bf227212aebb15bf4d5733504202598dee24f0b9
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void enter_smm(struct kvm_vcpu *vcpu);
95 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
96
97 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99
100 static bool __read_mostly ignore_msrs = 0;
101 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
102
103 unsigned int min_timer_period_us = 500;
104 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
105
106 static bool __read_mostly kvmclock_periodic_sync = true;
107 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
108
109 bool __read_mostly kvm_has_tsc_control;
110 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
111 u32  __read_mostly kvm_max_guest_tsc_khz;
112 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
113 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
114 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
115 u64  __read_mostly kvm_max_tsc_scaling_ratio;
116 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
117 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
118
119 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
120 static u32 __read_mostly tsc_tolerance_ppm = 250;
121 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
122
123 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
124 unsigned int __read_mostly lapic_timer_advance_ns = 0;
125 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
126
127 static bool __read_mostly vector_hashing = true;
128 module_param(vector_hashing, bool, S_IRUGO);
129
130 static bool __read_mostly backwards_tsc_observed = false;
131
132 #define KVM_NR_SHARED_MSRS 16
133
134 struct kvm_shared_msrs_global {
135         int nr;
136         u32 msrs[KVM_NR_SHARED_MSRS];
137 };
138
139 struct kvm_shared_msrs {
140         struct user_return_notifier urn;
141         bool registered;
142         struct kvm_shared_msr_values {
143                 u64 host;
144                 u64 curr;
145         } values[KVM_NR_SHARED_MSRS];
146 };
147
148 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
149 static struct kvm_shared_msrs __percpu *shared_msrs;
150
151 struct kvm_stats_debugfs_item debugfs_entries[] = {
152         { "pf_fixed", VCPU_STAT(pf_fixed) },
153         { "pf_guest", VCPU_STAT(pf_guest) },
154         { "tlb_flush", VCPU_STAT(tlb_flush) },
155         { "invlpg", VCPU_STAT(invlpg) },
156         { "exits", VCPU_STAT(exits) },
157         { "io_exits", VCPU_STAT(io_exits) },
158         { "mmio_exits", VCPU_STAT(mmio_exits) },
159         { "signal_exits", VCPU_STAT(signal_exits) },
160         { "irq_window", VCPU_STAT(irq_window_exits) },
161         { "nmi_window", VCPU_STAT(nmi_window_exits) },
162         { "halt_exits", VCPU_STAT(halt_exits) },
163         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
164         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
165         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
166         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
167         { "hypercalls", VCPU_STAT(hypercalls) },
168         { "request_irq", VCPU_STAT(request_irq_exits) },
169         { "irq_exits", VCPU_STAT(irq_exits) },
170         { "host_state_reload", VCPU_STAT(host_state_reload) },
171         { "efer_reload", VCPU_STAT(efer_reload) },
172         { "fpu_reload", VCPU_STAT(fpu_reload) },
173         { "insn_emulation", VCPU_STAT(insn_emulation) },
174         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
175         { "irq_injections", VCPU_STAT(irq_injections) },
176         { "nmi_injections", VCPU_STAT(nmi_injections) },
177         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
178         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
179         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
180         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
181         { "mmu_flooded", VM_STAT(mmu_flooded) },
182         { "mmu_recycled", VM_STAT(mmu_recycled) },
183         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
184         { "mmu_unsync", VM_STAT(mmu_unsync) },
185         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
186         { "largepages", VM_STAT(lpages) },
187         { NULL }
188 };
189
190 u64 __read_mostly host_xcr0;
191
192 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
193
194 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
195 {
196         int i;
197         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
198                 vcpu->arch.apf.gfns[i] = ~0;
199 }
200
201 static void kvm_on_user_return(struct user_return_notifier *urn)
202 {
203         unsigned slot;
204         struct kvm_shared_msrs *locals
205                 = container_of(urn, struct kvm_shared_msrs, urn);
206         struct kvm_shared_msr_values *values;
207
208         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
209                 values = &locals->values[slot];
210                 if (values->host != values->curr) {
211                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
212                         values->curr = values->host;
213                 }
214         }
215         locals->registered = false;
216         user_return_notifier_unregister(urn);
217 }
218
219 static void shared_msr_update(unsigned slot, u32 msr)
220 {
221         u64 value;
222         unsigned int cpu = smp_processor_id();
223         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
224
225         /* only read, and nobody should modify it at this time,
226          * so don't need lock */
227         if (slot >= shared_msrs_global.nr) {
228                 printk(KERN_ERR "kvm: invalid MSR slot!");
229                 return;
230         }
231         rdmsrl_safe(msr, &value);
232         smsr->values[slot].host = value;
233         smsr->values[slot].curr = value;
234 }
235
236 void kvm_define_shared_msr(unsigned slot, u32 msr)
237 {
238         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
239         shared_msrs_global.msrs[slot] = msr;
240         if (slot >= shared_msrs_global.nr)
241                 shared_msrs_global.nr = slot + 1;
242 }
243 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
244
245 static void kvm_shared_msr_cpu_online(void)
246 {
247         unsigned i;
248
249         for (i = 0; i < shared_msrs_global.nr; ++i)
250                 shared_msr_update(i, shared_msrs_global.msrs[i]);
251 }
252
253 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
254 {
255         unsigned int cpu = smp_processor_id();
256         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257         int err;
258
259         if (((value ^ smsr->values[slot].curr) & mask) == 0)
260                 return 0;
261         smsr->values[slot].curr = value;
262         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
263         if (err)
264                 return 1;
265
266         if (!smsr->registered) {
267                 smsr->urn.on_user_return = kvm_on_user_return;
268                 user_return_notifier_register(&smsr->urn);
269                 smsr->registered = true;
270         }
271         return 0;
272 }
273 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
274
275 static void drop_user_return_notifiers(void)
276 {
277         unsigned int cpu = smp_processor_id();
278         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279
280         if (smsr->registered)
281                 kvm_on_user_return(&smsr->urn);
282 }
283
284 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
285 {
286         return vcpu->arch.apic_base;
287 }
288 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
289
290 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
291 {
292         u64 old_state = vcpu->arch.apic_base &
293                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294         u64 new_state = msr_info->data &
295                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
296         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
297                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
298
299         if (!msr_info->host_initiated &&
300             ((msr_info->data & reserved_bits) != 0 ||
301              new_state == X2APIC_ENABLE ||
302              (new_state == MSR_IA32_APICBASE_ENABLE &&
303               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
304              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
305               old_state == 0)))
306                 return 1;
307
308         kvm_lapic_set_base(vcpu, msr_info->data);
309         return 0;
310 }
311 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
312
313 asmlinkage __visible void kvm_spurious_fault(void)
314 {
315         /* Fault while not rebooting.  We want the trace. */
316         BUG();
317 }
318 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
319
320 #define EXCPT_BENIGN            0
321 #define EXCPT_CONTRIBUTORY      1
322 #define EXCPT_PF                2
323
324 static int exception_class(int vector)
325 {
326         switch (vector) {
327         case PF_VECTOR:
328                 return EXCPT_PF;
329         case DE_VECTOR:
330         case TS_VECTOR:
331         case NP_VECTOR:
332         case SS_VECTOR:
333         case GP_VECTOR:
334                 return EXCPT_CONTRIBUTORY;
335         default:
336                 break;
337         }
338         return EXCPT_BENIGN;
339 }
340
341 #define EXCPT_FAULT             0
342 #define EXCPT_TRAP              1
343 #define EXCPT_ABORT             2
344 #define EXCPT_INTERRUPT         3
345
346 static int exception_type(int vector)
347 {
348         unsigned int mask;
349
350         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
351                 return EXCPT_INTERRUPT;
352
353         mask = 1 << vector;
354
355         /* #DB is trap, as instruction watchpoints are handled elsewhere */
356         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
357                 return EXCPT_TRAP;
358
359         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
360                 return EXCPT_ABORT;
361
362         /* Reserved exceptions will result in fault */
363         return EXCPT_FAULT;
364 }
365
366 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
367                 unsigned nr, bool has_error, u32 error_code,
368                 bool reinject)
369 {
370         u32 prev_nr;
371         int class1, class2;
372
373         kvm_make_request(KVM_REQ_EVENT, vcpu);
374
375         if (!vcpu->arch.exception.pending) {
376         queue:
377                 if (has_error && !is_protmode(vcpu))
378                         has_error = false;
379                 vcpu->arch.exception.pending = true;
380                 vcpu->arch.exception.has_error_code = has_error;
381                 vcpu->arch.exception.nr = nr;
382                 vcpu->arch.exception.error_code = error_code;
383                 vcpu->arch.exception.reinject = reinject;
384                 return;
385         }
386
387         /* to check exception */
388         prev_nr = vcpu->arch.exception.nr;
389         if (prev_nr == DF_VECTOR) {
390                 /* triple fault -> shutdown */
391                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
392                 return;
393         }
394         class1 = exception_class(prev_nr);
395         class2 = exception_class(nr);
396         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
397                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
398                 /* generate double fault per SDM Table 5-5 */
399                 vcpu->arch.exception.pending = true;
400                 vcpu->arch.exception.has_error_code = true;
401                 vcpu->arch.exception.nr = DF_VECTOR;
402                 vcpu->arch.exception.error_code = 0;
403         } else
404                 /* replace previous exception with a new one in a hope
405                    that instruction re-execution will regenerate lost
406                    exception */
407                 goto queue;
408 }
409
410 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
411 {
412         kvm_multiple_exception(vcpu, nr, false, 0, false);
413 }
414 EXPORT_SYMBOL_GPL(kvm_queue_exception);
415
416 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418         kvm_multiple_exception(vcpu, nr, false, 0, true);
419 }
420 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
421
422 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
423 {
424         if (err)
425                 kvm_inject_gp(vcpu, 0);
426         else
427                 kvm_x86_ops->skip_emulated_instruction(vcpu);
428 }
429 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
430
431 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
432 {
433         ++vcpu->stat.pf_guest;
434         vcpu->arch.cr2 = fault->address;
435         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
436 }
437 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
438
439 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
440 {
441         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
442                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
443         else
444                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
445
446         return fault->nested_page_fault;
447 }
448
449 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
450 {
451         atomic_inc(&vcpu->arch.nmi_queued);
452         kvm_make_request(KVM_REQ_NMI, vcpu);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
455
456 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
457 {
458         kvm_multiple_exception(vcpu, nr, true, error_code, false);
459 }
460 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
461
462 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464         kvm_multiple_exception(vcpu, nr, true, error_code, true);
465 }
466 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
467
468 /*
469  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
470  * a #GP and return false.
471  */
472 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
473 {
474         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
475                 return true;
476         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
477         return false;
478 }
479 EXPORT_SYMBOL_GPL(kvm_require_cpl);
480
481 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
482 {
483         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
484                 return true;
485
486         kvm_queue_exception(vcpu, UD_VECTOR);
487         return false;
488 }
489 EXPORT_SYMBOL_GPL(kvm_require_dr);
490
491 /*
492  * This function will be used to read from the physical memory of the currently
493  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
494  * can read from guest physical or from the guest's guest physical memory.
495  */
496 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
497                             gfn_t ngfn, void *data, int offset, int len,
498                             u32 access)
499 {
500         struct x86_exception exception;
501         gfn_t real_gfn;
502         gpa_t ngpa;
503
504         ngpa     = gfn_to_gpa(ngfn);
505         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
506         if (real_gfn == UNMAPPED_GVA)
507                 return -EFAULT;
508
509         real_gfn = gpa_to_gfn(real_gfn);
510
511         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
512 }
513 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
514
515 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
516                                void *data, int offset, int len, u32 access)
517 {
518         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
519                                        data, offset, len, access);
520 }
521
522 /*
523  * Load the pae pdptrs.  Return true is they are all valid.
524  */
525 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
526 {
527         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
528         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
529         int i;
530         int ret;
531         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
532
533         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
534                                       offset * sizeof(u64), sizeof(pdpte),
535                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
536         if (ret < 0) {
537                 ret = 0;
538                 goto out;
539         }
540         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
541                 if (is_present_gpte(pdpte[i]) &&
542                     (pdpte[i] &
543                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
544                         ret = 0;
545                         goto out;
546                 }
547         }
548         ret = 1;
549
550         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
551         __set_bit(VCPU_EXREG_PDPTR,
552                   (unsigned long *)&vcpu->arch.regs_avail);
553         __set_bit(VCPU_EXREG_PDPTR,
554                   (unsigned long *)&vcpu->arch.regs_dirty);
555 out:
556
557         return ret;
558 }
559 EXPORT_SYMBOL_GPL(load_pdptrs);
560
561 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
562 {
563         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
564         bool changed = true;
565         int offset;
566         gfn_t gfn;
567         int r;
568
569         if (is_long_mode(vcpu) || !is_pae(vcpu))
570                 return false;
571
572         if (!test_bit(VCPU_EXREG_PDPTR,
573                       (unsigned long *)&vcpu->arch.regs_avail))
574                 return true;
575
576         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
577         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
578         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
579                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
580         if (r < 0)
581                 goto out;
582         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
583 out:
584
585         return changed;
586 }
587
588 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
589 {
590         unsigned long old_cr0 = kvm_read_cr0(vcpu);
591         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
592
593         cr0 |= X86_CR0_ET;
594
595 #ifdef CONFIG_X86_64
596         if (cr0 & 0xffffffff00000000UL)
597                 return 1;
598 #endif
599
600         cr0 &= ~CR0_RESERVED_BITS;
601
602         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
603                 return 1;
604
605         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
606                 return 1;
607
608         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
609 #ifdef CONFIG_X86_64
610                 if ((vcpu->arch.efer & EFER_LME)) {
611                         int cs_db, cs_l;
612
613                         if (!is_pae(vcpu))
614                                 return 1;
615                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
616                         if (cs_l)
617                                 return 1;
618                 } else
619 #endif
620                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
621                                                  kvm_read_cr3(vcpu)))
622                         return 1;
623         }
624
625         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
626                 return 1;
627
628         kvm_x86_ops->set_cr0(vcpu, cr0);
629
630         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
631                 kvm_clear_async_pf_completion_queue(vcpu);
632                 kvm_async_pf_hash_reset(vcpu);
633         }
634
635         if ((cr0 ^ old_cr0) & update_bits)
636                 kvm_mmu_reset_context(vcpu);
637
638         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
639             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
640             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
641                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
642
643         return 0;
644 }
645 EXPORT_SYMBOL_GPL(kvm_set_cr0);
646
647 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
648 {
649         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
650 }
651 EXPORT_SYMBOL_GPL(kvm_lmsw);
652
653 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
654 {
655         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
656                         !vcpu->guest_xcr0_loaded) {
657                 /* kvm_set_xcr() also depends on this */
658                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
659                 vcpu->guest_xcr0_loaded = 1;
660         }
661 }
662
663 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
664 {
665         if (vcpu->guest_xcr0_loaded) {
666                 if (vcpu->arch.xcr0 != host_xcr0)
667                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
668                 vcpu->guest_xcr0_loaded = 0;
669         }
670 }
671
672 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
673 {
674         u64 xcr0 = xcr;
675         u64 old_xcr0 = vcpu->arch.xcr0;
676         u64 valid_bits;
677
678         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
679         if (index != XCR_XFEATURE_ENABLED_MASK)
680                 return 1;
681         if (!(xcr0 & XFEATURE_MASK_FP))
682                 return 1;
683         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
684                 return 1;
685
686         /*
687          * Do not allow the guest to set bits that we do not support
688          * saving.  However, xcr0 bit 0 is always set, even if the
689          * emulated CPU does not support XSAVE (see fx_init).
