88a1a79c869e08c93f17c35942fb09033e27dba6
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         ssptep->spte_low = sspte.spte_low;
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomicly update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomicly update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask)
561                 return ret;
562
563         /*
564          * Flush TLB when accessed/dirty bits are changed in the page tables,
565          * to guarantee consistency between TLB and page tables.
566          */
567         if (spte_is_bit_changed(old_spte, new_spte,
568                                 shadow_accessed_mask | shadow_dirty_mask))
569                 ret = true;
570
571         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576         return ret;
577 }
578
579 /*
580  * Rules for using mmu_spte_clear_track_bits:
581  * It sets the sptep from present to nonpresent, and track the
582  * state bits, it is used to clear the last level sptep.
583  */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586         kvm_pfn_t pfn;
587         u64 old_spte = *sptep;
588
589         if (!spte_has_volatile_bits(old_spte))
590                 __update_clear_spte_fast(sptep, 0ull);
591         else
592                 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594         if (!is_shadow_present_pte(old_spte))
595                 return 0;
596
597         pfn = spte_to_pfn(old_spte);
598
599         /*
600          * KVM does not hold the refcount of the page used by
601          * kvm mmu, before reclaiming the page, we should
602          * unmap it from mmu first.
603          */
604         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607                 kvm_set_pfn_accessed(pfn);
608         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609                 kvm_set_pfn_dirty(pfn);
610         return 1;
611 }
612
613 /*
614  * Rules for using mmu_spte_clear_no_track:
615  * Directly clear spte without caring the state bits of sptep,
616  * it is used to set the upper level spte.
617  */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620         __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625         return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630         /*
631          * Prevent page table teardown by making any free-er wait during
632          * kvm_flush_remote_tlbs() IPI to all active vcpus.
633          */
634         local_irq_disable();
635         vcpu->mode = READING_SHADOW_PAGE_TABLES;
636         /*
637          * Make sure a following spte read is not reordered ahead of the write
638          * to vcpu->mode.
639          */
640         smp_mb();
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645         /*
646          * Make sure the write to vcpu->mode is not reordered in front of
647          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
648          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649          */
650         smp_mb();
651         vcpu->mode = OUTSIDE_GUEST_MODE;
652         local_irq_enable();
653 }
654
655 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656                                   struct kmem_cache *base_cache, int min)
657 {
658         void *obj;
659
660         if (cache->nobjs >= min)
661                 return 0;
662         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664                 if (!obj)
665                         return -ENOMEM;
666                 cache->objects[cache->nobjs++] = obj;
667         }
668         return 0;
669 }
670
671 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672 {
673         return cache->nobjs;
674 }
675
676 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677                                   struct kmem_cache *cache)
678 {
679         while (mc->nobjs)
680                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 }
682
683 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684                                        int min)
685 {
686         void *page;
687
688         if (cache->nobjs >= min)
689                 return 0;
690         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691                 page = (void *)__get_free_page(GFP_KERNEL);
692                 if (!page)
693                         return -ENOMEM;
694                 cache->objects[cache->nobjs++] = page;
695         }
696         return 0;
697 }
698
699 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700 {
701         while (mc->nobjs)
702                 free_page((unsigned long)mc->objects[--mc->nobjs]);
703 }
704
705 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706 {
707         int r;
708
709         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711         if (r)
712                 goto out;
713         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714         if (r)
715                 goto out;
716         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717                                    mmu_page_header_cache, 4);
718 out:
719         return r;
720 }
721
722 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723 {
724         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725                                 pte_list_desc_cache);
726         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728                                 mmu_page_header_cache);
729 }
730
731 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 {
733         void *p;
734
735         BUG_ON(!mc->nobjs);
736         p = mc->objects[--mc->nobjs];
737         return p;
738 }
739
740 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741 {
742         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 }
744
745 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746 {
747         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 }
749
750 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751 {
752         if (!sp->role.direct)
753                 return sp->gfns[index];
754
755         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756 }
757
758 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759 {
760         if (sp->role.direct)
761                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762         else
763                 sp->gfns[index] = gfn;
764 }
765
766 /*
767  * Return the pointer to the large page information for a given gfn,
768  * handling slots that are not large page aligned.
769  */
770 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771                                               struct kvm_memory_slot *slot,
772                                               int level)
773 {
774         unsigned long idx;
775
776         idx = gfn_to_index(gfn, slot->base_gfn, level);
777         return &slot->arch.lpage_info[level - 2][idx];
778 }
779
780 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781                                             gfn_t gfn, int count)
782 {
783         struct kvm_lpage_info *linfo;
784         int i;
785
786         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787                 linfo = lpage_info_slot(gfn, slot, i);
788                 linfo->disallow_lpage += count;
789                 WARN_ON(linfo->disallow_lpage < 0);
790         }
791 }
792
793 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794 {
795         update_gfn_disallow_lpage_count(slot, gfn, 1);
796 }
797
798 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799 {
800         update_gfn_disallow_lpage_count(slot, gfn, -1);
801 }
802
803 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805         struct kvm_memslots *slots;
806         struct kvm_memory_slot *slot;
807         gfn_t gfn;
808
809         kvm->arch.indirect_shadow_pages++;
810         gfn = sp->gfn;
811         slots = kvm_memslots_for_spte_role(kvm, sp->role);
812         slot = __gfn_to_memslot(slots, gfn);
813
814         /* the non-leaf shadow pages are keeping readonly. */
815         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817                                                     KVM_PAGE_TRACK_WRITE);
818
819         kvm_mmu_gfn_disallow_lpage(slot, gfn);
820 }
821
822 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
823 {
824         struct kvm_memslots *slots;
825         struct kvm_memory_slot *slot;
826         gfn_t gfn;
827
828         kvm->arch.indirect_shadow_pages--;
829         gfn = sp->gfn;
830         slots = kvm_memslots_for_spte_role(kvm, sp->role);
831         slot = __gfn_to_memslot(slots, gfn);
832         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834                                                        KVM_PAGE_TRACK_WRITE);
835
836         kvm_mmu_gfn_allow_lpage(slot, gfn);
837 }
838
839 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840                                           struct kvm_memory_slot *slot)
841 {
842         struct kvm_lpage_info *linfo;
843
844         if (slot) {
845                 linfo = lpage_info_slot(gfn, slot, level);
846                 return !!linfo->disallow_lpage;
847         }
848
849         return true;
850 }
851
852 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853                                         int level)
854 {
855         struct kvm_memory_slot *slot;
856
857         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
859 }
860
861 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
862 {
863         unsigned long page_size;
864         int i, ret = 0;
865
866         page_size = kvm_host_page_size(kvm, gfn);
867
868         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
869                 if (page_size >= KVM_HPAGE_SIZE(i))
870                         ret = i;
871                 else
872                         break;
873         }
874
875         return ret;
876 }
877
878 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879                                           bool no_dirty_log)
880 {
881         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882                 return false;
883         if (no_dirty_log && slot->dirty_bitmap)
884                 return false;
885
886         return true;
887 }
888
889 static struct kvm_memory_slot *
890 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891                             bool no_dirty_log)
892 {
893         struct kvm_memory_slot *slot;
894
895         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
896         if (!memslot_valid_for_gpte(slot, no_dirty_log))
897                 slot = NULL;
898
899         return slot;
900 }
901
902 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903                          bool *force_pt_level)
904 {
905         int host_level, level, max_level;
906         struct kvm_memory_slot *slot;
907
908         if (unlikely(*force_pt_level))
909                 return PT_PAGE_TABLE_LEVEL;
910
911         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912         *force_pt_level = !memslot_valid_for_gpte(slot, true);
913         if (unlikely(*force_pt_level))
914                 return PT_PAGE_TABLE_LEVEL;
915
916         host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918         if (host_level == PT_PAGE_TABLE_LEVEL)
919                 return host_level;
920
921         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
922
923         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
924                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
925                         break;
926
927         return level - 1;
928 }
929
930 /*
931  * About rmap_head encoding:
932  *
933  * If the bit zero of rmap_head->val is clear, then it points to the only spte
934  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
935  * pte_list_desc containing more mappings.
936  */
937
938 /*
939  * Returns the number of pointers in the rmap chain, not counting the new one.
940  */
941 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
942                         struct kvm_rmap_head *rmap_head)
943 {
944         struct pte_list_desc *desc;
945         int i, count = 0;
946
947         if (!rmap_head->val) {
948                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
949                 rmap_head->val = (unsigned long)spte;
950         } else if (!(rmap_head->val & 1)) {
951                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952                 desc = mmu_alloc_pte_list_desc(vcpu);
953                 desc->sptes[0] = (u64 *)rmap_head->val;
954                 desc->sptes[1] = spte;
955                 rmap_head->val = (unsigned long)desc | 1;
956                 ++count;
957         } else {
958                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
959                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
961                         desc = desc->more;
962                         count += PTE_LIST_EXT;
963                 }
964                 if (desc->sptes[PTE_LIST_EXT-1]) {
965                         desc->more = mmu_alloc_pte_list_desc(vcpu);
966                         desc = desc->more;
967                 }
968                 for (i = 0; desc->sptes[i]; ++i)
969                         ++count;
970                 desc->sptes[i] = spte;
971         }
972         return count;
973 }
974
975 static void
976 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977                            struct pte_list_desc *desc, int i,
978                            struct pte_list_desc *prev_desc)
979 {
980         int j;
981
982         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
983                 ;
984         desc->sptes[i] = desc->sptes[j];
985         desc->sptes[j] = NULL;
986         if (j != 0)
987                 return;
988         if (!prev_desc && !desc->more)
989                 rmap_head->val = (unsigned long)desc->sptes[0];
990         else
991                 if (prev_desc)
992                         prev_desc->more = desc->more;
993                 else
994                         rmap_head->val = (unsigned long)desc->more | 1;
995         mmu_free_pte_list_desc(desc);
996 }
997
998 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
999 {
1000         struct pte_list_desc *desc;
1001         struct pte_list_desc *prev_desc;
1002         int i;
1003
1004         if (!rmap_head->val) {
1005                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1006                 BUG();
1007         } else if (!(rmap_head->val & 1)) {
1008                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1009                 if ((u64 *)rmap_head->val != spte) {
1010                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1011                         BUG();
1012                 }
1013                 rmap_head->val = 0;
1014         } else {
1015                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1016                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1017                 prev_desc = NULL;
1018                 while (desc) {
1019                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1020                                 if (desc->sptes[i] == spte) {
1021                                         pte_list_desc_remove_entry(rmap_head,
1022                                                         desc, i, prev_desc);
1023                                         return;
1024                                 }
1025                         }
1026                         prev_desc = desc;
1027                         desc = desc->more;
1028                 }
1029                 pr_err("pte_list_remove: %p many->many\n", spte);
1030                 BUG();
1031         }
1032 }
1033
1034 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035                                            struct kvm_memory_slot *slot)
1036 {
1037         unsigned long idx;
1038
1039         idx = gfn_to_index(gfn, slot->base_gfn, level);
1040         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 }
1042
1043 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044                                          struct kvm_mmu_page *sp)
1045 {
1046         struct kvm_memslots *slots;
1047         struct kvm_memory_slot *slot;
1048
1049         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050         slot = __gfn_to_memslot(slots, gfn);
1051         return __gfn_to_rmap(gfn, sp->role.level, slot);
1052 }
1053
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055 {
1056         struct kvm_mmu_memory_cache *cache;
1057
1058         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059         return mmu_memory_cache_free_objects(cache);
1060 }
1061
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063 {
1064         struct kvm_mmu_page *sp;
1065         struct kvm_rmap_head *rmap_head;
1066
1067         sp = page_header(__pa(spte));
1068         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070         return pte_list_add(vcpu, spte, rmap_head);
1071 }
1072
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1074 {
1075         struct kvm_mmu_page *sp;
1076         gfn_t gfn;
1077         struct kvm_rmap_head *rmap_head;
1078
1079         sp = page_header(__pa(spte));
1080         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082         pte_list_remove(spte, rmap_head);
1083 }
1084
1085 /*
1086  * Used by the following functions to iterate through the sptes linked by a
1087  * rmap.  All fields are private and not assumed to be used outside.
1088  */
1089 struct rmap_iterator {
1090         /* private fields */
1091         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1092         int pos;                        /* index of the sptep */
1093 };
1094
1095 /*
1096  * Iteration must be started by this function.  This should also be used after
1097  * removing/dropping sptes from the rmap link because in such cases the
1098  * information in the itererator may not be valid.
1099  *
1100  * Returns sptep if found, NULL otherwise.
1101  */
1102 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103                            struct rmap_iterator *iter)
1104 {
1105         u64 *sptep;
1106
1107         if (!rmap_head->val)
1108                 return NULL;
1109
1110         if (!(rmap_head->val & 1)) {
1111                 iter->desc = NULL;
1112                 sptep = (u64 *)rmap_head->val;
1113                 goto out;
1114         }
1115
1116         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1117         iter->pos = 0;
1118         sptep = iter->desc->sptes[iter->pos];
1119 out:
1120         BUG_ON(!is_shadow_present_pte(*sptep));
1121         return sptep;
1122 }
1123
1124 /*
1125  * Must be used with a valid iterator: e.g. after rmap_get_first().
1126  *
1127  * Returns sptep if found, NULL otherwise.
1128  */
1129 static u64 *rmap_get_next(struct rmap_iterator *iter)
1130 {
1131         u64 *sptep;
1132
1133         if (iter->desc) {
1134                 if (iter->pos < PTE_LIST_EXT - 1) {
1135                         ++iter->pos;
1136                         sptep = iter->desc->sptes[iter->pos];
1137                         if (sptep)
1138                                 goto out;
1139                 }
1140
1141                 iter->desc = iter->desc->more;
1142
1143                 if (iter->desc) {
1144                         iter->pos = 0;
1145                         /* desc->sptes[0] cannot be NULL */
1146                         sptep = iter->desc->sptes[iter->pos];
1147                         goto out;
1148                 }
1149         }
1150
1151         return NULL;
1152 out:
1153         BUG_ON(!is_shadow_present_pte(*sptep));
1154         return sptep;
1155 }
1156
1157 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1158         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1159              _spte_; _spte_ = rmap_get_next(_iter_))
1160
1161 static void drop_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163         if (mmu_spte_clear_track_bits(sptep))
1164                 rmap_remove(kvm, sptep);
1165 }
1166
1167
1168 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169 {
1170         if (is_large_pte(*sptep)) {
1171                 WARN_ON(page_header(__pa(sptep))->role.level ==
1172                         PT_PAGE_TABLE_LEVEL);
1173                 drop_spte(kvm, sptep);
1174                 --kvm->stat.lpages;
1175                 return true;
1176         }
1177
1178         return false;
1179 }
1180
1181 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182 {
1183         if (__drop_large_spte(vcpu->kvm, sptep))
1184                 kvm_flush_remote_tlbs(vcpu->kvm);
1185 }
1186
1187 /*
1188  * Write-protect on the specified @sptep, @pt_protect indicates whether
1189  * spte write-protection is caused by protecting shadow page table.
