_initmem(void)
2342 {
2343         unsigned long addr, initend;
2344         int do_free = 1;
2345
2346         /* If the physical memory maps were trimmed by kernel command
2347          * line options, don't even try freeing this initmem stuff up.
2348          * The kernel image could have been in the trimmed out region
2349          * and if so the freeing below will free invalid page structs.
2350          */
2351         if (cmdline_memory_size)
2352                 do_free = 0;
2353
2354         /*
2355          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2356          */
2357         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2358         initend = (unsigned long)(__init_end) & PAGE_MASK;
2359         for (; addr < initend; addr += PAGE_SIZE) {
2360                 unsigned long page;
2361
2362                 page = (addr +
2363                         ((unsigned long) __va(kern_base)) -
2364                         ((unsigned long) KERNBASE));
2365                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2366
2367                 if (do_free)
2368                         free_reserved_page(virt_to_page(page));
2369         }
2370 }
2371
2372 #ifdef CONFIG_BLK_DEV_INITRD
2373 void free_initrd_mem(unsigned long start, unsigned long end)
2374 {
2375         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2376                            "initrd");
2377 }
2378 #endif
2379
2380 pgprot_t PAGE_KERNEL __read_mostly;
2381 EXPORT_SYMBOL(PAGE_KERNEL);
2382
2383 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2384 pgprot_t PAGE_COPY __read_mostly;
2385
2386 pgprot_t PAGE_SHARED __read_mostly;
2387 EXPORT_SYMBOL(PAGE_SHARED);
2388
2389 unsigned long pg_iobits __read_mostly;
2390
2391 unsigned long _PAGE_IE __read_mostly;
2392 EXPORT_SYMBOL(_PAGE_IE);
2393
2394 unsigned long _PAGE_E __read_mostly;
2395 EXPORT_SYMBOL(_PAGE_E);
2396
2397 unsigned long _PAGE_CACHE __read_mostly;
2398 EXPORT_SYMBOL(_PAGE_CACHE);
2399
2400 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2401 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2402                                int node)
2403 {
2404         unsigned long pte_base;
2405
2406         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2407                     _PAGE_CP_4U | _PAGE_CV_4U |
2408                     _PAGE_P_4U | _PAGE_W_4U);
2409         if (tlb_type == hypervisor)
2410                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2411                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2412
2413         pte_base |= _PAGE_PMD_HUGE;
2414
2415         vstart = vstart & PMD_MASK;
2416         vend = ALIGN(vend, PMD_SIZE);
2417         for (; vstart < vend; vstart += PMD_SIZE) {
2418                 pgd_t *pgd = pgd_offset_k(vstart);
2419                 unsigned long pte;
2420                 pud_t *pud;
2421                 pmd_t *pmd;
2422
2423                 if (pgd_none(*pgd)) {
2424                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2425
2426                         if (!new)
2427                                 return -ENOMEM;
2428                         pgd_populate(&init_mm, pgd, new);
2429                 }
2430
2431                 pud = pud_offset(pgd, vstart);
2432                 if (pud_none(*pud)) {
2433                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2434
2435                         if (!new)
2436                                 return -ENOMEM;
2437                         pud_populate(&init_mm, pud, new);
2438                 }
2439
2440                 pmd = pmd_offset(pud, vstart);
2441
2442                 pte = pmd_val(*pmd);
2443                 if (!(pte & _PAGE_VALID)) {
2444                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2445
2446                         if (!block)
2447                                 return -ENOMEM;
2448
2449                         pmd_val(*pmd) = pte_base | __pa(block);
2450                 }
2451         }
2452
2453         return 0;
2454 }
2455
2456 void vmemmap_free(unsigned long start, unsigned long end)
2457 {
2458 }
2459 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2460
2461 static void prot_init_common(unsigned long page_none,
2462                              unsigned long page_shared,
2463                              unsigned long page_copy,
2464                              unsigned long page_readonly,
2465                              unsigned long page_exec_bit)
2466 {
2467         PAGE_COPY = __pgprot(page_copy);
2468         PAGE_SHARED = __pgprot(page_shared);
2469
2470         protection_map[0x0] = __pgprot(page_none);
2471         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2472         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2473         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2474         protection_map[0x4] = __pgprot(page_readonly);
2475         protection_map[0x5] = __pgprot(page_readonly);
2476         protection_map[0x6] = __pgprot(page_copy);
2477         protection_map[0x7] = __pgprot(page_copy);
2478         protection_map[0x8] = __pgprot(page_none);
2479         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2480         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2481         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2482         protection_map[0xc] = __pgprot(page_readonly);
2483         protection_map[0xd] = __pgprot(page_readonly);
2484         protection_map[0xe] = __pgprot(page_shared);
2485         protection_map[0xf] = __pgprot(page_shared);
2486 }
2487
2488 static void __init sun4u_pgprot_init(void)
2489 {
2490         unsigned long page_none, page_shared, page_copy, page_readonly;
2491         unsigned long page_exec_bit;
2492         int i;
2493
2494         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2495                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2496                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2497                                 _PAGE_EXEC_4U);
2498         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2499                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2500                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2501                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2502
2503         _PAGE_IE = _PAGE_IE_4U;
2504         _PAGE_E = _PAGE_E_4U;
2505         _PAGE_CACHE = _PAGE_CACHE_4U;