690          */
691         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
692         if (xcr0 & ~valid_bits)
693                 return 1;
694
695         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
696             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
697                 return 1;
698
699         if (xcr0 & XFEATURE_MASK_AVX512) {
700                 if (!(xcr0 & XFEATURE_MASK_YMM))
701                         return 1;
702                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
703                         return 1;
704         }
705         vcpu->arch.xcr0 = xcr0;
706
707         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
708                 kvm_update_cpuid(vcpu);
709         return 0;
710 }
711
712 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
713 {
714         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
715             __kvm_set_xcr(vcpu, index, xcr)) {
716                 kvm_inject_gp(vcpu, 0);
717                 return 1;
718         }
719         return 0;
720 }
721 EXPORT_SYMBOL_GPL(kvm_set_xcr);
722
723 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
724 {
725         unsigned long old_cr4 = kvm_read_cr4(vcpu);
726         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
727                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
728
729         if (cr4 & CR4_RESERVED_BITS)
730                 return 1;
731
732         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
733                 return 1;
734
735         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
736                 return 1;
737
738         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
739                 return 1;
740
741         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
742                 return 1;
743
744         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
745                 return 1;
746
747         if (is_long_mode(vcpu)) {
748                 if (!(cr4 & X86_CR4_PAE))
749                         return 1;
750         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
751                    && ((cr4 ^ old_cr4) & pdptr_bits)
752                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
753                                    kvm_read_cr3(vcpu)))
754                 return 1;
755
756         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
757                 if (!guest_cpuid_has_pcid(vcpu))
758                         return 1;
759
760                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
761                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
762                         return 1;
763         }
764
765         if (kvm_x86_ops->set_cr4(vcpu, cr4))
766                 return 1;
767
768         if (((cr4 ^ old_cr4) & pdptr_bits) ||
769             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
770                 kvm_mmu_reset_context(vcpu);
771
772         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
773                 kvm_update_cpuid(vcpu);
774
775         return 0;
776 }
777 EXPORT_SYMBOL_GPL(kvm_set_cr4);
778
779 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
780 {
781 #ifdef CONFIG_X86_64
782         cr3 &= ~CR3_PCID_INVD;
783 #endif
784
785         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
786                 kvm_mmu_sync_roots(vcpu);
787                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
788                 return 0;
789         }
790
791         if (is_long_mode(vcpu)) {
792                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
793                         return 1;
794         } else if (is_pae(vcpu) && is_paging(vcpu) &&
795                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
796                 return 1;
797
798         vcpu->arch.cr3 = cr3;
799         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
800         kvm_mmu_new_cr3(vcpu);
801         return 0;
802 }
803 EXPORT_SYMBOL_GPL(kvm_set_cr3);
804
805 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
806 {
807         if (cr8 & CR8_RESERVED_BITS)
808                 return 1;
809         if (lapic_in_kernel(vcpu))
810                 kvm_lapic_set_tpr(vcpu, cr8);
811         else
812                 vcpu->arch.cr8 = cr8;
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_set_cr8);
816
817 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
818 {
819         if (lapic_in_kernel(vcpu))
820                 return kvm_lapic_get_cr8(vcpu);
821         else
822                 return vcpu->arch.cr8;
823 }
824 EXPORT_SYMBOL_GPL(kvm_get_cr8);
825
826 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
827 {
828         int i;
829
830         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
831                 for (i = 0; i < KVM_NR_DB_REGS; i++)
832                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
833                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
834         }
835 }
836
837 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
838 {
839         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
840                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
841 }
842
843 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
844 {
845         unsigned long dr7;
846
847         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
848                 dr7 = vcpu->arch.guest_debug_dr7;
849         else
850                 dr7 = vcpu->arch.dr7;
851         kvm_x86_ops->set_dr7(vcpu, dr7);
852         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
853         if (dr7 & DR7_BP_EN_MASK)
854                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
855 }
856
857 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
858 {
859         u64 fixed = DR6_FIXED_1;
860
861         if (!guest_cpuid_has_rtm(vcpu))
862                 fixed |= DR6_RTM;
863         return fixed;
864 }
865
866 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
867 {
868         switch (dr) {
869         case 0 ... 3:
870                 vcpu->arch.db[dr] = val;
871                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
872                         vcpu->arch.eff_db[dr] = val;
873                 break;
874         case 4:
875                 /* fall through */
876         case 6:
877                 if (val & 0xffffffff00000000ULL)
878                         return -1; /* #GP */
879                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
880                 kvm_update_dr6(vcpu);
881                 break;
882         case 5:
883                 /* fall through */
884         default: /* 7 */
885                 if (val & 0xffffffff00000000ULL)
886                         return -1; /* #GP */
887                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
888                 kvm_update_dr7(vcpu);
889                 break;
890         }
891
892         return 0;
893 }
894
895 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
896 {
897         if (__kvm_set_dr(vcpu, dr, val)) {
898                 kvm_inject_gp(vcpu, 0);
899                 return 1;
900         }
901         return 0;
902 }
903 EXPORT_SYMBOL_GPL(kvm_set_dr);
904
905 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
906 {
907         switch (dr) {
908         case 0 ... 3:
909                 *val = vcpu->arch.db[dr];
910                 break;
911         case 4:
912                 /* fall through */
913         case 6:
914                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
915                         *val = vcpu->arch.dr6;
916                 else
917                         *val = kvm_x86_ops->get_dr6(vcpu);
918                 break;
919         case 5:
920                 /* fall through */
921         default: /* 7 */
922                 *val = vcpu->arch.dr7;
923                 break;
924         }
925         return 0;
926 }
927 EXPORT_SYMBOL_GPL(kvm_get_dr);
928
929 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
930 {
931         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
932         u64 data;
933         int err;
934
935         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
936         if (err)
937                 return err;
938         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
939         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
940         return err;
941 }
942 EXPORT_SYMBOL_GPL(kvm_rdpmc);
943
944 /*
945  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
946  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
947  *
948  * This list is modified at module load time to reflect the
949  * capabilities of the host cpu. This capabilities test skips MSRs that are
950  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
951  * may depend on host virtualization features rather than host cpu features.
952  */
953
954 static u32 msrs_to_save[] = {
955         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
956         MSR_STAR,
957 #ifdef CONFIG_X86_64
958         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
959 #endif
960         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
961         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
962 };
963
964 static unsigned num_msrs_to_save;
965
966 static u32 emulated_msrs[] = {
967         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
968         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
969         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
970         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
971         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
972         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
973         HV_X64_MSR_RESET,
974         HV_X64_MSR_VP_INDEX,
975         HV_X64_MSR_VP_RUNTIME,
976         HV_X64_MSR_SCONTROL,
977         HV_X64_MSR_STIMER0_CONFIG,
978         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
979         MSR_KVM_PV_EOI_EN,
980
981         MSR_IA32_TSC_ADJUST,
982         MSR_IA32_TSCDEADLINE,
983         MSR_IA32_MISC_ENABLE,
984         MSR_IA32_MCG_STATUS,
985         MSR_IA32_MCG_CTL,
986         MSR_IA32_SMBASE,
987 };
988
989 static unsigned num_emulated_msrs;
990
991 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
992 {
993         if (efer & efer_reserved_bits)
994                 return false;
995
996         if (efer & EFER_FFXSR) {
997                 struct kvm_cpuid_entry2 *feat;
998
999                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1000                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1001                         return false;
1002         }
1003
1004         if (efer & EFER_SVME) {
1005                 struct kvm_cpuid_entry2 *feat;
1006
1007                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1008                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1009                         return false;
1010         }
1011
1012         return true;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1015
1016 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018         u64 old_efer = vcpu->arch.efer;
1019
1020         if (!kvm_valid_efer(vcpu, efer))
1021                 return 1;
1022
1023         if (is_paging(vcpu)
1024             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1025                 return 1;
1026
1027         efer &= ~EFER_LMA;
1028         efer |= vcpu->arch.efer & EFER_LMA;
1029
1030         kvm_x86_ops->set_efer(vcpu, efer);
1031
1032         /* Update reserved bits */
1033         if ((efer ^ old_efer) & EFER_NX)
1034                 kvm_mmu_reset_context(vcpu);
1035
1036         return 0;
1037 }
1038
1039 void kvm_enable_efer_bits(u64 mask)
1040 {
1041        efer_reserved_bits &= ~mask;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1044
1045 /*
1046  * Writes msr value into into the appropriate "register".
1047  * Returns 0 on success, non-0 otherwise.
1048  * Assumes vcpu_load() was already called.
1049  */
1050 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1051 {
1052         switch (msr->index) {
1053         case MSR_FS_BASE:
1054         case MSR_GS_BASE:
1055         case MSR_KERNEL_GS_BASE:
1056         case MSR_CSTAR:
1057         case MSR_LSTAR:
1058                 if (is_noncanonical_address(msr->data))
1059                         return 1;
1060                 break;
1061         case MSR_IA32_SYSENTER_EIP:
1062         case MSR_IA32_SYSENTER_ESP:
1063                 /*
1064                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1065                  * non-canonical address is written on Intel but not on
1066                  * AMD (which ignores the top 32-bits, because it does
1067                  * not implement 64-bit SYSENTER).
1068                  *
1069                  * 64-bit code should hence be able to write a non-canonical
1070                  * value on AMD.  Making the address canonical ensures that
1071                  * vmentry does not fail on Intel after writing a non-canonical
1072                  * value, and that something deterministic happens if the guest
1073                  * invokes 64-bit SYSENTER.
1074                  */
1075                 msr->data = get_canonical(msr->data);
1076         }
1077         return kvm_x86_ops->set_msr(vcpu, msr);
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_set_msr);
1080
1081 /*
1082  * Adapt set_msr() to msr_io()'s calling convention
1083  */
1084 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1085 {
1086         struct msr_data msr;
1087         int r;
1088
1089         msr.index = index;
1090         msr.host_initiated = true;
1091         r = kvm_get_msr(vcpu, &msr);
1092         if (r)
1093                 return r;
1094
1095         *data = msr.data;
1096         return 0;
1097 }
1098
1099 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1100 {
1101         struct msr_data msr;
1102
1103         msr.data = *data;
1104         msr.index = index;
1105         msr.host_initiated = true;
1106         return kvm_set_msr(vcpu, &msr);
1107 }
1108
1109 #ifdef CONFIG_X86_64
1110 struct pvclock_gtod_data {
1111         seqcount_t      seq;
1112
1113         struct { /* extract of a clocksource struct */
1114                 int vclock_mode;
1115                 cycle_t cycle_last;
1116                 cycle_t mask;
1117                 u32     mult;
1118                 u32     shift;
1119         } clock;
1120
1121         u64             boot_ns;
1122         u64             nsec_base;
1123 };
1124
1125 static struct pvclock_gtod_data pvclock_gtod_data;
1126
1127 static void update_pvclock_gtod(struct timekeeper *tk)
1128 {
1129         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1130         u64 boot_ns;
1131
1132         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1133
1134         write_seqcount_begin(&vdata->seq);
1135
1136         /* copy pvclock gtod data */
1137         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1138         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1139         vdata->clock.mask               = tk->tkr_mono.mask;
1140         vdata->clock.mult               = tk->tkr_mono.mult;
1141         vdata->clock.shift              = tk->tkr_mono.shift;
1142
1143         vdata->boot_ns                  = boot_ns;
1144         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1145
1146         write_seqcount_end(&vdata->seq);
1147 }
1148 #endif
1149
1150 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1151 {
1152         /*
1153          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1154          * vcpu_enter_guest.  This function is only called from
1155          * the physical CPU that is running vcpu.
1156          */
1157         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1158 }
1159
1160 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1161 {
1162         int version;
1163         int r;
1164         struct pvclock_wall_clock wc;
1165         struct timespec boot;
1166
1167         if (!wall_clock)
1168                 return;
1169
1170         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1171         if (r)
1172                 return;
1173
1174         if (version & 1)
1175                 ++version;  /* first time write, random junk */
1176
1177         ++version;
1178
1179         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1180                 return;
1181
1182         /*
1183          * The guest calculates current wall clock time by adding
1184          * system time (updated by kvm_guest_time_update below) to the
1185          * wall clock specified here.  guest system time equals host
1186          * system time for us, thus we must fill in host boot time here.
1187          */
1188         getboottime(&boot);
1189
1190         if (kvm->arch.kvmclock_offset) {
1191                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1192                 boot = timespec_sub(boot, ts);
1193         }
1194         wc.sec = boot.tv_sec;
1195         wc.nsec = boot.tv_nsec;
1196         wc.version = version;
1197
1198         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1199
1200         version++;
1201         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1202 }
1203
1204 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1205 {
1206         do_shl32_div32(dividend, divisor);
1207         return dividend;
1208 }
1209
1210 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1211                                s8 *pshift, u32 *pmultiplier)
1212 {
1213         uint64_t scaled64;
1214         int32_t  shift = 0;
1215         uint64_t tps64;
1216         uint32_t tps32;
1217
1218         tps64 = base_hz;
1219         scaled64 = scaled_hz;
1220         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1221                 tps64 >>= 1;
1222                 shift--;
1223         }
1224
1225         tps32 = (uint32_t)tps64;
1226         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1227                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1228                         scaled64 >>= 1;
1229                 else
1230                         tps32 <<= 1;
1231                 shift++;
1232         }
1233
1234         *pshift = shift;
1235         *pmultiplier = div_frac(scaled64, tps32);
1236
1237         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1238                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1239 }
1240
1241 #ifdef CONFIG_X86_64
1242 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1243 #endif
1244
1245 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1246 static unsigned long max_tsc_khz;
1247
1248 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1249 {
1250         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1251                                    vcpu->arch.virtual_tsc_shift);
1252 }
1253
1254 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1255 {
1256         u64 v = (u64)khz * (1000000 + ppm);
1257         do_div(v, 1000000);
1258         return v;
1259 }
1260
1261 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1262 {
1263         u64 ratio;
1264
1265         /* Guest TSC same frequency as host TSC? */
1266         if (!scale) {
1267                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1268                 return 0;
1269         }
1270
1271         /* TSC scaling supported? */
1272         if (!kvm_has_tsc_control) {
1273                 if (user_tsc_khz > tsc_khz) {
1274                         vcpu->arch.tsc_catchup = 1;
1275                         vcpu->arch.tsc_always_catchup = 1;
1276                         return 0;
1277                 } else {
1278                         WARN(1, "user requested TSC rate below hardware speed\n");
1279                         return -1;
1280                 }
1281         }
1282
1283         /* TSC scaling required  - calculate ratio */
1284         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1285                                 user_tsc_khz, tsc_khz);
1286
1287         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1288                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1289                           user_tsc_khz);
1290                 return -1;
1291         }
1292
1293         vcpu->arch.tsc_scaling_ratio = ratio;
1294         return 0;
1295 }
1296
1297 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1298 {
1299         u32 thresh_lo, thresh_hi;
1300         int use_scaling = 0;
1301
1302         /* tsc_khz can be zero if TSC calibration fails */
1303         if (user_tsc_khz == 0) {
1304                 /* set tsc_scaling_ratio to a safe value */
1305                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1306                 return -1;
1307         }
1308
1309         /* Compute a scale to convert nanoseconds in TSC cycles */
1310         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1311                            &vcpu->arch.virtual_tsc_shift,
1312                            &vcpu->arch.virtual_tsc_mult);
1313         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1314
1315         /*
1316          * Compute the variation in TSC rate which is acceptable
1317          * within the range of tolerance and decide if the
1318          * rate being applied is within that bounds of the hardware
1319          * rate.  If so, no scaling or compensation need be done.
