6dae2356b9f5016aabe58d8ab33c572ee3bae3b6
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         ssptep->spte_low = sspte.spte_low;
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomicly update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomicly update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask)
561                 return ret;
562
563         /*
564          * Flush TLB when accessed/dirty bits are changed in the page tables,
565          * to guarantee consistency between TLB and page tables.
566          */
567         if (spte_is_bit_changed(old_spte, new_spte,
568                                 shadow_accessed_mask | shadow_dirty_mask))
569                 ret = true;
570
571         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576         return ret;
577 }
578
579 /*
580  * Rules for using mmu_spte_clear_track_bits:
581  * It sets the sptep from present to nonpresent, and track the
582  * state bits, it is used to clear the last level sptep.
583  */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586         kvm_pfn_t pfn;
587         u64 old_spte = *sptep;
588
589         if (!spte_has_volatile_bits(old_spte))
590                 __update_clear_spte_fast(sptep, 0ull);
591         else
592                 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594         if (!is_shadow_present_pte(old_spte))
595                 return 0;
596
597         pfn = spte_to_pfn(old_spte);
598
599         /*
600          * KVM does not hold the refcount of the page used by
601          * kvm mmu, before reclaiming the page, we should
602          * unmap it from mmu first.
603          */
604         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607                 kvm_set_pfn_accessed(pfn);
608         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609                 kvm_set_pfn_dirty(pfn);
610         return 1;
611 }
612
613 /*
614  * Rules for using mmu_spte_clear_no_track:
615  * Directly clear spte without caring the state bits of sptep,
616  * it is used to set the upper level spte.
617  */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620         __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625         return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630         /*
631          * Prevent page table teardown by making any free-er wait during
632          * kvm_flush_remote_tlbs() IPI to all active vcpus.
633          */
634         local_irq_disable();
635         vcpu->mode = READING_SHADOW_PAGE_TABLES;
636         /*
637          * Make sure a following spte read is not reordered ahead of the write
638          * to vcpu->mode.
639          */
640         smp_mb();
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645         /*
646          * Make sure the write to vcpu->mode is not reordered in front of
647          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
648          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649          */
650         smp_mb();
651         vcpu->mode = OUTSIDE_GUEST_MODE;
652         local_irq_enable();
653 }
654
655 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656                                   struct kmem_cache *base_cache, int min)
657 {
658         void *obj;
659
660         if (cache->nobjs >= min)
661                 return 0;
662         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664                 if (!obj)
665                         return -ENOMEM;
666                 cache->objects[cache->nobjs++] = obj;
667         }
668         return 0;
669 }
670
671 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672 {
673         return cache->nobjs;
674 }
675
676 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677                                   struct kmem_cache *cache)
678 {
679         while (mc->nobjs)
680                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 }
682
683 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684                                        int min)
685 {
686         void *page;
687
688         if (cache->nobjs >= min)
689                 return 0;
690         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691                 page = (void *)__get_free_page(GFP_KERNEL);
692                 if (!page)
693                         return -ENOMEM;
694                 cache->objects[cache->nobjs++] = page;
695         }
696         return 0;
697 }
698
699 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700 {
701         while (mc->nobjs)
702                 free_page((unsigned long)mc->objects[--mc->nobjs]);
703 }
704
705 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706 {
707         int r;
708
709         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711         if (r)
712                 goto out;
713         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714         if (r)
715                 goto out;
716         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717                                    mmu_page_header_cache, 4);
718 out:
719         return r;
720 }
721
722 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723 {
724         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725                                 pte_list_desc_cache);
726         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728                                 mmu_page_header_cache);
729 }
730
731 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 {
733         void *p;
734
735         BUG_ON(!mc->nobjs);
736         p = mc->objects[--mc->nobjs];
737         return p;
738 }
739
740 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741 {
742         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 }
744
745 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746 {
747         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 }
749
750 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751 {
752         if (!sp->role.direct)
753                 return sp->gfns[index];
754
755         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756 }
757
758 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759 {
760         if (sp->role.direct)
761                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762         else
763                 sp->gfns[index] = gfn;
764 }
765
766 /*
767  * Return the pointer to the large page information for a given gfn,
768  * handling slots that are not large page aligned.
769  */
770 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771                                               struct kvm_memory_slot *slot,
772                                               int level)
773 {
774         unsigned long idx;
775
776         idx = gfn_to_index(gfn, slot->base_gfn, level);
777         return &slot->arch.lpage_info[level - 2][idx];
778 }
779
780 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781                                             gfn_t gfn, int count)
782 {
783         struct kvm_lpage_info *linfo;
784         int i;
785
786         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787                 linfo = lpage_info_slot(gfn, slot, i);
788                 linfo->disallow_lpage += count;
789                 WARN_ON(linfo->disallow_lpage < 0);
790         }
791 }
792
793 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794 {
795         update_gfn_disallow_lpage_count(slot, gfn, 1);
796 }
797
798 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799 {
800         update_gfn_disallow_lpage_count(slot, gfn, -1);
801 }
802
803 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805         struct kvm_memslots *slots;
806         struct kvm_memory_slot *slot;
807         gfn_t gfn;
808
809         kvm->arch.indirect_shadow_pages++;
810         gfn = sp->gfn;
811         slots = kvm_memslots_for_spte_role(kvm, sp->role);
812         slot = __gfn_to_memslot(slots, gfn);
813
814         /* the non-leaf shadow pages are keeping readonly. */
815         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817                                                     KVM_PAGE_TRACK_WRITE);
818
819         kvm_mmu_gfn_disallow_lpage(slot, gfn);
820 }
821
822 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
823 {
824         struct kvm_memslots *slots;
825         struct kvm_memory_slot *slot;
826         gfn_t gfn;
827
828         kvm->arch.indirect_shadow_pages--;
829         gfn = sp->gfn;
830         slots = kvm_memslots_for_spte_role(kvm, sp->role);
831         slot = __gfn_to_memslot(slots, gfn);
832         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834                                                        KVM_PAGE_TRACK_WRITE);
835
836         kvm_mmu_gfn_allow_lpage(slot, gfn);
837 }
838
839 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840                                           struct kvm_memory_slot *slot)
841 {
842         struct kvm_lpage_info *linfo;
843
844         if (slot) {
845                 linfo = lpage_info_slot(gfn, slot, level);
846                 return !!linfo->disallow_lpage;
847         }
848
849         return true;
850 }
851
852 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853                                         int level)
854 {
855         struct kvm_memory_slot *slot;
856
857         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
859 }
860
861 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
862 {
863         unsigned long page_size;
864         int i, ret = 0;
865
866         page_size = kvm_host_page_size(kvm, gfn);
867
868         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
869                 if (page_size >= KVM_HPAGE_SIZE(i))
870                         ret = i;
871                 else
872                         break;
873         }
874
875         return ret;
876 }
877
878 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879                                           bool no_dirty_log)
880 {
881         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882                 return false;
883         if (no_dirty_log && slot->dirty_bitmap)
884                 return false;
885
886         return true;
887 }
888
889 static struct kvm_memory_slot *
890 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891                             bool no_dirty_log)
892 {
893         struct kvm_memory_slot *slot;
894
895         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
896         if (!memslot_valid_for_gpte(slot, no_dirty_log))
897                 slot = NULL;
898
899         return slot;
900 }
901
902 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903                          bool *force_pt_level)
904 {
905         int host_level, level, max_level;
906         struct kvm_memory_slot *slot;
907
908         if (unlikely(*force_pt_level))
909                 return PT_PAGE_TABLE_LEVEL;
910
911         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912         *force_pt_level = !memslot_valid_for_gpte(slot, true);
913         if (unlikely(*force_pt_level))
914                 return PT_PAGE_TABLE_LEVEL;
915
916         host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918         if (host_level == PT_PAGE_TABLE_LEVEL)
919                 return host_level;
920
921         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
922
923         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
924                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
925                         break;
926
927         return level - 1;
928 }
929
930 /*
931  * About rmap_head encoding:
932  *
933  * If the bit zero of rmap_head->val is clear, then it points to the only spte
934  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
935  * pte_list_desc containing more mappings.
936  */
937
938 /*
939  * Returns the number of pointers in the rmap chain, not counting the new one.
940  */
941 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
942                         struct kvm_rmap_head *rmap_head)
943 {
944         struct pte_list_desc *desc;
945         int i, count = 0;
946
947         if (!rmap_head->val) {
948                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
949                 rmap_head->val = (unsigned long)spte;
950         } else if (!(rmap_head->val & 1)) {
951                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952                 desc = mmu_alloc_pte_list_desc(vcpu);
953                 desc->sptes[0] = (u64 *)rmap_head->val;
954                 desc->sptes[1] = spte;
955                 rmap_head->val = (unsigned long)desc | 1;
956                 ++count;
957         } else {
958                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
959                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
961                         desc = desc->more;
962                         count += PTE_LIST_EXT;
963                 }
964                 if (desc->sptes[PTE_LIST_EXT-1]) {
965                         desc->more = mmu_alloc_pte_list_desc(vcpu);
966                         desc = desc->more;
967                 }
968                 for (i = 0; desc->sptes[i]; ++i)
969                         ++count;
970                 desc->sptes[i] = spte;
971         }
972         return count;
973 }
974
975 static void
976 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977                            struct pte_list_desc *desc, int i,
978                            struct pte_list_desc *prev_desc)
979 {
980         int j;
981
982         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
983                 ;
984         desc->sptes[i] = desc->sptes[j];
985         desc->sptes[j] = NULL;
986         if (j != 0)
987                 return;
988         if (!prev_desc && !desc->more)
989                 rmap_head->val = (unsigned long)desc->sptes[0];
990         else
991                 if (prev_desc)
992                         prev_desc->more = desc->more;
993                 else
994                         rmap_head->val = (unsigned long)desc->more | 1;
995         mmu_free_pte_list_desc(desc);
996 }
997
998 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
999 {
1000         struct pte_list_desc *desc;
1001         struct pte_list_desc *prev_desc;
1002         int i;
1003
1004         if (!rmap_head->val) {
1005                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1006                 BUG();
1007         } else if (!(rmap_head->val & 1)) {
1008                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1009                 if ((u64 *)rmap_head->val != spte) {
1010                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1011                         BUG();
1012                 }
1013                 rmap_head->val = 0;
1014         } else {
1015                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1016                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1017                 prev_desc = NULL;
1018                 while (desc) {
1019                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1020                                 if (desc->sptes[i] == spte) {
1021                                         pte_list_desc_remove_entry(rmap_head,
1022                                                         desc, i, prev_desc);
1023                                         return;
1024                                 }
1025                         }
1026                         prev_desc = desc;
1027                         desc = desc->more;
1028                 }
1029                 pr_err("pte_list_remove: %p many->many\n", spte);
1030                 BUG();
1031         }
1032 }
1033
1034 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035                                            struct kvm_memory_slot *slot)
1036 {
1037         unsigned long idx;
1038
1039         idx = gfn_to_index(gfn, slot->base_gfn, level);
1040         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 }
1042
1043 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044                                          struct kvm_mmu_page *sp)
1045 {
1046         struct kvm_memslots *slots;
1047         struct kvm_memory_slot *slot;
1048
1049         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050         slot = __gfn_to_memslot(slots, gfn);
1051         return __gfn_to_rmap(gfn, sp->role.level, slot);
1052 }
1053
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055 {
1056         struct kvm_mmu_memory_cache *cache;
1057
1058         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059         return mmu_memory_cache_free_objects(cache);
1060 }
1061
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063 {
1064         struct kvm_mmu_page *sp;
1065         struct kvm_rmap_head *rmap_head;
1066
1067         sp = page_header(__pa(spte));
1068         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070         return pte_list_add(vcpu, spte, rmap_head);
1071 }
1072
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1074 {
1075         struct kvm_mmu_page *sp;
1076         gfn_t gfn;
1077         struct kvm_rmap_head *rmap_head;
1078
1079         sp = page_header(__pa(spte));
1080         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082         pte_list_remove(spte, rmap_head);
1083 }
1084
1085 /*
1086  * Used by the following functions to iterate through the sptes linked by a
1087  * rmap.  All fields are private and not assumed to be used outside.
1088  */
1089 struct rmap_iterator {
1090         /* private fields */
1091         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1092         int pos;                        /* index of the sptep */
1093 };
1094
1095 /*
1096  * Iteration must be started by this function.  This should also be used after
1097  * removing/dropping sptes from the rmap link because in such cases the
1098  * information in the itererator may not be valid.
1099  *
1100  * Returns sptep if found, NULL otherwise.
1101  */
1102 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103                            struct rmap_iterator *iter)
1104 {
1105         u64 *sptep;
1106
1107         if (!rmap_head->val)
1108                 return NULL;
1109
1110         if (!(rmap_head->val & 1)) {
1111                 iter->desc = NULL;
1112                 sptep = (u64 *)rmap_head->val;
1113                 goto out;
1114         }
1115
1116         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1117         iter->pos = 0;
1118         sptep = iter->desc->sptes[iter->pos];
1119 out:
1120         BUG_ON(!is_shadow_present_pte(*sptep));
1121         return sptep;
1122 }
1123
1124 /*
1125  * Must be used with a valid iterator: e.g. after rmap_get_first().
1126  *
1127  * Returns sptep if found, NULL otherwise.
1128  */
1129 static u64 *rmap_get_next(struct rmap_iterator *iter)
1130 {
1131         u64 *sptep;
1132
1133         if (iter->desc) {
1134                 if (iter->pos < PTE_LIST_EXT - 1) {
1135                         ++iter->pos;
1136                         sptep = iter->desc->sptes[iter->pos];
1137                         if (sptep)
1138                                 goto out;
1139                 }
1140
1141                 iter->desc = iter->desc->more;
1142
1143                 if (iter->desc) {
1144                         iter->pos = 0;
1145                         /* desc->sptes[0] cannot be NULL */
1146                         sptep = iter->desc->sptes[iter->pos];
1147                         goto out;
1148                 }
1149         }
1150
1151         return NULL;
1152 out:
1153         BUG_ON(!is_shadow_present_pte(*sptep));
1154         return sptep;
1155 }
1156
1157 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1158         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1159              _spte_; _spte_ = rmap_get_next(_iter_))
1160
1161 static void drop_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163         if (mmu_spte_clear_track_bits(sptep))
1164                 rmap_remove(kvm, sptep);
1165 }
1166
1167
1168 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169 {
1170         if (is_large_pte(*sptep)) {
1171                 WARN_ON(page_header(__pa(sptep))->role.level ==
1172                         PT_PAGE_TABLE_LEVEL);
1173                 drop_spte(kvm, sptep);
1174                 --kvm->stat.lpages;
1175                 return true;
1176         }
1177
1178         return false;
1179 }
1180
1181 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182 {
1183         if (__drop_large_spte(vcpu->kvm, sptep))
1184                 kvm_flush_remote_tlbs(vcpu->kvm);
1185 }
1186
1187 /*
1188  * Write-protect on the specified @sptep, @pt_protect indicates whether
1189  * spte write-protection is caused by protecting shadow page table.