1190  *
1191  * Note: write protection is difference between dirty logging and spte
1192  * protection:
1193  * - for dirty logging, the spte can be set to writable at anytime if
1194  *   its dirty bitmap is properly set.
1195  * - for spte protection, the spte can be writable only after unsync-ing
1196  *   shadow page.
1197  *
1198  * Return true if tlb need be flushed.
1199  */
1200 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1201 {
1202         u64 spte = *sptep;
1203
1204         if (!is_writable_pte(spte) &&
1205               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1206                 return false;
1207
1208         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
1210         if (pt_protect)
1211                 spte &= ~SPTE_MMU_WRITEABLE;
1212         spte = spte & ~PT_WRITABLE_MASK;
1213
1214         return mmu_spte_update(sptep, spte);
1215 }
1216
1217 static bool __rmap_write_protect(struct kvm *kvm,
1218                                  struct kvm_rmap_head *rmap_head,
1219                                  bool pt_protect)
1220 {
1221         u64 *sptep;
1222         struct rmap_iterator iter;
1223         bool flush = false;
1224
1225         for_each_rmap_spte(rmap_head, &iter, sptep)
1226                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1227
1228         return flush;
1229 }
1230
1231 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232 {
1233         u64 spte = *sptep;
1234
1235         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237         spte &= ~shadow_dirty_mask;
1238
1239         return mmu_spte_update(sptep, spte);
1240 }
1241
1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1243 {
1244         u64 *sptep;
1245         struct rmap_iterator iter;
1246         bool flush = false;
1247
1248         for_each_rmap_spte(rmap_head, &iter, sptep)
1249                 flush |= spte_clear_dirty(kvm, sptep);
1250
1251         return flush;
1252 }
1253
1254 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255 {
1256         u64 spte = *sptep;
1257
1258         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260         spte |= shadow_dirty_mask;
1261
1262         return mmu_spte_update(sptep, spte);
1263 }
1264
1265 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1266 {
1267         u64 *sptep;
1268         struct rmap_iterator iter;
1269         bool flush = false;
1270
1271         for_each_rmap_spte(rmap_head, &iter, sptep)
1272                 flush |= spte_set_dirty(kvm, sptep);
1273
1274         return flush;
1275 }
1276
1277 /**
1278  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1279  * @kvm: kvm instance
1280  * @slot: slot to protect
1281  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282  * @mask: indicates which pages we should protect
1283  *
1284  * Used when we do not need to care about huge page mappings: e.g. during dirty
1285  * logging we do not have any such mappings.
1286  */
1287 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1288                                      struct kvm_memory_slot *slot,
1289                                      gfn_t gfn_offset, unsigned long mask)
1290 {
1291         struct kvm_rmap_head *rmap_head;
1292
1293         while (mask) {
1294                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295                                           PT_PAGE_TABLE_LEVEL, slot);
1296                 __rmap_write_protect(kvm, rmap_head, false);
1297
1298                 /* clear the first set bit */
1299                 mask &= mask - 1;
1300         }
1301 }
1302
1303 /**
1304  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305  * @kvm: kvm instance
1306  * @slot: slot to clear D-bit
1307  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308  * @mask: indicates which pages we should clear D-bit
1309  *
1310  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311  */
1312 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313                                      struct kvm_memory_slot *slot,
1314                                      gfn_t gfn_offset, unsigned long mask)
1315 {
1316         struct kvm_rmap_head *rmap_head;
1317
1318         while (mask) {
1319                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320                                           PT_PAGE_TABLE_LEVEL, slot);
1321                 __rmap_clear_dirty(kvm, rmap_head);
1322
1323                 /* clear the first set bit */
1324                 mask &= mask - 1;
1325         }
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
1329 /**
1330  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331  * PT level pages.
1332  *
1333  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334  * enable dirty logging for them.
1335  *
1336  * Used when we do not need to care about huge page mappings: e.g. during dirty
1337  * logging we do not have any such mappings.
1338  */
1339 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340                                 struct kvm_memory_slot *slot,
1341                                 gfn_t gfn_offset, unsigned long mask)
1342 {
1343         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345                                 mask);
1346         else
1347                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1348 }
1349
1350 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351                                     struct kvm_memory_slot *slot, u64 gfn)
1352 {
1353         struct kvm_rmap_head *rmap_head;
1354         int i;
1355         bool write_protected = false;
1356
1357         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1358                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1359                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1360         }
1361
1362         return write_protected;
1363 }
1364
1365 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366 {
1367         struct kvm_memory_slot *slot;
1368
1369         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371 }
1372
1373 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1374 {
1375         u64 *sptep;
1376         struct rmap_iterator iter;
1377         bool flush = false;
1378
1379         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1380                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1381
1382                 drop_spte(kvm, sptep);
1383                 flush = true;
1384         }
1385
1386         return flush;
1387 }
1388
1389 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1390                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391                            unsigned long data)
1392 {
1393         return kvm_zap_rmapp(kvm, rmap_head);
1394 }
1395
1396 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                              unsigned long data)
1399 {
1400         u64 *sptep;
1401         struct rmap_iterator iter;
1402         int need_flush = 0;
1403         u64 new_spte;
1404         pte_t *ptep = (pte_t *)data;
1405         kvm_pfn_t new_pfn;
1406
1407         WARN_ON(pte_huge(*ptep));
1408         new_pfn = pte_pfn(*ptep);
1409
1410 restart:
1411         for_each_rmap_spte(rmap_head, &iter, sptep) {
1412                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413                              sptep, *sptep, gfn, level);
1414
1415                 need_flush = 1;
1416
1417                 if (pte_write(*ptep)) {
1418                         drop_spte(kvm, sptep);
1419                         goto restart;
1420                 } else {
1421                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1422                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424                         new_spte &= ~PT_WRITABLE_MASK;
1425                         new_spte &= ~SPTE_HOST_WRITEABLE;
1426                         new_spte &= ~shadow_accessed_mask;
1427
1428                         mmu_spte_clear_track_bits(sptep);
1429                         mmu_spte_set(sptep, new_spte);
1430                 }
1431         }
1432
1433         if (need_flush)
1434                 kvm_flush_remote_tlbs(kvm);
1435
1436         return 0;
1437 }
1438
1439 struct slot_rmap_walk_iterator {
1440         /* input fields. */
1441         struct kvm_memory_slot *slot;
1442         gfn_t start_gfn;
1443         gfn_t end_gfn;
1444         int start_level;
1445         int end_level;
1446
1447         /* output fields. */
1448         gfn_t gfn;
1449         struct kvm_rmap_head *rmap;
1450         int level;
1451
1452         /* private field. */
1453         struct kvm_rmap_head *end_rmap;
1454 };
1455
1456 static void
1457 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458 {
1459         iterator->level = level;
1460         iterator->gfn = iterator->start_gfn;
1461         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463                                            iterator->slot);
1464 }
1465
1466 static void
1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468                     struct kvm_memory_slot *slot, int start_level,
1469                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470 {
1471         iterator->slot = slot;
1472         iterator->start_level = start_level;
1473         iterator->end_level = end_level;
1474         iterator->start_gfn = start_gfn;
1475         iterator->end_gfn = end_gfn;
1476
1477         rmap_walk_init_level(iterator, iterator->start_level);
1478 }
1479
1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481 {
1482         return !!iterator->rmap;
1483 }
1484
1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486 {
1487         if (++iterator->rmap <= iterator->end_rmap) {
1488                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489                 return;
1490         }
1491
1492         if (++iterator->level > iterator->end_level) {
1493                 iterator->rmap = NULL;
1494                 return;
1495         }
1496
1497         rmap_walk_init_level(iterator, iterator->level);
1498 }
1499
1500 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1501            _start_gfn, _end_gfn, _iter_)                                \
1502         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1503                                  _end_level_, _start_gfn, _end_gfn);    \
1504              slot_rmap_walk_okay(_iter_);                               \
1505              slot_rmap_walk_next(_iter_))
1506
1507 static int kvm_handle_hva_range(struct kvm *kvm,
1508                                 unsigned long start,
1509                                 unsigned long end,
1510                                 unsigned long data,
1511                                 int (*handler)(struct kvm *kvm,
1512                                                struct kvm_rmap_head *rmap_head,
1513                                                struct kvm_memory_slot *slot,
1514                                                gfn_t gfn,
1515                                                int level,
1516                                                unsigned long data))
1517 {
1518         struct kvm_memslots *slots;
1519         struct kvm_memory_slot *memslot;
1520         struct slot_rmap_walk_iterator iterator;
1521         int ret = 0;
1522         int i;
1523
1524         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525                 slots = __kvm_memslots(kvm, i);
1526                 kvm_for_each_memslot(memslot, slots) {
1527                         unsigned long hva_start, hva_end;
1528                         gfn_t gfn_start, gfn_end;
1529
1530                         hva_start = max(start, memslot->userspace_addr);
1531                         hva_end = min(end, memslot->userspace_addr +
1532                                       (memslot->npages << PAGE_SHIFT));
1533                         if (hva_start >= hva_end)
1534                                 continue;
1535                         /*
1536                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538                          */
1539                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543                                                  PT_MAX_HUGEPAGE_LEVEL,
1544                                                  gfn_start, gfn_end - 1,
1545                                                  &iterator)
1546                                 ret |= handler(kvm, iterator.rmap, memslot,
1547                                                iterator.gfn, iterator.level, data);
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553
1554 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555                           unsigned long data,
1556                           int (*handler)(struct kvm *kvm,
1557                                          struct kvm_rmap_head *rmap_head,
1558                                          struct kvm_memory_slot *slot,
1559                                          gfn_t gfn, int level,
1560                                          unsigned long data))
1561 {
1562         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1563 }
1564
1565 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566 {
1567         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568 }
1569
1570 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571 {
1572         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573 }
1574
1575 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576 {
1577         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1578 }
1579
1580 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1581                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582                          unsigned long data)
1583 {
1584         u64 *sptep;
1585         struct rmap_iterator uninitialized_var(iter);
1586         int young = 0;
1587
1588         BUG_ON(!shadow_accessed_mask);
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep) {
1591                 if (*sptep & shadow_accessed_mask) {
1592                         young = 1;
1593                         clear_bit((ffs(shadow_accessed_mask) - 1),
1594                                  (unsigned long *)sptep);
1595                 }
1596         }
1597
1598         trace_kvm_age_page(gfn, level, slot, young);
1599         return young;
1600 }
1601
1602 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1603                               struct kvm_memory_slot *slot, gfn_t gfn,
1604                               int level, unsigned long data)
1605 {
1606         u64 *sptep;
1607         struct rmap_iterator iter;
1608         int young = 0;
1609
1610         /*
1611          * If there's no access bit in the secondary pte set by the
1612          * hardware it's up to gup-fast/gup to set the access bit in
1613          * the primary pte or in the page structure.
1614          */
1615         if (!shadow_accessed_mask)
1616                 goto out;
1617
1618         for_each_rmap_spte(rmap_head, &iter, sptep) {
1619                 if (*sptep & shadow_accessed_mask) {
1620                         young = 1;
1621                         break;
1622                 }
1623         }
1624 out:
1625         return young;
1626 }
1627
1628 #define RMAP_RECYCLE_THRESHOLD 1000
1629
1630 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1631 {
1632         struct kvm_rmap_head *rmap_head;
1633         struct kvm_mmu_page *sp;
1634
1635         sp = page_header(__pa(spte));
1636
1637         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1638
1639         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1640         kvm_flush_remote_tlbs(vcpu->kvm);
1641 }
1642
1643 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644 {
1645         /*
1646          * In case of absence of EPT Access and Dirty Bits supports,
1647          * emulate the accessed bit for EPT, by checking if this page has
1648          * an EPT mapping, and clearing it if it does. On the next access,
1649          * a new EPT mapping will be established.
1650          * This has some overhead, but not as much as the cost of swapping
1651          * out actively used pages or breaking up actively used hugepages.
1652          */
1653         if (!shadow_accessed_mask) {
1654                 /*
1655                  * We are holding the kvm->mmu_lock, and we are blowing up
1656                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657                  * This is correct as long as we don't decouple the mmu_lock
1658                  * protected regions (like invalidate_range_start|end does).
1659                  */
1660                 kvm->mmu_notifier_seq++;
1661                 return kvm_handle_hva_range(kvm, start, end, 0,
1662                                             kvm_unmap_rmapp);
1663         }
1664
1665         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1666 }
1667
1668 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669 {
1670         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671 }
1672
1673 #ifdef MMU_DEBUG
1674 static int is_empty_shadow_page(u64 *spt)
1675 {
1676         u64 *pos;
1677         u64 *end;
1678
1679         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1680                 if (is_shadow_present_pte(*pos)) {
1681                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1682                                pos, *pos);
1683                         return 0;
1684                 }
1685         return 1;
1686 }
1687 #endif
1688
1689 /*
1690  * This value is the sum of all of the kvm instances's
1691  * kvm->arch.n_used_mmu_pages values.  We need a global,
1692  * aggregate version in order to make the slab shrinker
1693  * faster
1694  */
1695 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696 {
1697         kvm->arch.n_used_mmu_pages += nr;
1698         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699 }
1700
1701 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1702 {
1703         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1704         hlist_del(&sp->hash_link);
1705         list_del(&sp->link);
1706         free_page((unsigned long)sp->spt);
1707         if (!sp->role.direct)
1708                 free_page((unsigned long)sp->gfns);
1709         kmem_cache_free(mmu_page_header_cache, sp);
1710 }
1711
1712 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713 {
1714         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1715 }
1716
1717 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1718                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1719 {
1720         if (!parent_pte)
1721                 return;
1722
1723         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1724 }
1725
1726 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1727                                        u64 *parent_pte)
1728 {
1729         pte_list_remove(parent_pte, &sp->parent_ptes);
1730 }
1731
1732 static void drop_parent_pte(struct kvm_mmu_page *sp,
1733                             u64 *parent_pte)
1734 {
1735         mmu_page_remove_parent_pte(sp, parent_pte);
1736         mmu_spte_clear_no_track(parent_pte);
1737 }
1738
1739 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1740 {
1741         struct kvm_mmu_page *sp;
1742
1743         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1745         if (!direct)
1746                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1748
1749         /*
1750          * The active_mmu_pages list is the FIFO list, do not move the
1751          * page until it is zapped. kvm_zap_obsolete_pages depends on
1752          * this feature. See the comments in kvm_zap_obsolete_pages().