1320          */
1321         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1322         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1323         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1324                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1325                 use_scaling = 1;
1326         }
1327         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1328 }
1329
1330 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1331 {
1332         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1333                                       vcpu->arch.virtual_tsc_mult,
1334                                       vcpu->arch.virtual_tsc_shift);
1335         tsc += vcpu->arch.this_tsc_write;
1336         return tsc;
1337 }
1338
1339 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1340 {
1341 #ifdef CONFIG_X86_64
1342         bool vcpus_matched;
1343         struct kvm_arch *ka = &vcpu->kvm->arch;
1344         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1345
1346         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1347                          atomic_read(&vcpu->kvm->online_vcpus));
1348
1349         /*
1350          * Once the masterclock is enabled, always perform request in
1351          * order to update it.
1352          *
1353          * In order to enable masterclock, the host clocksource must be TSC
1354          * and the vcpus need to have matched TSCs.  When that happens,
1355          * perform request to enable masterclock.
1356          */
1357         if (ka->use_master_clock ||
1358             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1359                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1360
1361         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1362                             atomic_read(&vcpu->kvm->online_vcpus),
1363                             ka->use_master_clock, gtod->clock.vclock_mode);
1364 #endif
1365 }
1366
1367 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1368 {
1369         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1370         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1371 }
1372
1373 /*
1374  * Multiply tsc by a fixed point number represented by ratio.
1375  *
1376  * The most significant 64-N bits (mult) of ratio represent the
1377  * integral part of the fixed point number; the remaining N bits
1378  * (frac) represent the fractional part, ie. ratio represents a fixed
1379  * point number (mult + frac * 2^(-N)).
1380  *
1381  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1382  */
1383 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1384 {
1385         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1386 }
1387
1388 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1389 {
1390         u64 _tsc = tsc;
1391         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1392
1393         if (ratio != kvm_default_tsc_scaling_ratio)
1394                 _tsc = __scale_tsc(ratio, tsc);
1395
1396         return _tsc;
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1399
1400 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1401 {
1402         u64 tsc;
1403
1404         tsc = kvm_scale_tsc(vcpu, rdtsc());
1405
1406         return target_tsc - tsc;
1407 }
1408
1409 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1410 {
1411         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1412 }
1413 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1414
1415 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1416 {
1417         struct kvm *kvm = vcpu->kvm;
1418         u64 offset, ns, elapsed;
1419         unsigned long flags;
1420         s64 usdiff;
1421         bool matched;
1422         bool already_matched;
1423         u64 data = msr->data;
1424
1425         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1426         offset = kvm_compute_tsc_offset(vcpu, data);
1427         ns = get_kernel_ns();
1428         elapsed = ns - kvm->arch.last_tsc_nsec;
1429
1430         if (vcpu->arch.virtual_tsc_khz) {
1431                 int faulted = 0;
1432
1433                 /* n.b - signed multiplication and division required */
1434                 usdiff = data - kvm->arch.last_tsc_write;
1435 #ifdef CONFIG_X86_64
1436                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1437 #else
1438                 /* do_div() only does unsigned */
1439                 asm("1: idivl %[divisor]\n"
1440                     "2: xor %%edx, %%edx\n"
1441                     "   movl $0, %[faulted]\n"
1442                     "3:\n"
1443                     ".section .fixup,\"ax\"\n"
1444                     "4: movl $1, %[faulted]\n"
1445                     "   jmp  3b\n"
1446                     ".previous\n"
1447
1448                 _ASM_EXTABLE(1b, 4b)
1449
1450                 : "=A"(usdiff), [faulted] "=r" (faulted)
1451                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1452
1453 #endif
1454                 do_div(elapsed, 1000);
1455                 usdiff -= elapsed;
1456                 if (usdiff < 0)
1457                         usdiff = -usdiff;
1458
1459                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1460                 if (faulted)
1461                         usdiff = USEC_PER_SEC;
1462         } else
1463                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1464
1465         /*
1466          * Special case: TSC write with a small delta (1 second) of virtual
1467          * cycle time against real time is interpreted as an attempt to
1468          * synchronize the CPU.
1469          *
1470          * For a reliable TSC, we can match TSC offsets, and for an unstable
1471          * TSC, we add elapsed time in this computation.  We could let the
1472          * compensation code attempt to catch up if we fall behind, but
1473          * it's better to try to match offsets from the beginning.
1474          */
1475         if (usdiff < USEC_PER_SEC &&
1476             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1477                 if (!check_tsc_unstable()) {
1478                         offset = kvm->arch.cur_tsc_offset;
1479                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1480                 } else {
1481                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1482                         data += delta;
1483                         offset = kvm_compute_tsc_offset(vcpu, data);
1484                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1485                 }
1486                 matched = true;
1487                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1488         } else {
1489                 /*
1490                  * We split periods of matched TSC writes into generations.
1491                  * For each generation, we track the original measured
1492                  * nanosecond time, offset, and write, so if TSCs are in
1493                  * sync, we can match exact offset, and if not, we can match
1494                  * exact software computation in compute_guest_tsc()
1495                  *
1496                  * These values are tracked in kvm->arch.cur_xxx variables.
1497                  */
1498                 kvm->arch.cur_tsc_generation++;
1499                 kvm->arch.cur_tsc_nsec = ns;
1500                 kvm->arch.cur_tsc_write = data;
1501                 kvm->arch.cur_tsc_offset = offset;
1502                 matched = false;
1503                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1504                          kvm->arch.cur_tsc_generation, data);
1505         }
1506
1507         /*
1508          * We also track th most recent recorded KHZ, write and time to
1509          * allow the matching interval to be extended at each write.
1510          */
1511         kvm->arch.last_tsc_nsec = ns;
1512         kvm->arch.last_tsc_write = data;
1513         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1514
1515         vcpu->arch.last_guest_tsc = data;
1516
1517         /* Keep track of which generation this VCPU has synchronized to */
1518         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1519         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1520         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1521
1522         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1523                 update_ia32_tsc_adjust_msr(vcpu, offset);
1524         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1525         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1526
1527         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1528         if (!matched) {
1529                 kvm->arch.nr_vcpus_matched_tsc = 0;
1530         } else if (!already_matched) {
1531                 kvm->arch.nr_vcpus_matched_tsc++;
1532         }
1533
1534         kvm_track_tsc_matching(vcpu);
1535         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1536 }
1537
1538 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1539
1540 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1541                                            s64 adjustment)
1542 {
1543         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1544 }
1545
1546 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1547 {
1548         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1549                 WARN_ON(adjustment < 0);
1550         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1551         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1552 }
1553
1554 #ifdef CONFIG_X86_64
1555
1556 static cycle_t read_tsc(void)
1557 {
1558         cycle_t ret = (cycle_t)rdtsc_ordered();
1559         u64 last = pvclock_gtod_data.clock.cycle_last;
1560
1561         if (likely(ret >= last))
1562                 return ret;
1563
1564         /*
1565          * GCC likes to generate cmov here, but this branch is extremely
1566          * predictable (it's just a function of time and the likely is
1567          * very likely) and there's a data dependence, so force GCC
1568          * to generate a branch instead.  I don't barrier() because
1569          * we don't actually need a barrier, and if this function
1570          * ever gets inlined it will generate worse code.
1571          */
1572         asm volatile ("");
1573         return last;
1574 }
1575
1576 static inline u64 vgettsc(cycle_t *cycle_now)
1577 {
1578         long v;
1579         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1580
1581         *cycle_now = read_tsc();
1582
1583         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1584         return v * gtod->clock.mult;
1585 }
1586
1587 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1588 {
1589         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1590         unsigned long seq;
1591         int mode;
1592         u64 ns;
1593
1594         do {
1595                 seq = read_seqcount_begin(&gtod->seq);
1596                 mode = gtod->clock.vclock_mode;
1597                 ns = gtod->nsec_base;
1598                 ns += vgettsc(cycle_now);
1599                 ns >>= gtod->clock.shift;
1600                 ns += gtod->boot_ns;
1601         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1602         *t = ns;
1603
1604         return mode;
1605 }
1606
1607 /* returns true if host is using tsc clocksource */
1608 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1609 {
1610         /* checked again under seqlock below */
1611         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1612                 return false;
1613
1614         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1615 }
1616 #endif
1617
1618 /*
1619  *
1620  * Assuming a stable TSC across physical CPUS, and a stable TSC
1621  * across virtual CPUs, the following condition is possible.
1622  * Each numbered line represents an event visible to both
1623  * CPUs at the next numbered event.
1624  *
1625  * "timespecX" represents host monotonic time. "tscX" represents
1626  * RDTSC value.
1627  *
1628  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1629  *
1630  * 1.  read timespec0,tsc0
1631  * 2.                                   | timespec1 = timespec0 + N
1632  *                                      | tsc1 = tsc0 + M
1633  * 3. transition to guest               | transition to guest
1634  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1635  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1636  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1637  *
1638  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1639  *
1640  *      - ret0 < ret1
1641  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1642  *              ...
1643  *      - 0 < N - M => M < N
1644  *
1645  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1646  * always the case (the difference between two distinct xtime instances
1647  * might be smaller then the difference between corresponding TSC reads,
1648  * when updating guest vcpus pvclock areas).
1649  *
1650  * To avoid that problem, do not allow visibility of distinct
1651  * system_timestamp/tsc_timestamp values simultaneously: use a master
1652  * copy of host monotonic time values. Update that master copy
1653  * in lockstep.
1654  *
1655  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1656  *
1657  */
1658
1659 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1660 {
1661 #ifdef CONFIG_X86_64
1662         struct kvm_arch *ka = &kvm->arch;
1663         int vclock_mode;
1664         bool host_tsc_clocksource, vcpus_matched;
1665
1666         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1667                         atomic_read(&kvm->online_vcpus));
1668
1669         /*
1670          * If the host uses TSC clock, then passthrough TSC as stable
1671          * to the guest.
1672          */
1673         host_tsc_clocksource = kvm_get_time_and_clockread(
1674                                         &ka->master_kernel_ns,
1675                                         &ka->master_cycle_now);
1676
1677         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1678                                 && !backwards_tsc_observed
1679                                 && !ka->boot_vcpu_runs_old_kvmclock;
1680
1681         if (ka->use_master_clock)
1682                 atomic_set(&kvm_guest_has_master_clock, 1);
1683
1684         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1685         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1686                                         vcpus_matched);
1687 #endif
1688 }
1689
1690 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1691 {
1692         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1693 }
1694
1695 static void kvm_gen_update_masterclock(struct kvm *kvm)
1696 {
1697 #ifdef CONFIG_X86_64
1698         int i;
1699         struct kvm_vcpu *vcpu;
1700         struct kvm_arch *ka = &kvm->arch;
1701
1702         spin_lock(&ka->pvclock_gtod_sync_lock);
1703         kvm_make_mclock_inprogress_request(kvm);
1704         /* no guest entries from this point */
1705         pvclock_update_vm_gtod_copy(kvm);
1706
1707         kvm_for_each_vcpu(i, vcpu, kvm)
1708                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1709
1710         /* guest entries allowed */
1711         kvm_for_each_vcpu(i, vcpu, kvm)
1712                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1713
1714         spin_unlock(&ka->pvclock_gtod_sync_lock);
1715 #endif
1716 }
1717
1718 static int kvm_guest_time_update(struct kvm_vcpu *v)
1719 {
1720         unsigned long flags, tgt_tsc_khz;
1721         struct kvm_vcpu_arch *vcpu = &v->arch;
1722         struct kvm_arch *ka = &v->kvm->arch;
1723         s64 kernel_ns;
1724         u64 tsc_timestamp, host_tsc;
1725         struct pvclock_vcpu_time_info guest_hv_clock;
1726         u8 pvclock_flags;
1727         bool use_master_clock;
1728
1729         kernel_ns = 0;
1730         host_tsc = 0;
1731
1732         /*
1733          * If the host uses TSC clock, then passthrough TSC as stable
1734          * to the guest.
1735          */
1736         spin_lock(&ka->pvclock_gtod_sync_lock);
1737         use_master_clock = ka->use_master_clock;
1738         if (use_master_clock) {
1739                 host_tsc = ka->master_cycle_now;
1740                 kernel_ns = ka->master_kernel_ns;
1741         }
1742         spin_unlock(&ka->pvclock_gtod_sync_lock);
1743
1744         /* Keep irq disabled to prevent changes to the clock */
1745         local_irq_save(flags);
1746         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1747         if (unlikely(tgt_tsc_khz == 0)) {
1748                 local_irq_restore(flags);
1749                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1750                 return 1;
1751         }
1752         if (!use_master_clock) {
1753                 host_tsc = rdtsc();
1754                 kernel_ns = get_kernel_ns();
1755         }
1756
1757         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1758
1759         /*
1760          * We may have to catch up the TSC to match elapsed wall clock
1761          * time for two reasons, even if kvmclock is used.
1762          *   1) CPU could have been running below the maximum TSC rate
1763          *   2) Broken TSC compensation resets the base at each VCPU
1764          *      entry to avoid unknown leaps of TSC even when running
1765          *      again on the same CPU.  This may cause apparent elapsed
1766          *      time to disappear, and the guest to stand still or run
1767          *      very slowly.
1768          */
1769         if (vcpu->tsc_catchup) {
1770                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1771                 if (tsc > tsc_timestamp) {
1772                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1773                         tsc_timestamp = tsc;
1774                 }
1775         }
1776
1777         local_irq_restore(flags);
1778
1779         if (!vcpu->pv_time_enabled)
1780                 return 0;
1781
1782         if (kvm_has_tsc_control)
1783                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1784
1785         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1786                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1787                                    &vcpu->hv_clock.tsc_shift,
1788                                    &vcpu->hv_clock.tsc_to_system_mul);
1789                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1790         }
1791
1792         /* With all the info we got, fill in the values */
1793         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1794         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1795         vcpu->last_guest_tsc = tsc_timestamp;
1796
1797         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1798                 &guest_hv_clock, sizeof(guest_hv_clock))))
1799                 return 0;
1800
1801         /* This VCPU is paused, but it's legal for a guest to read another
1802          * VCPU's kvmclock, so we really have to follow the specification where
1803          * it says that version is odd if data is being modified, and even after
1804          * it is consistent.
1805          *
1806          * Version field updates must be kept separate.  This is because
1807          * kvm_write_guest_cached might use a "rep movs" instruction, and
1808          * writes within a string instruction are weakly ordered.  So there
1809          * are three writes overall.
1810          *
1811          * As a small optimization, only write the version field in the first
1812          * and third write.  The vcpu->pv_time cache is still valid, because the
1813          * version field is the first in the struct.