1190  *
1191  * Note: write protection is difference between dirty logging and spte
1192  * protection:
1193  * - for dirty logging, the spte can be set to writable at anytime if
1194  *   its dirty bitmap is properly set.
1195  * - for spte protection, the spte can be writable only after unsync-ing
1196  *   shadow page.
1197  *
1198  * Return true if tlb need be flushed.
1199  */
1200 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1201 {
1202         u64 spte = *sptep;
1203
1204         if (!is_writable_pte(spte) &&
1205               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1206                 return false;
1207
1208         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
1210         if (pt_protect)
1211                 spte &= ~SPTE_MMU_WRITEABLE;
1212         spte = spte & ~PT_WRITABLE_MASK;
1213
1214         return mmu_spte_update(sptep, spte);
1215 }
1216
1217 static bool __rmap_write_protect(struct kvm *kvm,
1218                                  struct kvm_rmap_head *rmap_head,
1219                                  bool pt_protect)
1220 {
1221         u64 *sptep;
1222         struct rmap_iterator iter;
1223         bool flush = false;
1224
1225         for_each_rmap_spte(rmap_head, &iter, sptep)
1226                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1227
1228         return flush;
1229 }
1230
1231 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232 {
1233         u64 spte = *sptep;
1234
1235         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237         spte &= ~shadow_dirty_mask;
1238
1239         return mmu_spte_update(sptep, spte);
1240 }
1241
1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1243 {
1244         u64 *sptep;
1245         struct rmap_iterator iter;
1246         bool flush = false;
1247
1248         for_each_rmap_spte(rmap_head, &iter, sptep)
1249                 flush |= spte_clear_dirty(kvm, sptep);
1250
1251         return flush;
1252 }
1253
1254 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255 {
1256         u64 spte = *sptep;
1257
1258         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260         spte |= shadow_dirty_mask;
1261
1262         return mmu_spte_update(sptep, spte);
1263 }
1264
1265 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1266 {
1267         u64 *sptep;
1268         struct rmap_iterator iter;
1269         bool flush = false;
1270
1271         for_each_rmap_spte(rmap_head, &iter, sptep)
1272                 flush |= spte_set_dirty(kvm, sptep);
1273
1274         return flush;
1275 }
1276
1277 /**
1278  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1279  * @kvm: kvm instance
1280  * @slot: slot to protect
1281  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282  * @mask: indicates which pages we should protect
1283  *
1284  * Used when we do not need to care about huge page mappings: e.g. during dirty
1285  * logging we do not have any such mappings.
1286  */
1287 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1288                                      struct kvm_memory_slot *slot,
1289                                      gfn_t gfn_offset, unsigned long mask)
1290 {
1291         struct kvm_rmap_head *rmap_head;
1292
1293         while (mask) {
1294                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295                                           PT_PAGE_TABLE_LEVEL, slot);
1296                 __rmap_write_protect(kvm, rmap_head, false);
1297
1298                 /* clear the first set bit */
1299                 mask &= mask - 1;
1300         }
1301 }
1302
1303 /**
1304  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305  * @kvm: kvm instance
1306  * @slot: slot to clear D-bit
1307  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308  * @mask: indicates which pages we should clear D-bit
1309  *
1310  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311  */
1312 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313                                      struct kvm_memory_slot *slot,
1314                                      gfn_t gfn_offset, unsigned long mask)
1315 {
1316         struct kvm_rmap_head *rmap_head;
1317
1318         while (mask) {
1319                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320                                           PT_PAGE_TABLE_LEVEL, slot);
1321                 __rmap_clear_dirty(kvm, rmap_head);
1322
1323                 /* clear the first set bit */
1324                 mask &= mask - 1;
1325         }
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
1329 /**
1330  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331  * PT level pages.
1332  *
1333  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334  * enable dirty logging for them.
1335  *
1336  * Used when we do not need to care about huge page mappings: e.g. during dirty
1337  * logging we do not have any such mappings.
1338  */
1339 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340                                 struct kvm_memory_slot *slot,
1341                                 gfn_t gfn_offset, unsigned long mask)
1342 {
1343         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345                                 mask);
1346         else
1347                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1348 }
1349
1350 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351                                     struct kvm_memory_slot *slot, u64 gfn)
1352 {
1353         struct kvm_rmap_head *rmap_head;
1354         int i;
1355         bool write_protected = false;
1356
1357         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1358                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1359                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1360         }
1361
1362         return write_protected;
1363 }
1364
1365 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366 {
1367         struct kvm_memory_slot *slot;
1368
1369         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371 }
1372
1373 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1374 {
1375         u64 *sptep;
1376         struct rmap_iterator iter;
1377         bool flush = false;
1378
1379         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1380                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1381
1382                 drop_spte(kvm, sptep);
1383                 flush = true;
1384         }
1385
1386         return flush;
1387 }
1388
1389 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1390                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391                            unsigned long data)
1392 {
1393         return kvm_zap_rmapp(kvm, rmap_head);
1394 }
1395
1396 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                              unsigned long data)
1399 {
1400         u64 *sptep;
1401         struct rmap_iterator iter;
1402         int need_flush = 0;
1403         u64 new_spte;
1404         pte_t *ptep = (pte_t *)data;
1405         kvm_pfn_t new_pfn;
1406
1407         WARN_ON(pte_huge(*ptep));
1408         new_pfn = pte_pfn(*ptep);
1409
1410 restart:
1411         for_each_rmap_spte(rmap_head, &iter, sptep) {
1412                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413                              sptep, *sptep, gfn, level);
1414
1415                 need_flush = 1;
1416
1417                 if (pte_write(*ptep)) {
1418                         drop_spte(kvm, sptep);
1419                         goto restart;
1420                 } else {
1421                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1422                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424                         new_spte &= ~PT_WRITABLE_MASK;
1425                         new_spte &= ~SPTE_HOST_WRITEABLE;
1426                         new_spte &= ~shadow_accessed_mask;
1427
1428                         mmu_spte_clear_track_bits(sptep);
1429                         mmu_spte_set(sptep, new_spte);
1430                 }
1431         }
1432
1433         if (need_flush)
1434                 kvm_flush_remote_tlbs(kvm);
1435
1436         return 0;
1437 }
1438
1439 struct slot_rmap_walk_iterator {
1440         /* input fields. */
1441         struct kvm_memory_slot *slot;
1442         gfn_t start_gfn;
1443         gfn_t end_gfn;
1444         int start_level;
1445         int end_level;
1446
1447         /* output fields. */
1448         gfn_t gfn;
1449         struct kvm_rmap_head *rmap;
1450         int level;
1451
1452         /* private field. */
1453         struct kvm_rmap_head *end_rmap;
1454 };
1455
1456 static void
1457 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458 {
1459         iterator->level = level;
1460         iterator->gfn = iterator->start_gfn;
1461         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463                                            iterator->slot);
1464 }
1465
1466 static void
1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468                     struct kvm_memory_slot *slot, int start_level,
1469                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470 {
1471         iterator->slot = slot;
1472         iterator->start_level = start_level;
1473         iterator->end_level = end_level;
1474         iterator->start_gfn = start_gfn;
1475         iterator->end_gfn = end_gfn;
1476
1477         rmap_walk_init_level(iterator, iterator->start_level);
1478 }
1479
1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481 {
1482         return !!iterator->rmap;
1483 }
1484
1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486 {
1487         if (++iterator->rmap <= iterator->end_rmap) {
1488                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489                 return;
1490         }
1491
1492         if (++iterator->level > iterator->end_level) {
1493                 iterator->rmap = NULL;
1494                 return;
1495         }
1496
1497         rmap_walk_init_level(iterator, iterator->level);
1498 }
1499
1500 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1501            _start_gfn, _end_gfn, _iter_)                                \
1502         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1503                                  _end_level_, _start_gfn, _end_gfn);    \
1504              slot_rmap_walk_okay(_iter_);                               \
1505              slot_rmap_walk_next(_iter_))
1506
1507 static int kvm_handle_hva_range(struct kvm *kvm,
1508                                 unsigned long start,
1509                                 unsigned long end,
1510                                 unsigned long data,
1511                                 int (*handler)(struct kvm *kvm,
1512                                                struct kvm_rmap_head *rmap_head,
1513                                                struct kvm_memory_slot *slot,
1514                                                gfn_t gfn,
1515                                                int level,
1516                                                unsigned long data))
1517 {
1518         struct kvm_memslots *slots;
1519         struct kvm_memory_slot *memslot;
1520         struct slot_rmap_walk_iterator iterator;
1521         int ret = 0;
1522         int i;
1523
1524         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525                 slots = __kvm_memslots(kvm, i);
1526                 kvm_for_each_memslot(memslot, slots) {
1527                         unsigned long hva_start, hva_end;
1528                         gfn_t gfn_start, gfn_end;
1529
1530                         hva_start = max(start, memslot->userspace_addr);
1531                         hva_end = min(end, memslot->userspace_addr +
1532                                       (memslot->npages << PAGE_SHIFT));
1533                         if (hva_start >= hva_end)
1534                                 continue;
1535                         /*
1536                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538                          */
1539                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543                                                  PT_MAX_HUGEPAGE_LEVEL,
1544                                                  gfn_start, gfn_end - 1,
1545                                                  &iterator)
1546                                 ret |= handler(kvm, iterator.rmap, memslot,
1547                                                iterator.gfn, iterator.level, data);
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553
1554 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555                           unsigned long data,
1556                           int (*handler)(struct kvm *kvm,
1557                                          struct kvm_rmap_head *rmap_head,
1558                                          struct kvm_memory_slot *slot,
1559                                          gfn_t gfn, int level,
1560                                          unsigned long data))
1561 {
1562         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1563 }
1564
1565 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566 {
1567         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568 }
1569
1570 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571 {
1572         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573 }
1574
1575 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576 {
1577         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1578 }
1579
1580 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1581                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582                          unsigned long data)
1583 {
1584         u64 *sptep;
1585         struct rmap_iterator uninitialized_var(iter);
1586         int young = 0;
1587
1588         BUG_ON(!shadow_accessed_mask);
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep) {
1591                 if (*sptep & shadow_accessed_mask) {
1592                         young = 1;
1593                         clear_bit((ffs(shadow_accessed_mask) - 1),
1594                                  (unsigned long *)sptep);
1595                 }
1596         }
1597
1598         trace_kvm_age_page(gfn, level, slot, young);
1599         return young;
1600 }
1601
1602 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1603                               struct kvm_memory_slot *slot, gfn_t gfn,
1604                               int level, unsigned long data)
1605 {
1606         u64 *sptep;
1607         struct rmap_iterator iter;
1608         int young = 0;
1609
1610         /*
1611          * If there's no access bit in the secondary pte set by the
1612          * hardware it's up to gup-fast/gup to set the access bit in
1613          * the primary pte or in the page structure.
1614          */
1615         if (!shadow_accessed_mask)
1616                 goto out;
1617
1618         for_each_rmap_spte(rmap_head, &iter, sptep) {
1619                 if (*sptep & shadow_accessed_mask) {
1620                         young = 1;
1621                         break;
1622                 }
1623         }
1624 out:
1625         return young;
1626 }
1627
1628 #define RMAP_RECYCLE_THRESHOLD 1000
1629
1630 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1631 {
1632         struct kvm_rmap_head *rmap_head;
1633         struct kvm_mmu_page *sp;
1634
1635         sp = page_header(__pa(spte));
1636
1637         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1638
1639         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1640         kvm_flush_remote_tlbs(vcpu->kvm);
1641 }
1642
1643 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644 {
1645         /*
1646          * In case of absence of EPT Access and Dirty Bits supports,
1647          * emulate the accessed bit for EPT, by checking if this page has
1648          * an EPT mapping, and clearing it if it does. On the next access,
1649          * a new EPT mapping will be established.
1650          * This has some overhead, but not as much as the cost of swapping
1651          * out actively used pages or breaking up actively used hugepages.
1652          */
1653         if (!shadow_accessed_mask) {
1654                 /*
1655                  * We are holding the kvm->mmu_lock, and we are blowing up
1656                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657                  * This is correct as long as we don't decouple the mmu_lock
1658                  * protected regions (like invalidate_range_start|end does).
1659                  */
1660                 kvm->mmu_notifier_seq++;
1661                 return kvm_handle_hva_range(kvm, start, end, 0,
1662                                             kvm_unmap_rmapp);
1663         }
1664
1665         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1666 }
1667
1668 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669 {
1670         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671 }
1672
1673 #ifdef MMU_DEBUG
1674 static int is_empty_shadow_page(u64 *spt)
1675 {
1676         u64 *pos;
1677         u64 *end;
1678
1679         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1680                 if (is_shadow_present_pte(*pos)) {
1681                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1682                                pos, *pos);
1683                         return 0;
1684                 }
1685         return 1;
1686 }
1687 #endif
1688
1689 /*
1690  * This value is the sum of all of the kvm instances's
1691  * kvm->arch.n_used_mmu_pages values.  We need a global,
1692  * aggregate version in order to make the slab shrinker
1693  * faster
1694  */
1695 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696 {
1697         kvm->arch.n_used_mmu_pages += nr;
1698         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699 }
1700
1701 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1702 {
1703         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1704         hlist_del(&sp->hash_link);
1705         list_del(&sp->link);
1706         free_page((unsigned long)sp->spt);
1707         if (!sp->role.direct)
1708                 free_page((unsigned long)sp->gfns);
1709         kmem_cache_free(mmu_page_header_cache, sp);
1710 }
1711
1712 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713 {
1714         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1715 }
1716
1717 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1718                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1719 {
1720         if (!parent_pte)
1721                 return;
1722
1723         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1724 }
1725
1726 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1727                                        u64 *parent_pte)
1728 {
1729         pte_list_remove(parent_pte, &sp->parent_ptes);
1730 }
1731
1732 static void drop_parent_pte(struct kvm_mmu_page *sp,
1733                             u64 *parent_pte)
1734 {
1735         mmu_page_remove_parent_pte(sp, parent_pte);
1736         mmu_spte_clear_no_track(parent_pte);
1737 }
1738
1739 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1740 {
1741         struct kvm_mmu_page *sp;
1742
1743         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1745         if (!direct)
1746                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1748
1749         /*
1750          * The active_mmu_pages list is the FIFO list, do not move the
1751          * page until it is zapped. kvm_zap_obsolete_pages depends on
1752          * this feature. See the comments in kvm_zap_obsolete_pages().