1753          */
1754         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1755         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756         return sp;
1757 }
1758
1759 static void mark_unsync(u64 *spte);
1760 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1761 {
1762         u64 *sptep;
1763         struct rmap_iterator iter;
1764
1765         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766                 mark_unsync(sptep);
1767         }
1768 }
1769
1770 static void mark_unsync(u64 *spte)
1771 {
1772         struct kvm_mmu_page *sp;
1773         unsigned int index;
1774
1775         sp = page_header(__pa(spte));
1776         index = spte - sp->spt;
1777         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1778                 return;
1779         if (sp->unsync_children++)
1780                 return;
1781         kvm_mmu_mark_parents_unsync(sp);
1782 }
1783
1784 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1785                                struct kvm_mmu_page *sp)
1786 {
1787         return 1;
1788 }
1789
1790 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791 {
1792 }
1793
1794 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795                                  struct kvm_mmu_page *sp, u64 *spte,
1796                                  const void *pte)
1797 {
1798         WARN_ON(1);
1799 }
1800
1801 #define KVM_PAGE_ARRAY_NR 16
1802
1803 struct kvm_mmu_pages {
1804         struct mmu_page_and_offset {
1805                 struct kvm_mmu_page *sp;
1806                 unsigned int idx;
1807         } page[KVM_PAGE_ARRAY_NR];
1808         unsigned int nr;
1809 };
1810
1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812                          int idx)
1813 {
1814         int i;
1815
1816         if (sp->unsync)
1817                 for (i=0; i < pvec->nr; i++)
1818                         if (pvec->page[i].sp == sp)
1819                                 return 0;
1820
1821         pvec->page[pvec->nr].sp = sp;
1822         pvec->page[pvec->nr].idx = idx;
1823         pvec->nr++;
1824         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825 }
1826
1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828 {
1829         --sp->unsync_children;
1830         WARN_ON((int)sp->unsync_children < 0);
1831         __clear_bit(idx, sp->unsync_child_bitmap);
1832 }
1833
1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835                            struct kvm_mmu_pages *pvec)
1836 {
1837         int i, ret, nr_unsync_leaf = 0;
1838
1839         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840                 struct kvm_mmu_page *child;
1841                 u64 ent = sp->spt[i];
1842
1843                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844                         clear_unsync_child_bit(sp, i);
1845                         continue;
1846                 }
1847
1848                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850                 if (child->unsync_children) {
1851                         if (mmu_pages_add(pvec, child, i))
1852                                 return -ENOSPC;
1853
1854                         ret = __mmu_unsync_walk(child, pvec);
1855                         if (!ret) {
1856                                 clear_unsync_child_bit(sp, i);
1857                                 continue;
1858                         } else if (ret > 0) {
1859                                 nr_unsync_leaf += ret;
1860                         } else
1861                                 return ret;
1862                 } else if (child->unsync) {
1863                         nr_unsync_leaf++;
1864                         if (mmu_pages_add(pvec, child, i))
1865                                 return -ENOSPC;
1866                 } else
1867                         clear_unsync_child_bit(sp, i);
1868         }
1869
1870         return nr_unsync_leaf;
1871 }
1872
1873 #define INVALID_INDEX (-1)
1874
1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876                            struct kvm_mmu_pages *pvec)
1877 {
1878         pvec->nr = 0;
1879         if (!sp->unsync_children)
1880                 return 0;
1881
1882         mmu_pages_add(pvec, sp, INVALID_INDEX);
1883         return __mmu_unsync_walk(sp, pvec);
1884 }
1885
1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888         WARN_ON(!sp->unsync);
1889         trace_kvm_mmu_sync_page(sp);
1890         sp->unsync = 0;
1891         --kvm->stat.mmu_unsync;
1892 }
1893
1894 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895                                     struct list_head *invalid_list);
1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897                                     struct list_head *invalid_list);
1898
1899 /*
1900  * NOTE: we should pay more attention on the zapped-obsolete page
1901  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902  * since it has been deleted from active_mmu_pages but still can be found
1903  * at hast list.
1904  *
1905  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907  * all the obsolete pages.
1908  */
1909 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1910         hlist_for_each_entry(_sp,                                       \
1911           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912                 if ((_sp)->gfn != (_gfn)) {} else
1913
1914 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1915         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1916                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1917
1918 /* @sp->gfn should be write-protected at the call site */
1919 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1920                            struct list_head *invalid_list)
1921 {
1922         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1923                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1924                 return 1;
1925         }
1926
1927         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1928                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1929                 return 1;
1930         }
1931
1932         return 0;
1933 }
1934
1935 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1936                                  struct list_head *invalid_list,
1937                                  bool remote_flush, bool local_flush)
1938 {
1939         if (!list_empty(invalid_list)) {
1940                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1941                 return;
1942         }
1943
1944         if (remote_flush)
1945                 kvm_flush_remote_tlbs(vcpu->kvm);
1946         else if (local_flush)
1947                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1948 }
1949
1950 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1951                                    struct kvm_mmu_page *sp)
1952 {
1953         LIST_HEAD(invalid_list);
1954         int ret;
1955
1956         ret = __kvm_sync_page(vcpu, sp, &invalid_list);
1957         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, !ret);
1958
1959         return ret;
1960 }
1961
1962 #ifdef CONFIG_KVM_MMU_AUDIT
1963 #include "mmu_audit.c"
1964 #else
1965 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1966 static void mmu_audit_disable(void) { }
1967 #endif
1968
1969 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1970                          struct list_head *invalid_list)
1971 {
1972         kvm_unlink_unsync_page(vcpu->kvm, sp);
1973         return __kvm_sync_page(vcpu, sp, invalid_list);
1974 }
1975
1976 /* @gfn should be write-protected at the call site */
1977 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1978 {
1979         struct kvm_mmu_page *s;
1980         LIST_HEAD(invalid_list);
1981         bool flush = false;
1982
1983         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1984                 if (!s->unsync)
1985                         continue;
1986
1987                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1988                 if (!kvm_sync_page(vcpu, s, &invalid_list))
1989                         flush = true;
1990         }
1991
1992         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1993 }
1994
1995 struct mmu_page_path {
1996         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1997         unsigned int idx[PT64_ROOT_LEVEL];
1998 };
1999
2000 #define for_each_sp(pvec, sp, parents, i)                       \
2001                 for (i = mmu_pages_first(&pvec, &parents);      \
2002                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2003                         i = mmu_pages_next(&pvec, &parents, i))
2004
2005 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2006                           struct mmu_page_path *parents,
2007                           int i)
2008 {
2009         int n;
2010
2011         for (n = i+1; n < pvec->nr; n++) {
2012                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2013                 unsigned idx = pvec->page[n].idx;
2014                 int level = sp->role.level;
2015
2016                 parents->idx[level-1] = idx;
2017                 if (level == PT_PAGE_TABLE_LEVEL)
2018                         break;
2019
2020                 parents->parent[level-2] = sp;
2021         }
2022
2023         return n;
2024 }
2025
2026 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2027                            struct mmu_page_path *parents)
2028 {
2029         struct kvm_mmu_page *sp;
2030         int level;
2031
2032         if (pvec->nr == 0)
2033                 return 0;
2034
2035         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2036
2037         sp = pvec->page[0].sp;
2038         level = sp->role.level;
2039         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2040
2041         parents->parent[level-2] = sp;
2042
2043         /* Also set up a sentinel.  Further entries in pvec are all
2044          * children of sp, so this element is never overwritten.
2045          */
2046         parents->parent[level-1] = NULL;
2047         return mmu_pages_next(pvec, parents, 0);
2048 }
2049
2050 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2051 {
2052         struct kvm_mmu_page *sp;
2053         unsigned int level = 0;
2054
2055         do {
2056                 unsigned int idx = parents->idx[level];
2057                 sp = parents->parent[level];
2058                 if (!sp)
2059                         return;
2060
2061                 WARN_ON(idx == INVALID_INDEX);
2062                 clear_unsync_child_bit(sp, idx);
2063                 level++;
2064         } while (!sp->unsync_children);
2065 }
2066
2067 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2068                               struct kvm_mmu_page *parent)
2069 {
2070         int i;
2071         struct kvm_mmu_page *sp;
2072         struct mmu_page_path parents;
2073         struct kvm_mmu_pages pages;
2074         LIST_HEAD(invalid_list);
2075
2076         while (mmu_unsync_walk(parent, &pages)) {
2077                 bool protected = false;
2078                 bool flush = false;
2079
2080                 for_each_sp(pages, sp, parents, i)
2081                         protected |= rmap_write_protect(vcpu, sp->gfn);
2082
2083                 if (protected)
2084                         kvm_flush_remote_tlbs(vcpu->kvm);
2085
2086                 for_each_sp(pages, sp, parents, i) {
2087                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2088                                 flush = true;
2089
2090                         mmu_pages_clear_parents(&parents);
2091                 }
2092                 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2093                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2094         }
2095 }
2096
2097 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2098 {
2099         atomic_set(&sp->write_flooding_count,  0);
2100 }
2101
2102 static void clear_sp_write_flooding_count(u64 *spte)
2103 {
2104         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2105
2106         __clear_sp_write_flooding_count(sp);
2107 }
2108
2109 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2110 {
2111         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2112 }
2113
2114 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2115                                              gfn_t gfn,
2116                                              gva_t gaddr,
2117                                              unsigned level,
2118                                              int direct,
2119                                              unsigned access)
2120 {
2121         union kvm_mmu_page_role role;
2122         unsigned quadrant;
2123         struct kvm_mmu_page *sp;
2124         bool need_sync = false;
2125
2126         role = vcpu->arch.mmu.base_role;
2127         role.level = level;
2128         role.direct = direct;
2129         if (role.direct)
2130                 role.cr4_pae = 0;
2131         role.access = access;
2132         if (!vcpu->arch.mmu.direct_map
2133             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2134                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2135                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2136                 role.quadrant = quadrant;
2137         }
2138         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2139                 if (is_obsolete_sp(vcpu->kvm, sp))
2140                         continue;
2141
2142                 if (!need_sync && sp->unsync)
2143                         need_sync = true;
2144
2145                 if (sp->role.word != role.word)
2146                         continue;
2147
2148                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2149                         break;
2150
2151                 if (sp->unsync_children)
2152                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2153
2154                 __clear_sp_write_flooding_count(sp);
2155                 trace_kvm_mmu_get_page(sp, false);
2156                 return sp;
2157         }
2158
2159         ++vcpu->kvm->stat.mmu_cache_miss;
2160
2161         sp = kvm_mmu_alloc_page(vcpu, direct);
2162
2163         sp->gfn = gfn;
2164         sp->role = role;
2165         hlist_add_head(&sp->hash_link,
2166                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2167         if (!direct) {
2168                 /*
2169                  * we should do write protection before syncing pages
2170                  * otherwise the content of the synced shadow page may
2171                  * be inconsistent with guest page table.
2172                  */
2173                 account_shadowed(vcpu->kvm, sp);
2174                 if (level == PT_PAGE_TABLE_LEVEL &&
2175                       rmap_write_protect(vcpu, gfn))
2176                         kvm_flush_remote_tlbs(vcpu->kvm);
2177
2178                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2179                         kvm_sync_pages(vcpu, gfn);
2180         }
2181         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2182         clear_page(sp->spt);
2183         trace_kvm_mmu_get_page(sp, true);
2184         return sp;
2185 }
2186
2187 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2188                              struct kvm_vcpu *vcpu, u64 addr)
2189 {
2190         iterator->addr = addr;
2191         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2192         iterator->level = vcpu->arch.mmu.shadow_root_level;
2193
2194         if (iterator->level == PT64_ROOT_LEVEL &&
2195             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2196             !vcpu->arch.mmu.direct_map)
2197                 --iterator->level;
2198
2199         if (iterator->level == PT32E_ROOT_LEVEL) {
2200                 iterator->shadow_addr
2201                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2202                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2203                 --iterator->level;
2204                 if (!iterator->shadow_addr)
2205                         iterator->level = 0;
2206         }
2207 }
2208
2209 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2210 {
2211         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2212                 return false;
2213
2214         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2215         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2216         return true;
2217 }
2218
2219 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2220                                u64 spte)
2221 {
2222         if (is_last_spte(spte, iterator->level)) {
2223                 iterator->level = 0;
2224                 return;
2225         }
2226
2227         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2228         --iterator->level;
2229 }
2230
2231 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2232 {
2233         return __shadow_walk_next(iterator, *iterator->sptep);
2234 }
2235
2236 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2237                              struct kvm_mmu_page *sp)
2238 {
2239         u64 spte;
2240
2241         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2242                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2243
2244         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2245                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2246
2247         mmu_spte_set(sptep, spte);
2248
2249         mmu_page_add_parent_pte(vcpu, sp, sptep);
2250
2251         if (sp->unsync_children || sp->unsync)
2252                 mark_unsync(sptep);
2253 }
2254
2255 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2256                                    unsigned direct_access)
2257 {
2258         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2259                 struct kvm_mmu_page *child;
2260
2261                 /*
2262                  * For the direct sp, if the guest pte's dirty bit
2263                  * changed form clean to dirty, it will corrupt the
2264                  * sp's access: allow writable in the read-only sp,
2265                  * so we should update the spte at this point to get
2266                  * a new sp with the correct access.
2267                  */
2268                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2269                 if (child->role.access == direct_access)
2270                         return;
2271
2272                 drop_parent_pte(child, sptep);
2273                 kvm_flush_remote_tlbs(vcpu->kvm);
2274         }
2275 }
2276
2277 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2278                              u64 *spte)
2279 {
2280         u64 pte;
2281         struct kvm_mmu_page *child;
2282
2283         pte = *spte;
2284         if (is_shadow_present_pte(pte)) {
2285                 if (is_last_spte(pte, sp->role.level)) {
2286                         drop_spte(kvm, spte);
2287                         if (is_large_pte(pte))
2288                                 --kvm->stat.lpages;
2289                 } else {
2290                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2291                         drop_parent_pte(child, spte);
2292                 }
2293                 return true;
2294         }
2295
2296         if (is_mmio_spte(pte))
2297                 mmu_spte_clear_no_track(spte);
2298
2299         return false;
2300 }
2301
2302 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2303                                          struct kvm_mmu_page *sp)
2304 {
2305         unsigned i;
2306
2307         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2308                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2309 }
2310
2311 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2312 {
2313         u64 *sptep;
2314         struct rmap_iterator iter;
2315
2316         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2317                 drop_parent_pte(sp, sptep);
2318 }
2319
2320 static int mmu_zap_unsync_children(struct kvm *kvm,
2321                                    struct kvm_mmu_page *parent,
2322                                    struct list_head *invalid_list)
2323 {
2324         int i, zapped = 0;
2325         struct mmu_page_path parents;
2326         struct kvm_mmu_pages pages;
2327
2328         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2329                 return 0;
2330
2331         while (mmu_unsync_walk(parent, &pages)) {
2332                 struct kvm_mmu_page *sp;
2333
2334                 for_each_sp(pages, sp, parents, i) {
2335                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2336                         mmu_pages_clear_parents(&parents);
2337                         zapped++;
2338                 }
2339         }
2340
2341         return zapped;
2342 }
2343
2344 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2345                                     struct list_head *invalid_list)
2346 {
2347         int ret;
2348
2349         trace_kvm_mmu_prepare_zap_page(sp);
2350         ++kvm->stat.mmu_shadow_zapped;
2351         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2352         kvm_mmu_page_unlink_children(kvm, sp);
2353         kvm_mmu_unlink_parents(kvm, sp);
2354
2355         if (!sp->role.invalid && !sp->role.direct)
2356                 unaccount_shadowed(kvm, sp);
2357
2358         if (sp->unsync)
2359                 kvm_unlink_unsync_page(kvm, sp);
2360         if (!sp->root_count) {
2361                 /* Count self */
2362                 ret++;
2363                 list_move(&sp->link, invalid_list);
2364                 kvm_mod_used_mmu_pages(kvm, -1);
2365         } else {
2366                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2367
2368                 /*
2369                  * The obsolete pages can not be used on any vcpus.