1814          */
1815         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1816
1817         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1818         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1819                                 &vcpu->hv_clock,
1820                                 sizeof(vcpu->hv_clock.version));
1821
1822         smp_wmb();
1823
1824         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1825         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1826
1827         if (vcpu->pvclock_set_guest_stopped_request) {
1828                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1829                 vcpu->pvclock_set_guest_stopped_request = false;
1830         }
1831
1832         /* If the host uses TSC clocksource, then it is stable */
1833         if (use_master_clock)
1834                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1835
1836         vcpu->hv_clock.flags = pvclock_flags;
1837
1838         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1839
1840         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1841                                 &vcpu->hv_clock,
1842                                 sizeof(vcpu->hv_clock));
1843
1844         smp_wmb();
1845
1846         vcpu->hv_clock.version++;
1847         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1848                                 &vcpu->hv_clock,
1849                                 sizeof(vcpu->hv_clock.version));
1850         return 0;
1851 }
1852
1853 /*
1854  * kvmclock updates which are isolated to a given vcpu, such as
1855  * vcpu->cpu migration, should not allow system_timestamp from
1856  * the rest of the vcpus to remain static. Otherwise ntp frequency
1857  * correction applies to one vcpu's system_timestamp but not
1858  * the others.
1859  *
1860  * So in those cases, request a kvmclock update for all vcpus.
1861  * We need to rate-limit these requests though, as they can
1862  * considerably slow guests that have a large number of vcpus.
1863  * The time for a remote vcpu to update its kvmclock is bound
1864  * by the delay we use to rate-limit the updates.
1865  */
1866
1867 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1868
1869 static void kvmclock_update_fn(struct work_struct *work)
1870 {
1871         int i;
1872         struct delayed_work *dwork = to_delayed_work(work);
1873         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1874                                            kvmclock_update_work);
1875         struct kvm *kvm = container_of(ka, struct kvm, arch);
1876         struct kvm_vcpu *vcpu;
1877
1878         kvm_for_each_vcpu(i, vcpu, kvm) {
1879                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1880                 kvm_vcpu_kick(vcpu);
1881         }
1882 }
1883
1884 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1885 {
1886         struct kvm *kvm = v->kvm;
1887
1888         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1889         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1890                                         KVMCLOCK_UPDATE_DELAY);
1891 }
1892
1893 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1894
1895 static void kvmclock_sync_fn(struct work_struct *work)
1896 {
1897         struct delayed_work *dwork = to_delayed_work(work);
1898         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1899                                            kvmclock_sync_work);
1900         struct kvm *kvm = container_of(ka, struct kvm, arch);
1901
1902         if (!kvmclock_periodic_sync)
1903                 return;
1904
1905         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1906         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1907                                         KVMCLOCK_SYNC_PERIOD);
1908 }
1909
1910 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1911 {
1912         u64 mcg_cap = vcpu->arch.mcg_cap;
1913         unsigned bank_num = mcg_cap & 0xff;
1914
1915         switch (msr) {
1916         case MSR_IA32_MCG_STATUS:
1917                 vcpu->arch.mcg_status = data;
1918                 break;
1919         case MSR_IA32_MCG_CTL:
1920                 if (!(mcg_cap & MCG_CTL_P))
1921                         return 1;
1922                 if (data != 0 && data != ~(u64)0)
1923                         return -1;
1924                 vcpu->arch.mcg_ctl = data;
1925                 break;
1926         default:
1927                 if (msr >= MSR_IA32_MC0_CTL &&
1928                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1929                         u32 offset = msr - MSR_IA32_MC0_CTL;
1930                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1931                          * some Linux kernels though clear bit 10 in bank 4 to
1932                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1933                          * this to avoid an uncatched #GP in the guest
1934                          */
1935                         if ((offset & 0x3) == 0 &&
1936                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1937                                 return -1;
1938                         vcpu->arch.mce_banks[offset] = data;
1939                         break;
1940                 }
1941                 return 1;
1942         }
1943         return 0;
1944 }
1945
1946 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1947 {
1948         struct kvm *kvm = vcpu->kvm;
1949         int lm = is_long_mode(vcpu);
1950         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1951                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1952         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1953                 : kvm->arch.xen_hvm_config.blob_size_32;
1954         u32 page_num = data & ~PAGE_MASK;
1955         u64 page_addr = data & PAGE_MASK;
1956         u8 *page;
1957         int r;
1958
1959         r = -E2BIG;
1960         if (page_num >= blob_size)
1961                 goto out;
1962         r = -ENOMEM;
1963         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1964         if (IS_ERR(page)) {
1965                 r = PTR_ERR(page);
1966                 goto out;
1967         }
1968         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1969                 goto out_free;
1970         r = 0;
1971 out_free:
1972         kfree(page);
1973 out:
1974         return r;
1975 }
1976
1977 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1978 {
1979         gpa_t gpa = data & ~0x3f;
1980
1981         /* Bits 2:5 are reserved, Should be zero */
1982         if (data & 0x3c)
1983                 return 1;
1984
1985         vcpu->arch.apf.msr_val = data;
1986
1987         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1988                 kvm_clear_async_pf_completion_queue(vcpu);
1989                 kvm_async_pf_hash_reset(vcpu);
1990                 return 0;
1991         }
1992
1993         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1994                                         sizeof(u32)))
1995                 return 1;
1996
1997         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1998         kvm_async_pf_wakeup_all(vcpu);
1999         return 0;
2000 }
2001
2002 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2003 {
2004         vcpu->arch.pv_time_enabled = false;
2005 }
2006
2007 static void record_steal_time(struct kvm_vcpu *vcpu)
2008 {
2009         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2010                 return;
2011
2012         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2013                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2014                 return;
2015
2016         if (vcpu->arch.st.steal.version & 1)
2017                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2018
2019         vcpu->arch.st.steal.version += 1;
2020
2021         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2022                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2023
2024         smp_wmb();
2025
2026         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2027                 vcpu->arch.st.last_steal;
2028         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2029
2030         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2031                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2032
2033         smp_wmb();
2034
2035         vcpu->arch.st.steal.version += 1;
2036
2037         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2038                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2039 }
2040
2041 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2042 {
2043         bool pr = false;
2044         u32 msr = msr_info->index;
2045         u64 data = msr_info->data;
2046
2047         switch (msr) {
2048         case MSR_AMD64_NB_CFG:
2049         case MSR_IA32_UCODE_REV:
2050         case MSR_IA32_UCODE_WRITE:
2051         case MSR_VM_HSAVE_PA:
2052         case MSR_AMD64_PATCH_LOADER:
2053         case MSR_AMD64_BU_CFG2:
2054                 break;
2055
2056         case MSR_EFER:
2057                 return set_efer(vcpu, data);
2058         case MSR_K7_HWCR:
2059                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2060                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2061                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2062                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2063                 if (data != 0) {
2064                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2065                                     data);
2066                         return 1;
2067                 }
2068                 break;
2069         case MSR_FAM10H_MMIO_CONF_BASE:
2070                 if (data != 0) {
2071                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2072                                     "0x%llx\n", data);
2073                         return 1;
2074                 }
2075                 break;
2076         case MSR_IA32_DEBUGCTLMSR:
2077                 if (!data) {
2078                         /* We support the non-activated case already */
2079                         break;
2080                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2081                         /* Values other than LBR and BTF are vendor-specific,
2082                            thus reserved and should throw a #GP */
2083                         return 1;
2084                 }
2085                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2086                             __func__, data);
2087                 break;
2088         case 0x200 ... 0x2ff:
2089                 return kvm_mtrr_set_msr(vcpu, msr, data);
2090         case MSR_IA32_APICBASE:
2091                 return kvm_set_apic_base(vcpu, msr_info);
2092         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2093                 return kvm_x2apic_msr_write(vcpu, msr, data);
2094         case MSR_IA32_TSCDEADLINE:
2095                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2096                 break;
2097         case MSR_IA32_TSC_ADJUST:
2098                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2099                         if (!msr_info->host_initiated) {
2100                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2101                                 adjust_tsc_offset_guest(vcpu, adj);
2102                         }
2103                         vcpu->arch.ia32_tsc_adjust_msr = data;
2104                 }
2105                 break;
2106         case MSR_IA32_MISC_ENABLE:
2107                 vcpu->arch.ia32_misc_enable_msr = data;
2108                 break;
2109         case MSR_IA32_SMBASE:
2110                 if (!msr_info->host_initiated)
2111                         return 1;
2112                 vcpu->arch.smbase = data;
2113                 break;
2114         case MSR_KVM_WALL_CLOCK_NEW:
2115         case MSR_KVM_WALL_CLOCK:
2116                 vcpu->kvm->arch.wall_clock = data;
2117                 kvm_write_wall_clock(vcpu->kvm, data);
2118                 break;
2119         case MSR_KVM_SYSTEM_TIME_NEW:
2120         case MSR_KVM_SYSTEM_TIME: {
2121                 u64 gpa_offset;
2122                 struct kvm_arch *ka = &vcpu->kvm->arch;
2123
2124                 kvmclock_reset(vcpu);
2125
2126                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2127                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2128
2129                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2130                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2131                                         &vcpu->requests);
2132
2133                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2134                 }
2135
2136                 vcpu->arch.time = data;
2137                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2138
2139                 /* we verify if the enable bit is set... */
2140                 if (!(data & 1))
2141                         break;
2142
2143                 gpa_offset = data & ~(PAGE_MASK | 1);
2144
2145                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2146                      &vcpu->arch.pv_time, data & ~1ULL,
2147                      sizeof(struct pvclock_vcpu_time_info)))
2148                         vcpu->arch.pv_time_enabled = false;
2149                 else
2150                         vcpu->arch.pv_time_enabled = true;
2151
2152                 break;
2153         }
2154         case MSR_KVM_ASYNC_PF_EN:
2155                 if (kvm_pv_enable_async_pf(vcpu, data))
2156                         return 1;
2157                 break;
2158         case MSR_KVM_STEAL_TIME:
2159
2160                 if (unlikely(!sched_info_on()))
2161                         return 1;
2162
2163                 if (data & KVM_STEAL_RESERVED_MASK)
2164                         return 1;
2165
2166                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2167                                                 data & KVM_STEAL_VALID_BITS,
2168                                                 sizeof(struct kvm_steal_time)))
2169                         return 1;
2170
2171                 vcpu->arch.st.msr_val = data;
2172
2173                 if (!(data & KVM_MSR_ENABLED))
2174                         break;
2175
2176                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2177
2178                 break;
2179         case MSR_KVM_PV_EOI_EN:
2180                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2181                         return 1;
2182                 break;
2183
2184         case MSR_IA32_MCG_CTL:
2185         case MSR_IA32_MCG_STATUS:
2186         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2187                 return set_msr_mce(vcpu, msr, data);
2188
2189         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2190         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2191                 pr = true; /* fall through */
2192         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2193         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2194                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2195                         return kvm_pmu_set_msr(vcpu, msr_info);
2196
2197                 if (pr || data != 0)
2198                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2199                                     "0x%x data 0x%llx\n", msr, data);
2200                 break;
2201         case MSR_K7_CLK_CTL:
2202                 /*
2203                  * Ignore all writes to this no longer documented MSR.
2204                  * Writes are only relevant for old K7 processors,
2205                  * all pre-dating SVM, but a recommended workaround from
2206                  * AMD for these chips. It is possible to specify the
2207                  * affected processor models on the command line, hence
2208                  * the need to ignore the workaround.
2209                  */
2210                 break;
2211         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2212         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2213         case HV_X64_MSR_CRASH_CTL:
2214         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2215                 return kvm_hv_set_msr_common(vcpu, msr, data,
2216                                              msr_info->host_initiated);
2217         case MSR_IA32_BBL_CR_CTL3:
2218                 /* Drop writes to this legacy MSR -- see rdmsr
2219                  * counterpart for further detail.
2220                  */
2221                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2222                 break;
2223         case MSR_AMD64_OSVW_ID_LENGTH:
2224                 if (!guest_cpuid_has_osvw(vcpu))
2225                         return 1;
2226                 vcpu->arch.osvw.length = data;
2227                 break;
2228         case MSR_AMD64_OSVW_STATUS:
2229                 if (!guest_cpuid_has_osvw(vcpu))
2230                         return 1;
2231                 vcpu->arch.osvw.status = data;
2232                 break;
2233         default:
2234                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2235                         return xen_hvm_config(vcpu, data);
2236                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2237                         return kvm_pmu_set_msr(vcpu, msr_info);
2238                 if (!ignore_msrs) {
2239                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2240                                     msr, data);
2241                         return 1;
2242                 } else {
2243                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2244                                     msr, data);
2245                         break;
2246                 }
2247         }
2248         return 0;
2249 }
2250 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2251
2252
2253 /*
2254  * Reads an msr value (of 'msr_index') into 'pdata'.
2255  * Returns 0 on success, non-0 otherwise.
2256  * Assumes vcpu_load() was already called.
2257  */
2258 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2259 {
2260         return kvm_x86_ops->get_msr(vcpu, msr);
2261 }
2262 EXPORT_SYMBOL_GPL(kvm_get_msr);
2263
2264 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2265 {
2266         u64 data;
2267         u64 mcg_cap = vcpu->arch.mcg_cap;
2268         unsigned bank_num = mcg_cap & 0xff;
2269
2270         switch (msr) {
2271         case MSR_IA32_P5_MC_ADDR:
2272         case MSR_IA32_P5_MC_TYPE:
2273                 data = 0;
2274                 break;
2275         case MSR_IA32_MCG_CAP:
2276                 data = vcpu->arch.mcg_cap;
2277                 break;
2278         case MSR_IA32_MCG_CTL:
2279                 if (!(mcg_cap & MCG_CTL_P))
2280                         return 1;
2281                 data = vcpu->arch.mcg_ctl;
2282                 break;
2283         case MSR_IA32_MCG_STATUS:
2284                 data = vcpu->arch.mcg_status;
2285                 break;
2286         default:
2287                 if (msr >= MSR_IA32_MC0_CTL &&
2288                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2289                         u32 offset = msr - MSR_IA32_MC0_CTL;
2290                         data = vcpu->arch.mce_banks[offset];
2291                         break;
2292                 }
2293                 return 1;
2294         }
2295         *pdata = data;
2296         return 0;
2297 }
2298
2299 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2300 {
2301         switch (msr_info->index) {
2302         case MSR_IA32_PLATFORM_ID:
2303         case MSR_IA32_EBL_CR_POWERON:
2304         case MSR_IA32_DEBUGCTLMSR:
2305         case MSR_IA32_LASTBRANCHFROMIP:
2306         case MSR_IA32_LASTBRANCHTOIP:
2307         case MSR_IA32_LASTINTFROMIP:
2308         case MSR_IA32_LASTINTTOIP:
2309         case MSR_K8_SYSCFG:
2310         case MSR_K8_TSEG_ADDR:
2311         case MSR_K8_TSEG_MASK:
2312         case MSR_K7_HWCR:
2313         case MSR_VM_HSAVE_PA:
2314         case MSR_K8_INT_PENDING_MSG:
2315         case MSR_AMD64_NB_CFG:
2316         case MSR_FAM10H_MMIO_CONF_BASE:
2317         case MSR_AMD64_BU_CFG2:
2318         case MSR_IA32_PERF_CTL:
2319                 msr_info->data = 0;
2320                 break;
2321         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2322         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2323         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2324         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2325                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2326                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2327                 msr_info->data = 0;
2328                 break;
2329         case MSR_IA32_UCODE_REV:
2330                 msr_info->data = 0x100000000ULL;
2331                 break;
2332         case MSR_MTRRcap:
2333         case 0x200 ... 0x2ff:
2334                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2335         case 0xcd: /* fsb frequency */
2336                 msr_info->data = 3;
2337                 break;
2338                 /*
2339                  * MSR_EBC_FREQUENCY_ID
2340                  * Conservative value valid for even the basic CPU models.