1753          */
1754         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1755         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756         return sp;
1757 }
1758
1759 static void mark_unsync(u64 *spte);
1760 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1761 {
1762         u64 *sptep;
1763         struct rmap_iterator iter;
1764
1765         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766                 mark_unsync(sptep);
1767         }
1768 }
1769
1770 static void mark_unsync(u64 *spte)
1771 {
1772         struct kvm_mmu_page *sp;
1773         unsigned int index;
1774
1775         sp = page_header(__pa(spte));
1776         index = spte - sp->spt;
1777         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1778                 return;
1779         if (sp->unsync_children++)
1780                 return;
1781         kvm_mmu_mark_parents_unsync(sp);
1782 }
1783
1784 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1785                                struct kvm_mmu_page *sp)
1786 {
1787         return 1;
1788 }
1789
1790 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791 {
1792 }
1793
1794 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795                                  struct kvm_mmu_page *sp, u64 *spte,
1796                                  const void *pte)
1797 {
1798         WARN_ON(1);
1799 }
1800
1801 #define KVM_PAGE_ARRAY_NR 16
1802
1803 struct kvm_mmu_pages {
1804         struct mmu_page_and_offset {
1805                 struct kvm_mmu_page *sp;
1806                 unsigned int idx;
1807         } page[KVM_PAGE_ARRAY_NR];
1808         unsigned int nr;
1809 };
1810
1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812                          int idx)
1813 {
1814         int i;
1815
1816         if (sp->unsync)
1817                 for (i=0; i < pvec->nr; i++)
1818                         if (pvec->page[i].sp == sp)
1819                                 return 0;
1820
1821         pvec->page[pvec->nr].sp = sp;
1822         pvec->page[pvec->nr].idx = idx;
1823         pvec->nr++;
1824         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825 }
1826
1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828 {
1829         --sp->unsync_children;
1830         WARN_ON((int)sp->unsync_children < 0);
1831         __clear_bit(idx, sp->unsync_child_bitmap);
1832 }
1833
1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835                            struct kvm_mmu_pages *pvec)
1836 {
1837         int i, ret, nr_unsync_leaf = 0;
1838
1839         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840                 struct kvm_mmu_page *child;
1841                 u64 ent = sp->spt[i];
1842
1843                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844                         clear_unsync_child_bit(sp, i);
1845                         continue;
1846                 }
1847
1848                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850                 if (child->unsync_children) {
1851                         if (mmu_pages_add(pvec, child, i))
1852                                 return -ENOSPC;
1853
1854                         ret = __mmu_unsync_walk(child, pvec);
1855                         if (!ret) {
1856                                 clear_unsync_child_bit(sp, i);
1857                                 continue;
1858                         } else if (ret > 0) {
1859                                 nr_unsync_leaf += ret;
1860                         } else
1861                                 return ret;
1862                 } else if (child->unsync) {
1863                         nr_unsync_leaf++;
1864                         if (mmu_pages_add(pvec, child, i))
1865                                 return -ENOSPC;
1866                 } else
1867                         clear_unsync_child_bit(sp, i);
1868         }
1869
1870         return nr_unsync_leaf;
1871 }
1872
1873 #define INVALID_INDEX (-1)
1874
1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876                            struct kvm_mmu_pages *pvec)
1877 {
1878         pvec->nr = 0;
1879         if (!sp->unsync_children)
1880                 return 0;
1881
1882         mmu_pages_add(pvec, sp, INVALID_INDEX);
1883         return __mmu_unsync_walk(sp, pvec);
1884 }
1885
1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888         WARN_ON(!sp->unsync);
1889         trace_kvm_mmu_sync_page(sp);
1890         sp->unsync = 0;
1891         --kvm->stat.mmu_unsync;
1892 }
1893
1894 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895                                     struct list_head *invalid_list);
1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897                                     struct list_head *invalid_list);
1898
1899 /*
1900  * NOTE: we should pay more attention on the zapped-obsolete page
1901  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902  * since it has been deleted from active_mmu_pages but still can be found
1903  * at hast list.
1904  *
1905  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907  * all the obsolete pages.
1908  */
1909 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1910         hlist_for_each_entry(_sp,                                       \
1911           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912                 if ((_sp)->gfn != (_gfn)) {} else
1913
1914 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1915         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1916                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1917
1918 /* @sp->gfn should be write-protected at the call site */
1919 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1920                            struct list_head *invalid_list, bool clear_unsync)
1921 {
1922         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1923                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1924                 return 1;
1925         }
1926
1927         if (clear_unsync)
1928                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1929
1930         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1931                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1932                 return 1;
1933         }
1934
1935         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1936         return 0;
1937 }
1938
1939 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1940                                    struct kvm_mmu_page *sp)
1941 {
1942         LIST_HEAD(invalid_list);
1943         int ret;
1944
1945         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1946         if (ret)
1947                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1948
1949         return ret;
1950 }
1951
1952 #ifdef CONFIG_KVM_MMU_AUDIT
1953 #include "mmu_audit.c"
1954 #else
1955 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1956 static void mmu_audit_disable(void) { }
1957 #endif
1958
1959 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1960                          struct list_head *invalid_list)
1961 {
1962         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1963 }
1964
1965 /* @gfn should be write-protected at the call site */
1966 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1967 {
1968         struct kvm_mmu_page *s;
1969         LIST_HEAD(invalid_list);
1970         bool flush = false;
1971
1972         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1973                 if (!s->unsync)
1974                         continue;
1975
1976                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1977                 kvm_unlink_unsync_page(vcpu->kvm, s);
1978                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1979                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1980                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1981                         continue;
1982                 }
1983                 flush = true;
1984         }
1985
1986         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1987         if (flush)
1988                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1989 }
1990
1991 struct mmu_page_path {
1992         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1993         unsigned int idx[PT64_ROOT_LEVEL];
1994 };
1995
1996 #define for_each_sp(pvec, sp, parents, i)                       \
1997                 for (i = mmu_pages_first(&pvec, &parents);      \
1998                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1999                         i = mmu_pages_next(&pvec, &parents, i))
2000
2001 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2002                           struct mmu_page_path *parents,
2003                           int i)
2004 {
2005         int n;
2006
2007         for (n = i+1; n < pvec->nr; n++) {
2008                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2009                 unsigned idx = pvec->page[n].idx;
2010                 int level = sp->role.level;
2011
2012                 parents->idx[level-1] = idx;
2013                 if (level == PT_PAGE_TABLE_LEVEL)
2014                         break;
2015
2016                 parents->parent[level-2] = sp;
2017         }
2018
2019         return n;
2020 }
2021
2022 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2023                            struct mmu_page_path *parents)
2024 {
2025         struct kvm_mmu_page *sp;
2026         int level;
2027
2028         if (pvec->nr == 0)
2029                 return 0;
2030
2031         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2032
2033         sp = pvec->page[0].sp;
2034         level = sp->role.level;
2035         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2036
2037         parents->parent[level-2] = sp;
2038
2039         /* Also set up a sentinel.  Further entries in pvec are all
2040          * children of sp, so this element is never overwritten.
2041          */
2042         parents->parent[level-1] = NULL;
2043         return mmu_pages_next(pvec, parents, 0);
2044 }
2045
2046 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2047 {
2048         struct kvm_mmu_page *sp;
2049         unsigned int level = 0;
2050
2051         do {
2052                 unsigned int idx = parents->idx[level];
2053                 sp = parents->parent[level];
2054                 if (!sp)
2055                         return;
2056
2057                 WARN_ON(idx == INVALID_INDEX);
2058                 clear_unsync_child_bit(sp, idx);
2059                 level++;
2060         } while (!sp->unsync_children);
2061 }
2062
2063 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2064                               struct kvm_mmu_page *parent)
2065 {
2066         int i;
2067         struct kvm_mmu_page *sp;
2068         struct mmu_page_path parents;
2069         struct kvm_mmu_pages pages;
2070         LIST_HEAD(invalid_list);
2071
2072         while (mmu_unsync_walk(parent, &pages)) {
2073                 bool protected = false;
2074
2075                 for_each_sp(pages, sp, parents, i)
2076                         protected |= rmap_write_protect(vcpu, sp->gfn);
2077
2078                 if (protected)
2079                         kvm_flush_remote_tlbs(vcpu->kvm);
2080
2081                 for_each_sp(pages, sp, parents, i) {
2082                         kvm_sync_page(vcpu, sp, &invalid_list);
2083                         mmu_pages_clear_parents(&parents);
2084                 }
2085                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2086                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2087         }
2088 }
2089
2090 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2091 {
2092         atomic_set(&sp->write_flooding_count,  0);
2093 }
2094
2095 static void clear_sp_write_flooding_count(u64 *spte)
2096 {
2097         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2098
2099         __clear_sp_write_flooding_count(sp);
2100 }
2101
2102 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2103 {
2104         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2105 }
2106
2107 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2108                                              gfn_t gfn,
2109                                              gva_t gaddr,
2110                                              unsigned level,
2111                                              int direct,
2112                                              unsigned access)
2113 {
2114         union kvm_mmu_page_role role;
2115         unsigned quadrant;
2116         struct kvm_mmu_page *sp;
2117         bool need_sync = false;
2118
2119         role = vcpu->arch.mmu.base_role;
2120         role.level = level;
2121         role.direct = direct;
2122         if (role.direct)
2123                 role.cr4_pae = 0;
2124         role.access = access;
2125         if (!vcpu->arch.mmu.direct_map
2126             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2127                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2128                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2129                 role.quadrant = quadrant;
2130         }
2131         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2132                 if (is_obsolete_sp(vcpu->kvm, sp))
2133                         continue;
2134
2135                 if (!need_sync && sp->unsync)
2136                         need_sync = true;
2137
2138                 if (sp->role.word != role.word)
2139                         continue;
2140
2141                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2142                         break;
2143
2144                 if (sp->unsync_children)
2145                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2146
2147                 __clear_sp_write_flooding_count(sp);
2148                 trace_kvm_mmu_get_page(sp, false);
2149                 return sp;
2150         }
2151
2152         ++vcpu->kvm->stat.mmu_cache_miss;
2153
2154         sp = kvm_mmu_alloc_page(vcpu, direct);
2155
2156         sp->gfn = gfn;
2157         sp->role = role;
2158         hlist_add_head(&sp->hash_link,
2159                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2160         if (!direct) {
2161                 /*
2162                  * we should do write protection before syncing pages
2163                  * otherwise the content of the synced shadow page may
2164                  * be inconsistent with guest page table.
2165                  */
2166                 account_shadowed(vcpu->kvm, sp);
2167                 if (level == PT_PAGE_TABLE_LEVEL &&
2168                       rmap_write_protect(vcpu, gfn))
2169                         kvm_flush_remote_tlbs(vcpu->kvm);
2170
2171                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2172                         kvm_sync_pages(vcpu, gfn);
2173         }
2174         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2175         clear_page(sp->spt);
2176         trace_kvm_mmu_get_page(sp, true);
2177         return sp;
2178 }
2179
2180 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2181                              struct kvm_vcpu *vcpu, u64 addr)
2182 {
2183         iterator->addr = addr;
2184         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2185         iterator->level = vcpu->arch.mmu.shadow_root_level;
2186
2187         if (iterator->level == PT64_ROOT_LEVEL &&
2188             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2189             !vcpu->arch.mmu.direct_map)
2190                 --iterator->level;
2191
2192         if (iterator->level == PT32E_ROOT_LEVEL) {
2193                 iterator->shadow_addr
2194                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2195                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2196                 --iterator->level;
2197                 if (!iterator->shadow_addr)
2198                         iterator->level = 0;
2199         }
2200 }
2201
2202 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2203 {
2204         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2205                 return false;
2206
2207         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2208         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2209         return true;
2210 }
2211
2212 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2213                                u64 spte)
2214 {
2215         if (is_last_spte(spte, iterator->level)) {
2216                 iterator->level = 0;
2217                 return;
2218         }
2219
2220         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2221         --iterator->level;
2222 }
2223
2224 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2225 {
2226         return __shadow_walk_next(iterator, *iterator->sptep);
2227 }
2228
2229 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2230                              struct kvm_mmu_page *sp)
2231 {
2232         u64 spte;
2233
2234         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2235                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2236
2237         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2238                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2239
2240         mmu_spte_set(sptep, spte);
2241
2242         mmu_page_add_parent_pte(vcpu, sp, sptep);
2243
2244         if (sp->unsync_children || sp->unsync)
2245                 mark_unsync(sptep);
2246 }
2247
2248 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2249                                    unsigned direct_access)
2250 {
2251         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2252                 struct kvm_mmu_page *child;
2253
2254                 /*
2255                  * For the direct sp, if the guest pte's dirty bit
2256                  * changed form clean to dirty, it will corrupt the
2257                  * sp's access: allow writable in the read-only sp,
2258                  * so we should update the spte at this point to get
2259                  * a new sp with the correct access.
2260                  */
2261                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2262                 if (child->role.access == direct_access)
2263                         return;
2264
2265                 drop_parent_pte(child, sptep);
2266                 kvm_flush_remote_tlbs(vcpu->kvm);
2267         }
2268 }
2269
2270 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2271                              u64 *spte)
2272 {
2273         u64 pte;
2274         struct kvm_mmu_page *child;
2275
2276         pte = *spte;
2277         if (is_shadow_present_pte(pte)) {
2278                 if (is_last_spte(pte, sp->role.level)) {
2279                         drop_spte(kvm, spte);
2280                         if (is_large_pte(pte))
2281                                 --kvm->stat.lpages;
2282                 } else {
2283                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2284                         drop_parent_pte(child, spte);
2285                 }
2286                 return true;
2287         }
2288
2289         if (is_mmio_spte(pte))
2290                 mmu_spte_clear_no_track(spte);
2291
2292         return false;
2293 }
2294
2295 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2296                                          struct kvm_mmu_page *sp)
2297 {
2298         unsigned i;
2299
2300         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2301                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2302 }
2303
2304 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2305 {
2306         u64 *sptep;
2307         struct rmap_iterator iter;
2308
2309         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2310                 drop_parent_pte(sp, sptep);
2311 }
2312
2313 static int mmu_zap_unsync_children(struct kvm *kvm,
2314                                    struct kvm_mmu_page *parent,
2315                                    struct list_head *invalid_list)
2316 {
2317         int i, zapped = 0;
2318         struct mmu_page_path parents;
2319         struct kvm_mmu_pages pages;
2320
2321         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2322                 return 0;
2323
2324         while (mmu_unsync_walk(parent, &pages)) {
2325                 struct kvm_mmu_page *sp;
2326
2327                 for_each_sp(pages, sp, parents, i) {
2328                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2329                         mmu_pages_clear_parents(&parents);
2330                         zapped++;
2331                 }
2332         }
2333
2334         return zapped;
2335 }
2336
2337 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2338                                     struct list_head *invalid_list)
2339 {
2340         int ret;
2341
2342         trace_kvm_mmu_prepare_zap_page(sp);
2343         ++kvm->stat.mmu_shadow_zapped;
2344         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2345         kvm_mmu_page_unlink_children(kvm, sp);
2346         kvm_mmu_unlink_parents(kvm, sp);
2347
2348         if (!sp->role.invalid && !sp->role.direct)
2349                 unaccount_shadowed(kvm, sp);
2350
2351         if (sp->unsync)
2352                 kvm_unlink_unsync_page(kvm, sp);
2353         if (!sp->root_count) {
2354                 /* Count self */
2355                 ret++;
2356                 list_move(&sp->link, invalid_list);
2357                 kvm_mod_used_mmu_pages(kvm, -1);
2358         } else {
2359                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2360
2361                 /*
2362                  * The obsolete pages can not be used on any vcpus.