2370                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2371                  */
2372                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2373                         kvm_reload_remote_mmus(kvm);
2374         }
2375
2376         sp->role.invalid = 1;
2377         return ret;
2378 }
2379
2380 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2381                                     struct list_head *invalid_list)
2382 {
2383         struct kvm_mmu_page *sp, *nsp;
2384
2385         if (list_empty(invalid_list))
2386                 return;
2387
2388         /*
2389          * wmb: make sure everyone sees our modifications to the page tables
2390          * rmb: make sure we see changes to vcpu->mode
2391          */
2392         smp_mb();
2393
2394         /*
2395          * Wait for all vcpus to exit guest mode and/or lockless shadow
2396          * page table walks.
2397          */
2398         kvm_flush_remote_tlbs(kvm);
2399
2400         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2401                 WARN_ON(!sp->role.invalid || sp->root_count);
2402                 kvm_mmu_free_page(sp);
2403         }
2404 }
2405
2406 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2407                                         struct list_head *invalid_list)
2408 {
2409         struct kvm_mmu_page *sp;
2410
2411         if (list_empty(&kvm->arch.active_mmu_pages))
2412                 return false;
2413
2414         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2415                              struct kvm_mmu_page, link);
2416         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2417
2418         return true;
2419 }
2420
2421 /*
2422  * Changing the number of mmu pages allocated to the vm
2423  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2424  */
2425 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2426 {
2427         LIST_HEAD(invalid_list);
2428
2429         spin_lock(&kvm->mmu_lock);
2430
2431         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2432                 /* Need to free some mmu pages to achieve the goal. */
2433                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2434                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2435                                 break;
2436
2437                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2438                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2439         }
2440
2441         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2442
2443         spin_unlock(&kvm->mmu_lock);
2444 }
2445
2446 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2447 {
2448         struct kvm_mmu_page *sp;
2449         LIST_HEAD(invalid_list);
2450         int r;
2451
2452         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2453         r = 0;
2454         spin_lock(&kvm->mmu_lock);
2455         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2456                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2457                          sp->role.word);
2458                 r = 1;
2459                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2460         }
2461         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2462         spin_unlock(&kvm->mmu_lock);
2463
2464         return r;
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2467
2468 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2469 {
2470         trace_kvm_mmu_unsync_page(sp);
2471         ++vcpu->kvm->stat.mmu_unsync;
2472         sp->unsync = 1;
2473
2474         kvm_mmu_mark_parents_unsync(sp);
2475 }
2476
2477 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2478                                    bool can_unsync)
2479 {
2480         struct kvm_mmu_page *sp;
2481
2482         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2483                 return true;
2484
2485         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2486                 if (!can_unsync)
2487                         return true;
2488
2489                 if (sp->unsync)
2490                         continue;
2491
2492                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2493                 kvm_unsync_page(vcpu, sp);
2494         }
2495
2496         return false;
2497 }
2498
2499 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2500 {
2501         if (pfn_valid(pfn))
2502                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2503
2504         return true;
2505 }
2506
2507 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2508                     unsigned pte_access, int level,
2509                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2510                     bool can_unsync, bool host_writable)
2511 {
2512         u64 spte;
2513         int ret = 0;
2514
2515         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2516                 return 0;
2517
2518         spte = PT_PRESENT_MASK;
2519         if (!speculative)
2520                 spte |= shadow_accessed_mask;
2521
2522         if (pte_access & ACC_EXEC_MASK)
2523                 spte |= shadow_x_mask;
2524         else
2525                 spte |= shadow_nx_mask;
2526
2527         if (pte_access & ACC_USER_MASK)
2528                 spte |= shadow_user_mask;
2529
2530         if (level > PT_PAGE_TABLE_LEVEL)
2531                 spte |= PT_PAGE_SIZE_MASK;
2532         if (tdp_enabled)
2533                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2534                         kvm_is_mmio_pfn(pfn));
2535
2536         if (host_writable)
2537                 spte |= SPTE_HOST_WRITEABLE;
2538         else
2539                 pte_access &= ~ACC_WRITE_MASK;
2540
2541         spte |= (u64)pfn << PAGE_SHIFT;
2542
2543         if (pte_access & ACC_WRITE_MASK) {
2544
2545                 /*
2546                  * Other vcpu creates new sp in the window between
2547                  * mapping_level() and acquiring mmu-lock. We can
2548                  * allow guest to retry the access, the mapping can
2549                  * be fixed if guest refault.
2550                  */
2551                 if (level > PT_PAGE_TABLE_LEVEL &&
2552                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2553                         goto done;
2554
2555                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2556
2557                 /*
2558                  * Optimization: for pte sync, if spte was writable the hash
2559                  * lookup is unnecessary (and expensive). Write protection
2560                  * is responsibility of mmu_get_page / kvm_sync_page.
2561                  * Same reasoning can be applied to dirty page accounting.
2562                  */
2563                 if (!can_unsync && is_writable_pte(*sptep))
2564                         goto set_pte;
2565
2566                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2567                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2568                                  __func__, gfn);
2569                         ret = 1;
2570                         pte_access &= ~ACC_WRITE_MASK;
2571                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2572                 }
2573         }
2574
2575         if (pte_access & ACC_WRITE_MASK) {
2576                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2577                 spte |= shadow_dirty_mask;
2578         }
2579
2580 set_pte:
2581         if (mmu_spte_update(sptep, spte))
2582                 kvm_flush_remote_tlbs(vcpu->kvm);
2583 done:
2584         return ret;
2585 }
2586
2587 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2588                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2589                          bool speculative, bool host_writable)
2590 {
2591         int was_rmapped = 0;
2592         int rmap_count;
2593         bool emulate = false;
2594
2595         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2596                  *sptep, write_fault, gfn);
2597
2598         if (is_shadow_present_pte(*sptep)) {
2599                 /*
2600                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2601                  * the parent of the now unreachable PTE.
2602                  */
2603                 if (level > PT_PAGE_TABLE_LEVEL &&
2604                     !is_large_pte(*sptep)) {
2605                         struct kvm_mmu_page *child;
2606                         u64 pte = *sptep;
2607
2608                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2609                         drop_parent_pte(child, sptep);
2610                         kvm_flush_remote_tlbs(vcpu->kvm);
2611                 } else if (pfn != spte_to_pfn(*sptep)) {
2612                         pgprintk("hfn old %llx new %llx\n",
2613                                  spte_to_pfn(*sptep), pfn);
2614                         drop_spte(vcpu->kvm, sptep);
2615                         kvm_flush_remote_tlbs(vcpu->kvm);
2616                 } else
2617                         was_rmapped = 1;
2618         }
2619
2620         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2621               true, host_writable)) {
2622                 if (write_fault)
2623                         emulate = true;
2624                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2625         }
2626
2627         if (unlikely(is_mmio_spte(*sptep)))
2628                 emulate = true;
2629
2630         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2631         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2632                  is_large_pte(*sptep)? "2MB" : "4kB",
2633                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2634                  *sptep, sptep);
2635         if (!was_rmapped && is_large_pte(*sptep))
2636                 ++vcpu->kvm->stat.lpages;
2637
2638         if (is_shadow_present_pte(*sptep)) {
2639                 if (!was_rmapped) {
2640                         rmap_count = rmap_add(vcpu, sptep, gfn);
2641                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2642                                 rmap_recycle(vcpu, sptep, gfn);
2643                 }
2644         }
2645
2646         kvm_release_pfn_clean(pfn);
2647
2648         return emulate;
2649 }
2650
2651 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2652                                      bool no_dirty_log)
2653 {
2654         struct kvm_memory_slot *slot;
2655
2656         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2657         if (!slot)
2658                 return KVM_PFN_ERR_FAULT;
2659
2660         return gfn_to_pfn_memslot_atomic(slot, gfn);
2661 }
2662
2663 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2664                                     struct kvm_mmu_page *sp,
2665                                     u64 *start, u64 *end)
2666 {
2667         struct page *pages[PTE_PREFETCH_NUM];
2668         struct kvm_memory_slot *slot;
2669         unsigned access = sp->role.access;
2670         int i, ret;
2671         gfn_t gfn;
2672
2673         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2674         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2675         if (!slot)
2676                 return -1;
2677
2678         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2679         if (ret <= 0)
2680                 return -1;
2681
2682         for (i = 0; i < ret; i++, gfn++, start++)
2683                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2684                              page_to_pfn(pages[i]), true, true);
2685
2686         return 0;
2687 }
2688
2689 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2690                                   struct kvm_mmu_page *sp, u64 *sptep)
2691 {
2692         u64 *spte, *start = NULL;
2693         int i;
2694
2695         WARN_ON(!sp->role.direct);
2696
2697         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2698         spte = sp->spt + i;
2699
2700         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2701                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2702                         if (!start)
2703                                 continue;
2704                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2705                                 break;
2706                         start = NULL;
2707                 } else if (!start)
2708                         start = spte;
2709         }
2710 }
2711
2712 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2713 {
2714         struct kvm_mmu_page *sp;
2715
2716         /*
2717          * Since it's no accessed bit on EPT, it's no way to
2718          * distinguish between actually accessed translations
2719          * and prefetched, so disable pte prefetch if EPT is
2720          * enabled.
2721          */
2722         if (!shadow_accessed_mask)
2723                 return;
2724
2725         sp = page_header(__pa(sptep));
2726         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2727                 return;
2728
2729         __direct_pte_prefetch(vcpu, sp, sptep);
2730 }
2731
2732 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2733                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2734 {
2735         struct kvm_shadow_walk_iterator iterator;
2736         struct kvm_mmu_page *sp;
2737         int emulate = 0;
2738         gfn_t pseudo_gfn;
2739
2740         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2741                 return 0;
2742
2743         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2744                 if (iterator.level == level) {
2745                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2746                                                write, level, gfn, pfn, prefault,
2747                                                map_writable);
2748                         direct_pte_prefetch(vcpu, iterator.sptep);
2749                         ++vcpu->stat.pf_fixed;
2750                         break;
2751                 }
2752
2753                 drop_large_spte(vcpu, iterator.sptep);
2754                 if (!is_shadow_present_pte(*iterator.sptep)) {
2755                         u64 base_addr = iterator.addr;
2756
2757                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2758                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2759                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2760                                               iterator.level - 1, 1, ACC_ALL);
2761
2762                         link_shadow_page(vcpu, iterator.sptep, sp);
2763                 }
2764         }
2765         return emulate;
2766 }
2767
2768 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2769 {
2770         siginfo_t info;
2771
2772         info.si_signo   = SIGBUS;
2773         info.si_errno   = 0;
2774         info.si_code    = BUS_MCEERR_AR;
2775         info.si_addr    = (void __user *)address;
2776         info.si_addr_lsb = PAGE_SHIFT;
2777
2778         send_sig_info(SIGBUS, &info, tsk);
2779 }
2780
2781 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2782 {
2783         /*
2784          * Do not cache the mmio info caused by writing the readonly gfn
2785          * into the spte otherwise read access on readonly gfn also can
2786          * caused mmio page fault and treat it as mmio access.
2787          * Return 1 to tell kvm to emulate it.
2788          */
2789         if (pfn == KVM_PFN_ERR_RO_FAULT)
2790                 return 1;
2791
2792         if (pfn == KVM_PFN_ERR_HWPOISON) {
2793                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2794                 return 0;
2795         }
2796
2797         return -EFAULT;
2798 }
2799
2800 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2801                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2802                                         int *levelp)
2803 {
2804         kvm_pfn_t pfn = *pfnp;
2805         gfn_t gfn = *gfnp;
2806         int level = *levelp;
2807
2808         /*
2809          * Check if it's a transparent hugepage. If this would be an
2810          * hugetlbfs page, level wouldn't be set to
2811          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2812          * here.
2813          */
2814         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2815             level == PT_PAGE_TABLE_LEVEL &&
2816             PageTransCompound(pfn_to_page(pfn)) &&
2817             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2818                 unsigned long mask;
2819                 /*
2820                  * mmu_notifier_retry was successful and we hold the
2821                  * mmu_lock here, so the pmd can't become splitting
2822                  * from under us, and in turn
2823                  * __split_huge_page_refcount() can't run from under
2824                  * us and we can safely transfer the refcount from
2825                  * PG_tail to PG_head as we switch the pfn to tail to
2826                  * head.
2827                  */
2828                 *levelp = level = PT_DIRECTORY_LEVEL;
2829                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2830                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2831                 if (pfn & mask) {
2832                         gfn &= ~mask;
2833                         *gfnp = gfn;
2834                         kvm_release_pfn_clean(pfn);
2835                         pfn &= ~mask;
2836                         kvm_get_pfn(pfn);
2837                         *pfnp = pfn;
2838                 }
2839         }
2840 }
2841
2842 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2843                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2844 {
2845         /* The pfn is invalid, report the error! */
2846         if (unlikely(is_error_pfn(pfn))) {
2847                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2848                 return true;
2849         }
2850
2851         if (unlikely(is_noslot_pfn(pfn)))
2852                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2853
2854         return false;
2855 }
2856
2857 static bool page_fault_can_be_fast(u32 error_code)
2858 {
2859         /*
2860          * Do not fix the mmio spte with invalid generation number which
2861          * need to be updated by slow page fault path.
2862          */
2863         if (unlikely(error_code & PFERR_RSVD_MASK))
2864                 return false;
2865
2866         /*
2867          * #PF can be fast only if the shadow page table is present and it
2868          * is caused by write-protect, that means we just need change the
2869          * W bit of the spte which can be done out of mmu-lock.
2870          */
2871         if (!(error_code & PFERR_PRESENT_MASK) ||
2872               !(error_code & PFERR_WRITE_MASK))
2873                 return false;
2874
2875         return true;
2876 }
2877
2878 static bool
2879 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2880                         u64 *sptep, u64 spte)
2881 {
2882         gfn_t gfn;
2883
2884         WARN_ON(!sp->role.direct);
2885
2886         /*
2887          * The gfn of direct spte is stable since it is calculated
2888          * by sp->gfn.