2341                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2342                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2343                  * and 266MHz for model 3, or 4. Set Core Clock
2344                  * Frequency to System Bus Frequency Ratio to 1 (bits
2345                  * 31:24) even though these are only valid for CPU
2346                  * models > 2, however guests may end up dividing or
2347                  * multiplying by zero otherwise.
2348                  */
2349         case MSR_EBC_FREQUENCY_ID:
2350                 msr_info->data = 1 << 24;
2351                 break;
2352         case MSR_IA32_APICBASE:
2353                 msr_info->data = kvm_get_apic_base(vcpu);
2354                 break;
2355         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2356                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2357                 break;
2358         case MSR_IA32_TSCDEADLINE:
2359                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2360                 break;
2361         case MSR_IA32_TSC_ADJUST:
2362                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2363                 break;
2364         case MSR_IA32_MISC_ENABLE:
2365                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2366                 break;
2367         case MSR_IA32_SMBASE:
2368                 if (!msr_info->host_initiated)
2369                         return 1;
2370                 msr_info->data = vcpu->arch.smbase;
2371                 break;
2372         case MSR_IA32_PERF_STATUS:
2373                 /* TSC increment by tick */
2374                 msr_info->data = 1000ULL;
2375                 /* CPU multiplier */
2376                 msr_info->data |= (((uint64_t)4ULL) << 40);
2377                 break;
2378         case MSR_EFER:
2379                 msr_info->data = vcpu->arch.efer;
2380                 break;
2381         case MSR_KVM_WALL_CLOCK:
2382         case MSR_KVM_WALL_CLOCK_NEW:
2383                 msr_info->data = vcpu->kvm->arch.wall_clock;
2384                 break;
2385         case MSR_KVM_SYSTEM_TIME:
2386         case MSR_KVM_SYSTEM_TIME_NEW:
2387                 msr_info->data = vcpu->arch.time;
2388                 break;
2389         case MSR_KVM_ASYNC_PF_EN:
2390                 msr_info->data = vcpu->arch.apf.msr_val;
2391                 break;
2392         case MSR_KVM_STEAL_TIME:
2393                 msr_info->data = vcpu->arch.st.msr_val;
2394                 break;
2395         case MSR_KVM_PV_EOI_EN:
2396                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2397                 break;
2398         case MSR_IA32_P5_MC_ADDR:
2399         case MSR_IA32_P5_MC_TYPE:
2400         case MSR_IA32_MCG_CAP:
2401         case MSR_IA32_MCG_CTL:
2402         case MSR_IA32_MCG_STATUS:
2403         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2404                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2405         case MSR_K7_CLK_CTL:
2406                 /*
2407                  * Provide expected ramp-up count for K7. All other
2408                  * are set to zero, indicating minimum divisors for
2409                  * every field.
2410                  *
2411                  * This prevents guest kernels on AMD host with CPU
2412                  * type 6, model 8 and higher from exploding due to
2413                  * the rdmsr failing.
2414                  */
2415                 msr_info->data = 0x20000000;
2416                 break;
2417         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2418         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2419         case HV_X64_MSR_CRASH_CTL:
2420         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2421                 return kvm_hv_get_msr_common(vcpu,
2422                                              msr_info->index, &msr_info->data);
2423                 break;
2424         case MSR_IA32_BBL_CR_CTL3:
2425                 /* This legacy MSR exists but isn't fully documented in current
2426                  * silicon.  It is however accessed by winxp in very narrow
2427                  * scenarios where it sets bit #19, itself documented as
2428                  * a "reserved" bit.  Best effort attempt to source coherent
2429                  * read data here should the balance of the register be
2430                  * interpreted by the guest:
2431                  *
2432                  * L2 cache control register 3: 64GB range, 256KB size,
2433                  * enabled, latency 0x1, configured
2434                  */
2435                 msr_info->data = 0xbe702111;
2436                 break;
2437         case MSR_AMD64_OSVW_ID_LENGTH:
2438                 if (!guest_cpuid_has_osvw(vcpu))
2439                         return 1;
2440                 msr_info->data = vcpu->arch.osvw.length;
2441                 break;
2442         case MSR_AMD64_OSVW_STATUS:
2443                 if (!guest_cpuid_has_osvw(vcpu))
2444                         return 1;
2445                 msr_info->data = vcpu->arch.osvw.status;
2446                 break;
2447         default:
2448                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2449                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2450                 if (!ignore_msrs) {
2451                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2452                         return 1;
2453                 } else {
2454                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2455                         msr_info->data = 0;
2456                 }
2457                 break;
2458         }
2459         return 0;
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2462
2463 /*
2464  * Read or write a bunch of msrs. All parameters are kernel addresses.
2465  *
2466  * @return number of msrs set successfully.
2467  */
2468 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2469                     struct kvm_msr_entry *entries,
2470                     int (*do_msr)(struct kvm_vcpu *vcpu,
2471                                   unsigned index, u64 *data))
2472 {
2473         int i, idx;
2474
2475         idx = srcu_read_lock(&vcpu->kvm->srcu);
2476         for (i = 0; i < msrs->nmsrs; ++i)
2477                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2478                         break;
2479         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2480
2481         return i;
2482 }
2483
2484 /*
2485  * Read or write a bunch of msrs. Parameters are user addresses.
2486  *
2487  * @return number of msrs set successfully.
2488  */
2489 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2490                   int (*do_msr)(struct kvm_vcpu *vcpu,
2491                                 unsigned index, u64 *data),
2492                   int writeback)
2493 {
2494         struct kvm_msrs msrs;
2495         struct kvm_msr_entry *entries;
2496         int r, n;
2497         unsigned size;
2498
2499         r = -EFAULT;
2500         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2501                 goto out;
2502
2503         r = -E2BIG;
2504         if (msrs.nmsrs >= MAX_IO_MSRS)
2505                 goto out;
2506
2507         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2508         entries = memdup_user(user_msrs->entries, size);
2509         if (IS_ERR(entries)) {
2510                 r = PTR_ERR(entries);
2511                 goto out;
2512         }
2513
2514         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2515         if (r < 0)
2516                 goto out_free;
2517
2518         r = -EFAULT;
2519         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2520                 goto out_free;
2521
2522         r = n;
2523
2524 out_free:
2525         kfree(entries);
2526 out:
2527         return r;
2528 }
2529
2530 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2531 {
2532         int r;
2533
2534         switch (ext) {
2535         case KVM_CAP_IRQCHIP:
2536         case KVM_CAP_HLT:
2537         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2538         case KVM_CAP_SET_TSS_ADDR:
2539         case KVM_CAP_EXT_CPUID:
2540         case KVM_CAP_EXT_EMUL_CPUID:
2541         case KVM_CAP_CLOCKSOURCE:
2542         case KVM_CAP_PIT:
2543         case KVM_CAP_NOP_IO_DELAY:
2544         case KVM_CAP_MP_STATE:
2545         case KVM_CAP_SYNC_MMU:
2546         case KVM_CAP_USER_NMI:
2547         case KVM_CAP_REINJECT_CONTROL:
2548         case KVM_CAP_IRQ_INJECT_STATUS:
2549         case KVM_CAP_IOEVENTFD:
2550         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2551         case KVM_CAP_PIT2:
2552         case KVM_CAP_PIT_STATE2:
2553         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2554         case KVM_CAP_XEN_HVM:
2555         case KVM_CAP_ADJUST_CLOCK:
2556         case KVM_CAP_VCPU_EVENTS:
2557         case KVM_CAP_HYPERV:
2558         case KVM_CAP_HYPERV_VAPIC:
2559         case KVM_CAP_HYPERV_SPIN:
2560         case KVM_CAP_HYPERV_SYNIC:
2561         case KVM_CAP_PCI_SEGMENT:
2562         case KVM_CAP_DEBUGREGS:
2563         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2564         case KVM_CAP_XSAVE:
2565         case KVM_CAP_ASYNC_PF:
2566         case KVM_CAP_GET_TSC_KHZ:
2567         case KVM_CAP_KVMCLOCK_CTRL:
2568         case KVM_CAP_READONLY_MEM:
2569         case KVM_CAP_HYPERV_TIME:
2570         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2571         case KVM_CAP_TSC_DEADLINE_TIMER:
2572         case KVM_CAP_ENABLE_CAP_VM:
2573         case KVM_CAP_DISABLE_QUIRKS:
2574         case KVM_CAP_SET_BOOT_CPU_ID:
2575         case KVM_CAP_SPLIT_IRQCHIP:
2576 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2577         case KVM_CAP_ASSIGN_DEV_IRQ:
2578         case KVM_CAP_PCI_2_3:
2579 #endif
2580                 r = 1;
2581                 break;
2582         case KVM_CAP_X86_SMM:
2583                 /* SMBASE is usually relocated above 1M on modern chipsets,
2584                  * and SMM handlers might indeed rely on 4G segment limits,
2585                  * so do not report SMM to be available if real mode is
2586                  * emulated via vm86 mode.  Still, do not go to great lengths
2587                  * to avoid userspace's usage of the feature, because it is a
2588                  * fringe case that is not enabled except via specific settings
2589                  * of the module parameters.
2590                  */
2591                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2592                 break;
2593         case KVM_CAP_COALESCED_MMIO:
2594                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2595                 break;
2596         case KVM_CAP_VAPIC:
2597                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2598                 break;
2599         case KVM_CAP_NR_VCPUS:
2600                 r = KVM_SOFT_MAX_VCPUS;
2601                 break;
2602         case KVM_CAP_MAX_VCPUS:
2603                 r = KVM_MAX_VCPUS;
2604                 break;
2605         case KVM_CAP_NR_MEMSLOTS:
2606                 r = KVM_USER_MEM_SLOTS;
2607                 break;
2608         case KVM_CAP_PV_MMU:    /* obsolete */
2609                 r = 0;
2610                 break;
2611 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2612         case KVM_CAP_IOMMU:
2613                 r = iommu_present(&pci_bus_type);
2614                 break;
2615 #endif
2616         case KVM_CAP_MCE:
2617                 r = KVM_MAX_MCE_BANKS;
2618                 break;
2619         case KVM_CAP_XCRS:
2620                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2621                 break;
2622         case KVM_CAP_TSC_CONTROL:
2623                 r = kvm_has_tsc_control;
2624                 break;
2625         default:
2626                 r = 0;
2627                 break;
2628         }
2629         return r;
2630
2631 }
2632
2633 long kvm_arch_dev_ioctl(struct file *filp,
2634                         unsigned int ioctl, unsigned long arg)
2635 {
2636         void __user *argp = (void __user *)arg;
2637         long r;
2638
2639         switch (ioctl) {
2640         case KVM_GET_MSR_INDEX_LIST: {
2641                 struct kvm_msr_list __user *user_msr_list = argp;
2642                 struct kvm_msr_list msr_list;
2643                 unsigned n;
2644
2645                 r = -EFAULT;
2646                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2647                         goto out;
2648                 n = msr_list.nmsrs;
2649                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2650                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2651                         goto out;
2652                 r = -E2BIG;
2653                 if (n < msr_list.nmsrs)
2654                         goto out;
2655                 r = -EFAULT;
2656                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2657                                  num_msrs_to_save * sizeof(u32)))
2658                         goto out;
2659                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2660                                  &emulated_msrs,
2661                                  num_emulated_msrs * sizeof(u32)))
2662                         goto out;
2663                 r = 0;
2664                 break;
2665         }
2666         case KVM_GET_SUPPORTED_CPUID:
2667         case KVM_GET_EMULATED_CPUID: {
2668                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2669                 struct kvm_cpuid2 cpuid;
2670
2671                 r = -EFAULT;
2672                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2673                         goto out;
2674
2675                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2676                                             ioctl);
2677                 if (r)
2678                         goto out;
2679
2680                 r = -EFAULT;
2681                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2682                         goto out;
2683                 r = 0;
2684                 break;
2685         }
2686         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2687                 u64 mce_cap;
2688
2689                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2690                 r = -EFAULT;
2691                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2692                         goto out;
2693                 r = 0;
2694                 break;
2695         }
2696         default:
2697                 r = -EINVAL;
2698         }
2699 out:
2700         return r;
2701 }
2702
2703 static void wbinvd_ipi(void *garbage)
2704 {
2705         wbinvd();
2706 }
2707
2708 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2709 {
2710         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2711 }
2712
2713 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2714 {
2715         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2716 }
2717
2718 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2719 {
2720         /* Address WBINVD may be executed by guest */
2721         if (need_emulate_wbinvd(vcpu)) {
2722                 if (kvm_x86_ops->has_wbinvd_exit())
2723                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2724                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2725                         smp_call_function_single(vcpu->cpu,
2726                                         wbinvd_ipi, NULL, 1);
2727         }
2728
2729         kvm_x86_ops->vcpu_load(vcpu, cpu);
2730
2731         /* Apply any externally detected TSC adjustments (due to suspend) */
2732         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2733                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2734                 vcpu->arch.tsc_offset_adjustment = 0;
2735                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2736         }
2737
2738         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2739                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2740                                 rdtsc() - vcpu->arch.last_host_tsc;
2741                 if (tsc_delta < 0)
2742                         mark_tsc_unstable("KVM discovered backwards TSC");
2743                 if (check_tsc_unstable()) {
2744                         u64 offset = kvm_compute_tsc_offset(vcpu,
2745                                                 vcpu->arch.last_guest_tsc);
2746                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2747                         vcpu->arch.tsc_catchup = 1;
2748                 }
2749                 /*
2750                  * On a host with synchronized TSC, there is no need to update
2751                  * kvmclock on vcpu->cpu migration
2752                  */
2753                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2754                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2755                 if (vcpu->cpu != cpu)
2756                         kvm_migrate_timers(vcpu);
2757                 vcpu->cpu = cpu;
2758         }
2759
2760         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2761 }
2762
2763 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2764 {
2765         kvm_x86_ops->vcpu_put(vcpu);
2766         kvm_put_guest_fpu(vcpu);
2767         vcpu->arch.last_host_tsc = rdtsc();
2768 }
2769
2770 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2771                                     struct kvm_lapic_state *s)
2772 {
2773         if (vcpu->arch.apicv_active)
2774                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2775
2776         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2777
2778         return 0;
2779 }
2780
2781 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2782                                     struct kvm_lapic_state *s)
2783 {
2784         kvm_apic_post_state_restore(vcpu, s);
2785         update_cr8_intercept(vcpu);
2786
2787         return 0;
2788 }
2789
2790 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2791 {
2792         return (!lapic_in_kernel(vcpu) ||
2793                 kvm_apic_accept_pic_intr(vcpu));
2794 }
2795
2796 /*
2797  * if userspace requested an interrupt window, check that the
2798  * interrupt window is open.