2363                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2364                  */
2365                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2366                         kvm_reload_remote_mmus(kvm);
2367         }
2368
2369         sp->role.invalid = 1;
2370         return ret;
2371 }
2372
2373 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2374                                     struct list_head *invalid_list)
2375 {
2376         struct kvm_mmu_page *sp, *nsp;
2377
2378         if (list_empty(invalid_list))
2379                 return;
2380
2381         /*
2382          * wmb: make sure everyone sees our modifications to the page tables
2383          * rmb: make sure we see changes to vcpu->mode
2384          */
2385         smp_mb();
2386
2387         /*
2388          * Wait for all vcpus to exit guest mode and/or lockless shadow
2389          * page table walks.
2390          */
2391         kvm_flush_remote_tlbs(kvm);
2392
2393         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2394                 WARN_ON(!sp->role.invalid || sp->root_count);
2395                 kvm_mmu_free_page(sp);
2396         }
2397 }
2398
2399 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2400                                         struct list_head *invalid_list)
2401 {
2402         struct kvm_mmu_page *sp;
2403
2404         if (list_empty(&kvm->arch.active_mmu_pages))
2405                 return false;
2406
2407         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2408                              struct kvm_mmu_page, link);
2409         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2410
2411         return true;
2412 }
2413
2414 /*
2415  * Changing the number of mmu pages allocated to the vm
2416  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2417  */
2418 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2419 {
2420         LIST_HEAD(invalid_list);
2421
2422         spin_lock(&kvm->mmu_lock);
2423
2424         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2425                 /* Need to free some mmu pages to achieve the goal. */
2426                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2427                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2428                                 break;
2429
2430                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2432         }
2433
2434         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2435
2436         spin_unlock(&kvm->mmu_lock);
2437 }
2438
2439 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2440 {
2441         struct kvm_mmu_page *sp;
2442         LIST_HEAD(invalid_list);
2443         int r;
2444
2445         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2446         r = 0;
2447         spin_lock(&kvm->mmu_lock);
2448         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2449                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2450                          sp->role.word);
2451                 r = 1;
2452                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2453         }
2454         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2455         spin_unlock(&kvm->mmu_lock);
2456
2457         return r;
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2460
2461 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2462 {
2463         trace_kvm_mmu_unsync_page(sp);
2464         ++vcpu->kvm->stat.mmu_unsync;
2465         sp->unsync = 1;
2466
2467         kvm_mmu_mark_parents_unsync(sp);
2468 }
2469
2470 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2471                                    bool can_unsync)
2472 {
2473         struct kvm_mmu_page *sp;
2474
2475         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2476                 return true;
2477
2478         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2479                 if (!can_unsync)
2480                         return true;
2481
2482                 if (sp->unsync)
2483                         continue;
2484
2485                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2486                 kvm_unsync_page(vcpu, sp);
2487         }
2488
2489         return false;
2490 }
2491
2492 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2493 {
2494         if (pfn_valid(pfn))
2495                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2496
2497         return true;
2498 }
2499
2500 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2501                     unsigned pte_access, int level,
2502                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2503                     bool can_unsync, bool host_writable)
2504 {
2505         u64 spte;
2506         int ret = 0;
2507
2508         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2509                 return 0;
2510
2511         spte = PT_PRESENT_MASK;
2512         if (!speculative)
2513                 spte |= shadow_accessed_mask;
2514
2515         if (pte_access & ACC_EXEC_MASK)
2516                 spte |= shadow_x_mask;
2517         else
2518                 spte |= shadow_nx_mask;
2519
2520         if (pte_access & ACC_USER_MASK)
2521                 spte |= shadow_user_mask;
2522
2523         if (level > PT_PAGE_TABLE_LEVEL)
2524                 spte |= PT_PAGE_SIZE_MASK;
2525         if (tdp_enabled)
2526                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2527                         kvm_is_mmio_pfn(pfn));
2528
2529         if (host_writable)
2530                 spte |= SPTE_HOST_WRITEABLE;
2531         else
2532                 pte_access &= ~ACC_WRITE_MASK;
2533
2534         spte |= (u64)pfn << PAGE_SHIFT;
2535
2536         if (pte_access & ACC_WRITE_MASK) {
2537
2538                 /*
2539                  * Other vcpu creates new sp in the window between
2540                  * mapping_level() and acquiring mmu-lock. We can
2541                  * allow guest to retry the access, the mapping can
2542                  * be fixed if guest refault.
2543                  */
2544                 if (level > PT_PAGE_TABLE_LEVEL &&
2545                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2546                         goto done;
2547
2548                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2549
2550                 /*
2551                  * Optimization: for pte sync, if spte was writable the hash
2552                  * lookup is unnecessary (and expensive). Write protection
2553                  * is responsibility of mmu_get_page / kvm_sync_page.
2554                  * Same reasoning can be applied to dirty page accounting.
2555                  */
2556                 if (!can_unsync && is_writable_pte(*sptep))
2557                         goto set_pte;
2558
2559                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2560                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2561                                  __func__, gfn);
2562                         ret = 1;
2563                         pte_access &= ~ACC_WRITE_MASK;
2564                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2565                 }
2566         }
2567
2568         if (pte_access & ACC_WRITE_MASK) {
2569                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2570                 spte |= shadow_dirty_mask;
2571         }
2572
2573 set_pte:
2574         if (mmu_spte_update(sptep, spte))
2575                 kvm_flush_remote_tlbs(vcpu->kvm);
2576 done:
2577         return ret;
2578 }
2579
2580 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2581                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2582                          bool speculative, bool host_writable)
2583 {
2584         int was_rmapped = 0;
2585         int rmap_count;
2586         bool emulate = false;
2587
2588         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2589                  *sptep, write_fault, gfn);
2590
2591         if (is_shadow_present_pte(*sptep)) {
2592                 /*
2593                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2594                  * the parent of the now unreachable PTE.
2595                  */
2596                 if (level > PT_PAGE_TABLE_LEVEL &&
2597                     !is_large_pte(*sptep)) {
2598                         struct kvm_mmu_page *child;
2599                         u64 pte = *sptep;
2600
2601                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2602                         drop_parent_pte(child, sptep);
2603                         kvm_flush_remote_tlbs(vcpu->kvm);
2604                 } else if (pfn != spte_to_pfn(*sptep)) {
2605                         pgprintk("hfn old %llx new %llx\n",
2606                                  spte_to_pfn(*sptep), pfn);
2607                         drop_spte(vcpu->kvm, sptep);
2608                         kvm_flush_remote_tlbs(vcpu->kvm);
2609                 } else
2610                         was_rmapped = 1;
2611         }
2612
2613         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2614               true, host_writable)) {
2615                 if (write_fault)
2616                         emulate = true;
2617                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2618         }
2619
2620         if (unlikely(is_mmio_spte(*sptep)))
2621                 emulate = true;
2622
2623         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2624         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2625                  is_large_pte(*sptep)? "2MB" : "4kB",
2626                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2627                  *sptep, sptep);
2628         if (!was_rmapped && is_large_pte(*sptep))
2629                 ++vcpu->kvm->stat.lpages;
2630
2631         if (is_shadow_present_pte(*sptep)) {
2632                 if (!was_rmapped) {
2633                         rmap_count = rmap_add(vcpu, sptep, gfn);
2634                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2635                                 rmap_recycle(vcpu, sptep, gfn);
2636                 }
2637         }
2638
2639         kvm_release_pfn_clean(pfn);
2640
2641         return emulate;
2642 }
2643
2644 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2645                                      bool no_dirty_log)
2646 {
2647         struct kvm_memory_slot *slot;
2648
2649         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2650         if (!slot)
2651                 return KVM_PFN_ERR_FAULT;
2652
2653         return gfn_to_pfn_memslot_atomic(slot, gfn);
2654 }
2655
2656 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2657                                     struct kvm_mmu_page *sp,
2658                                     u64 *start, u64 *end)
2659 {
2660         struct page *pages[PTE_PREFETCH_NUM];
2661         struct kvm_memory_slot *slot;
2662         unsigned access = sp->role.access;
2663         int i, ret;
2664         gfn_t gfn;
2665
2666         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2667         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2668         if (!slot)
2669                 return -1;
2670
2671         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2672         if (ret <= 0)
2673                 return -1;
2674
2675         for (i = 0; i < ret; i++, gfn++, start++)
2676                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2677                              page_to_pfn(pages[i]), true, true);
2678
2679         return 0;
2680 }
2681
2682 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2683                                   struct kvm_mmu_page *sp, u64 *sptep)
2684 {
2685         u64 *spte, *start = NULL;
2686         int i;
2687
2688         WARN_ON(!sp->role.direct);
2689
2690         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2691         spte = sp->spt + i;
2692
2693         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2694                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2695                         if (!start)
2696                                 continue;
2697                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2698                                 break;
2699                         start = NULL;
2700                 } else if (!start)
2701                         start = spte;
2702         }
2703 }
2704
2705 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2706 {
2707         struct kvm_mmu_page *sp;
2708
2709         /*
2710          * Since it's no accessed bit on EPT, it's no way to
2711          * distinguish between actually accessed translations
2712          * and prefetched, so disable pte prefetch if EPT is
2713          * enabled.
2714          */
2715         if (!shadow_accessed_mask)
2716                 return;
2717
2718         sp = page_header(__pa(sptep));
2719         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2720                 return;
2721
2722         __direct_pte_prefetch(vcpu, sp, sptep);
2723 }
2724
2725 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2726                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2727 {
2728         struct kvm_shadow_walk_iterator iterator;
2729         struct kvm_mmu_page *sp;
2730         int emulate = 0;
2731         gfn_t pseudo_gfn;
2732
2733         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2734                 return 0;
2735
2736         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2737                 if (iterator.level == level) {
2738                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2739                                                write, level, gfn, pfn, prefault,
2740                                                map_writable);
2741                         direct_pte_prefetch(vcpu, iterator.sptep);
2742                         ++vcpu->stat.pf_fixed;
2743                         break;
2744                 }
2745
2746                 drop_large_spte(vcpu, iterator.sptep);
2747                 if (!is_shadow_present_pte(*iterator.sptep)) {
2748                         u64 base_addr = iterator.addr;
2749
2750                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2751                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2752                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2753                                               iterator.level - 1, 1, ACC_ALL);
2754
2755                         link_shadow_page(vcpu, iterator.sptep, sp);
2756                 }
2757         }
2758         return emulate;
2759 }
2760
2761 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2762 {
2763         siginfo_t info;
2764
2765         info.si_signo   = SIGBUS;
2766         info.si_errno   = 0;
2767         info.si_code    = BUS_MCEERR_AR;
2768         info.si_addr    = (void __user *)address;
2769         info.si_addr_lsb = PAGE_SHIFT;
2770
2771         send_sig_info(SIGBUS, &info, tsk);
2772 }
2773
2774 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2775 {
2776         /*
2777          * Do not cache the mmio info caused by writing the readonly gfn
2778          * into the spte otherwise read access on readonly gfn also can
2779          * caused mmio page fault and treat it as mmio access.
2780          * Return 1 to tell kvm to emulate it.
2781          */
2782         if (pfn == KVM_PFN_ERR_RO_FAULT)
2783                 return 1;
2784
2785         if (pfn == KVM_PFN_ERR_HWPOISON) {
2786                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2787                 return 0;
2788         }
2789
2790         return -EFAULT;
2791 }
2792
2793 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2794                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2795                                         int *levelp)
2796 {
2797         kvm_pfn_t pfn = *pfnp;
2798         gfn_t gfn = *gfnp;
2799         int level = *levelp;
2800
2801         /*
2802          * Check if it's a transparent hugepage. If this would be an
2803          * hugetlbfs page, level wouldn't be set to
2804          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2805          * here.
2806          */
2807         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2808             level == PT_PAGE_TABLE_LEVEL &&
2809             PageTransCompound(pfn_to_page(pfn)) &&
2810             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2811                 unsigned long mask;
2812                 /*
2813                  * mmu_notifier_retry was successful and we hold the
2814                  * mmu_lock here, so the pmd can't become splitting
2815                  * from under us, and in turn
2816                  * __split_huge_page_refcount() can't run from under
2817                  * us and we can safely transfer the refcount from
2818                  * PG_tail to PG_head as we switch the pfn to tail to
2819                  * head.
2820                  */
2821                 *levelp = level = PT_DIRECTORY_LEVEL;
2822                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2823                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2824                 if (pfn & mask) {
2825                         gfn &= ~mask;
2826                         *gfnp = gfn;
2827                         kvm_release_pfn_clean(pfn);
2828                         pfn &= ~mask;
2829                         kvm_get_pfn(pfn);
2830                         *pfnp = pfn;
2831                 }
2832         }
2833 }
2834
2835 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2836                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2837 {
2838         /* The pfn is invalid, report the error! */
2839         if (unlikely(is_error_pfn(pfn))) {
2840                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2841                 return true;
2842         }
2843
2844         if (unlikely(is_noslot_pfn(pfn)))
2845                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2846
2847         return false;
2848 }
2849
2850 static bool page_fault_can_be_fast(u32 error_code)
2851 {
2852         /*
2853          * Do not fix the mmio spte with invalid generation number which
2854          * need to be updated by slow page fault path.
2855          */
2856         if (unlikely(error_code & PFERR_RSVD_MASK))
2857                 return false;
2858
2859         /*
2860          * #PF can be fast only if the shadow page table is present and it
2861          * is caused by write-protect, that means we just need change the
2862          * W bit of the spte which can be done out of mmu-lock.
2863          */
2864         if (!(error_code & PFERR_PRESENT_MASK) ||
2865               !(error_code & PFERR_WRITE_MASK))
2866                 return false;
2867
2868         return true;
2869 }
2870
2871 static bool
2872 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2873                         u64 *sptep, u64 spte)
2874 {
2875         gfn_t gfn;
2876
2877         WARN_ON(!sp->role.direct);
2878
2879         /*
2880          * The gfn of direct spte is stable since it is calculated
2881          * by sp->gfn.
2882          */
2883         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2884
2885         /*
2886          * Theoretically we could also set dirty bit (and flush TLB) here in
2887          * order to eliminate unnecessary PML logging. See comments in
2888          * set_spte. But fast_page_fault is very unlikely to happen with PML
2889          * enabled, so we do not do this. This might result in the same GPA
2890          * to be logged in PML buffer again when the write really happens, and
2891          * eventually to be called by mark_page_dirty twice. But it's also no
2892          * harm. This also avoids the TLB flush needed after setting dirty bit
2893          * so non-PML cases won't be impacted.
2894          *
2895          * Compare with set_spte where instead shadow_dirty_mask is set.