2889          */
2890         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2891
2892         /*
2893          * Theoretically we could also set dirty bit (and flush TLB) here in
2894          * order to eliminate unnecessary PML logging. See comments in
2895          * set_spte. But fast_page_fault is very unlikely to happen with PML
2896          * enabled, so we do not do this. This might result in the same GPA
2897          * to be logged in PML buffer again when the write really happens, and
2898          * eventually to be called by mark_page_dirty twice. But it's also no
2899          * harm. This also avoids the TLB flush needed after setting dirty bit
2900          * so non-PML cases won't be impacted.
2901          *
2902          * Compare with set_spte where instead shadow_dirty_mask is set.
2903          */
2904         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2905                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2906
2907         return true;
2908 }
2909
2910 /*
2911  * Return value:
2912  * - true: let the vcpu to access on the same address again.
2913  * - false: let the real page fault path to fix it.
2914  */
2915 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2916                             u32 error_code)
2917 {
2918         struct kvm_shadow_walk_iterator iterator;
2919         struct kvm_mmu_page *sp;
2920         bool ret = false;
2921         u64 spte = 0ull;
2922
2923         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2924                 return false;
2925
2926         if (!page_fault_can_be_fast(error_code))
2927                 return false;
2928
2929         walk_shadow_page_lockless_begin(vcpu);
2930         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2931                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2932                         break;
2933
2934         /*
2935          * If the mapping has been changed, let the vcpu fault on the
2936          * same address again.
2937          */
2938         if (!is_shadow_present_pte(spte)) {
2939                 ret = true;
2940                 goto exit;
2941         }
2942
2943         sp = page_header(__pa(iterator.sptep));
2944         if (!is_last_spte(spte, sp->role.level))
2945                 goto exit;
2946
2947         /*
2948          * Check if it is a spurious fault caused by TLB lazily flushed.
2949          *
2950          * Need not check the access of upper level table entries since
2951          * they are always ACC_ALL.
2952          */
2953          if (is_writable_pte(spte)) {
2954                 ret = true;
2955                 goto exit;
2956         }
2957
2958         /*
2959          * Currently, to simplify the code, only the spte write-protected
2960          * by dirty-log can be fast fixed.
2961          */
2962         if (!spte_is_locklessly_modifiable(spte))
2963                 goto exit;
2964
2965         /*
2966          * Do not fix write-permission on the large spte since we only dirty
2967          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2968          * that means other pages are missed if its slot is dirty-logged.
2969          *
2970          * Instead, we let the slow page fault path create a normal spte to
2971          * fix the access.
2972          *
2973          * See the comments in kvm_arch_commit_memory_region().
2974          */
2975         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2976                 goto exit;
2977
2978         /*
2979          * Currently, fast page fault only works for direct mapping since
2980          * the gfn is not stable for indirect shadow page.
2981          * See Documentation/virtual/kvm/locking.txt to get more detail.
2982          */
2983         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2984 exit:
2985         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2986                               spte, ret);
2987         walk_shadow_page_lockless_end(vcpu);
2988
2989         return ret;
2990 }
2991
2992 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2993                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2994 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2995
2996 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2997                          gfn_t gfn, bool prefault)
2998 {
2999         int r;
3000         int level;
3001         bool force_pt_level = false;
3002         kvm_pfn_t pfn;
3003         unsigned long mmu_seq;
3004         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3005
3006         level = mapping_level(vcpu, gfn, &force_pt_level);
3007         if (likely(!force_pt_level)) {
3008                 /*
3009                  * This path builds a PAE pagetable - so we can map
3010                  * 2mb pages at maximum. Therefore check if the level
3011                  * is larger than that.
3012                  */
3013                 if (level > PT_DIRECTORY_LEVEL)
3014                         level = PT_DIRECTORY_LEVEL;
3015
3016                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3017         }
3018
3019         if (fast_page_fault(vcpu, v, level, error_code))
3020                 return 0;
3021
3022         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3023         smp_rmb();
3024
3025         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3026                 return 0;
3027
3028         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3029                 return r;
3030
3031         spin_lock(&vcpu->kvm->mmu_lock);
3032         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3033                 goto out_unlock;
3034         make_mmu_pages_available(vcpu);
3035         if (likely(!force_pt_level))
3036                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3037         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3038         spin_unlock(&vcpu->kvm->mmu_lock);
3039
3040         return r;
3041
3042 out_unlock:
3043         spin_unlock(&vcpu->kvm->mmu_lock);
3044         kvm_release_pfn_clean(pfn);
3045         return 0;
3046 }
3047
3048
3049 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3050 {
3051         int i;
3052         struct kvm_mmu_page *sp;
3053         LIST_HEAD(invalid_list);
3054
3055         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3056                 return;
3057
3058         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3059             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3060              vcpu->arch.mmu.direct_map)) {
3061                 hpa_t root = vcpu->arch.mmu.root_hpa;
3062
3063                 spin_lock(&vcpu->kvm->mmu_lock);
3064                 sp = page_header(root);
3065                 --sp->root_count;
3066                 if (!sp->root_count && sp->role.invalid) {
3067                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3068                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3069                 }
3070                 spin_unlock(&vcpu->kvm->mmu_lock);
3071                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3072                 return;
3073         }
3074
3075         spin_lock(&vcpu->kvm->mmu_lock);
3076         for (i = 0; i < 4; ++i) {
3077                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3078
3079                 if (root) {
3080                         root &= PT64_BASE_ADDR_MASK;
3081                         sp = page_header(root);
3082                         --sp->root_count;
3083                         if (!sp->root_count && sp->role.invalid)
3084                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3085                                                          &invalid_list);
3086                 }
3087                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3088         }
3089         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3090         spin_unlock(&vcpu->kvm->mmu_lock);
3091         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3092 }
3093
3094 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3095 {
3096         int ret = 0;
3097
3098         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3099                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3100                 ret = 1;
3101         }
3102
3103         return ret;
3104 }
3105
3106 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3107 {
3108         struct kvm_mmu_page *sp;
3109         unsigned i;
3110
3111         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3112                 spin_lock(&vcpu->kvm->mmu_lock);
3113                 make_mmu_pages_available(vcpu);
3114                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3115                 ++sp->root_count;
3116                 spin_unlock(&vcpu->kvm->mmu_lock);
3117                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3118         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3119                 for (i = 0; i < 4; ++i) {
3120                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3121
3122                         MMU_WARN_ON(VALID_PAGE(root));
3123                         spin_lock(&vcpu->kvm->mmu_lock);
3124                         make_mmu_pages_available(vcpu);
3125                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3126                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3127                         root = __pa(sp->spt);
3128                         ++sp->root_count;
3129                         spin_unlock(&vcpu->kvm->mmu_lock);
3130                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3131                 }
3132                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3133         } else
3134                 BUG();
3135
3136         return 0;
3137 }
3138
3139 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3140 {
3141         struct kvm_mmu_page *sp;
3142         u64 pdptr, pm_mask;
3143         gfn_t root_gfn;
3144         int i;
3145
3146         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3147
3148         if (mmu_check_root(vcpu, root_gfn))
3149                 return 1;
3150
3151         /*
3152          * Do we shadow a long mode page table? If so we need to
3153          * write-protect the guests page table root.
3154          */
3155         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3156                 hpa_t root = vcpu->arch.mmu.root_hpa;
3157
3158                 MMU_WARN_ON(VALID_PAGE(root));
3159
3160                 spin_lock(&vcpu->kvm->mmu_lock);
3161                 make_mmu_pages_available(vcpu);
3162                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3163                                       0, ACC_ALL);
3164                 root = __pa(sp->spt);
3165                 ++sp->root_count;
3166                 spin_unlock(&vcpu->kvm->mmu_lock);
3167                 vcpu->arch.mmu.root_hpa = root;
3168                 return 0;
3169         }
3170
3171         /*
3172          * We shadow a 32 bit page table. This may be a legacy 2-level
3173          * or a PAE 3-level page table. In either case we need to be aware that
3174          * the shadow page table may be a PAE or a long mode page table.
3175          */
3176         pm_mask = PT_PRESENT_MASK;
3177         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3178                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3179
3180         for (i = 0; i < 4; ++i) {
3181                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3182
3183                 MMU_WARN_ON(VALID_PAGE(root));
3184                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3185                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3186                         if (!is_present_gpte(pdptr)) {
3187                                 vcpu->arch.mmu.pae_root[i] = 0;
3188                                 continue;
3189                         }
3190                         root_gfn = pdptr >> PAGE_SHIFT;
3191                         if (mmu_check_root(vcpu, root_gfn))
3192                                 return 1;
3193                 }
3194                 spin_lock(&vcpu->kvm->mmu_lock);
3195                 make_mmu_pages_available(vcpu);
3196                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3197                                       0, ACC_ALL);
3198                 root = __pa(sp->spt);
3199                 ++sp->root_count;
3200                 spin_unlock(&vcpu->kvm->mmu_lock);
3201
3202                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3203         }
3204         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3205
3206         /*
3207          * If we shadow a 32 bit page table with a long mode page
3208          * table we enter this path.
3209          */
3210         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3211                 if (vcpu->arch.mmu.lm_root == NULL) {
3212                         /*
3213                          * The additional page necessary for this is only
3214                          * allocated on demand.
3215                          */
3216
3217                         u64 *lm_root;
3218
3219                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3220                         if (lm_root == NULL)
3221                                 return 1;
3222
3223                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3224
3225                         vcpu->arch.mmu.lm_root = lm_root;
3226                 }
3227
3228                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3229         }
3230
3231         return 0;
3232 }
3233
3234 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3235 {
3236         if (vcpu->arch.mmu.direct_map)
3237                 return mmu_alloc_direct_roots(vcpu);
3238         else
3239                 return mmu_alloc_shadow_roots(vcpu);
3240 }
3241
3242 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3243 {
3244         int i;
3245         struct kvm_mmu_page *sp;
3246
3247         if (vcpu->arch.mmu.direct_map)
3248                 return;
3249
3250         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3251                 return;
3252
3253         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3254         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3255         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3256                 hpa_t root = vcpu->arch.mmu.root_hpa;
3257                 sp = page_header(root);
3258                 mmu_sync_children(vcpu, sp);
3259                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3260                 return;
3261         }
3262         for (i = 0; i < 4; ++i) {
3263                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3264
3265                 if (root && VALID_PAGE(root)) {
3266                         root &= PT64_BASE_ADDR_MASK;
3267                         sp = page_header(root);
3268                         mmu_sync_children(vcpu, sp);
3269                 }
3270         }
3271         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3272 }
3273
3274 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3275 {
3276         spin_lock(&vcpu->kvm->mmu_lock);
3277         mmu_sync_roots(vcpu);
3278         spin_unlock(&vcpu->kvm->mmu_lock);
3279 }
3280 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3281
3282 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3283                                   u32 access, struct x86_exception *exception)
3284 {
3285         if (exception)
3286                 exception->error_code = 0;
3287         return vaddr;
3288 }
3289
3290 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3291                                          u32 access,
3292                                          struct x86_exception *exception)
3293 {
3294         if (exception)
3295                 exception->error_code = 0;
3296         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3297 }
3298
3299 static bool
3300 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3301 {
3302         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3303
3304         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3305                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3306 }
3307
3308 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3309 {
3310         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3311 }
3312
3313 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3314 {
3315         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3316 }
3317
3318 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3319 {
3320         if (direct)
3321                 return vcpu_match_mmio_gpa(vcpu, addr);
3322
3323         return vcpu_match_mmio_gva(vcpu, addr);
3324 }
3325
3326 /* return true if reserved bit is detected on spte. */
3327 static bool
3328 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3329 {
3330         struct kvm_shadow_walk_iterator iterator;
3331         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3332         int root, leaf;
3333         bool reserved = false;
3334
3335         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3336                 goto exit;
3337
3338         walk_shadow_page_lockless_begin(vcpu);
3339
3340         for (shadow_walk_init(&iterator, vcpu, addr),
3341                  leaf = root = iterator.level;
3342              shadow_walk_okay(&iterator);
3343              __shadow_walk_next(&iterator, spte)) {
3344                 spte = mmu_spte_get_lockless(iterator.sptep);
3345
3346                 sptes[leaf - 1] = spte;
3347                 leaf--;
3348
3349                 if (!is_shadow_present_pte(spte))
3350                         break;
3351
3352                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3353                                                     iterator.level);
3354         }
3355
3356         walk_shadow_page_lockless_end(vcpu);
3357
3358         if (reserved) {
3359                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3360                        __func__, addr);
3361                 while (root > leaf) {
3362                         pr_err("------ spte 0x%llx level %d.\n",
3363                                sptes[root - 1], root);
3364                         root--;
3365                 }
3366         }
3367 exit:
3368         *sptep = spte;
3369         return reserved;
3370 }
3371
3372 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3373 {
3374         u64 spte;
3375         bool reserved;
3376
3377         if (mmio_info_in_cache(vcpu, addr, direct))
3378                 return RET_MMIO_PF_EMULATE;
3379
3380         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3381         if (WARN_ON(reserved))
3382                 return RET_MMIO_PF_BUG;
3383
3384         if (is_mmio_spte(spte)) {
3385                 gfn_t gfn = get_mmio_spte_gfn(spte);
3386                 unsigned access = get_mmio_spte_access(spte);
3387
3388                 if (!check_mmio_spte(vcpu, spte))
3389                         return RET_MMIO_PF_INVALID;
3390
3391                 if (direct)
3392                         addr = 0;
3393
3394                 trace_handle_mmio_page_fault(addr, gfn, access);
3395                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3396                 return RET_MMIO_PF_EMULATE;
3397         }
3398
3399         /*
3400          * If the page table is zapped by other cpus, let CPU fault again on
3401          * the address.
3402          */
3403         return RET_MMIO_PF_RETRY;
3404 }
3405 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3406
3407 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3408                                          u32 error_code, gfn_t gfn)
3409 {
3410         if (unlikely(error_code & PFERR_RSVD_MASK))
3411                 return false;
3412
3413         if (!(error_code & PFERR_PRESENT_MASK) ||
3414               !(error_code & PFERR_WRITE_MASK))
3415                 return false;
3416
3417         /*
3418          * guest is writing the page which is write tracked which can
3419          * not be fixed by page fault handler.