2799  *
2800  * No need to exit to userspace if we already have an interrupt queued.
2801  */
2802 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2803 {
2804         return kvm_arch_interrupt_allowed(vcpu) &&
2805                 !kvm_cpu_has_interrupt(vcpu) &&
2806                 !kvm_event_needs_reinjection(vcpu) &&
2807                 kvm_cpu_accept_dm_intr(vcpu);
2808 }
2809
2810 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2811                                     struct kvm_interrupt *irq)
2812 {
2813         if (irq->irq >= KVM_NR_INTERRUPTS)
2814                 return -EINVAL;
2815
2816         if (!irqchip_in_kernel(vcpu->kvm)) {
2817                 kvm_queue_interrupt(vcpu, irq->irq, false);
2818                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2819                 return 0;
2820         }
2821
2822         /*
2823          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2824          * fail for in-kernel 8259.
2825          */
2826         if (pic_in_kernel(vcpu->kvm))
2827                 return -ENXIO;
2828
2829         if (vcpu->arch.pending_external_vector != -1)
2830                 return -EEXIST;
2831
2832         vcpu->arch.pending_external_vector = irq->irq;
2833         kvm_make_request(KVM_REQ_EVENT, vcpu);
2834         return 0;
2835 }
2836
2837 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2838 {
2839         kvm_inject_nmi(vcpu);
2840
2841         return 0;
2842 }
2843
2844 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2845 {
2846         kvm_make_request(KVM_REQ_SMI, vcpu);
2847
2848         return 0;
2849 }
2850
2851 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2852                                            struct kvm_tpr_access_ctl *tac)
2853 {
2854         if (tac->flags)
2855                 return -EINVAL;
2856         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2857         return 0;
2858 }
2859
2860 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2861                                         u64 mcg_cap)
2862 {
2863         int r;
2864         unsigned bank_num = mcg_cap & 0xff, bank;
2865
2866         r = -EINVAL;
2867         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2868                 goto out;
2869         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2870                 goto out;
2871         r = 0;
2872         vcpu->arch.mcg_cap = mcg_cap;
2873         /* Init IA32_MCG_CTL to all 1s */
2874         if (mcg_cap & MCG_CTL_P)
2875                 vcpu->arch.mcg_ctl = ~(u64)0;
2876         /* Init IA32_MCi_CTL to all 1s */
2877         for (bank = 0; bank < bank_num; bank++)
2878                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2879 out:
2880         return r;
2881 }
2882
2883 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2884                                       struct kvm_x86_mce *mce)
2885 {
2886         u64 mcg_cap = vcpu->arch.mcg_cap;
2887         unsigned bank_num = mcg_cap & 0xff;
2888         u64 *banks = vcpu->arch.mce_banks;
2889
2890         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2891                 return -EINVAL;
2892         /*
2893          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2894          * reporting is disabled
2895          */
2896         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2897             vcpu->arch.mcg_ctl != ~(u64)0)
2898                 return 0;
2899         banks += 4 * mce->bank;
2900         /*
2901          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2902          * reporting is disabled for the bank
2903          */
2904         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2905                 return 0;
2906         if (mce->status & MCI_STATUS_UC) {
2907                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2908                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2909                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2910                         return 0;
2911                 }
2912                 if (banks[1] & MCI_STATUS_VAL)
2913                         mce->status |= MCI_STATUS_OVER;
2914                 banks[2] = mce->addr;
2915                 banks[3] = mce->misc;
2916                 vcpu->arch.mcg_status = mce->mcg_status;
2917                 banks[1] = mce->status;
2918                 kvm_queue_exception(vcpu, MC_VECTOR);
2919         } else if (!(banks[1] & MCI_STATUS_VAL)
2920                    || !(banks[1] & MCI_STATUS_UC)) {
2921                 if (banks[1] & MCI_STATUS_VAL)
2922                         mce->status |= MCI_STATUS_OVER;
2923                 banks[2] = mce->addr;
2924                 banks[3] = mce->misc;
2925                 banks[1] = mce->status;
2926         } else
2927                 banks[1] |= MCI_STATUS_OVER;
2928         return 0;
2929 }
2930
2931 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2932                                                struct kvm_vcpu_events *events)
2933 {
2934         process_nmi(vcpu);
2935         events->exception.injected =
2936                 vcpu->arch.exception.pending &&
2937                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2938         events->exception.nr = vcpu->arch.exception.nr;
2939         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2940         events->exception.pad = 0;
2941         events->exception.error_code = vcpu->arch.exception.error_code;
2942
2943         events->interrupt.injected =
2944                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2945         events->interrupt.nr = vcpu->arch.interrupt.nr;
2946         events->interrupt.soft = 0;
2947         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2948
2949         events->nmi.injected = vcpu->arch.nmi_injected;
2950         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2951         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2952         events->nmi.pad = 0;
2953
2954         events->sipi_vector = 0; /* never valid when reporting to user space */
2955
2956         events->smi.smm = is_smm(vcpu);
2957         events->smi.pending = vcpu->arch.smi_pending;
2958         events->smi.smm_inside_nmi =
2959                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2960         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2961
2962         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2963                          | KVM_VCPUEVENT_VALID_SHADOW
2964                          | KVM_VCPUEVENT_VALID_SMM);
2965         memset(&events->reserved, 0, sizeof(events->reserved));
2966 }
2967
2968 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2969                                               struct kvm_vcpu_events *events)
2970 {
2971         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2972                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2973                               | KVM_VCPUEVENT_VALID_SHADOW
2974                               | KVM_VCPUEVENT_VALID_SMM))
2975                 return -EINVAL;
2976
2977         if (events->exception.injected &&
2978             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2979                 return -EINVAL;
2980
2981         process_nmi(vcpu);
2982         vcpu->arch.exception.pending = events->exception.injected;
2983         vcpu->arch.exception.nr = events->exception.nr;
2984         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2985         vcpu->arch.exception.error_code = events->exception.error_code;
2986
2987         vcpu->arch.interrupt.pending = events->interrupt.injected;
2988         vcpu->arch.interrupt.nr = events->interrupt.nr;
2989         vcpu->arch.interrupt.soft = events->interrupt.soft;
2990         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2991                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2992                                                   events->interrupt.shadow);
2993
2994         vcpu->arch.nmi_injected = events->nmi.injected;
2995         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2996                 vcpu->arch.nmi_pending = events->nmi.pending;
2997         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2998
2999         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3000             lapic_in_kernel(vcpu))
3001                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3002
3003         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3004                 if (events->smi.smm)
3005                         vcpu->arch.hflags |= HF_SMM_MASK;
3006                 else
3007                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3008                 vcpu->arch.smi_pending = events->smi.pending;
3009                 if (events->smi.smm_inside_nmi)
3010                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3011                 else
3012                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3013                 if (lapic_in_kernel(vcpu)) {
3014                         if (events->smi.latched_init)
3015                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3016                         else
3017                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3018                 }
3019         }
3020
3021         kvm_make_request(KVM_REQ_EVENT, vcpu);
3022
3023         return 0;
3024 }
3025
3026 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3027                                              struct kvm_debugregs *dbgregs)
3028 {
3029         unsigned long val;
3030
3031         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3032         kvm_get_dr(vcpu, 6, &val);
3033         dbgregs->dr6 = val;
3034         dbgregs->dr7 = vcpu->arch.dr7;
3035         dbgregs->flags = 0;
3036         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3037 }
3038
3039 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3040                                             struct kvm_debugregs *dbgregs)
3041 {
3042         if (dbgregs->flags)
3043                 return -EINVAL;
3044
3045         if (dbgregs->dr6 & ~0xffffffffull)
3046                 return -EINVAL;
3047         if (dbgregs->dr7 & ~0xffffffffull)
3048                 return -EINVAL;
3049
3050         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3051         kvm_update_dr0123(vcpu);
3052         vcpu->arch.dr6 = dbgregs->dr6;
3053         kvm_update_dr6(vcpu);
3054         vcpu->arch.dr7 = dbgregs->dr7;
3055         kvm_update_dr7(vcpu);
3056
3057         return 0;
3058 }
3059
3060 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3061
3062 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3063 {
3064         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3065         u64 xstate_bv = xsave->header.xfeatures;
3066         u64 valid;
3067
3068         /*
3069          * Copy legacy XSAVE area, to avoid complications with CPUID
3070          * leaves 0 and 1 in the loop below.
3071          */
3072         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3073
3074         /* Set XSTATE_BV */
3075         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3076
3077         /*
3078          * Copy each region from the possibly compacted offset to the
3079          * non-compacted offset.
3080          */
3081         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3082         while (valid) {
3083                 u64 feature = valid & -valid;
3084                 int index = fls64(feature) - 1;
3085                 void *src = get_xsave_addr(xsave, feature);
3086
3087                 if (src) {
3088                         u32 size, offset, ecx, edx;
3089                         cpuid_count(XSTATE_CPUID, index,
3090                                     &size, &offset, &ecx, &edx);
3091                         memcpy(dest + offset, src, size);
3092                 }
3093
3094                 valid -= feature;
3095         }
3096 }
3097
3098 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3099 {
3100         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3101         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3102         u64 valid;
3103
3104         /*
3105          * Copy legacy XSAVE area, to avoid complications with CPUID
3106          * leaves 0 and 1 in the loop below.
3107          */
3108         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3109
3110         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3111         xsave->header.xfeatures = xstate_bv;
3112         if (boot_cpu_has(X86_FEATURE_XSAVES))
3113                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3114
3115         /*
3116          * Copy each region from the non-compacted offset to the
3117          * possibly compacted offset.
3118          */
3119         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3120         while (valid) {
3121                 u64 feature = valid & -valid;
3122                 int index = fls64(feature) - 1;
3123                 void *dest = get_xsave_addr(xsave, feature);
3124
3125                 if (dest) {
3126                         u32 size, offset, ecx, edx;
3127                         cpuid_count(XSTATE_CPUID, index,
3128                                     &size, &offset, &ecx, &edx);
3129                         memcpy(dest, src + offset, size);
3130                 }
3131
3132                 valid -= feature;
3133         }
3134 }
3135
3136 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3137                                          struct kvm_xsave *guest_xsave)
3138 {
3139         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3140                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3141                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3142         } else {
3143                 memcpy(guest_xsave->region,
3144                         &vcpu->arch.guest_fpu.state.fxsave,
3145                         sizeof(struct fxregs_state));
3146                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3147                         XFEATURE_MASK_FPSSE;
3148         }
3149 }
3150
3151 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3152                                         struct kvm_xsave *guest_xsave)
3153 {
3154         u64 xstate_bv =
3155                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3156
3157         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3158                 /*
3159                  * Here we allow setting states that are not present in
3160                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3161                  * with old userspace.
3162                  */
3163                 if (xstate_bv & ~kvm_supported_xcr0())
3164                         return -EINVAL;
3165                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3166         } else {
3167                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3168                         return -EINVAL;
3169                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3170                         guest_xsave->region, sizeof(struct fxregs_state));
3171         }
3172         return 0;
3173 }
3174
3175 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3176                                         struct kvm_xcrs *guest_xcrs)
3177 {
3178         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3179                 guest_xcrs->nr_xcrs = 0;
3180                 return;
3181         }
3182
3183         guest_xcrs->nr_xcrs = 1;
3184         guest_xcrs->flags = 0;
3185         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3186         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3187 }
3188
3189 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3190                                        struct kvm_xcrs *guest_xcrs)
3191 {
3192         int i, r = 0;
3193
3194         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3195                 return -EINVAL;
3196
3197         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3198                 return -EINVAL;
3199
3200         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3201                 /* Only support XCR0 currently */
3202                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3203                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3204                                 guest_xcrs->xcrs[i].value);
3205                         break;
3206                 }
3207         if (r)
3208                 r = -EINVAL;
3209         return r;
3210 }
3211
3212 /*
3213  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3214  * stopped by the hypervisor.  This function will be called from the host only.
3215  * EINVAL is returned when the host attempts to set the flag for a guest that
3216  * does not support pv clocks.