2896          */
2897         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2898                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2899
2900         return true;
2901 }
2902
2903 /*
2904  * Return value:
2905  * - true: let the vcpu to access on the same address again.
2906  * - false: let the real page fault path to fix it.
2907  */
2908 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2909                             u32 error_code)
2910 {
2911         struct kvm_shadow_walk_iterator iterator;
2912         struct kvm_mmu_page *sp;
2913         bool ret = false;
2914         u64 spte = 0ull;
2915
2916         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2917                 return false;
2918
2919         if (!page_fault_can_be_fast(error_code))
2920                 return false;
2921
2922         walk_shadow_page_lockless_begin(vcpu);
2923         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2924                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2925                         break;
2926
2927         /*
2928          * If the mapping has been changed, let the vcpu fault on the
2929          * same address again.
2930          */
2931         if (!is_shadow_present_pte(spte)) {
2932                 ret = true;
2933                 goto exit;
2934         }
2935
2936         sp = page_header(__pa(iterator.sptep));
2937         if (!is_last_spte(spte, sp->role.level))
2938                 goto exit;
2939
2940         /*
2941          * Check if it is a spurious fault caused by TLB lazily flushed.
2942          *
2943          * Need not check the access of upper level table entries since
2944          * they are always ACC_ALL.
2945          */
2946          if (is_writable_pte(spte)) {
2947                 ret = true;
2948                 goto exit;
2949         }
2950
2951         /*
2952          * Currently, to simplify the code, only the spte write-protected
2953          * by dirty-log can be fast fixed.
2954          */
2955         if (!spte_is_locklessly_modifiable(spte))
2956                 goto exit;
2957
2958         /*
2959          * Do not fix write-permission on the large spte since we only dirty
2960          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2961          * that means other pages are missed if its slot is dirty-logged.
2962          *
2963          * Instead, we let the slow page fault path create a normal spte to
2964          * fix the access.
2965          *
2966          * See the comments in kvm_arch_commit_memory_region().
2967          */
2968         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2969                 goto exit;
2970
2971         /*
2972          * Currently, fast page fault only works for direct mapping since
2973          * the gfn is not stable for indirect shadow page.
2974          * See Documentation/virtual/kvm/locking.txt to get more detail.
2975          */
2976         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2977 exit:
2978         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2979                               spte, ret);
2980         walk_shadow_page_lockless_end(vcpu);
2981
2982         return ret;
2983 }
2984
2985 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2986                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2987 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2988
2989 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2990                          gfn_t gfn, bool prefault)
2991 {
2992         int r;
2993         int level;
2994         bool force_pt_level = false;
2995         kvm_pfn_t pfn;
2996         unsigned long mmu_seq;
2997         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2998
2999         level = mapping_level(vcpu, gfn, &force_pt_level);
3000         if (likely(!force_pt_level)) {
3001                 /*
3002                  * This path builds a PAE pagetable - so we can map
3003                  * 2mb pages at maximum. Therefore check if the level
3004                  * is larger than that.
3005                  */
3006                 if (level > PT_DIRECTORY_LEVEL)
3007                         level = PT_DIRECTORY_LEVEL;
3008
3009                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3010         }
3011
3012         if (fast_page_fault(vcpu, v, level, error_code))
3013                 return 0;
3014
3015         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3016         smp_rmb();
3017
3018         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3019                 return 0;
3020
3021         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3022                 return r;
3023
3024         spin_lock(&vcpu->kvm->mmu_lock);
3025         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3026                 goto out_unlock;
3027         make_mmu_pages_available(vcpu);
3028         if (likely(!force_pt_level))
3029                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3030         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3031         spin_unlock(&vcpu->kvm->mmu_lock);
3032
3033         return r;
3034
3035 out_unlock:
3036         spin_unlock(&vcpu->kvm->mmu_lock);
3037         kvm_release_pfn_clean(pfn);
3038         return 0;
3039 }
3040
3041
3042 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3043 {
3044         int i;
3045         struct kvm_mmu_page *sp;
3046         LIST_HEAD(invalid_list);
3047
3048         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3049                 return;
3050
3051         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3052             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3053              vcpu->arch.mmu.direct_map)) {
3054                 hpa_t root = vcpu->arch.mmu.root_hpa;
3055
3056                 spin_lock(&vcpu->kvm->mmu_lock);
3057                 sp = page_header(root);
3058                 --sp->root_count;
3059                 if (!sp->root_count && sp->role.invalid) {
3060                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3061                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3062                 }
3063                 spin_unlock(&vcpu->kvm->mmu_lock);
3064                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3065                 return;
3066         }
3067
3068         spin_lock(&vcpu->kvm->mmu_lock);
3069         for (i = 0; i < 4; ++i) {
3070                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3071
3072                 if (root) {
3073                         root &= PT64_BASE_ADDR_MASK;
3074                         sp = page_header(root);
3075                         --sp->root_count;
3076                         if (!sp->root_count && sp->role.invalid)
3077                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3078                                                          &invalid_list);
3079                 }
3080                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3081         }
3082         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3083         spin_unlock(&vcpu->kvm->mmu_lock);
3084         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3085 }
3086
3087 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3088 {
3089         int ret = 0;
3090
3091         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3092                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3093                 ret = 1;
3094         }
3095
3096         return ret;
3097 }
3098
3099 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3100 {
3101         struct kvm_mmu_page *sp;
3102         unsigned i;
3103
3104         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3105                 spin_lock(&vcpu->kvm->mmu_lock);
3106                 make_mmu_pages_available(vcpu);
3107                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3108                 ++sp->root_count;
3109                 spin_unlock(&vcpu->kvm->mmu_lock);
3110                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3111         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3112                 for (i = 0; i < 4; ++i) {
3113                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3114
3115                         MMU_WARN_ON(VALID_PAGE(root));
3116                         spin_lock(&vcpu->kvm->mmu_lock);
3117                         make_mmu_pages_available(vcpu);
3118                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3119                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3120                         root = __pa(sp->spt);
3121                         ++sp->root_count;
3122                         spin_unlock(&vcpu->kvm->mmu_lock);
3123                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3124                 }
3125                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3126         } else
3127                 BUG();
3128
3129         return 0;
3130 }
3131
3132 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3133 {
3134         struct kvm_mmu_page *sp;
3135         u64 pdptr, pm_mask;
3136         gfn_t root_gfn;
3137         int i;
3138
3139         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3140
3141         if (mmu_check_root(vcpu, root_gfn))
3142                 return 1;
3143
3144         /*
3145          * Do we shadow a long mode page table? If so we need to
3146          * write-protect the guests page table root.
3147          */
3148         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3149                 hpa_t root = vcpu->arch.mmu.root_hpa;
3150
3151                 MMU_WARN_ON(VALID_PAGE(root));
3152
3153                 spin_lock(&vcpu->kvm->mmu_lock);
3154                 make_mmu_pages_available(vcpu);
3155                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3156                                       0, ACC_ALL);
3157                 root = __pa(sp->spt);
3158                 ++sp->root_count;
3159                 spin_unlock(&vcpu->kvm->mmu_lock);
3160                 vcpu->arch.mmu.root_hpa = root;
3161                 return 0;
3162         }
3163
3164         /*
3165          * We shadow a 32 bit page table. This may be a legacy 2-level
3166          * or a PAE 3-level page table. In either case we need to be aware that
3167          * the shadow page table may be a PAE or a long mode page table.
3168          */
3169         pm_mask = PT_PRESENT_MASK;
3170         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3171                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3172
3173         for (i = 0; i < 4; ++i) {
3174                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3175
3176                 MMU_WARN_ON(VALID_PAGE(root));
3177                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3178                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3179                         if (!is_present_gpte(pdptr)) {
3180                                 vcpu->arch.mmu.pae_root[i] = 0;
3181                                 continue;
3182                         }
3183                         root_gfn = pdptr >> PAGE_SHIFT;
3184                         if (mmu_check_root(vcpu, root_gfn))
3185                                 return 1;
3186                 }
3187                 spin_lock(&vcpu->kvm->mmu_lock);
3188                 make_mmu_pages_available(vcpu);
3189                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3190                                       0, ACC_ALL);
3191                 root = __pa(sp->spt);
3192                 ++sp->root_count;
3193                 spin_unlock(&vcpu->kvm->mmu_lock);
3194
3195                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3196         }
3197         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3198
3199         /*
3200          * If we shadow a 32 bit page table with a long mode page
3201          * table we enter this path.
3202          */
3203         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3204                 if (vcpu->arch.mmu.lm_root == NULL) {
3205                         /*
3206                          * The additional page necessary for this is only
3207                          * allocated on demand.
3208                          */
3209
3210                         u64 *lm_root;
3211
3212                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3213                         if (lm_root == NULL)
3214                                 return 1;
3215
3216                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3217
3218                         vcpu->arch.mmu.lm_root = lm_root;
3219                 }
3220
3221                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3222         }
3223
3224         return 0;
3225 }
3226
3227 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3228 {
3229         if (vcpu->arch.mmu.direct_map)
3230                 return mmu_alloc_direct_roots(vcpu);
3231         else
3232                 return mmu_alloc_shadow_roots(vcpu);
3233 }
3234
3235 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3236 {
3237         int i;
3238         struct kvm_mmu_page *sp;
3239
3240         if (vcpu->arch.mmu.direct_map)
3241                 return;
3242
3243         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3244                 return;
3245
3246         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3247         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3248         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3249                 hpa_t root = vcpu->arch.mmu.root_hpa;
3250                 sp = page_header(root);
3251                 mmu_sync_children(vcpu, sp);
3252                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3253                 return;
3254         }
3255         for (i = 0; i < 4; ++i) {
3256                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3257
3258                 if (root && VALID_PAGE(root)) {
3259                         root &= PT64_BASE_ADDR_MASK;
3260                         sp = page_header(root);
3261                         mmu_sync_children(vcpu, sp);
3262                 }
3263         }
3264         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3265 }
3266
3267 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3268 {
3269         spin_lock(&vcpu->kvm->mmu_lock);
3270         mmu_sync_roots(vcpu);
3271         spin_unlock(&vcpu->kvm->mmu_lock);
3272 }
3273 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3274
3275 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3276                                   u32 access, struct x86_exception *exception)
3277 {
3278         if (exception)
3279                 exception->error_code = 0;
3280         return vaddr;
3281 }
3282
3283 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3284                                          u32 access,
3285                                          struct x86_exception *exception)
3286 {
3287         if (exception)
3288                 exception->error_code = 0;
3289         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3290 }
3291
3292 static bool
3293 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3294 {
3295         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3296
3297         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3298                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3299 }
3300
3301 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3302 {
3303         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3304 }
3305
3306 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3307 {
3308         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3309 }
3310
3311 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3312 {
3313         if (direct)
3314                 return vcpu_match_mmio_gpa(vcpu, addr);
3315
3316         return vcpu_match_mmio_gva(vcpu, addr);
3317 }
3318
3319 /* return true if reserved bit is detected on spte. */
3320 static bool
3321 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3322 {
3323         struct kvm_shadow_walk_iterator iterator;
3324         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3325         int root, leaf;
3326         bool reserved = false;
3327
3328         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3329                 goto exit;
3330
3331         walk_shadow_page_lockless_begin(vcpu);
3332
3333         for (shadow_walk_init(&iterator, vcpu, addr),
3334                  leaf = root = iterator.level;
3335              shadow_walk_okay(&iterator);
3336              __shadow_walk_next(&iterator, spte)) {
3337                 spte = mmu_spte_get_lockless(iterator.sptep);
3338
3339                 sptes[leaf - 1] = spte;
3340                 leaf--;
3341
3342                 if (!is_shadow_present_pte(spte))
3343                         break;
3344
3345                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3346                                                     iterator.level);
3347         }
3348
3349         walk_shadow_page_lockless_end(vcpu);
3350
3351         if (reserved) {
3352                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3353                        __func__, addr);
3354                 while (root > leaf) {
3355                         pr_err("------ spte 0x%llx level %d.\n",
3356                                sptes[root - 1], root);
3357                         root--;
3358                 }
3359         }
3360 exit:
3361         *sptep = spte;
3362         return reserved;
3363 }
3364
3365 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3366 {
3367         u64 spte;
3368         bool reserved;
3369
3370         if (mmio_info_in_cache(vcpu, addr, direct))
3371                 return RET_MMIO_PF_EMULATE;
3372
3373         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3374         if (WARN_ON(reserved))
3375                 return RET_MMIO_PF_BUG;
3376
3377         if (is_mmio_spte(spte)) {
3378                 gfn_t gfn = get_mmio_spte_gfn(spte);
3379                 unsigned access = get_mmio_spte_access(spte);
3380
3381                 if (!check_mmio_spte(vcpu, spte))
3382                         return RET_MMIO_PF_INVALID;
3383
3384                 if (direct)
3385                         addr = 0;
3386
3387                 trace_handle_mmio_page_fault(addr, gfn, access);
3388                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3389                 return RET_MMIO_PF_EMULATE;
3390         }
3391
3392         /*
3393          * If the page table is zapped by other cpus, let CPU fault again on
3394          * the address.
3395          */
3396         return RET_MMIO_PF_RETRY;
3397 }
3398 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3399
3400 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3401                                          u32 error_code, gfn_t gfn)
3402 {
3403         if (unlikely(error_code & PFERR_RSVD_MASK))
3404                 return false;
3405
3406         if (!(error_code & PFERR_PRESENT_MASK) ||
3407               !(error_code & PFERR_WRITE_MASK))
3408                 return false;
3409
3410         /*
3411          * guest is writing the page which is write tracked which can
3412          * not be fixed by page fault handler.