3420          */
3421         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3422                 return true;
3423
3424         return false;
3425 }
3426
3427 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3428 {
3429         struct kvm_shadow_walk_iterator iterator;
3430         u64 spte;
3431
3432         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3433                 return;
3434
3435         walk_shadow_page_lockless_begin(vcpu);
3436         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3437                 clear_sp_write_flooding_count(iterator.sptep);
3438                 if (!is_shadow_present_pte(spte))
3439                         break;
3440         }
3441         walk_shadow_page_lockless_end(vcpu);
3442 }
3443
3444 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3445                                 u32 error_code, bool prefault)
3446 {
3447         gfn_t gfn = gva >> PAGE_SHIFT;
3448         int r;
3449
3450         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3451
3452         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3453                 return 1;
3454
3455         r = mmu_topup_memory_caches(vcpu);
3456         if (r)
3457                 return r;
3458
3459         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3460
3461
3462         return nonpaging_map(vcpu, gva & PAGE_MASK,
3463                              error_code, gfn, prefault);
3464 }
3465
3466 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3467 {
3468         struct kvm_arch_async_pf arch;
3469
3470         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3471         arch.gfn = gfn;
3472         arch.direct_map = vcpu->arch.mmu.direct_map;
3473         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3474
3475         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3476 }
3477
3478 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3479 {
3480         if (unlikely(!lapic_in_kernel(vcpu) ||
3481                      kvm_event_needs_reinjection(vcpu)))
3482                 return false;
3483
3484         return kvm_x86_ops->interrupt_allowed(vcpu);
3485 }
3486
3487 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3488                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3489 {
3490         struct kvm_memory_slot *slot;
3491         bool async;
3492
3493         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3494         async = false;
3495         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3496         if (!async)
3497                 return false; /* *pfn has correct page already */
3498
3499         if (!prefault && can_do_async_pf(vcpu)) {
3500                 trace_kvm_try_async_get_page(gva, gfn);
3501                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3502                         trace_kvm_async_pf_doublefault(gva, gfn);
3503                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3504                         return true;
3505                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3506                         return true;
3507         }
3508
3509         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3510         return false;
3511 }
3512
3513 static bool
3514 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3515 {
3516         int page_num = KVM_PAGES_PER_HPAGE(level);
3517
3518         gfn &= ~(page_num - 1);
3519
3520         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3521 }
3522
3523 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3524                           bool prefault)
3525 {
3526         kvm_pfn_t pfn;
3527         int r;
3528         int level;
3529         bool force_pt_level;
3530         gfn_t gfn = gpa >> PAGE_SHIFT;
3531         unsigned long mmu_seq;
3532         int write = error_code & PFERR_WRITE_MASK;
3533         bool map_writable;
3534
3535         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3536
3537         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3538                 return 1;
3539
3540         r = mmu_topup_memory_caches(vcpu);
3541         if (r)
3542                 return r;
3543
3544         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3545                                                            PT_DIRECTORY_LEVEL);
3546         level = mapping_level(vcpu, gfn, &force_pt_level);
3547         if (likely(!force_pt_level)) {
3548                 if (level > PT_DIRECTORY_LEVEL &&
3549                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3550                         level = PT_DIRECTORY_LEVEL;
3551                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3552         }
3553
3554         if (fast_page_fault(vcpu, gpa, level, error_code))
3555                 return 0;
3556
3557         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3558         smp_rmb();
3559
3560         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3561                 return 0;
3562
3563         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3564                 return r;
3565
3566         spin_lock(&vcpu->kvm->mmu_lock);
3567         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3568                 goto out_unlock;
3569         make_mmu_pages_available(vcpu);
3570         if (likely(!force_pt_level))
3571                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3572         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3573         spin_unlock(&vcpu->kvm->mmu_lock);
3574
3575         return r;
3576
3577 out_unlock:
3578         spin_unlock(&vcpu->kvm->mmu_lock);
3579         kvm_release_pfn_clean(pfn);
3580         return 0;
3581 }
3582
3583 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3584                                    struct kvm_mmu *context)
3585 {
3586         context->page_fault = nonpaging_page_fault;
3587         context->gva_to_gpa = nonpaging_gva_to_gpa;
3588         context->sync_page = nonpaging_sync_page;
3589         context->invlpg = nonpaging_invlpg;
3590         context->update_pte = nonpaging_update_pte;
3591         context->root_level = 0;
3592         context->shadow_root_level = PT32E_ROOT_LEVEL;
3593         context->root_hpa = INVALID_PAGE;
3594         context->direct_map = true;
3595         context->nx = false;
3596 }
3597
3598 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3599 {
3600         mmu_free_roots(vcpu);
3601 }
3602
3603 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3604 {
3605         return kvm_read_cr3(vcpu);
3606 }
3607
3608 static void inject_page_fault(struct kvm_vcpu *vcpu,
3609                               struct x86_exception *fault)
3610 {
3611         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3612 }
3613
3614 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3615                            unsigned access, int *nr_present)
3616 {
3617         if (unlikely(is_mmio_spte(*sptep))) {
3618                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3619                         mmu_spte_clear_no_track(sptep);
3620                         return true;
3621                 }
3622
3623                 (*nr_present)++;
3624                 mark_mmio_spte(vcpu, sptep, gfn, access);
3625                 return true;
3626         }
3627
3628         return false;
3629 }
3630
3631 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3632 {
3633         unsigned index;
3634
3635         index = level - 1;
3636         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3637         return mmu->last_pte_bitmap & (1 << index);
3638 }
3639
3640 #define PTTYPE_EPT 18 /* arbitrary */
3641 #define PTTYPE PTTYPE_EPT
3642 #include "paging_tmpl.h"
3643 #undef PTTYPE
3644
3645 #define PTTYPE 64
3646 #include "paging_tmpl.h"
3647 #undef PTTYPE
3648
3649 #define PTTYPE 32
3650 #include "paging_tmpl.h"
3651 #undef PTTYPE
3652
3653 static void
3654 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3655                         struct rsvd_bits_validate *rsvd_check,
3656                         int maxphyaddr, int level, bool nx, bool gbpages,
3657                         bool pse, bool amd)
3658 {
3659         u64 exb_bit_rsvd = 0;
3660         u64 gbpages_bit_rsvd = 0;
3661         u64 nonleaf_bit8_rsvd = 0;
3662
3663         rsvd_check->bad_mt_xwr = 0;
3664
3665         if (!nx)
3666                 exb_bit_rsvd = rsvd_bits(63, 63);
3667         if (!gbpages)
3668                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3669
3670         /*
3671          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3672          * leaf entries) on AMD CPUs only.
3673          */
3674         if (amd)
3675                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3676
3677         switch (level) {
3678         case PT32_ROOT_LEVEL:
3679                 /* no rsvd bits for 2 level 4K page table entries */
3680                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3681                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3682                 rsvd_check->rsvd_bits_mask[1][0] =
3683                         rsvd_check->rsvd_bits_mask[0][0];
3684
3685                 if (!pse) {
3686                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3687                         break;
3688                 }
3689
3690                 if (is_cpuid_PSE36())
3691                         /* 36bits PSE 4MB page */
3692                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3693                 else
3694                         /* 32 bits PSE 4MB page */
3695                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3696                 break;
3697         case PT32E_ROOT_LEVEL:
3698                 rsvd_check->rsvd_bits_mask[0][2] =
3699                         rsvd_bits(maxphyaddr, 63) |
3700                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3701                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3702                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3703                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3704                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3705                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3706                         rsvd_bits(maxphyaddr, 62) |
3707                         rsvd_bits(13, 20);              /* large page */
3708                 rsvd_check->rsvd_bits_mask[1][0] =
3709                         rsvd_check->rsvd_bits_mask[0][0];
3710                 break;
3711         case PT64_ROOT_LEVEL:
3712                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3713                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3714                         rsvd_bits(maxphyaddr, 51);
3715                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3716                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3717                         rsvd_bits(maxphyaddr, 51);
3718                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3719                         rsvd_bits(maxphyaddr, 51);
3720                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3721                         rsvd_bits(maxphyaddr, 51);
3722                 rsvd_check->rsvd_bits_mask[1][3] =
3723                         rsvd_check->rsvd_bits_mask[0][3];
3724                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3725                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3726                         rsvd_bits(13, 29);
3727                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3728                         rsvd_bits(maxphyaddr, 51) |
3729                         rsvd_bits(13, 20);              /* large page */
3730                 rsvd_check->rsvd_bits_mask[1][0] =
3731                         rsvd_check->rsvd_bits_mask[0][0];
3732                 break;
3733         }
3734 }
3735
3736 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3737                                   struct kvm_mmu *context)
3738 {
3739         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3740                                 cpuid_maxphyaddr(vcpu), context->root_level,
3741                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3742                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3743 }
3744
3745 static void
3746 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3747                             int maxphyaddr, bool execonly)
3748 {
3749         u64 bad_mt_xwr;
3750
3751         rsvd_check->rsvd_bits_mask[0][3] =
3752                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3753         rsvd_check->rsvd_bits_mask[0][2] =
3754                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3755         rsvd_check->rsvd_bits_mask[0][1] =
3756                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3757         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3758
3759         /* large page */
3760         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3761         rsvd_check->rsvd_bits_mask[1][2] =
3762                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3763         rsvd_check->rsvd_bits_mask[1][1] =
3764                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3765         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3766
3767         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3768         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3769         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3770         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3771         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3772         if (!execonly) {
3773                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3774                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3775         }
3776         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3777 }
3778
3779 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3780                 struct kvm_mmu *context, bool execonly)
3781 {
3782         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3783                                     cpuid_maxphyaddr(vcpu), execonly);
3784 }
3785
3786 /*
3787  * the page table on host is the shadow page table for the page
3788  * table in guest or amd nested guest, its mmu features completely
3789  * follow the features in guest.
3790  */
3791 void
3792 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3793 {
3794         /*
3795          * Passing "true" to the last argument is okay; it adds a check
3796          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3797          */
3798         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3799                                 boot_cpu_data.x86_phys_bits,
3800                                 context->shadow_root_level, context->nx,
3801                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3802                                 true);
3803 }
3804 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3805
3806 static inline bool boot_cpu_is_amd(void)
3807 {
3808         WARN_ON_ONCE(!tdp_enabled);
3809         return shadow_x_mask == 0;
3810 }
3811
3812 /*
3813  * the direct page table on host, use as much mmu features as
3814  * possible, however, kvm currently does not do execution-protection.
3815  */
3816 static void
3817 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3818                                 struct kvm_mmu *context)
3819 {
3820         if (boot_cpu_is_amd())
3821                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3822                                         boot_cpu_data.x86_phys_bits,
3823                                         context->shadow_root_level, false,
3824                                         cpu_has_gbpages, true, true);
3825         else
3826                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3827                                             boot_cpu_data.x86_phys_bits,
3828                                             false);
3829
3830 }
3831
3832 /*
3833  * as the comments in reset_shadow_zero_bits_mask() except it
3834  * is the shadow page table for intel nested guest.
3835  */
3836 static void
3837 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3838                                 struct kvm_mmu *context, bool execonly)
3839 {
3840         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3841                                     boot_cpu_data.x86_phys_bits, execonly);
3842 }
3843
3844 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3845                                       struct kvm_mmu *mmu, bool ept)
3846 {
3847         unsigned bit, byte, pfec;
3848         u8 map;
3849         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3850
3851         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3852         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3853         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3854                 pfec = byte << 1;
3855                 map = 0;
3856                 wf = pfec & PFERR_WRITE_MASK;
3857                 uf = pfec & PFERR_USER_MASK;
3858                 ff = pfec & PFERR_FETCH_MASK;
3859                 /*
3860                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3861                  * subject to SMAP restrictions, and cleared otherwise. The
3862                  * bit is only meaningful if the SMAP bit is set in CR4.
3863                  */
3864                 smapf = !(pfec & PFERR_RSVD_MASK);
3865                 for (bit = 0; bit < 8; ++bit) {
3866                         x = bit & ACC_EXEC_MASK;
3867                         w = bit & ACC_WRITE_MASK;
3868                         u = bit & ACC_USER_MASK;
3869
3870                         if (!ept) {
3871                                 /* Not really needed: !nx will cause pte.nx to fault */
3872                                 x |= !mmu->nx;
3873                                 /* Allow supervisor writes if !cr0.wp */
3874                                 w |= !is_write_protection(vcpu) && !uf;
3875                                 /* Disallow supervisor fetches of user code if cr4.smep */
3876                                 x &= !(cr4_smep && u && !uf);
3877
3878                                 /*
3879                                  * SMAP:kernel-mode data accesses from user-mode
3880                                  * mappings should fault. A fault is considered
3881                                  * as a SMAP violation if all of the following
3882                                  * conditions are ture:
3883                                  *   - X86_CR4_SMAP is set in CR4
3884                                  *   - An user page is accessed
3885                                  *   - Page fault in kernel mode
3886                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3887                                  *
3888                                  *   Here, we cover the first three conditions.
3889                                  *   The fourth is computed dynamically in
3890                                  *   permission_fault() and is in smapf.
3891                                  *
3892                                  *   Also, SMAP does not affect instruction
3893                                  *   fetches, add the !ff check here to make it
3894                                  *   clearer.