3217  */
3218 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3219 {
3220         if (!vcpu->arch.pv_time_enabled)
3221                 return -EINVAL;
3222         vcpu->arch.pvclock_set_guest_stopped_request = true;
3223         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3224         return 0;
3225 }
3226
3227 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3228                                      struct kvm_enable_cap *cap)
3229 {
3230         if (cap->flags)
3231                 return -EINVAL;
3232
3233         switch (cap->cap) {
3234         case KVM_CAP_HYPERV_SYNIC:
3235                 return kvm_hv_activate_synic(vcpu);
3236         default:
3237                 return -EINVAL;
3238         }
3239 }
3240
3241 long kvm_arch_vcpu_ioctl(struct file *filp,
3242                          unsigned int ioctl, unsigned long arg)
3243 {
3244         struct kvm_vcpu *vcpu = filp->private_data;
3245         void __user *argp = (void __user *)arg;
3246         int r;
3247         union {
3248                 struct kvm_lapic_state *lapic;
3249                 struct kvm_xsave *xsave;
3250                 struct kvm_xcrs *xcrs;
3251                 void *buffer;
3252         } u;
3253
3254         u.buffer = NULL;
3255         switch (ioctl) {
3256         case KVM_GET_LAPIC: {
3257                 r = -EINVAL;
3258                 if (!lapic_in_kernel(vcpu))
3259                         goto out;
3260                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3261
3262                 r = -ENOMEM;
3263                 if (!u.lapic)
3264                         goto out;
3265                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3266                 if (r)
3267                         goto out;
3268                 r = -EFAULT;
3269                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3270                         goto out;
3271                 r = 0;
3272                 break;
3273         }
3274         case KVM_SET_LAPIC: {
3275                 r = -EINVAL;
3276                 if (!lapic_in_kernel(vcpu))
3277                         goto out;
3278                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3279                 if (IS_ERR(u.lapic))
3280                         return PTR_ERR(u.lapic);
3281
3282                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3283                 break;
3284         }
3285         case KVM_INTERRUPT: {
3286                 struct kvm_interrupt irq;
3287
3288                 r = -EFAULT;
3289                 if (copy_from_user(&irq, argp, sizeof irq))
3290                         goto out;
3291                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3292                 break;
3293         }
3294         case KVM_NMI: {
3295                 r = kvm_vcpu_ioctl_nmi(vcpu);
3296                 break;
3297         }
3298         case KVM_SMI: {
3299                 r = kvm_vcpu_ioctl_smi(vcpu);
3300                 break;
3301         }
3302         case KVM_SET_CPUID: {
3303                 struct kvm_cpuid __user *cpuid_arg = argp;
3304                 struct kvm_cpuid cpuid;
3305
3306                 r = -EFAULT;
3307                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3308                         goto out;
3309                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3310                 break;
3311         }
3312         case KVM_SET_CPUID2: {
3313                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3314                 struct kvm_cpuid2 cpuid;
3315
3316                 r = -EFAULT;
3317                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3318                         goto out;
3319                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3320                                               cpuid_arg->entries);
3321                 break;
3322         }
3323         case KVM_GET_CPUID2: {
3324                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3325                 struct kvm_cpuid2 cpuid;
3326
3327                 r = -EFAULT;
3328                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3329                         goto out;
3330                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3331                                               cpuid_arg->entries);
3332                 if (r)
3333                         goto out;
3334                 r = -EFAULT;
3335                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3336                         goto out;
3337                 r = 0;
3338                 break;
3339         }
3340         case KVM_GET_MSRS:
3341                 r = msr_io(vcpu, argp, do_get_msr, 1);
3342                 break;
3343         case KVM_SET_MSRS:
3344                 r = msr_io(vcpu, argp, do_set_msr, 0);
3345                 break;
3346         case KVM_TPR_ACCESS_REPORTING: {
3347                 struct kvm_tpr_access_ctl tac;
3348
3349                 r = -EFAULT;
3350                 if (copy_from_user(&tac, argp, sizeof tac))
3351                         goto out;
3352                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3353                 if (r)
3354                         goto out;
3355                 r = -EFAULT;
3356                 if (copy_to_user(argp, &tac, sizeof tac))
3357                         goto out;
3358                 r = 0;
3359                 break;
3360         };
3361         case KVM_SET_VAPIC_ADDR: {
3362                 struct kvm_vapic_addr va;
3363
3364                 r = -EINVAL;
3365                 if (!lapic_in_kernel(vcpu))
3366                         goto out;
3367                 r = -EFAULT;
3368                 if (copy_from_user(&va, argp, sizeof va))
3369                         goto out;
3370                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3371                 break;
3372         }
3373         case KVM_X86_SETUP_MCE: {
3374                 u64 mcg_cap;
3375
3376                 r = -EFAULT;
3377                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3378                         goto out;
3379                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3380                 break;
3381         }
3382         case KVM_X86_SET_MCE: {
3383                 struct kvm_x86_mce mce;
3384
3385                 r = -EFAULT;
3386                 if (copy_from_user(&mce, argp, sizeof mce))
3387                         goto out;
3388                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3389                 break;
3390         }
3391         case KVM_GET_VCPU_EVENTS: {
3392                 struct kvm_vcpu_events events;
3393
3394                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3395
3396                 r = -EFAULT;
3397                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3398                         break;
3399                 r = 0;
3400                 break;
3401         }
3402         case KVM_SET_VCPU_EVENTS: {
3403                 struct kvm_vcpu_events events;
3404
3405                 r = -EFAULT;
3406                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3407                         break;
3408
3409                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3410                 break;
3411         }
3412         case KVM_GET_DEBUGREGS: {
3413                 struct kvm_debugregs dbgregs;
3414
3415                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3416
3417                 r = -EFAULT;
3418                 if (copy_to_user(argp, &dbgregs,
3419                                  sizeof(struct kvm_debugregs)))
3420                         break;
3421                 r = 0;
3422                 break;
3423         }
3424         case KVM_SET_DEBUGREGS: {
3425                 struct kvm_debugregs dbgregs;
3426
3427                 r = -EFAULT;
3428                 if (copy_from_user(&dbgregs, argp,
3429                                    sizeof(struct kvm_debugregs)))
3430                         break;
3431
3432                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3433                 break;
3434         }
3435         case KVM_GET_XSAVE: {
3436                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3437                 r = -ENOMEM;
3438                 if (!u.xsave)
3439                         break;
3440
3441                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3442
3443                 r = -EFAULT;
3444                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3445                         break;
3446                 r = 0;
3447                 break;
3448         }
3449         case KVM_SET_XSAVE: {
3450                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3451                 if (IS_ERR(u.xsave))
3452                         return PTR_ERR(u.xsave);
3453
3454                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3455                 break;
3456         }
3457         case KVM_GET_XCRS: {
3458                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3459                 r = -ENOMEM;
3460                 if (!u.xcrs)
3461                         break;
3462
3463                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3464
3465                 r = -EFAULT;
3466                 if (copy_to_user(argp, u.xcrs,
3467                                  sizeof(struct kvm_xcrs)))
3468                         break;
3469                 r = 0;
3470                 break;
3471         }
3472         case KVM_SET_XCRS: {
3473                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3474                 if (IS_ERR(u.xcrs))
3475                         return PTR_ERR(u.xcrs);
3476
3477                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3478                 break;
3479         }
3480         case KVM_SET_TSC_KHZ: {
3481                 u32 user_tsc_khz;
3482
3483                 r = -EINVAL;
3484                 user_tsc_khz = (u32)arg;
3485
3486                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3487                         goto out;
3488
3489                 if (user_tsc_khz == 0)
3490                         user_tsc_khz = tsc_khz;
3491
3492                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3493                         r = 0;
3494
3495                 goto out;
3496         }
3497         case KVM_GET_TSC_KHZ: {
3498                 r = vcpu->arch.virtual_tsc_khz;
3499                 goto out;
3500         }
3501         case KVM_KVMCLOCK_CTRL: {
3502                 r = kvm_set_guest_paused(vcpu);
3503                 goto out;
3504         }
3505         case KVM_ENABLE_CAP: {
3506                 struct kvm_enable_cap cap;
3507
3508                 r = -EFAULT;
3509                 if (copy_from_user(&cap, argp, sizeof(cap)))
3510                         goto out;
3511                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3512                 break;
3513         }
3514         default:
3515                 r = -EINVAL;
3516         }
3517 out:
3518         kfree(u.buffer);
3519         return r;
3520 }
3521
3522 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3523 {
3524         return VM_FAULT_SIGBUS;
3525 }
3526
3527 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3528 {
3529         int ret;
3530
3531         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3532                 return -EINVAL;
3533         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3534         return ret;
3535 }
3536
3537 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3538                                               u64 ident_addr)
3539 {
3540         kvm->arch.ept_identity_map_addr = ident_addr;
3541         return 0;
3542 }
3543
3544 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3545                                           u32 kvm_nr_mmu_pages)
3546 {
3547         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3548                 return -EINVAL;
3549
3550         mutex_lock(&kvm->slots_lock);
3551
3552         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3553         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3554
3555         mutex_unlock(&kvm->slots_lock);
3556         return 0;
3557 }
3558
3559 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3560 {
3561         return kvm->arch.n_max_mmu_pages;
3562 }
3563
3564 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3565 {
3566         int r;
3567
3568         r = 0;
3569         switch (chip->chip_id) {
3570         case KVM_IRQCHIP_PIC_MASTER:
3571                 memcpy(&chip->chip.pic,
3572                         &pic_irqchip(kvm)->pics[0],
3573                         sizeof(struct kvm_pic_state));
3574                 break;
3575         case KVM_IRQCHIP_PIC_SLAVE:
3576                 memcpy(&chip->chip.pic,
3577                         &pic_irqchip(kvm)->pics[1],
3578                         sizeof(struct kvm_pic_state));
3579                 break;
3580         case KVM_IRQCHIP_IOAPIC:
3581                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3582                 break;
3583         default:
3584                 r = -EINVAL;
3585                 break;
3586         }
3587         return r;
3588 }
3589
3590 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3591 {
3592         int r;
3593
3594         r = 0;
3595         switch (chip->chip_id) {
3596         case KVM_IRQCHIP_PIC_MASTER:
3597                 spin_lock(&pic_irqchip(kvm)->lock);
3598                 memcpy(&pic_irqchip(kvm)->pics[0],
3599                         &chip->chip.pic,
3600                         sizeof(struct kvm_pic_state));
3601                 spin_unlock(&pic_irqchip(kvm)->lock);
3602                 break;
3603         case KVM_IRQCHIP_PIC_SLAVE:
3604                 spin_lock(&pic_irqchip(kvm)->lock);
3605                 memcpy(&pic_irqchip(kvm)->pics[1],
3606                         &chip->chip.pic,
3607                         sizeof(struct kvm_pic_state));
3608                 spin_unlock(&pic_irqchip(kvm)->lock);
3609                 break;
3610         case KVM_IRQCHIP_IOAPIC:
3611                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3612                 break;
3613         default:
3614                 r = -EINVAL;
3615                 break;
3616         }
3617         kvm_pic_update_irq(pic_irqchip(kvm));
3618         return r;
3619 }
3620
3621 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3622 {
3623         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3624
3625         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3626
3627         mutex_lock(&kps->lock);
3628         memcpy(ps, &kps->channels, sizeof(*ps));
3629         mutex_unlock(&kps->lock);
3630         return 0;
3631 }
3632
3633 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3634 {
3635         int i;
3636         struct kvm_pit *pit = kvm->arch.vpit;
3637
3638         mutex_lock(&pit->pit_state.lock);
3639         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3640         for (i = 0; i < 3; i++)
3641                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3642         mutex_unlock(&pit->pit_state.lock);
3643         return 0;
3644 }
3645
3646 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3647 {
3648         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3649         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3650                 sizeof(ps->channels));
3651         ps->flags = kvm->arch.vpit->pit_state.flags;
3652         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3653         memset(&ps->reserved, 0, sizeof(ps->reserved));
3654         return 0;
3655 }
3656
3657 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3658 {
3659         int start = 0;
3660         int i;
3661         u32 prev_legacy, cur_legacy;
3662         struct kvm_pit *pit = kvm->arch.vpit;
3663
3664         mutex_lock(&pit->pit_state.lock);
3665         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3666         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3667         if (!prev_legacy && cur_legacy)
3668                 start = 1;
3669         memcpy(&pit->pit_state.channels, &ps->channels,
3670                sizeof(pit->pit_state.channels));
3671         pit->pit_state.flags = ps->flags;
3672         for (i = 0; i < 3; i++)
3673                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3674                                    start && i == 0);
3675         mutex_unlock(&pit->pit_state.lock);
3676         return 0;
3677 }
3678
3679 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3680                                  struct kvm_reinject_control *control)
3681 {
3682         struct kvm_pit *pit = kvm->arch.vpit;
3683
3684         if (!pit)
3685                 return -ENXIO;
3686
3687         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3688          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3689          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3690          */
3691         mutex_lock(&pit->pit_state.lock);
3692         kvm_pit_set_reinject(pit, control->pit_reinject);
3693         mutex_unlock(&pit->pit_state.lock);
3694
3695         return 0;
3696 }
3697
3698 /**
3699  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3700  * @kvm: kvm instance
3701  * @log: slot id and address to which we copy the log
3702  *
3703  * Steps 1-4 below provide general overview of dirty page logging. See
3704  * kvm_get_dirty_log_protect() function description for additional details.
3705  *
3706  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3707  * always flush the TLB (step 4) even if previous step failed  and the dirty
3708  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3709  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3710  * writes will be marked dirty for next log read.
3711  *
3712  *   1. Take a snapshot of the bit and clear it if needed.
3713  *   2. Write protect the corresponding page.
3714  *   3. Copy the snapshot to the userspace.
3715  *   4. Flush TLB's if needed.
3716  */
3717 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3718 {
3719         bool is_dirty = false;
3720         int r;
3721
3722         mutex_lock(&kvm->slots_lock);
3723
3724         /*
3725          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3726          */
3727         if (kvm_x86_ops->flush_log_dirty)
3728                 kvm_x86_ops->flush_log_dirty(kvm);
3729
3730         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3731
3732         /*
3733          * All the TLBs can be flushed out of mmu lock, see the comments in
3734          * kvm_mmu_slot_remove_write_access().
3735          */
3736         lockdep_assert_held(&kvm->slots_lock);
3737         if (is_dirty)
3738                 kvm_flush_remote_tlbs(kvm);
3739
3740         mutex_unlock(&kvm->slots_lock);
3741         return r;
3742 }
3743
3744 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3745                         bool line_status)
3746 {
3747         if (!irqchip_in_kernel(kvm))
3748                 return -ENXIO;
3749
3750         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3751                                         irq_event->irq, irq_event->level,
3752                                         line_status);
3753         return 0;
3754 }
3755
3756 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3757                                    struct kvm_enable_cap *cap)
3758 {
3759         int r;
3760
3761         if (cap->flags)
3762                 return -EINVAL;
3763
3764         switch (cap->cap) {
3765         case KVM_CAP_DISABLE_QUIRKS:
3766                 kvm->arch.disabled_quirks = cap->args[0];
3767                 r = 0;
3768                 break;
3769         case KVM_CAP_SPLIT_IRQCHIP: {
3770                 mutex_lock(&kvm->lock);
3771                 r = -EINVAL;
3772                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3773                         goto split_irqchip_unlock;
3774                 r = -EEXIST;
3775                 if (irqchip_in_kernel(kvm))
3776                         goto split_irqchip_unlock;
3777                 if (atomic_read(&kvm->online_vcpus))
3778                         goto split_irqchip_unlock;
3779                 r = kvm_setup_empty_irq_routing(kvm);
3780                 if (r)
3781                         goto split_irqchip_unlock;
3782                 /* Pairs with irqchip_in_kernel. */
3783                 smp_wmb();
3784                 kvm->arch.irqchip_split = true;
3785                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3786                 r = 0;
3787 split_irqchip_unlock:
3788                 mutex_unlock(&kvm->lock);
3789                 break;
3790         }
3791         default:
3792                 r = -EINVAL;
3793                 break;
3794         }
3795         return r;
3796 }
3797
3798 long kvm_arch_vm_ioctl(struct file *filp,
3799                        unsigned int ioctl, unsigned long arg)
3800 {
3801         struct kvm *kvm = filp->private_data;
3802         void __user *argp = (void __user *)arg;
3803         int r = -ENOTTY;
3804         /*
3805          * This union makes it completely explicit to gcc-3.x
3806          * that these two variables' stack usage should be
3807          * combined, not added together.