3413          */
3414         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3415                 return true;
3416
3417         return false;
3418 }
3419
3420 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3421 {
3422         struct kvm_shadow_walk_iterator iterator;
3423         u64 spte;
3424
3425         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3426                 return;
3427
3428         walk_shadow_page_lockless_begin(vcpu);
3429         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3430                 clear_sp_write_flooding_count(iterator.sptep);
3431                 if (!is_shadow_present_pte(spte))
3432                         break;
3433         }
3434         walk_shadow_page_lockless_end(vcpu);
3435 }
3436
3437 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3438                                 u32 error_code, bool prefault)
3439 {
3440         gfn_t gfn = gva >> PAGE_SHIFT;
3441         int r;
3442
3443         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3444
3445         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3446                 return 1;
3447
3448         r = mmu_topup_memory_caches(vcpu);
3449         if (r)
3450                 return r;
3451
3452         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3453
3454
3455         return nonpaging_map(vcpu, gva & PAGE_MASK,
3456                              error_code, gfn, prefault);
3457 }
3458
3459 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3460 {
3461         struct kvm_arch_async_pf arch;
3462
3463         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3464         arch.gfn = gfn;
3465         arch.direct_map = vcpu->arch.mmu.direct_map;
3466         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3467
3468         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3469 }
3470
3471 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3472 {
3473         if (unlikely(!lapic_in_kernel(vcpu) ||
3474                      kvm_event_needs_reinjection(vcpu)))
3475                 return false;
3476
3477         return kvm_x86_ops->interrupt_allowed(vcpu);
3478 }
3479
3480 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3481                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3482 {
3483         struct kvm_memory_slot *slot;
3484         bool async;
3485
3486         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3487         async = false;
3488         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3489         if (!async)
3490                 return false; /* *pfn has correct page already */
3491
3492         if (!prefault && can_do_async_pf(vcpu)) {
3493                 trace_kvm_try_async_get_page(gva, gfn);
3494                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3495                         trace_kvm_async_pf_doublefault(gva, gfn);
3496                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3497                         return true;
3498                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3499                         return true;
3500         }
3501
3502         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3503         return false;
3504 }
3505
3506 static bool
3507 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3508 {
3509         int page_num = KVM_PAGES_PER_HPAGE(level);
3510
3511         gfn &= ~(page_num - 1);
3512
3513         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3514 }
3515
3516 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3517                           bool prefault)
3518 {
3519         kvm_pfn_t pfn;
3520         int r;
3521         int level;
3522         bool force_pt_level;
3523         gfn_t gfn = gpa >> PAGE_SHIFT;
3524         unsigned long mmu_seq;
3525         int write = error_code & PFERR_WRITE_MASK;
3526         bool map_writable;
3527
3528         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3529
3530         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3531                 return 1;
3532
3533         r = mmu_topup_memory_caches(vcpu);
3534         if (r)
3535                 return r;
3536
3537         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3538                                                            PT_DIRECTORY_LEVEL);
3539         level = mapping_level(vcpu, gfn, &force_pt_level);
3540         if (likely(!force_pt_level)) {
3541                 if (level > PT_DIRECTORY_LEVEL &&
3542                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3543                         level = PT_DIRECTORY_LEVEL;
3544                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3545         }
3546
3547         if (fast_page_fault(vcpu, gpa, level, error_code))
3548                 return 0;
3549
3550         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3551         smp_rmb();
3552
3553         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3554                 return 0;
3555
3556         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3557                 return r;
3558
3559         spin_lock(&vcpu->kvm->mmu_lock);
3560         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3561                 goto out_unlock;
3562         make_mmu_pages_available(vcpu);
3563         if (likely(!force_pt_level))
3564                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3565         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3566         spin_unlock(&vcpu->kvm->mmu_lock);
3567
3568         return r;
3569
3570 out_unlock:
3571         spin_unlock(&vcpu->kvm->mmu_lock);
3572         kvm_release_pfn_clean(pfn);
3573         return 0;
3574 }
3575
3576 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3577                                    struct kvm_mmu *context)
3578 {
3579         context->page_fault = nonpaging_page_fault;
3580         context->gva_to_gpa = nonpaging_gva_to_gpa;
3581         context->sync_page = nonpaging_sync_page;
3582         context->invlpg = nonpaging_invlpg;
3583         context->update_pte = nonpaging_update_pte;
3584         context->root_level = 0;
3585         context->shadow_root_level = PT32E_ROOT_LEVEL;
3586         context->root_hpa = INVALID_PAGE;
3587         context->direct_map = true;
3588         context->nx = false;
3589 }
3590
3591 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3592 {
3593         mmu_free_roots(vcpu);
3594 }
3595
3596 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3597 {
3598         return kvm_read_cr3(vcpu);
3599 }
3600
3601 static void inject_page_fault(struct kvm_vcpu *vcpu,
3602                               struct x86_exception *fault)
3603 {
3604         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3605 }
3606
3607 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3608                            unsigned access, int *nr_present)
3609 {
3610         if (unlikely(is_mmio_spte(*sptep))) {
3611                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3612                         mmu_spte_clear_no_track(sptep);
3613                         return true;
3614                 }
3615
3616                 (*nr_present)++;
3617                 mark_mmio_spte(vcpu, sptep, gfn, access);
3618                 return true;
3619         }
3620
3621         return false;
3622 }
3623
3624 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3625 {
3626         unsigned index;
3627
3628         index = level - 1;
3629         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3630         return mmu->last_pte_bitmap & (1 << index);
3631 }
3632
3633 #define PTTYPE_EPT 18 /* arbitrary */
3634 #define PTTYPE PTTYPE_EPT
3635 #include "paging_tmpl.h"
3636 #undef PTTYPE
3637
3638 #define PTTYPE 64
3639 #include "paging_tmpl.h"
3640 #undef PTTYPE
3641
3642 #define PTTYPE 32
3643 #include "paging_tmpl.h"
3644 #undef PTTYPE
3645
3646 static void
3647 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3648                         struct rsvd_bits_validate *rsvd_check,
3649                         int maxphyaddr, int level, bool nx, bool gbpages,
3650                         bool pse, bool amd)
3651 {
3652         u64 exb_bit_rsvd = 0;
3653         u64 gbpages_bit_rsvd = 0;
3654         u64 nonleaf_bit8_rsvd = 0;
3655
3656         rsvd_check->bad_mt_xwr = 0;
3657
3658         if (!nx)
3659                 exb_bit_rsvd = rsvd_bits(63, 63);
3660         if (!gbpages)
3661                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3662
3663         /*
3664          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3665          * leaf entries) on AMD CPUs only.
3666          */
3667         if (amd)
3668                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3669
3670         switch (level) {
3671         case PT32_ROOT_LEVEL:
3672                 /* no rsvd bits for 2 level 4K page table entries */
3673                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3674                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3675                 rsvd_check->rsvd_bits_mask[1][0] =
3676                         rsvd_check->rsvd_bits_mask[0][0];
3677
3678                 if (!pse) {
3679                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3680                         break;
3681                 }
3682
3683                 if (is_cpuid_PSE36())
3684                         /* 36bits PSE 4MB page */
3685                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3686                 else
3687                         /* 32 bits PSE 4MB page */
3688                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3689                 break;
3690         case PT32E_ROOT_LEVEL:
3691                 rsvd_check->rsvd_bits_mask[0][2] =
3692                         rsvd_bits(maxphyaddr, 63) |
3693                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3694                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3695                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3696                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3697                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3698                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3699                         rsvd_bits(maxphyaddr, 62) |
3700                         rsvd_bits(13, 20);              /* large page */
3701                 rsvd_check->rsvd_bits_mask[1][0] =
3702                         rsvd_check->rsvd_bits_mask[0][0];
3703                 break;
3704         case PT64_ROOT_LEVEL:
3705                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3706                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3707                         rsvd_bits(maxphyaddr, 51);
3708                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3709                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3710                         rsvd_bits(maxphyaddr, 51);
3711                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3712                         rsvd_bits(maxphyaddr, 51);
3713                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3714                         rsvd_bits(maxphyaddr, 51);
3715                 rsvd_check->rsvd_bits_mask[1][3] =
3716                         rsvd_check->rsvd_bits_mask[0][3];
3717                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3718                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3719                         rsvd_bits(13, 29);
3720                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3721                         rsvd_bits(maxphyaddr, 51) |
3722                         rsvd_bits(13, 20);              /* large page */
3723                 rsvd_check->rsvd_bits_mask[1][0] =
3724                         rsvd_check->rsvd_bits_mask[0][0];
3725                 break;
3726         }
3727 }
3728
3729 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3730                                   struct kvm_mmu *context)
3731 {
3732         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3733                                 cpuid_maxphyaddr(vcpu), context->root_level,
3734                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3735                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3736 }
3737
3738 static void
3739 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3740                             int maxphyaddr, bool execonly)
3741 {
3742         u64 bad_mt_xwr;
3743
3744         rsvd_check->rsvd_bits_mask[0][3] =
3745                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3746         rsvd_check->rsvd_bits_mask[0][2] =
3747                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3748         rsvd_check->rsvd_bits_mask[0][1] =
3749                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3750         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3751
3752         /* large page */
3753         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3754         rsvd_check->rsvd_bits_mask[1][2] =
3755                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3756         rsvd_check->rsvd_bits_mask[1][1] =
3757                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3758         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3759
3760         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3761         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3762         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3763         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3764         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3765         if (!execonly) {
3766                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3767                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3768         }
3769         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3770 }
3771
3772 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3773                 struct kvm_mmu *context, bool execonly)
3774 {
3775         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3776                                     cpuid_maxphyaddr(vcpu), execonly);
3777 }
3778
3779 /*
3780  * the page table on host is the shadow page table for the page
3781  * table in guest or amd nested guest, its mmu features completely
3782  * follow the features in guest.
3783  */
3784 void
3785 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3786 {
3787         /*
3788          * Passing "true" to the last argument is okay; it adds a check
3789          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3790          */
3791         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3792                                 boot_cpu_data.x86_phys_bits,
3793                                 context->shadow_root_level, context->nx,
3794                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3795                                 true);
3796 }
3797 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3798
3799 static inline bool boot_cpu_is_amd(void)
3800 {
3801         WARN_ON_ONCE(!tdp_enabled);
3802         return shadow_x_mask == 0;
3803 }
3804
3805 /*
3806  * the direct page table on host, use as much mmu features as
3807  * possible, however, kvm currently does not do execution-protection.
3808  */
3809 static void
3810 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3811                                 struct kvm_mmu *context)
3812 {
3813         if (boot_cpu_is_amd())
3814                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3815                                         boot_cpu_data.x86_phys_bits,
3816                                         context->shadow_root_level, false,
3817                                         cpu_has_gbpages, true, true);
3818         else
3819                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3820                                             boot_cpu_data.x86_phys_bits,
3821                                             false);
3822
3823 }
3824
3825 /*
3826  * as the comments in reset_shadow_zero_bits_mask() except it
3827  * is the shadow page table for intel nested guest.
3828  */
3829 static void
3830 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3831                                 struct kvm_mmu *context, bool execonly)
3832 {
3833         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3834                                     boot_cpu_data.x86_phys_bits, execonly);
3835 }
3836
3837 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3838                                       struct kvm_mmu *mmu, bool ept)
3839 {
3840         unsigned bit, byte, pfec;
3841         u8 map;
3842         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3843
3844         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3845         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3846         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3847                 pfec = byte << 1;
3848                 map = 0;
3849                 wf = pfec & PFERR_WRITE_MASK;
3850                 uf = pfec & PFERR_USER_MASK;
3851                 ff = pfec & PFERR_FETCH_MASK;
3852                 /*
3853                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3854                  * subject to SMAP restrictions, and cleared otherwise. The
3855                  * bit is only meaningful if the SMAP bit is set in CR4.
3856                  */
3857                 smapf = !(pfec & PFERR_RSVD_MASK);
3858                 for (bit = 0; bit < 8; ++bit) {
3859                         x = bit & ACC_EXEC_MASK;
3860                         w = bit & ACC_WRITE_MASK;
3861                         u = bit & ACC_USER_MASK;
3862
3863                         if (!ept) {
3864                                 /* Not really needed: !nx will cause pte.nx to fault */
3865                                 x |= !mmu->nx;
3866                                 /* Allow supervisor writes if !cr0.wp */
3867                                 w |= !is_write_protection(vcpu) && !uf;
3868                                 /* Disallow supervisor fetches of user code if cr4.smep */
3869                                 x &= !(cr4_smep && u && !uf);
3870
3871                                 /*
3872                                  * SMAP:kernel-mode data accesses from user-mode
3873                                  * mappings should fault. A fault is considered
3874                                  * as a SMAP violation if all of the following
3875                                  * conditions are ture:
3876                                  *   - X86_CR4_SMAP is set in CR4
3877                                  *   - An user page is accessed
3878                                  *   - Page fault in kernel mode
3879                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3880                                  *
3881                                  *   Here, we cover the first three conditions.
3882                                  *   The fourth is computed dynamically in
3883                                  *   permission_fault() and is in smapf.
3884                                  *
3885                                  *   Also, SMAP does not affect instruction
3886                                  *   fetches, add the !ff check here to make it
3887                                  *   clearer.