3895                                  */
3896                                 smap = cr4_smap && u && !uf && !ff;
3897                         } else
3898                                 /* Not really needed: no U/S accesses on ept  */
3899                                 u = 1;
3900
3901                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3902                                 (smapf && smap);
3903                         map |= fault << bit;
3904                 }
3905                 mmu->permissions[byte] = map;
3906         }
3907 }
3908
3909 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3910 {
3911         u8 map;
3912         unsigned level, root_level = mmu->root_level;
3913         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3914
3915         if (root_level == PT32E_ROOT_LEVEL)
3916                 --root_level;
3917         /* PT_PAGE_TABLE_LEVEL always terminates */
3918         map = 1 | (1 << ps_set_index);
3919         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3920                 if (level <= PT_PDPE_LEVEL
3921                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3922                         map |= 1 << (ps_set_index | (level - 1));
3923         }
3924         mmu->last_pte_bitmap = map;
3925 }
3926
3927 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3928                                          struct kvm_mmu *context,
3929                                          int level)
3930 {
3931         context->nx = is_nx(vcpu);
3932         context->root_level = level;
3933
3934         reset_rsvds_bits_mask(vcpu, context);
3935         update_permission_bitmask(vcpu, context, false);
3936         update_last_pte_bitmap(vcpu, context);
3937
3938         MMU_WARN_ON(!is_pae(vcpu));
3939         context->page_fault = paging64_page_fault;
3940         context->gva_to_gpa = paging64_gva_to_gpa;
3941         context->sync_page = paging64_sync_page;
3942         context->invlpg = paging64_invlpg;
3943         context->update_pte = paging64_update_pte;
3944         context->shadow_root_level = level;
3945         context->root_hpa = INVALID_PAGE;
3946         context->direct_map = false;
3947 }
3948
3949 static void paging64_init_context(struct kvm_vcpu *vcpu,
3950                                   struct kvm_mmu *context)
3951 {
3952         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3953 }
3954
3955 static void paging32_init_context(struct kvm_vcpu *vcpu,
3956                                   struct kvm_mmu *context)
3957 {
3958         context->nx = false;
3959         context->root_level = PT32_ROOT_LEVEL;
3960
3961         reset_rsvds_bits_mask(vcpu, context);
3962         update_permission_bitmask(vcpu, context, false);
3963         update_last_pte_bitmap(vcpu, context);
3964
3965         context->page_fault = paging32_page_fault;
3966         context->gva_to_gpa = paging32_gva_to_gpa;
3967         context->sync_page = paging32_sync_page;
3968         context->invlpg = paging32_invlpg;
3969         context->update_pte = paging32_update_pte;
3970         context->shadow_root_level = PT32E_ROOT_LEVEL;
3971         context->root_hpa = INVALID_PAGE;
3972         context->direct_map = false;
3973 }
3974
3975 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3976                                    struct kvm_mmu *context)
3977 {
3978         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3979 }
3980
3981 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3982 {
3983         struct kvm_mmu *context = &vcpu->arch.mmu;
3984
3985         context->base_role.word = 0;
3986         context->base_role.smm = is_smm(vcpu);
3987         context->page_fault = tdp_page_fault;
3988         context->sync_page = nonpaging_sync_page;
3989         context->invlpg = nonpaging_invlpg;
3990         context->update_pte = nonpaging_update_pte;
3991         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3992         context->root_hpa = INVALID_PAGE;
3993         context->direct_map = true;
3994         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3995         context->get_cr3 = get_cr3;
3996         context->get_pdptr = kvm_pdptr_read;
3997         context->inject_page_fault = kvm_inject_page_fault;
3998
3999         if (!is_paging(vcpu)) {
4000                 context->nx = false;
4001                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4002                 context->root_level = 0;
4003         } else if (is_long_mode(vcpu)) {
4004                 context->nx = is_nx(vcpu);
4005                 context->root_level = PT64_ROOT_LEVEL;
4006                 reset_rsvds_bits_mask(vcpu, context);
4007                 context->gva_to_gpa = paging64_gva_to_gpa;
4008         } else if (is_pae(vcpu)) {
4009                 context->nx = is_nx(vcpu);
4010                 context->root_level = PT32E_ROOT_LEVEL;
4011                 reset_rsvds_bits_mask(vcpu, context);
4012                 context->gva_to_gpa = paging64_gva_to_gpa;
4013         } else {
4014                 context->nx = false;
4015                 context->root_level = PT32_ROOT_LEVEL;
4016                 reset_rsvds_bits_mask(vcpu, context);
4017                 context->gva_to_gpa = paging32_gva_to_gpa;
4018         }
4019
4020         update_permission_bitmask(vcpu, context, false);
4021         update_last_pte_bitmap(vcpu, context);
4022         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4023 }
4024
4025 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4026 {
4027         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4028         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4029         struct kvm_mmu *context = &vcpu->arch.mmu;
4030
4031         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4032
4033         if (!is_paging(vcpu))
4034                 nonpaging_init_context(vcpu, context);
4035         else if (is_long_mode(vcpu))
4036                 paging64_init_context(vcpu, context);
4037         else if (is_pae(vcpu))
4038                 paging32E_init_context(vcpu, context);
4039         else
4040                 paging32_init_context(vcpu, context);
4041
4042         context->base_role.nxe = is_nx(vcpu);
4043         context->base_role.cr4_pae = !!is_pae(vcpu);
4044         context->base_role.cr0_wp  = is_write_protection(vcpu);
4045         context->base_role.smep_andnot_wp
4046                 = smep && !is_write_protection(vcpu);
4047         context->base_role.smap_andnot_wp
4048                 = smap && !is_write_protection(vcpu);
4049         context->base_role.smm = is_smm(vcpu);
4050         reset_shadow_zero_bits_mask(vcpu, context);
4051 }
4052 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4053
4054 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4055 {
4056         struct kvm_mmu *context = &vcpu->arch.mmu;
4057
4058         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4059
4060         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4061
4062         context->nx = true;
4063         context->page_fault = ept_page_fault;
4064         context->gva_to_gpa = ept_gva_to_gpa;
4065         context->sync_page = ept_sync_page;
4066         context->invlpg = ept_invlpg;
4067         context->update_pte = ept_update_pte;
4068         context->root_level = context->shadow_root_level;
4069         context->root_hpa = INVALID_PAGE;
4070         context->direct_map = false;
4071
4072         update_permission_bitmask(vcpu, context, true);
4073         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4074         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4075 }
4076 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4077
4078 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4079 {
4080         struct kvm_mmu *context = &vcpu->arch.mmu;
4081
4082         kvm_init_shadow_mmu(vcpu);
4083         context->set_cr3           = kvm_x86_ops->set_cr3;
4084         context->get_cr3           = get_cr3;
4085         context->get_pdptr         = kvm_pdptr_read;
4086         context->inject_page_fault = kvm_inject_page_fault;
4087 }
4088
4089 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4090 {
4091         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4092
4093         g_context->get_cr3           = get_cr3;
4094         g_context->get_pdptr         = kvm_pdptr_read;
4095         g_context->inject_page_fault = kvm_inject_page_fault;
4096
4097         /*
4098          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4099          * L1's nested page tables (e.g. EPT12). The nested translation
4100          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4101          * L2's page tables as the first level of translation and L1's
4102          * nested page tables as the second level of translation. Basically
4103          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4104          */
4105         if (!is_paging(vcpu)) {
4106                 g_context->nx = false;
4107                 g_context->root_level = 0;
4108                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4109         } else if (is_long_mode(vcpu)) {
4110                 g_context->nx = is_nx(vcpu);
4111                 g_context->root_level = PT64_ROOT_LEVEL;
4112                 reset_rsvds_bits_mask(vcpu, g_context);
4113                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4114         } else if (is_pae(vcpu)) {
4115                 g_context->nx = is_nx(vcpu);
4116                 g_context->root_level = PT32E_ROOT_LEVEL;
4117                 reset_rsvds_bits_mask(vcpu, g_context);
4118                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4119         } else {
4120                 g_context->nx = false;
4121                 g_context->root_level = PT32_ROOT_LEVEL;
4122                 reset_rsvds_bits_mask(vcpu, g_context);
4123                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4124         }
4125
4126         update_permission_bitmask(vcpu, g_context, false);
4127         update_last_pte_bitmap(vcpu, g_context);
4128 }
4129
4130 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4131 {
4132         if (mmu_is_nested(vcpu))
4133                 init_kvm_nested_mmu(vcpu);
4134         else if (tdp_enabled)
4135                 init_kvm_tdp_mmu(vcpu);
4136         else
4137                 init_kvm_softmmu(vcpu);
4138 }
4139
4140 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4141 {
4142         kvm_mmu_unload(vcpu);
4143         init_kvm_mmu(vcpu);
4144 }
4145 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4146
4147 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4148 {
4149         int r;
4150
4151         r = mmu_topup_memory_caches(vcpu);
4152         if (r)
4153                 goto out;
4154         r = mmu_alloc_roots(vcpu);
4155         kvm_mmu_sync_roots(vcpu);
4156         if (r)
4157                 goto out;
4158         /* set_cr3() should ensure TLB has been flushed */
4159         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4160 out:
4161         return r;
4162 }
4163 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4164
4165 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4166 {
4167         mmu_free_roots(vcpu);
4168         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4169 }
4170 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4171
4172 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4173                                   struct kvm_mmu_page *sp, u64 *spte,
4174                                   const void *new)
4175 {
4176         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4177                 ++vcpu->kvm->stat.mmu_pde_zapped;
4178                 return;
4179         }
4180
4181         ++vcpu->kvm->stat.mmu_pte_updated;
4182         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4183 }
4184
4185 static bool need_remote_flush(u64 old, u64 new)
4186 {
4187         if (!is_shadow_present_pte(old))
4188                 return false;
4189         if (!is_shadow_present_pte(new))
4190                 return true;
4191         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4192                 return true;
4193         old ^= shadow_nx_mask;
4194         new ^= shadow_nx_mask;
4195         return (old & ~new & PT64_PERM_MASK) != 0;
4196 }
4197
4198 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4199                                     const u8 *new, int *bytes)
4200 {
4201         u64 gentry;
4202         int r;
4203
4204         /*
4205          * Assume that the pte write on a page table of the same type
4206          * as the current vcpu paging mode since we update the sptes only
4207          * when they have the same mode.
4208          */
4209         if (is_pae(vcpu) && *bytes == 4) {
4210                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4211                 *gpa &= ~(gpa_t)7;
4212                 *bytes = 8;
4213                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4214                 if (r)
4215                         gentry = 0;
4216                 new = (const u8 *)&gentry;
4217         }
4218
4219         switch (*bytes) {
4220         case 4:
4221                 gentry = *(const u32 *)new;
4222                 break;
4223         case 8:
4224                 gentry = *(const u64 *)new;
4225                 break;
4226         default:
4227                 gentry = 0;
4228                 break;
4229         }
4230
4231         return gentry;
4232 }
4233
4234 /*
4235  * If we're seeing too many writes to a page, it may no longer be a page table,
4236  * or we may be forking, in which case it is better to unmap the page.
4237  */
4238 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4239 {
4240         /*
4241          * Skip write-flooding detected for the sp whose level is 1, because
4242          * it can become unsync, then the guest page is not write-protected.
4243          */
4244         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4245                 return false;
4246
4247         atomic_inc(&sp->write_flooding_count);
4248         return atomic_read(&sp->write_flooding_count) >= 3;
4249 }
4250
4251 /*
4252  * Misaligned accesses are too much trouble to fix up; also, they usually
4253  * indicate a page is not used as a page table.
4254  */
4255 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4256                                     int bytes)
4257 {
4258         unsigned offset, pte_size, misaligned;
4259
4260         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4261                  gpa, bytes, sp->role.word);
4262
4263         offset = offset_in_page(gpa);
4264         pte_size = sp->role.cr4_pae ? 8 : 4;
4265
4266         /*
4267          * Sometimes, the OS only writes the last one bytes to update status
4268          * bits, for example, in linux, andb instruction is used in clear_bit().
4269          */
4270         if (!(offset & (pte_size - 1)) && bytes == 1)
4271                 return false;
4272
4273         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4274         misaligned |= bytes < 4;
4275
4276         return misaligned;
4277 }
4278
4279 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4280 {
4281         unsigned page_offset, quadrant;
4282         u64 *spte;
4283         int level;
4284
4285         page_offset = offset_in_page(gpa);
4286         level = sp->role.level;
4287         *nspte = 1;
4288         if (!sp->role.cr4_pae) {
4289                 page_offset <<= 1;      /* 32->64 */
4290                 /*
4291                  * A 32-bit pde maps 4MB while the shadow pdes map
4292                  * only 2MB.  So we need to double the offset again
4293                  * and zap two pdes instead of one.
4294                  */
4295                 if (level == PT32_ROOT_LEVEL) {
4296                         page_offset &= ~7; /* kill rounding error */
4297                         page_offset <<= 1;
4298                         *nspte = 2;
4299                 }
4300                 quadrant = page_offset >> PAGE_SHIFT;
4301                 page_offset &= ~PAGE_MASK;
4302                 if (quadrant != sp->role.quadrant)
4303                         return NULL;
4304         }
4305
4306         spte = &sp->spt[page_offset / sizeof(*spte)];
4307         return spte;
4308 }
4309
4310 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4311                               const u8 *new, int bytes)
4312 {
4313         gfn_t gfn = gpa >> PAGE_SHIFT;
4314         struct kvm_mmu_page *sp;
4315         LIST_HEAD(invalid_list);
4316         u64 entry, gentry, *spte;
4317         int npte;
4318         bool remote_flush, local_flush;
4319         union kvm_mmu_page_role mask = { };
4320
4321         mask.cr0_wp = 1;
4322         mask.cr4_pae = 1;
4323         mask.nxe = 1;
4324         mask.smep_andnot_wp = 1;
4325         mask.smap_andnot_wp = 1;
4326         mask.smm = 1;
4327
4328         /*
4329          * If we don't have indirect shadow pages, it means no page is
4330          * write-protected, so we can exit simply.
4331          */
4332         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4333                 return;
4334
4335         remote_flush = local_flush = false;
4336
4337         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4338
4339         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4340
4341         /*
4342          * No need to care whether allocation memory is successful
4343          * or not since pte prefetch is skiped if it does not have
4344          * enough objects in the cache.
4345          */
4346         mmu_topup_memory_caches(vcpu);
4347
4348         spin_lock(&vcpu->kvm->mmu_lock);
4349         ++vcpu->kvm->stat.mmu_pte_write;
4350         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4351
4352         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4353                 if (detect_write_misaligned(sp, gpa, bytes) ||
4354                       detect_write_flooding(sp)) {
4355                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4356                         ++vcpu->kvm->stat.mmu_flooded;
4357                         continue;
4358                 }
4359
4360                 spte = get_written_sptes(sp, gpa, &npte);
4361                 if (!spte)
4362                         continue;
4363
4364                 local_flush = true;
4365                 while (npte--) {
4366                         entry = *spte;
4367                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4368                         if (gentry &&
4369                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4370                               & mask.word) && rmap_can_add(vcpu))
4371                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4372                         if (need_remote_flush(entry, *spte))
4373                                 remote_flush = true;
4374                         ++spte;
4375                 }
4376         }
4377         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4378         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4379         spin_unlock(&vcpu->kvm->mmu_lock);
4380 }
4381
4382 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4383 {
4384         gpa_t gpa;
4385         int r;
4386
4387         if (vcpu->arch.mmu.direct_map)
4388                 return 0;
4389
4390         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4391
4392         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4393
4394         return r;
4395 }
4396 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4397
4398 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4399 {
4400         LIST_HEAD(invalid_list);
4401
4402         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4403                 return;
4404
4405         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4406                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4407                         break;
4408
4409                 ++vcpu->kvm->stat.mmu_recycled;
4410         }
4411         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4412 }
4413
4414 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4415                        void *insn, int insn_len)
4416 {
4417         int r, emulation_type = EMULTYPE_RETRY;
4418         enum emulation_result er;
4419         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4420
4421         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4422                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4423                 if (r == RET_MMIO_PF_EMULATE) {
4424                         emulation_type = 0;
4425                         goto emulate;
4426                 }
4427                 if (r == RET_MMIO_PF_RETRY)
4428                         return 1;
4429                 if (r < 0)
4430                         return r;
4431         }
4432
4433         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4434         if (r < 0)
4435                 return r;
4436         if (!r)
4437                 return 1;
4438
4439         if (mmio_info_in_cache(vcpu, cr2, direct))
4440                 emulation_type = 0;
4441 emulate:
4442         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4443
4444         switch (er) {
4445         case EMULATE_DONE:
4446                 return 1;
4447         case EMULATE_USER_EXIT:
4448                 ++vcpu->stat.mmio_exits;
4449                 /* fall through */
4450         case EMULATE_FAIL:
4451                 return 0;
4452         default:
4453                 BUG();
4454         }
4455 }
4456 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4457
4458 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4459 {
4460         vcpu->arch.mmu.invlpg(vcpu, gva);
4461         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4462         ++vcpu->stat.invlpg;
4463 }
4464 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4465
4466 void kvm_enable_tdp(void)
4467 {
4468         tdp_enabled = true;
4469 }
4470 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4471
4472 void kvm_disable_tdp(void)
4473 {
4474         tdp_enabled = false;
4475 }
4476 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4477
4478 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4479 {
4480         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4481         if (vcpu->arch.mmu.lm_root != NULL)
4482                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4483 }
4484
4485 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4486 {
4487         struct page *page;
4488         int i;
4489
4490         /*
4491          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4492          * Therefore we need to allocate shadow page tables in the first
4493          * 4GB of memory, which happens to fit the DMA32 zone.