2506
2507         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2508                      __ACCESS_BITS_4U | _PAGE_E_4U);
2509
2510 #ifdef CONFIG_DEBUG_PAGEALLOC
2511         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2512 #else
2513         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2514                 PAGE_OFFSET;
2515 #endif
2516         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2517                                    _PAGE_P_4U | _PAGE_W_4U);
2518
2519         for (i = 1; i < 4; i++)
2520                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2521
2522         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2523                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2524                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2525
2526
2527         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2528         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2529                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2530         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2531                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2532         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2533                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2534
2535         page_exec_bit = _PAGE_EXEC_4U;
2536
2537         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2538                          page_exec_bit);
2539 }
2540
2541 static void __init sun4v_pgprot_init(void)
2542 {
2543         unsigned long page_none, page_shared, page_copy, page_readonly;
2544         unsigned long page_exec_bit;
2545         int i;
2546
2547         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2548                                 page_cache4v_flag | _PAGE_P_4V |
2549                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2550                                 _PAGE_EXEC_4V);
2551         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2552
2553         _PAGE_IE = _PAGE_IE_4V;
2554         _PAGE_E = _PAGE_E_4V;
2555         _PAGE_CACHE = page_cache4v_flag;
2556
2557 #ifdef CONFIG_DEBUG_PAGEALLOC
2558         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2559 #else
2560         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2561                 PAGE_OFFSET;
2562 #endif
2563         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2564                                    _PAGE_W_4V);
2565
2566         for (i = 1; i < 4; i++)
2567                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2568
2569         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2570                      __ACCESS_BITS_4V | _PAGE_E_4V);
2571
2572         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2573                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2574                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2575                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2576
2577         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2578         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2579                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2580         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2581                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2582         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2583                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2584
2585         page_exec_bit = _PAGE_EXEC_4V;
2586
2587         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2588                          page_exec_bit);
2589 }
2590
2591 unsigned long pte_sz_bits(unsigned long sz)
2592 {
2593         if (tlb_type == hypervisor) {
2594                 switch (sz) {
2595                 case 8 * 1024:
2596                 default:
2597                         return _PAGE_SZ8K_4V;
2598                 case 64 * 1024:
2599                         return _PAGE_SZ64K_4V;
2600                 case 512 * 1024:
2601                         return _PAGE_SZ512K_4V;
2602                 case 4 * 1024 * 1024:
2603                         return _PAGE_SZ4MB_4V;
2604                 }
2605         } else {
2606                 switch (sz) {
2607                 case 8 * 1024:
2608                 default:
2609                         return _PAGE_SZ8K_4U;
2610                 case 64 * 1024:
2611                         return _PAGE_SZ64K_4U;
2612                 case 512 * 1024:
2613                         return _PAGE_SZ512K_4U;
2614                 case 4 * 1024 * 1024:
2615                         return _PAGE_SZ4MB_4U;
2616                 }
2617         }
2618 }
2619
2620 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2621 {
2622         pte_t pte;
2623
2624         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2625         pte_val(pte) |= (((unsigned long)space) << 32);
2626         pte_val(pte) |= pte_sz_bits(page_size);
2627
2628         return pte;
2629 }
2630
2631 static unsigned long kern_large_tte(unsigned long paddr)
2632 {
2633         unsigned long val;
2634
2635         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2636                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2637                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2638         if (tlb_type == hypervisor)
2639                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2640                        page_cache4v_flag | _PAGE_P_4V |
2641                        _PAGE_EXEC_4V | _PAGE_W_4V);
2642
2643         return val | paddr;
2644 }
2645
2646 /* If not locked, zap it. */
2647 void __flush_tlb_all(void)
2648 {
2649         unsigned long pstate;
2650         int i;
2651
2652         __asm__ __volatile__("flushw\n\t"
2653                              "rdpr      %%pstate, %0\n\t"
2654                              "wrpr      %0, %1, %%pstate"
2655                              : "=r" (pstate)
2656                              : "i" (PSTATE_IE));
2657         if (tlb_type == hypervisor) {
2658                 sun4v_mmu_demap_all();
2659         } else if (tlb_type == spitfire) {
2660                 for (i = 0; i < 64; i++) {
2661                         /* Spitfire Errata #32 workaround */
2662                         /* NOTE: Always runs on spitfire, so no
2663                          *       cheetah+ page size encodings.