3888                                  */
3889                                 smap = cr4_smap && u && !uf && !ff;
3890                         } else
3891                                 /* Not really needed: no U/S accesses on ept  */
3892                                 u = 1;
3893
3894                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3895                                 (smapf && smap);
3896                         map |= fault << bit;
3897                 }
3898                 mmu->permissions[byte] = map;
3899         }
3900 }
3901
3902 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3903 {
3904         u8 map;
3905         unsigned level, root_level = mmu->root_level;
3906         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3907
3908         if (root_level == PT32E_ROOT_LEVEL)
3909                 --root_level;
3910         /* PT_PAGE_TABLE_LEVEL always terminates */
3911         map = 1 | (1 << ps_set_index);
3912         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3913                 if (level <= PT_PDPE_LEVEL
3914                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3915                         map |= 1 << (ps_set_index | (level - 1));
3916         }
3917         mmu->last_pte_bitmap = map;
3918 }
3919
3920 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3921                                          struct kvm_mmu *context,
3922                                          int level)
3923 {
3924         context->nx = is_nx(vcpu);
3925         context->root_level = level;
3926
3927         reset_rsvds_bits_mask(vcpu, context);
3928         update_permission_bitmask(vcpu, context, false);
3929         update_last_pte_bitmap(vcpu, context);
3930
3931         MMU_WARN_ON(!is_pae(vcpu));
3932         context->page_fault = paging64_page_fault;
3933         context->gva_to_gpa = paging64_gva_to_gpa;
3934         context->sync_page = paging64_sync_page;
3935         context->invlpg = paging64_invlpg;
3936         context->update_pte = paging64_update_pte;
3937         context->shadow_root_level = level;
3938         context->root_hpa = INVALID_PAGE;
3939         context->direct_map = false;
3940 }
3941
3942 static void paging64_init_context(struct kvm_vcpu *vcpu,
3943                                   struct kvm_mmu *context)
3944 {
3945         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3946 }
3947
3948 static void paging32_init_context(struct kvm_vcpu *vcpu,
3949                                   struct kvm_mmu *context)
3950 {
3951         context->nx = false;
3952         context->root_level = PT32_ROOT_LEVEL;
3953
3954         reset_rsvds_bits_mask(vcpu, context);
3955         update_permission_bitmask(vcpu, context, false);
3956         update_last_pte_bitmap(vcpu, context);
3957
3958         context->page_fault = paging32_page_fault;
3959         context->gva_to_gpa = paging32_gva_to_gpa;
3960         context->sync_page = paging32_sync_page;
3961         context->invlpg = paging32_invlpg;
3962         context->update_pte = paging32_update_pte;
3963         context->shadow_root_level = PT32E_ROOT_LEVEL;
3964         context->root_hpa = INVALID_PAGE;
3965         context->direct_map = false;
3966 }
3967
3968 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3969                                    struct kvm_mmu *context)
3970 {
3971         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3972 }
3973
3974 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3975 {
3976         struct kvm_mmu *context = &vcpu->arch.mmu;
3977
3978         context->base_role.word = 0;
3979         context->base_role.smm = is_smm(vcpu);
3980         context->page_fault = tdp_page_fault;
3981         context->sync_page = nonpaging_sync_page;
3982         context->invlpg = nonpaging_invlpg;
3983         context->update_pte = nonpaging_update_pte;
3984         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3985         context->root_hpa = INVALID_PAGE;
3986         context->direct_map = true;
3987         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3988         context->get_cr3 = get_cr3;
3989         context->get_pdptr = kvm_pdptr_read;
3990         context->inject_page_fault = kvm_inject_page_fault;
3991
3992         if (!is_paging(vcpu)) {
3993                 context->nx = false;
3994                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3995                 context->root_level = 0;
3996         } else if (is_long_mode(vcpu)) {
3997                 context->nx = is_nx(vcpu);
3998                 context->root_level = PT64_ROOT_LEVEL;
3999                 reset_rsvds_bits_mask(vcpu, context);
4000                 context->gva_to_gpa = paging64_gva_to_gpa;
4001         } else if (is_pae(vcpu)) {
4002                 context->nx = is_nx(vcpu);
4003                 context->root_level = PT32E_ROOT_LEVEL;
4004                 reset_rsvds_bits_mask(vcpu, context);
4005                 context->gva_to_gpa = paging64_gva_to_gpa;
4006         } else {
4007                 context->nx = false;
4008                 context->root_level = PT32_ROOT_LEVEL;
4009                 reset_rsvds_bits_mask(vcpu, context);
4010                 context->gva_to_gpa = paging32_gva_to_gpa;
4011         }
4012
4013         update_permission_bitmask(vcpu, context, false);
4014         update_last_pte_bitmap(vcpu, context);
4015         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4016 }
4017
4018 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4019 {
4020         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4021         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4022         struct kvm_mmu *context = &vcpu->arch.mmu;
4023
4024         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4025
4026         if (!is_paging(vcpu))
4027                 nonpaging_init_context(vcpu, context);
4028         else if (is_long_mode(vcpu))
4029                 paging64_init_context(vcpu, context);
4030         else if (is_pae(vcpu))
4031                 paging32E_init_context(vcpu, context);
4032         else
4033                 paging32_init_context(vcpu, context);
4034
4035         context->base_role.nxe = is_nx(vcpu);
4036         context->base_role.cr4_pae = !!is_pae(vcpu);
4037         context->base_role.cr0_wp  = is_write_protection(vcpu);
4038         context->base_role.smep_andnot_wp
4039                 = smep && !is_write_protection(vcpu);
4040         context->base_role.smap_andnot_wp
4041                 = smap && !is_write_protection(vcpu);
4042         context->base_role.smm = is_smm(vcpu);
4043         reset_shadow_zero_bits_mask(vcpu, context);
4044 }
4045 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4046
4047 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4048 {
4049         struct kvm_mmu *context = &vcpu->arch.mmu;
4050
4051         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4052
4053         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4054
4055         context->nx = true;
4056         context->page_fault = ept_page_fault;
4057         context->gva_to_gpa = ept_gva_to_gpa;
4058         context->sync_page = ept_sync_page;
4059         context->invlpg = ept_invlpg;
4060         context->update_pte = ept_update_pte;
4061         context->root_level = context->shadow_root_level;
4062         context->root_hpa = INVALID_PAGE;
4063         context->direct_map = false;
4064
4065         update_permission_bitmask(vcpu, context, true);
4066         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4067         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4068 }
4069 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4070
4071 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4072 {
4073         struct kvm_mmu *context = &vcpu->arch.mmu;
4074
4075         kvm_init_shadow_mmu(vcpu);
4076         context->set_cr3           = kvm_x86_ops->set_cr3;
4077         context->get_cr3           = get_cr3;
4078         context->get_pdptr         = kvm_pdptr_read;
4079         context->inject_page_fault = kvm_inject_page_fault;
4080 }
4081
4082 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4083 {
4084         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4085
4086         g_context->get_cr3           = get_cr3;
4087         g_context->get_pdptr         = kvm_pdptr_read;
4088         g_context->inject_page_fault = kvm_inject_page_fault;
4089
4090         /*
4091          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4092          * L1's nested page tables (e.g. EPT12). The nested translation
4093          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4094          * L2's page tables as the first level of translation and L1's
4095          * nested page tables as the second level of translation. Basically
4096          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4097          */
4098         if (!is_paging(vcpu)) {
4099                 g_context->nx = false;
4100                 g_context->root_level = 0;
4101                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4102         } else if (is_long_mode(vcpu)) {
4103                 g_context->nx = is_nx(vcpu);
4104                 g_context->root_level = PT64_ROOT_LEVEL;
4105                 reset_rsvds_bits_mask(vcpu, g_context);
4106                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4107         } else if (is_pae(vcpu)) {
4108                 g_context->nx = is_nx(vcpu);
4109                 g_context->root_level = PT32E_ROOT_LEVEL;
4110                 reset_rsvds_bits_mask(vcpu, g_context);
4111                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4112         } else {
4113                 g_context->nx = false;
4114                 g_context->root_level = PT32_ROOT_LEVEL;
4115                 reset_rsvds_bits_mask(vcpu, g_context);
4116                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4117         }
4118
4119         update_permission_bitmask(vcpu, g_context, false);
4120         update_last_pte_bitmap(vcpu, g_context);
4121 }
4122
4123 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4124 {
4125         if (mmu_is_nested(vcpu))
4126                 init_kvm_nested_mmu(vcpu);
4127         else if (tdp_enabled)
4128                 init_kvm_tdp_mmu(vcpu);
4129         else
4130                 init_kvm_softmmu(vcpu);
4131 }
4132
4133 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4134 {
4135         kvm_mmu_unload(vcpu);
4136         init_kvm_mmu(vcpu);
4137 }
4138 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4139
4140 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4141 {
4142         int r;
4143
4144         r = mmu_topup_memory_caches(vcpu);
4145         if (r)
4146                 goto out;
4147         r = mmu_alloc_roots(vcpu);
4148         kvm_mmu_sync_roots(vcpu);
4149         if (r)
4150                 goto out;
4151         /* set_cr3() should ensure TLB has been flushed */
4152         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4153 out:
4154         return r;
4155 }
4156 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4157
4158 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4159 {
4160         mmu_free_roots(vcpu);
4161         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4162 }
4163 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4164
4165 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4166                                   struct kvm_mmu_page *sp, u64 *spte,
4167                                   const void *new)
4168 {
4169         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4170                 ++vcpu->kvm->stat.mmu_pde_zapped;
4171                 return;
4172         }
4173
4174         ++vcpu->kvm->stat.mmu_pte_updated;
4175         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4176 }
4177
4178 static bool need_remote_flush(u64 old, u64 new)
4179 {
4180         if (!is_shadow_present_pte(old))
4181                 return false;
4182         if (!is_shadow_present_pte(new))
4183                 return true;
4184         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4185                 return true;
4186         old ^= shadow_nx_mask;
4187         new ^= shadow_nx_mask;
4188         return (old & ~new & PT64_PERM_MASK) != 0;
4189 }
4190
4191 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
4192                                  struct list_head *invalid_list,
4193                                  bool remote_flush, bool local_flush)
4194 {
4195         if (!list_empty(invalid_list)) {
4196                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
4197                 return;
4198         }
4199
4200         if (remote_flush)
4201                 kvm_flush_remote_tlbs(vcpu->kvm);
4202         else if (local_flush)
4203                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4204 }
4205
4206 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4207                                     const u8 *new, int *bytes)
4208 {
4209         u64 gentry;
4210         int r;
4211
4212         /*
4213          * Assume that the pte write on a page table of the same type
4214          * as the current vcpu paging mode since we update the sptes only
4215          * when they have the same mode.
4216          */
4217         if (is_pae(vcpu) && *bytes == 4) {
4218                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4219                 *gpa &= ~(gpa_t)7;
4220                 *bytes = 8;
4221                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4222                 if (r)
4223                         gentry = 0;
4224                 new = (const u8 *)&gentry;
4225         }
4226
4227         switch (*bytes) {
4228         case 4:
4229                 gentry = *(const u32 *)new;
4230                 break;
4231         case 8:
4232                 gentry = *(const u64 *)new;
4233                 break;
4234         default:
4235                 gentry = 0;
4236                 break;
4237         }
4238
4239         return gentry;
4240 }
4241
4242 /*
4243  * If we're seeing too many writes to a page, it may no longer be a page table,
4244  * or we may be forking, in which case it is better to unmap the page.
4245  */
4246 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4247 {
4248         /*
4249          * Skip write-flooding detected for the sp whose level is 1, because
4250          * it can become unsync, then the guest page is not write-protected.
4251          */
4252         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4253                 return false;
4254
4255         atomic_inc(&sp->write_flooding_count);
4256         return atomic_read(&sp->write_flooding_count) >= 3;
4257 }
4258
4259 /*
4260  * Misaligned accesses are too much trouble to fix up; also, they usually
4261  * indicate a page is not used as a page table.
4262  */
4263 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4264                                     int bytes)
4265 {
4266         unsigned offset, pte_size, misaligned;
4267
4268         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4269                  gpa, bytes, sp->role.word);
4270
4271         offset = offset_in_page(gpa);
4272         pte_size = sp->role.cr4_pae ? 8 : 4;
4273
4274         /*
4275          * Sometimes, the OS only writes the last one bytes to update status
4276          * bits, for example, in linux, andb instruction is used in clear_bit().
4277          */
4278         if (!(offset & (pte_size - 1)) && bytes == 1)
4279                 return false;
4280
4281         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4282         misaligned |= bytes < 4;
4283
4284         return misaligned;
4285 }
4286
4287 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4288 {
4289         unsigned page_offset, quadrant;
4290         u64 *spte;
4291         int level;
4292
4293         page_offset = offset_in_page(gpa);
4294         level = sp->role.level;
4295         *nspte = 1;
4296         if (!sp->role.cr4_pae) {
4297                 page_offset <<= 1;      /* 32->64 */
4298                 /*
4299                  * A 32-bit pde maps 4MB while the shadow pdes map
4300                  * only 2MB.  So we need to double the offset again
4301                  * and zap two pdes instead of one.
4302                  */
4303                 if (level == PT32_ROOT_LEVEL) {
4304                         page_offset &= ~7; /* kill rounding error */
4305                         page_offset <<= 1;
4306                         *nspte = 2;
4307                 }
4308                 quadrant = page_offset >> PAGE_SHIFT;
4309                 page_offset &= ~PAGE_MASK;
4310                 if (quadrant != sp->role.quadrant)
4311                         return NULL;
4312         }
4313
4314         spte = &sp->spt[page_offset / sizeof(*spte)];
4315         return spte;
4316 }
4317
4318 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4319                               const u8 *new, int bytes)
4320 {
4321         gfn_t gfn = gpa >> PAGE_SHIFT;
4322         struct kvm_mmu_page *sp;
4323         LIST_HEAD(invalid_list);
4324         u64 entry, gentry, *spte;
4325         int npte;
4326         bool remote_flush, local_flush;
4327         union kvm_mmu_page_role mask = { };
4328
4329         mask.cr0_wp = 1;
4330         mask.cr4_pae = 1;
4331         mask.nxe = 1;
4332         mask.smep_andnot_wp = 1;
4333         mask.smap_andnot_wp = 1;
4334         mask.smm = 1;
4335
4336         /*
4337          * If we don't have indirect shadow pages, it means no page is
4338          * write-protected, so we can exit simply.
4339          */
4340         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4341                 return;
4342
4343         remote_flush = local_flush = false;
4344
4345         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4346
4347         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4348
4349         /*
4350          * No need to care whether allocation memory is successful
4351          * or not since pte prefetch is skiped if it does not have
4352          * enough objects in the cache.
4353          */
4354         mmu_topup_memory_caches(vcpu);
4355
4356         spin_lock(&vcpu->kvm->mmu_lock);
4357         ++vcpu->kvm->stat.mmu_pte_write;
4358         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4359
4360         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4361                 if (detect_write_misaligned(sp, gpa, bytes) ||
4362                       detect_write_flooding(sp)) {
4363                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4364                         ++vcpu->kvm->stat.mmu_flooded;
4365                         continue;
4366                 }
4367
4368                 spte = get_written_sptes(sp, gpa, &npte);
4369                 if (!spte)
4370                         continue;
4371
4372                 local_flush = true;
4373                 while (npte--) {
4374                         entry = *spte;
4375                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4376                         if (gentry &&
4377                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4378                               & mask.word) && rmap_can_add(vcpu))
4379                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4380                         if (need_remote_flush(entry, *spte))
4381                                 remote_flush = true;
4382                         ++spte;
4383                 }
4384         }
4385         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4386         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4387         spin_unlock(&vcpu->kvm->mmu_lock);
4388 }
4389
4390 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4391 {
4392         gpa_t gpa;
4393         int r;
4394
4395         if (vcpu->arch.mmu.direct_map)
4396                 return 0;
4397
4398         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4399
4400         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4401
4402         return r;
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4405
4406 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4407 {
4408         LIST_HEAD(invalid_list);
4409
4410         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4411                 return;
4412
4413         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4414                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4415                         break;
4416
4417                 ++vcpu->kvm->stat.mmu_recycled;
4418         }
4419         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4420 }
4421
4422 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4423                        void *insn, int insn_len)
4424 {
4425         int r, emulation_type = EMULTYPE_RETRY;
4426         enum emulation_result er;
4427         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4428
4429         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4430                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4431                 if (r == RET_MMIO_PF_EMULATE) {
4432                         emulation_type = 0;
4433                         goto emulate;
4434                 }
4435                 if (r == RET_MMIO_PF_RETRY)
4436                         return 1;
4437                 if (r < 0)
4438                         return r;
4439         }
4440
4441         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4442         if (r < 0)
4443                 return r;
4444         if (!r)
4445                 return 1;
4446
4447         if (mmio_info_in_cache(vcpu, cr2, direct))
4448                 emulation_type = 0;
4449 emulate:
4450         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4451
4452         switch (er) {
4453         case EMULATE_DONE:
4454                 return 1;
4455         case EMULATE_USER_EXIT:
4456                 ++vcpu->stat.mmio_exits;
4457                 /* fall through */
4458         case EMULATE_FAIL:
4459                 return 0;
4460         default:
4461                 BUG();
4462         }
4463 }
4464 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4465
4466 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4467 {
4468         vcpu->arch.mmu.invlpg(vcpu, gva);
4469         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4470         ++vcpu->stat.invlpg;
4471 }
4472 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4473
4474 void kvm_enable_tdp(void)
4475 {
4476         tdp_enabled = true;
4477 }
4478 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4479
4480 void kvm_disable_tdp(void)
4481 {
4482         tdp_enabled = false;
4483 }
4484 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4485
4486 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4487 {
4488         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4489         if (vcpu->arch.mmu.lm_root != NULL)
4490                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4491 }
4492
4493 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4494 {
4495         struct page *page;
4496         int i;
4497
4498         /*
4499          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4500          * Therefore we need to allocate shadow page tables in the first
4501          * 4GB of memory, which happens to fit the DMA32 zone.