4494          */
4495         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4496         if (!page)
4497                 return -ENOMEM;
4498
4499         vcpu->arch.mmu.pae_root = page_address(page);
4500         for (i = 0; i < 4; ++i)
4501                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4502
4503         return 0;
4504 }
4505
4506 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4507 {
4508         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4509         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4510         vcpu->arch.mmu.translate_gpa = translate_gpa;
4511         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4512
4513         return alloc_mmu_pages(vcpu);
4514 }
4515
4516 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4517 {
4518         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4519
4520         init_kvm_mmu(vcpu);
4521 }
4522
4523 void kvm_mmu_init_vm(struct kvm *kvm)
4524 {
4525         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4526
4527         node->track_write = kvm_mmu_pte_write;
4528         kvm_page_track_register_notifier(kvm, node);
4529 }
4530
4531 void kvm_mmu_uninit_vm(struct kvm *kvm)
4532 {
4533         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4534
4535         kvm_page_track_unregister_notifier(kvm, node);
4536 }
4537
4538 /* The return value indicates if tlb flush on all vcpus is needed. */
4539 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4540
4541 /* The caller should hold mmu-lock before calling this function. */
4542 static bool
4543 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4544                         slot_level_handler fn, int start_level, int end_level,
4545                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4546 {
4547         struct slot_rmap_walk_iterator iterator;
4548         bool flush = false;
4549
4550         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4551                         end_gfn, &iterator) {
4552                 if (iterator.rmap)
4553                         flush |= fn(kvm, iterator.rmap);
4554
4555                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4556                         if (flush && lock_flush_tlb) {
4557                                 kvm_flush_remote_tlbs(kvm);
4558                                 flush = false;
4559                         }
4560                         cond_resched_lock(&kvm->mmu_lock);
4561                 }
4562         }
4563
4564         if (flush && lock_flush_tlb) {
4565                 kvm_flush_remote_tlbs(kvm);
4566                 flush = false;
4567         }
4568
4569         return flush;
4570 }
4571
4572 static bool
4573 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4574                   slot_level_handler fn, int start_level, int end_level,
4575                   bool lock_flush_tlb)
4576 {
4577         return slot_handle_level_range(kvm, memslot, fn, start_level,
4578                         end_level, memslot->base_gfn,
4579                         memslot->base_gfn + memslot->npages - 1,
4580                         lock_flush_tlb);
4581 }
4582
4583 static bool
4584 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4585                       slot_level_handler fn, bool lock_flush_tlb)
4586 {
4587         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4588                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4589 }
4590
4591 static bool
4592 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4593                         slot_level_handler fn, bool lock_flush_tlb)
4594 {
4595         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4596                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4597 }
4598
4599 static bool
4600 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4601                  slot_level_handler fn, bool lock_flush_tlb)
4602 {
4603         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4604                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4605 }
4606
4607 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4608 {
4609         struct kvm_memslots *slots;
4610         struct kvm_memory_slot *memslot;
4611         int i;
4612
4613         spin_lock(&kvm->mmu_lock);
4614         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4615                 slots = __kvm_memslots(kvm, i);
4616                 kvm_for_each_memslot(memslot, slots) {
4617                         gfn_t start, end;
4618
4619                         start = max(gfn_start, memslot->base_gfn);
4620                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4621                         if (start >= end)
4622                                 continue;
4623
4624                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4625                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4626                                                 start, end - 1, true);
4627                 }
4628         }
4629
4630         spin_unlock(&kvm->mmu_lock);
4631 }
4632
4633 static bool slot_rmap_write_protect(struct kvm *kvm,
4634                                     struct kvm_rmap_head *rmap_head)
4635 {
4636         return __rmap_write_protect(kvm, rmap_head, false);
4637 }
4638
4639 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4640                                       struct kvm_memory_slot *memslot)
4641 {
4642         bool flush;
4643
4644         spin_lock(&kvm->mmu_lock);
4645         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4646                                       false);
4647         spin_unlock(&kvm->mmu_lock);
4648
4649         /*
4650          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4651          * which do tlb flush out of mmu-lock should be serialized by
4652          * kvm->slots_lock otherwise tlb flush would be missed.
4653          */
4654         lockdep_assert_held(&kvm->slots_lock);
4655
4656         /*
4657          * We can flush all the TLBs out of the mmu lock without TLB
4658          * corruption since we just change the spte from writable to
4659          * readonly so that we only need to care the case of changing
4660          * spte from present to present (changing the spte from present
4661          * to nonpresent will flush all the TLBs immediately), in other
4662          * words, the only case we care is mmu_spte_update() where we
4663          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4664          * instead of PT_WRITABLE_MASK, that means it does not depend
4665          * on PT_WRITABLE_MASK anymore.
4666          */
4667         if (flush)
4668                 kvm_flush_remote_tlbs(kvm);
4669 }
4670
4671 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4672                                          struct kvm_rmap_head *rmap_head)
4673 {
4674         u64 *sptep;
4675         struct rmap_iterator iter;
4676         int need_tlb_flush = 0;
4677         kvm_pfn_t pfn;
4678         struct kvm_mmu_page *sp;
4679
4680 restart:
4681         for_each_rmap_spte(rmap_head, &iter, sptep) {
4682                 sp = page_header(__pa(sptep));
4683                 pfn = spte_to_pfn(*sptep);
4684
4685                 /*
4686                  * We cannot do huge page mapping for indirect shadow pages,
4687                  * which are found on the last rmap (level = 1) when not using
4688                  * tdp; such shadow pages are synced with the page table in
4689                  * the guest, and the guest page table is using 4K page size
4690                  * mapping if the indirect sp has level = 1.
4691                  */
4692                 if (sp->role.direct &&
4693                         !kvm_is_reserved_pfn(pfn) &&
4694                         PageTransCompound(pfn_to_page(pfn))) {
4695                         drop_spte(kvm, sptep);
4696                         need_tlb_flush = 1;
4697                         goto restart;
4698                 }
4699         }
4700
4701         return need_tlb_flush;
4702 }
4703
4704 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4705                                    const struct kvm_memory_slot *memslot)
4706 {
4707         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4708         spin_lock(&kvm->mmu_lock);
4709         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4710                          kvm_mmu_zap_collapsible_spte, true);
4711         spin_unlock(&kvm->mmu_lock);
4712 }
4713
4714 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4715                                    struct kvm_memory_slot *memslot)
4716 {
4717         bool flush;
4718
4719         spin_lock(&kvm->mmu_lock);
4720         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4721         spin_unlock(&kvm->mmu_lock);
4722
4723         lockdep_assert_held(&kvm->slots_lock);
4724
4725         /*
4726          * It's also safe to flush TLBs out of mmu lock here as currently this
4727          * function is only used for dirty logging, in which case flushing TLB
4728          * out of mmu lock also guarantees no dirty pages will be lost in
4729          * dirty_bitmap.
4730          */
4731         if (flush)
4732                 kvm_flush_remote_tlbs(kvm);
4733 }
4734 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4735
4736 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4737                                         struct kvm_memory_slot *memslot)
4738 {
4739         bool flush;
4740
4741         spin_lock(&kvm->mmu_lock);
4742         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4743                                         false);
4744         spin_unlock(&kvm->mmu_lock);
4745
4746         /* see kvm_mmu_slot_remove_write_access */
4747         lockdep_assert_held(&kvm->slots_lock);
4748
4749         if (flush)
4750                 kvm_flush_remote_tlbs(kvm);
4751 }
4752 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4753
4754 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4755                             struct kvm_memory_slot *memslot)
4756 {
4757         bool flush;
4758
4759         spin_lock(&kvm->mmu_lock);
4760         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4761         spin_unlock(&kvm->mmu_lock);
4762
4763         lockdep_assert_held(&kvm->slots_lock);
4764
4765         /* see kvm_mmu_slot_leaf_clear_dirty */
4766         if (flush)
4767                 kvm_flush_remote_tlbs(kvm);
4768 }
4769 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4770
4771 #define BATCH_ZAP_PAGES 10
4772 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4773 {
4774         struct kvm_mmu_page *sp, *node;
4775         int batch = 0;
4776
4777 restart:
4778         list_for_each_entry_safe_reverse(sp, node,
4779               &kvm->arch.active_mmu_pages, link) {
4780                 int ret;
4781
4782                 /*
4783                  * No obsolete page exists before new created page since
4784                  * active_mmu_pages is the FIFO list.
4785                  */
4786                 if (!is_obsolete_sp(kvm, sp))
4787                         break;
4788
4789                 /*
4790                  * Since we are reversely walking the list and the invalid
4791                  * list will be moved to the head, skip the invalid page
4792                  * can help us to avoid the infinity list walking.
4793                  */
4794                 if (sp->role.invalid)
4795                         continue;
4796
4797                 /*
4798                  * Need not flush tlb since we only zap the sp with invalid
4799                  * generation number.
4800                  */
4801                 if (batch >= BATCH_ZAP_PAGES &&
4802                       cond_resched_lock(&kvm->mmu_lock)) {
4803                         batch = 0;
4804                         goto restart;
4805                 }
4806
4807                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4808                                 &kvm->arch.zapped_obsolete_pages);
4809                 batch += ret;
4810
4811                 if (ret)
4812                         goto restart;
4813         }
4814
4815         /*
4816          * Should flush tlb before free page tables since lockless-walking
4817          * may use the pages.
4818          */
4819         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4820 }
4821
4822 /*
4823  * Fast invalidate all shadow pages and use lock-break technique
4824  * to zap obsolete pages.
4825  *
4826  * It's required when memslot is being deleted or VM is being
4827  * destroyed, in these cases, we should ensure that KVM MMU does
4828  * not use any resource of the being-deleted slot or all slots
4829  * after calling the function.
4830  */
4831 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4832 {
4833         spin_lock(&kvm->mmu_lock);
4834         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4835         kvm->arch.mmu_valid_gen++;
4836
4837         /*
4838          * Notify all vcpus to reload its shadow page table
4839          * and flush TLB. Then all vcpus will switch to new
4840          * shadow page table with the new mmu_valid_gen.
4841          *
4842          * Note: we should do this under the protection of
4843          * mmu-lock, otherwise, vcpu would purge shadow page
4844          * but miss tlb flush.
4845          */
4846         kvm_reload_remote_mmus(kvm);
4847
4848         kvm_zap_obsolete_pages(kvm);
4849         spin_unlock(&kvm->mmu_lock);
4850 }
4851
4852 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4853 {
4854         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4855 }
4856
4857 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4858 {
4859         /*
4860          * The very rare case: if the generation-number is round,
4861          * zap all shadow pages.
4862          */
4863         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4864                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4865                 kvm_mmu_invalidate_zap_all_pages(kvm);
4866         }
4867 }
4868
4869 static unsigned long
4870 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4871 {
4872         struct kvm *kvm;
4873         int nr_to_scan = sc->nr_to_scan;
4874         unsigned long freed = 0;
4875
4876         spin_lock(&kvm_lock);
4877
4878         list_for_each_entry(kvm, &vm_list, vm_list) {
4879                 int idx;
4880                 LIST_HEAD(invalid_list);
4881
4882                 /*
4883                  * Never scan more than sc->nr_to_scan VM instances.
4884                  * Will not hit this condition practically since we do not try
4885                  * to shrink more than one VM and it is very unlikely to see
4886                  * !n_used_mmu_pages so many times.
4887                  */
4888                 if (!nr_to_scan--)
4889                         break;
4890                 /*
4891                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4892                  * here. We may skip a VM instance errorneosly, but we do not
4893                  * want to shrink a VM that only started to populate its MMU
4894                  * anyway.
4895                  */
4896                 if (!kvm->arch.n_used_mmu_pages &&
4897                       !kvm_has_zapped_obsolete_pages(kvm))
4898                         continue;
4899
4900                 idx = srcu_read_lock(&kvm->srcu);
4901                 spin_lock(&kvm->mmu_lock);
4902
4903                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4904                         kvm_mmu_commit_zap_page(kvm,
4905                               &kvm->arch.zapped_obsolete_pages);
4906                         goto unlock;
4907                 }
4908
4909                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4910                         freed++;
4911                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4912
4913 unlock:
4914                 spin_unlock(&kvm->mmu_lock);
4915                 srcu_read_unlock(&kvm->srcu, idx);
4916
4917                 /*
4918                  * unfair on small ones
4919                  * per-vm shrinkers cry out
4920                  * sadness comes quickly
4921                  */
4922                 list_move_tail(&kvm->vm_list, &vm_list);
4923                 break;
4924         }
4925
4926         spin_unlock(&kvm_lock);
4927         return freed;
4928 }
4929
4930 static unsigned long
4931 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4932 {
4933         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4934 }
4935
4936 static struct shrinker mmu_shrinker = {
4937         .count_objects = mmu_shrink_count,
4938         .scan_objects = mmu_shrink_scan,
4939         .seeks = DEFAULT_SEEKS * 10,
4940 };
4941
4942 static void mmu_destroy_caches(void)
4943 {
4944         if (pte_list_desc_cache)
4945                 kmem_cache_destroy(pte_list_desc_cache);
4946         if (mmu_page_header_cache)
4947                 kmem_cache_destroy(mmu_page_header_cache);
4948 }
4949
4950 int kvm_mmu_module_init(void)
4951 {
4952         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4953                                             sizeof(struct pte_list_desc),
4954                                             0, 0, NULL);
4955         if (!pte_list_desc_cache)
4956                 goto nomem;
4957
4958         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4959                                                   sizeof(struct kvm_mmu_page),
4960                                                   0, 0, NULL);
4961         if (!mmu_page_header_cache)
4962                 goto nomem;
4963
4964         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4965                 goto nomem;
4966
4967         register_shrinker(&mmu_shrinker);
4968
4969         return 0;
4970
4971 nomem:
4972         mmu_destroy_caches();
4973         return -ENOMEM;
4974 }
4975
4976 /*
4977  * Caculate mmu pages needed for kvm.
4978  */
4979 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4980 {
4981         unsigned int nr_mmu_pages;
4982         unsigned int  nr_pages = 0;
4983         struct kvm_memslots *slots;
4984         struct kvm_memory_slot *memslot;
4985         int i;
4986
4987         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4988                 slots = __kvm_memslots(kvm, i);
4989
4990                 kvm_for_each_memslot(memslot, slots)
4991                         nr_pages += memslot->npages;
4992         }
4993
4994         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4995         nr_mmu_pages = max(nr_mmu_pages,
4996                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4997
4998         return nr_mmu_pages;
4999 }
5000
5001 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5002 {
5003         kvm_mmu_unload(vcpu);
5004         free_mmu_pages(vcpu);
5005         mmu_free_memory_caches(vcpu);
5006 }
5007
5008 void kvm_mmu_module_exit(void)
5009 {
5010         mmu_destroy_caches();
5011         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5012         unregister_shrinker(&mmu_shrinker);
5013         mmu_audit_disable();
5014 }