2664                          */
2665                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2666                                              "flush     %%g6"
2667                                              : /* No outputs */
2668                                              : "r" (0),
2669                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2670
2671                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2672                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2673                                                      "membar #Sync"
2674                                                      : /* no outputs */
2675                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2676                                 spitfire_put_dtlb_data(i, 0x0UL);
2677                         }
2678
2679                         /* Spitfire Errata #32 workaround */
2680                         /* NOTE: Always runs on spitfire, so no
2681                          *       cheetah+ page size encodings.
2682                          */
2683                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2684                                              "flush     %%g6"
2685                                              : /* No outputs */
2686                                              : "r" (0),
2687                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2688
2689                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2690                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2691                                                      "membar #Sync"
2692                                                      : /* no outputs */
2693                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2694                                 spitfire_put_itlb_data(i, 0x0UL);
2695                         }
2696                 }
2697         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2698                 cheetah_flush_dtlb_all();
2699                 cheetah_flush_itlb_all();
2700         }
2701         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2702                              : : "r" (pstate));
2703 }
2704
2705 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2706                             unsigned long address)
2707 {
2708         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2709         pte_t *pte = NULL;
2710
2711         if (page)
2712                 pte = (pte_t *) page_address(page);
2713
2714         return pte;
2715 }
2716
2717 pgtable_t pte_alloc_one(struct mm_struct *mm,
2718                         unsigned long address)
2719 {
2720         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2721         if (!page)
2722                 return NULL;
2723         if (!pgtable_page_ctor(page)) {
2724                 free_hot_cold_page(page, 0);
2725                 return NULL;
2726         }
2727         return (pte_t *) page_address(page);
2728 }
2729
2730 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2731 {
2732         free_page((unsigned long)pte);
2733 }
2734
2735 static void __pte_free(pgtable_t pte)
2736 {
2737         struct page *page = virt_to_page(pte);
2738
2739         pgtable_page_dtor(page);
2740         __free_page(page);
2741 }
2742
2743 void pte_free(struct mm_struct *mm, pgtable_t pte)
2744 {
2745         __pte_free(pte);
2746 }
2747
2748 void pgtable_free(void *table, bool is_page)
2749 {
2750         if (is_page)
2751                 __pte_free(table);
2752         else
2753                 kmem_cache_free(pgtable_cache, table);
2754 }
2755
2756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2757 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2758                           pmd_t *pmd)
2759 {
2760         unsigned long pte, flags;
2761         struct mm_struct *mm;
2762         pmd_t entry = *pmd;
2763
2764         if (!pmd_large(entry) || !pmd_young(entry))
2765                 return;
2766
2767         pte = pmd_val(entry);
2768
2769         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2770         if (!(pte & _PAGE_VALID))
2771                 return;
2772
2773         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2774         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2775
2776         mm = vma->vm_mm;
2777
2778         spin_lock_irqsave(&mm->context.lock, flags);
2779
2780         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2781                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2782                                         addr, pte);
2783
2784         spin_unlock_irqrestore(&mm->context.lock, flags);
2785 }
2786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2787
2788 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2789 static void context_reload(void *__data)
2790 {
2791         struct mm_struct *mm = __data;
2792
2793         if (mm == current->mm)
2794                 load_secondary_context(mm);
2795 }
2796
2797 void hugetlb_setup(struct pt_regs *regs)
2798 {
2799         struct mm_struct *mm = current->mm;
2800         struct tsb_config *tp;
2801
2802         if (faulthandler_disabled() || !mm) {
2803                 const struct exception_table_entry *entry;
2804
2805                 entry = search_exception_tables(regs->tpc);
2806                 if (entry) {
2807                         regs->tpc = entry->fixup;
2808                         regs->tnpc = regs->tpc + 4;
2809                         return;
2810                 }
2811                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2812                 die_if_kernel("HugeTSB in atomic", regs);
2813         }
2814
2815         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2816         if (likely(tp->tsb == NULL))
2817                 tsb_grow(mm, MM_TSB_HUGE, 0);
2818
2819         tsb_context_switch(mm);
2820         smp_tsb_sync(mm);
2821
2822         /* On UltraSPARC-III+ and later, configure the second half of
2823          * the Data-TLB for huge pages.