4502          */
4503         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4504         if (!page)
4505                 return -ENOMEM;
4506
4507         vcpu->arch.mmu.pae_root = page_address(page);
4508         for (i = 0; i < 4; ++i)
4509                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4510
4511         return 0;
4512 }
4513
4514 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4515 {
4516         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4517         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4518         vcpu->arch.mmu.translate_gpa = translate_gpa;
4519         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4520
4521         return alloc_mmu_pages(vcpu);
4522 }
4523
4524 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4525 {
4526         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4527
4528         init_kvm_mmu(vcpu);
4529 }
4530
4531 void kvm_mmu_init_vm(struct kvm *kvm)
4532 {
4533         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4534
4535         node->track_write = kvm_mmu_pte_write;
4536         kvm_page_track_register_notifier(kvm, node);
4537 }
4538
4539 void kvm_mmu_uninit_vm(struct kvm *kvm)
4540 {
4541         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4542
4543         kvm_page_track_unregister_notifier(kvm, node);
4544 }
4545
4546 /* The return value indicates if tlb flush on all vcpus is needed. */
4547 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4548
4549 /* The caller should hold mmu-lock before calling this function. */
4550 static bool
4551 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4552                         slot_level_handler fn, int start_level, int end_level,
4553                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4554 {
4555         struct slot_rmap_walk_iterator iterator;
4556         bool flush = false;
4557
4558         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4559                         end_gfn, &iterator) {
4560                 if (iterator.rmap)
4561                         flush |= fn(kvm, iterator.rmap);
4562
4563                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4564                         if (flush && lock_flush_tlb) {
4565                                 kvm_flush_remote_tlbs(kvm);
4566                                 flush = false;
4567                         }
4568                         cond_resched_lock(&kvm->mmu_lock);
4569                 }
4570         }
4571
4572         if (flush && lock_flush_tlb) {
4573                 kvm_flush_remote_tlbs(kvm);
4574                 flush = false;
4575         }
4576
4577         return flush;
4578 }
4579
4580 static bool
4581 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4582                   slot_level_handler fn, int start_level, int end_level,
4583                   bool lock_flush_tlb)
4584 {
4585         return slot_handle_level_range(kvm, memslot, fn, start_level,
4586                         end_level, memslot->base_gfn,
4587                         memslot->base_gfn + memslot->npages - 1,
4588                         lock_flush_tlb);
4589 }
4590
4591 static bool
4592 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4593                       slot_level_handler fn, bool lock_flush_tlb)
4594 {
4595         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4596                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4597 }
4598
4599 static bool
4600 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4601                         slot_level_handler fn, bool lock_flush_tlb)
4602 {
4603         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4604                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4605 }
4606
4607 static bool
4608 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4609                  slot_level_handler fn, bool lock_flush_tlb)
4610 {
4611         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4612                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4613 }
4614
4615 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4616 {
4617         struct kvm_memslots *slots;
4618         struct kvm_memory_slot *memslot;
4619         int i;
4620
4621         spin_lock(&kvm->mmu_lock);
4622         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4623                 slots = __kvm_memslots(kvm, i);
4624                 kvm_for_each_memslot(memslot, slots) {
4625                         gfn_t start, end;
4626
4627                         start = max(gfn_start, memslot->base_gfn);
4628                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4629                         if (start >= end)
4630                                 continue;
4631
4632                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4633                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4634                                                 start, end - 1, true);
4635                 }
4636         }
4637
4638         spin_unlock(&kvm->mmu_lock);
4639 }
4640
4641 static bool slot_rmap_write_protect(struct kvm *kvm,
4642                                     struct kvm_rmap_head *rmap_head)
4643 {
4644         return __rmap_write_protect(kvm, rmap_head, false);
4645 }
4646
4647 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4648                                       struct kvm_memory_slot *memslot)
4649 {
4650         bool flush;
4651
4652         spin_lock(&kvm->mmu_lock);
4653         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4654                                       false);
4655         spin_unlock(&kvm->mmu_lock);
4656
4657         /*
4658          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4659          * which do tlb flush out of mmu-lock should be serialized by
4660          * kvm->slots_lock otherwise tlb flush would be missed.
4661          */
4662         lockdep_assert_held(&kvm->slots_lock);
4663
4664         /*
4665          * We can flush all the TLBs out of the mmu lock without TLB
4666          * corruption since we just change the spte from writable to
4667          * readonly so that we only need to care the case of changing
4668          * spte from present to present (changing the spte from present
4669          * to nonpresent will flush all the TLBs immediately), in other
4670          * words, the only case we care is mmu_spte_update() where we
4671          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4672          * instead of PT_WRITABLE_MASK, that means it does not depend
4673          * on PT_WRITABLE_MASK anymore.
4674          */
4675         if (flush)
4676                 kvm_flush_remote_tlbs(kvm);
4677 }
4678
4679 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4680                                          struct kvm_rmap_head *rmap_head)
4681 {
4682         u64 *sptep;
4683         struct rmap_iterator iter;
4684         int need_tlb_flush = 0;
4685         kvm_pfn_t pfn;
4686         struct kvm_mmu_page *sp;
4687
4688 restart:
4689         for_each_rmap_spte(rmap_head, &iter, sptep) {
4690                 sp = page_header(__pa(sptep));
4691                 pfn = spte_to_pfn(*sptep);
4692
4693                 /*
4694                  * We cannot do huge page mapping for indirect shadow pages,
4695                  * which are found on the last rmap (level = 1) when not using
4696                  * tdp; such shadow pages are synced with the page table in
4697                  * the guest, and the guest page table is using 4K page size
4698                  * mapping if the indirect sp has level = 1.
4699                  */
4700                 if (sp->role.direct &&
4701                         !kvm_is_reserved_pfn(pfn) &&
4702                         PageTransCompound(pfn_to_page(pfn))) {
4703                         drop_spte(kvm, sptep);
4704                         need_tlb_flush = 1;
4705                         goto restart;
4706                 }
4707         }
4708
4709         return need_tlb_flush;
4710 }
4711
4712 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4713                                    const struct kvm_memory_slot *memslot)
4714 {
4715         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4716         spin_lock(&kvm->mmu_lock);
4717         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4718                          kvm_mmu_zap_collapsible_spte, true);
4719         spin_unlock(&kvm->mmu_lock);
4720 }
4721
4722 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4723                                    struct kvm_memory_slot *memslot)
4724 {
4725         bool flush;
4726
4727         spin_lock(&kvm->mmu_lock);
4728         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4729         spin_unlock(&kvm->mmu_lock);
4730
4731         lockdep_assert_held(&kvm->slots_lock);
4732
4733         /*
4734          * It's also safe to flush TLBs out of mmu lock here as currently this
4735          * function is only used for dirty logging, in which case flushing TLB
4736          * out of mmu lock also guarantees no dirty pages will be lost in
4737          * dirty_bitmap.
4738          */
4739         if (flush)
4740                 kvm_flush_remote_tlbs(kvm);
4741 }
4742 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4743
4744 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4745                                         struct kvm_memory_slot *memslot)
4746 {
4747         bool flush;
4748
4749         spin_lock(&kvm->mmu_lock);
4750         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4751                                         false);
4752         spin_unlock(&kvm->mmu_lock);
4753
4754         /* see kvm_mmu_slot_remove_write_access */
4755         lockdep_assert_held(&kvm->slots_lock);
4756
4757         if (flush)
4758                 kvm_flush_remote_tlbs(kvm);
4759 }
4760 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4761
4762 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4763                             struct kvm_memory_slot *memslot)
4764 {
4765         bool flush;
4766
4767         spin_lock(&kvm->mmu_lock);
4768         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4769         spin_unlock(&kvm->mmu_lock);
4770
4771         lockdep_assert_held(&kvm->slots_lock);
4772
4773         /* see kvm_mmu_slot_leaf_clear_dirty */
4774         if (flush)
4775                 kvm_flush_remote_tlbs(kvm);
4776 }
4777 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4778
4779 #define BATCH_ZAP_PAGES 10
4780 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4781 {
4782         struct kvm_mmu_page *sp, *node;
4783         int batch = 0;
4784
4785 restart:
4786         list_for_each_entry_safe_reverse(sp, node,
4787               &kvm->arch.active_mmu_pages, link) {
4788                 int ret;
4789
4790                 /*
4791                  * No obsolete page exists before new created page since
4792                  * active_mmu_pages is the FIFO list.
4793                  */
4794                 if (!is_obsolete_sp(kvm, sp))
4795                         break;
4796
4797                 /*
4798                  * Since we are reversely walking the list and the invalid
4799                  * list will be moved to the head, skip the invalid page
4800                  * can help us to avoid the infinity list walking.
4801                  */
4802                 if (sp->role.invalid)
4803                         continue;
4804
4805                 /*
4806                  * Need not flush tlb since we only zap the sp with invalid
4807                  * generation number.
4808                  */
4809                 if (batch >= BATCH_ZAP_PAGES &&
4810                       cond_resched_lock(&kvm->mmu_lock)) {
4811                         batch = 0;
4812                         goto restart;
4813                 }
4814
4815                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4816                                 &kvm->arch.zapped_obsolete_pages);
4817                 batch += ret;
4818
4819                 if (ret)
4820                         goto restart;
4821         }
4822
4823         /*
4824          * Should flush tlb before free page tables since lockless-walking
4825          * may use the pages.
4826          */
4827         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4828 }
4829
4830 /*
4831  * Fast invalidate all shadow pages and use lock-break technique
4832  * to zap obsolete pages.
4833  *
4834  * It's required when memslot is being deleted or VM is being
4835  * destroyed, in these cases, we should ensure that KVM MMU does
4836  * not use any resource of the being-deleted slot or all slots
4837  * after calling the function.
4838  */
4839 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4840 {
4841         spin_lock(&kvm->mmu_lock);
4842         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4843         kvm->arch.mmu_valid_gen++;
4844
4845         /*
4846          * Notify all vcpus to reload its shadow page table
4847          * and flush TLB. Then all vcpus will switch to new
4848          * shadow page table with the new mmu_valid_gen.
4849          *
4850          * Note: we should do this under the protection of
4851          * mmu-lock, otherwise, vcpu would purge shadow page
4852          * but miss tlb flush.
4853          */
4854         kvm_reload_remote_mmus(kvm);
4855
4856         kvm_zap_obsolete_pages(kvm);
4857         spin_unlock(&kvm->mmu_lock);
4858 }
4859
4860 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4861 {
4862         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4863 }
4864
4865 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4866 {
4867         /*
4868          * The very rare case: if the generation-number is round,
4869          * zap all shadow pages.
4870          */
4871         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4872                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4873                 kvm_mmu_invalidate_zap_all_pages(kvm);
4874         }
4875 }
4876
4877 static unsigned long
4878 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4879 {
4880         struct kvm *kvm;
4881         int nr_to_scan = sc->nr_to_scan;
4882         unsigned long freed = 0;
4883
4884         spin_lock(&kvm_lock);
4885
4886         list_for_each_entry(kvm, &vm_list, vm_list) {
4887                 int idx;
4888                 LIST_HEAD(invalid_list);
4889
4890                 /*
4891                  * Never scan more than sc->nr_to_scan VM instances.
4892                  * Will not hit this condition practically since we do not try
4893                  * to shrink more than one VM and it is very unlikely to see
4894                  * !n_used_mmu_pages so many times.
4895                  */
4896                 if (!nr_to_scan--)
4897                         break;
4898                 /*
4899                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4900                  * here. We may skip a VM instance errorneosly, but we do not
4901                  * want to shrink a VM that only started to populate its MMU
4902                  * anyway.
4903                  */
4904                 if (!kvm->arch.n_used_mmu_pages &&
4905                       !kvm_has_zapped_obsolete_pages(kvm))
4906                         continue;
4907
4908                 idx = srcu_read_lock(&kvm->srcu);
4909                 spin_lock(&kvm->mmu_lock);
4910
4911                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4912                         kvm_mmu_commit_zap_page(kvm,
4913                               &kvm->arch.zapped_obsolete_pages);
4914                         goto unlock;
4915                 }
4916
4917                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4918                         freed++;
4919                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4920
4921 unlock:
4922                 spin_unlock(&kvm->mmu_lock);
4923                 srcu_read_unlock(&kvm->srcu, idx);
4924
4925                 /*
4926                  * unfair on small ones
4927                  * per-vm shrinkers cry out
4928                  * sadness comes quickly
4929                  */
4930                 list_move_tail(&kvm->vm_list, &vm_list);
4931                 break;
4932         }
4933
4934         spin_unlock(&kvm_lock);
4935         return freed;
4936 }
4937
4938 static unsigned long
4939 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4940 {
4941         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4942 }
4943
4944 static struct shrinker mmu_shrinker = {
4945         .count_objects = mmu_shrink_count,
4946         .scan_objects = mmu_shrink_scan,
4947         .seeks = DEFAULT_SEEKS * 10,
4948 };
4949
4950 static void mmu_destroy_caches(void)
4951 {
4952         if (pte_list_desc_cache)
4953                 kmem_cache_destroy(pte_list_desc_cache);
4954         if (mmu_page_header_cache)
4955                 kmem_cache_destroy(mmu_page_header_cache);
4956 }
4957
4958 int kvm_mmu_module_init(void)
4959 {
4960         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4961                                             sizeof(struct pte_list_desc),
4962                                             0, 0, NULL);
4963         if (!pte_list_desc_cache)
4964                 goto nomem;
4965
4966         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4967                                                   sizeof(struct kvm_mmu_page),
4968                                                   0, 0, NULL);
4969         if (!mmu_page_header_cache)
4970                 goto nomem;
4971
4972         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4973                 goto nomem;
4974
4975         register_shrinker(&mmu_shrinker);
4976
4977         return 0;
4978
4979 nomem:
4980         mmu_destroy_caches();
4981         return -ENOMEM;
4982 }
4983
4984 /*
4985  * Caculate mmu pages needed for kvm.
4986  */
4987 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4988 {
4989         unsigned int nr_mmu_pages;
4990         unsigned int  nr_pages = 0;
4991         struct kvm_memslots *slots;
4992         struct kvm_memory_slot *memslot;
4993         int i;
4994
4995         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4996                 slots = __kvm_memslots(kvm, i);
4997
4998                 kvm_for_each_memslot(memslot, slots)
4999                         nr_pages += memslot->npages;
5000         }
5001
5002         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5003         nr_mmu_pages = max(nr_mmu_pages,
5004                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5005
5006         return nr_mmu_pages;
5007 }
5008
5009 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5010 {
5011         kvm_mmu_unload(vcpu);
5012         free_mmu_pages(vcpu);
5013         mmu_free_memory_caches(vcpu);
5014 }
5015
5016 void kvm_mmu_module_exit(void)
5017 {
5018         mmu_destroy_caches();
5019         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5020         unregister_shrinker(&mmu_shrinker);
5021         mmu_audit_disable();
5022 }