2824          */
2825         if (tlb_type == cheetah_plus) {
2826                 bool need_context_reload = false;
2827                 unsigned long ctx;
2828
2829                 spin_lock_irq(&ctx_alloc_lock);
2830                 ctx = mm->context.sparc64_ctx_val;
2831                 ctx &= ~CTX_PGSZ_MASK;
2832                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2833                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2834
2835                 if (ctx != mm->context.sparc64_ctx_val) {
2836                         /* When changing the page size fields, we
2837                          * must perform a context flush so that no
2838                          * stale entries match.  This flush must
2839                          * occur with the original context register
2840                          * settings.
2841                          */
2842                         do_flush_tlb_mm(mm);
2843
2844                         /* Reload the context register of all processors
2845                          * also executing in this address space.
2846                          */
2847                         mm->context.sparc64_ctx_val = ctx;
2848                         need_context_reload = true;
2849                 }
2850                 spin_unlock_irq(&ctx_alloc_lock);
2851
2852                 if (need_context_reload)
2853                         on_each_cpu(context_reload, mm, 0);
2854         }
2855 }
2856 #endif
2857
2858 static struct resource code_resource = {
2859         .name   = "Kernel code",
2860         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2861 };
2862
2863 static struct resource data_resource = {
2864         .name   = "Kernel data",
2865         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2866 };
2867
2868 static struct resource bss_resource = {
2869         .name   = "Kernel bss",
2870         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2871 };
2872
2873 static inline resource_size_t compute_kern_paddr(void *addr)
2874 {
2875         return (resource_size_t) (addr - KERNBASE + kern_base);
2876 }
2877
2878 static void __init kernel_lds_init(void)
2879 {
2880         code_resource.start = compute_kern_paddr(_text);
2881         code_resource.end   = compute_kern_paddr(_etext - 1);
2882         data_resource.start = compute_kern_paddr(_etext);
2883         data_resource.end   = compute_kern_paddr(_edata - 1);
2884         bss_resource.start  = compute_kern_paddr(__bss_start);
2885         bss_resource.end    = compute_kern_paddr(_end - 1);
2886 }
2887
2888 static int __init report_memory(void)
2889 {
2890         int i;
2891         struct resource *res;
2892
2893         kernel_lds_init();
2894
2895         for (i = 0; i < pavail_ents; i++) {
2896                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2897
2898                 if (!res) {
2899                         pr_warn("Failed to allocate source.\n");
2900                         break;
2901                 }
2902
2903                 res->name = "System RAM";
2904                 res->start = pavail[i].phys_addr;
2905                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2906                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2907
2908                 if (insert_resource(&iomem_resource, res) < 0) {
2909                         pr_warn("Resource insertion failed.\n");
2910                         break;
2911                 }
2912
2913                 insert_resource(res, &code_resource);
2914                 insert_resource(res, &data_resource);
2915                 insert_resource(res, &bss_resource);
2916         }
2917
2918         return 0;
2919 }
2920 arch_initcall(report_memory);
2921
2922 #ifdef CONFIG_SMP
2923 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2924 #else
2925 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2926 #endif
2927
2928 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2929 {
2930         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2931                 if (start < LOW_OBP_ADDRESS) {
2932                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2933                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2934                 }
2935                 if (end > HI_OBP_ADDRESS) {
2936                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2937                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2938                 }
2939         } else {
2940                 flush_tsb_kernel_range(start, end);
2941                 do_flush_tlb_kernel_range(start, end);
2942         }
2943 }