3808          */
3809         union {
3810                 struct kvm_pit_state ps;
3811                 struct kvm_pit_state2 ps2;
3812                 struct kvm_pit_config pit_config;
3813         } u;
3814
3815         switch (ioctl) {
3816         case KVM_SET_TSS_ADDR:
3817                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3818                 break;
3819         case KVM_SET_IDENTITY_MAP_ADDR: {
3820                 u64 ident_addr;
3821
3822                 r = -EFAULT;
3823                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3824                         goto out;
3825                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3826                 break;
3827         }
3828         case KVM_SET_NR_MMU_PAGES:
3829                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3830                 break;
3831         case KVM_GET_NR_MMU_PAGES:
3832                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3833                 break;
3834         case KVM_CREATE_IRQCHIP: {
3835                 struct kvm_pic *vpic;
3836
3837                 mutex_lock(&kvm->lock);
3838                 r = -EEXIST;
3839                 if (kvm->arch.vpic)
3840                         goto create_irqchip_unlock;
3841                 r = -EINVAL;
3842                 if (atomic_read(&kvm->online_vcpus))
3843                         goto create_irqchip_unlock;
3844                 r = -ENOMEM;
3845                 vpic = kvm_create_pic(kvm);
3846                 if (vpic) {
3847                         r = kvm_ioapic_init(kvm);
3848                         if (r) {
3849                                 mutex_lock(&kvm->slots_lock);
3850                                 kvm_destroy_pic(vpic);
3851                                 mutex_unlock(&kvm->slots_lock);
3852                                 goto create_irqchip_unlock;
3853                         }
3854                 } else
3855                         goto create_irqchip_unlock;
3856                 r = kvm_setup_default_irq_routing(kvm);
3857                 if (r) {
3858                         mutex_lock(&kvm->slots_lock);
3859                         mutex_lock(&kvm->irq_lock);
3860                         kvm_ioapic_destroy(kvm);
3861                         kvm_destroy_pic(vpic);
3862                         mutex_unlock(&kvm->irq_lock);
3863                         mutex_unlock(&kvm->slots_lock);
3864                         goto create_irqchip_unlock;
3865                 }
3866                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3867                 smp_wmb();
3868                 kvm->arch.vpic = vpic;
3869         create_irqchip_unlock:
3870                 mutex_unlock(&kvm->lock);
3871                 break;
3872         }
3873         case KVM_CREATE_PIT:
3874                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3875                 goto create_pit;
3876         case KVM_CREATE_PIT2:
3877                 r = -EFAULT;
3878                 if (copy_from_user(&u.pit_config, argp,
3879                                    sizeof(struct kvm_pit_config)))
3880                         goto out;
3881         create_pit:
3882                 mutex_lock(&kvm->lock);
3883                 r = -EEXIST;
3884                 if (kvm->arch.vpit)
3885                         goto create_pit_unlock;
3886                 r = -ENOMEM;
3887                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3888                 if (kvm->arch.vpit)
3889                         r = 0;
3890         create_pit_unlock:
3891                 mutex_unlock(&kvm->lock);
3892                 break;
3893         case KVM_GET_IRQCHIP: {
3894                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3895                 struct kvm_irqchip *chip;
3896
3897                 chip = memdup_user(argp, sizeof(*chip));
3898                 if (IS_ERR(chip)) {
3899                         r = PTR_ERR(chip);
3900                         goto out;
3901                 }
3902
3903                 r = -ENXIO;
3904                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3905                         goto get_irqchip_out;
3906                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3907                 if (r)
3908                         goto get_irqchip_out;
3909                 r = -EFAULT;
3910                 if (copy_to_user(argp, chip, sizeof *chip))
3911                         goto get_irqchip_out;
3912                 r = 0;
3913         get_irqchip_out:
3914                 kfree(chip);
3915                 break;
3916         }
3917         case KVM_SET_IRQCHIP: {
3918                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3919                 struct kvm_irqchip *chip;
3920
3921                 chip = memdup_user(argp, sizeof(*chip));
3922                 if (IS_ERR(chip)) {
3923                         r = PTR_ERR(chip);
3924                         goto out;
3925                 }
3926
3927                 r = -ENXIO;
3928                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3929                         goto set_irqchip_out;
3930                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3931                 if (r)
3932                         goto set_irqchip_out;
3933                 r = 0;
3934         set_irqchip_out:
3935                 kfree(chip);
3936                 break;
3937         }
3938         case KVM_GET_PIT: {
3939                 r = -EFAULT;
3940                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3941                         goto out;
3942                 r = -ENXIO;
3943                 if (!kvm->arch.vpit)
3944                         goto out;
3945                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3946                 if (r)
3947                         goto out;
3948                 r = -EFAULT;
3949                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3950                         goto out;
3951                 r = 0;
3952                 break;
3953         }
3954         case KVM_SET_PIT: {
3955                 r = -EFAULT;
3956                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3957                         goto out;
3958                 r = -ENXIO;
3959                 if (!kvm->arch.vpit)
3960                         goto out;
3961                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3962                 break;
3963         }
3964         case KVM_GET_PIT2: {
3965                 r = -ENXIO;
3966                 if (!kvm->arch.vpit)
3967                         goto out;
3968                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3969                 if (r)
3970                         goto out;
3971                 r = -EFAULT;
3972                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3973                         goto out;
3974                 r = 0;
3975                 break;
3976         }
3977         case KVM_SET_PIT2: {
3978                 r = -EFAULT;
3979                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3980                         goto out;
3981                 r = -ENXIO;
3982                 if (!kvm->arch.vpit)
3983                         goto out;
3984                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3985                 break;
3986         }
3987         case KVM_REINJECT_CONTROL: {
3988                 struct kvm_reinject_control control;
3989                 r =  -EFAULT;
3990                 if (copy_from_user(&control, argp, sizeof(control)))
3991                         goto out;
3992                 r = kvm_vm_ioctl_reinject(kvm, &control);
3993                 break;
3994         }
3995         case KVM_SET_BOOT_CPU_ID:
3996                 r = 0;
3997                 mutex_lock(&kvm->lock);
3998                 if (atomic_read(&kvm->online_vcpus) != 0)
3999                         r = -EBUSY;
4000                 else
4001                         kvm->arch.bsp_vcpu_id = arg;
4002                 mutex_unlock(&kvm->lock);
4003                 break;
4004         case KVM_XEN_HVM_CONFIG: {
4005                 r = -EFAULT;
4006                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4007                                    sizeof(struct kvm_xen_hvm_config)))
4008                         goto out;
4009                 r = -EINVAL;
4010                 if (kvm->arch.xen_hvm_config.flags)
4011                         goto out;
4012                 r = 0;
4013                 break;
4014         }
4015         case KVM_SET_CLOCK: {
4016                 struct kvm_clock_data user_ns;
4017                 u64 now_ns;
4018                 s64 delta;
4019
4020                 r = -EFAULT;
4021                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4022                         goto out;
4023
4024                 r = -EINVAL;
4025                 if (user_ns.flags)
4026                         goto out;
4027
4028                 r = 0;
4029                 local_irq_disable();
4030                 now_ns = get_kernel_ns();
4031                 delta = user_ns.clock - now_ns;
4032                 local_irq_enable();
4033                 kvm->arch.kvmclock_offset = delta;
4034                 kvm_gen_update_masterclock(kvm);
4035                 break;
4036         }
4037         case KVM_GET_CLOCK: {
4038                 struct kvm_clock_data user_ns;
4039                 u64 now_ns;
4040
4041                 local_irq_disable();
4042                 now_ns = get_kernel_ns();
4043                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4044                 local_irq_enable();
4045                 user_ns.flags = 0;
4046                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4047
4048                 r = -EFAULT;
4049                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4050                         goto out;
4051                 r = 0;
4052                 break;
4053         }
4054         case KVM_ENABLE_CAP: {
4055                 struct kvm_enable_cap cap;
4056
4057                 r = -EFAULT;
4058                 if (copy_from_user(&cap, argp, sizeof(cap)))
4059                         goto out;
4060                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4061                 break;
4062         }
4063         default:
4064                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4065         }
4066 out:
4067         return r;
4068 }
4069
4070 static void kvm_init_msr_list(void)
4071 {
4072         u32 dummy[2];
4073         unsigned i, j;
4074
4075         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4076                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4077                         continue;
4078
4079                 /*
4080                  * Even MSRs that are valid in the host may not be exposed
4081                  * to the guests in some cases.
4082                  */
4083                 switch (msrs_to_save[i]) {
4084                 case MSR_IA32_BNDCFGS:
4085                         if (!kvm_x86_ops->mpx_supported())
4086                                 continue;
4087                         break;
4088                 case MSR_TSC_AUX:
4089                         if (!kvm_x86_ops->rdtscp_supported())
4090                                 continue;
4091                         break;
4092                 default:
4093                         break;
4094                 }
4095
4096                 if (j < i)
4097                         msrs_to_save[j] = msrs_to_save[i];
4098                 j++;
4099         }
4100         num_msrs_to_save = j;
4101
4102         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4103                 switch (emulated_msrs[i]) {
4104                 case MSR_IA32_SMBASE:
4105                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4106                                 continue;
4107                         break;
4108                 default:
4109                         break;
4110                 }
4111
4112                 if (j < i)
4113                         emulated_msrs[j] = emulated_msrs[i];
4114                 j++;
4115         }
4116         num_emulated_msrs = j;
4117 }
4118
4119 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4120                            const void *v)
4121 {
4122         int handled = 0;
4123         int n;
4124
4125         do {
4126                 n = min(len, 8);
4127                 if (!(lapic_in_kernel(vcpu) &&
4128                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4129                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4130                         break;
4131                 handled += n;
4132                 addr += n;
4133                 len -= n;
4134                 v += n;
4135         } while (len);
4136
4137         return handled;
4138 }
4139
4140 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4141 {
4142         int handled = 0;
4143         int n;
4144
4145         do {
4146                 n = min(len, 8);
4147                 if (!(lapic_in_kernel(vcpu) &&
4148                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4149                                          addr, n, v))
4150                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4151                         break;
4152                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4153                 handled += n;
4154                 addr += n;
4155                 len -= n;
4156                 v += n;
4157         } while (len);
4158
4159         return handled;
4160 }
4161
4162 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4163                         struct kvm_segment *var, int seg)
4164 {
4165         kvm_x86_ops->set_segment(vcpu, var, seg);
4166 }
4167
4168 void kvm_get_segment(struct kvm_vcpu *vcpu,
4169                      struct kvm_segment *var, int seg)
4170 {
4171         kvm_x86_ops->get_segment(vcpu, var, seg);
4172 }
4173
4174 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4175                            struct x86_exception *exception)
4176 {
4177         gpa_t t_gpa;
4178
4179         BUG_ON(!mmu_is_nested(vcpu));
4180
4181         /* NPT walks are always user-walks */
4182         access |= PFERR_USER_MASK;
4183         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4184
4185         return t_gpa;
4186 }
4187
4188 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4189                               struct x86_exception *exception)
4190 {
4191         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4192         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4193 }
4194
4195  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4196                                 struct x86_exception *exception)
4197 {
4198         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4199         access |= PFERR_FETCH_MASK;
4200         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4201 }
4202
4203 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4204                                struct x86_exception *exception)
4205 {
4206         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4207         access |= PFERR_WRITE_MASK;
4208         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4209 }
4210
4211 /* uses this to access any guest's mapped memory without checking CPL */
4212 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4213                                 struct x86_exception *exception)
4214 {
4215         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4216 }
4217
4218 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4219                                       struct kvm_vcpu *vcpu, u32 access,
4220                                       struct x86_exception *exception)
4221 {
4222         void *data = val;
4223         int r = X86EMUL_CONTINUE;
4224
4225         while (bytes) {
4226                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4227                                                             exception);
4228                 unsigned offset = addr & (PAGE_SIZE-1);
4229                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4230                 int ret;
4231
4232                 if (gpa == UNMAPPED_GVA)
4233                         return X86EMUL_PROPAGATE_FAULT;
4234                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4235                                                offset, toread);
4236                 if (ret < 0) {
4237                         r = X86EMUL_IO_NEEDED;
4238                         goto out;
4239                 }
4240
4241                 bytes -= toread;
4242                 data += toread;
4243                 addr += toread;
4244         }
4245 out:
4246         return r;
4247 }
4248
4249 /* used for instruction fetching */
4250 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4251                                 gva_t addr, void *val, unsigned int bytes,
4252                                 struct x86_exception *exception)
4253 {
4254         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4255         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4256         unsigned offset;
4257         int ret;
4258
4259         /* Inline kvm_read_guest_virt_helper for speed.  */
4260         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4261                                                     exception);
4262         if (unlikely(gpa == UNMAPPED_GVA))
4263                 return X86EMUL_PROPAGATE_FAULT;
4264
4265         offset = addr & (PAGE_SIZE-1);
4266         if (WARN_ON(offset + bytes > PAGE_SIZE))
4267                 bytes = (unsigned)PAGE_SIZE - offset;
4268         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4269                                        offset, bytes);
4270         if (unlikely(ret < 0))
4271                 return X86EMUL_IO_NEEDED;
4272
4273         return X86EMUL_CONTINUE;
4274 }
4275
4276 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4277                                gva_t addr, void *val, unsigned int bytes,
4278                                struct x86_exception *exception)
4279 {
4280         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4281         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4282
4283         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4284                                           exception);
4285 }
4286 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4287
4288 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4289                                       gva_t addr, void *val, unsigned int bytes,
4290                                       struct x86_exception *exception)
4291 {
4292         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4293         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4294 }
4295
4296 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4297                 unsigned long addr, void *val, unsigned int bytes)
4298 {
4299         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4300         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4301
4302         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4303 }
4304
4305 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4306                                        gva_t addr, void *val,
4307                                        unsigned int bytes,
4308                                        struct x86_exception *exception)
4309 {
4310         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4311         void *data = val;
4312         int r = X86EMUL_CONTINUE;
4313
4314         while (bytes) {
4315                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4316                                                              PFERR_WRITE_MASK,
4317                                                              exception);
4318                 unsigned offset = addr & (PAGE_SIZE-1);
4319                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4320                 int ret;
4321
4322                 if (gpa == UNMAPPED_GVA)
4323                         return X86EMUL_PROPAGATE_FAULT;
4324                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4325                 if (ret < 0) {
4326                         r = X86EMUL_IO_NEEDED;
4327                         goto out;
4328                 }
4329
4330                 bytes -= towrite;
4331                 data += towrite;
4332                 addr += towrite;
4333         }
4334 out:
4335         return r;
4336 }
4337 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4338
4339 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4340                                 gpa_t *gpa, struct x86_exception *exception,
4341                                 bool write)
4342 {
4343         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4344                 | (write ? PFERR_WRITE_MASK : 0);
4345
4346         /*
4347          * currently PKRU is only applied to ept enabled guest so
4348          * there is no pkey in EPT page table for L1 guest or EPT
4349          * shadow page table for L2 guest.
4350          */
4351         if (vcpu_match_mmio_gva(vcpu, gva)
4352             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4353                                  vcpu->arch.access, 0, access)) {
4354                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4355                                         (gva & (PAGE_SIZE - 1));
4356                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4357                 return 1;
4358         }
4359
4360         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4361
4362         if (*gpa == UNMAPPED_GVA)
4363                 return -1;
4364
4365         /* For APIC access vmexit */
4366         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4367                 return 1;
4368
4369         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4370                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4371                 return 1;
4372         }
4373
4374         return 0;
4375 }
4376
4377 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4378                         const void *val, int bytes)
4379 {
4380         int ret;
4381
4382         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4383         if (ret < 0)
4384                 return 0;
4385         kvm_page_track_write(vcpu, gpa, val, bytes);
4386         return 1;
4387 }
4388
4389 struct read_write_emulator_ops {
4390         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4391                                   int bytes);
4392         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4393                                   void *val, int bytes);
4394         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4395                                int bytes, void *val);
4396         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4397                                     void *val, int bytes);
4398         bool write;
4399 };
4400
4401 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4402 {
4403         if (vcpu->mmio_read_completed) {
4404                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4405                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4406                 vcpu->mmio_read_completed = 0;
4407                 return 1;
4408         }
4409
4410         return 0;
4411 }
4412
4413 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4414                         void *val, int bytes)
4415 {
4416         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4417 }
4418
4419 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4420                          void *val, int bytes)
4421 {
4422         return emulator_write_phys(vcpu, gpa, val, bytes);
4423 }
4424
4425 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4426 {
4427         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4428         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4429 }
4430
4431 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4432                           void *val, int bytes)
4433 {
4434         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4435         return X86EMUL_IO_NEEDED;
4436 }
4437
4438 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4439                            void *val, int bytes)
4440 {
4441         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4442
4443         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4444         return X86EMUL_CONTINUE;
4445 }
4446
4447 static const struct read_write_emulator_ops read_emultor = {
4448         .read_write_prepare = read_prepare,
4449         .read_write_emulate = read_emulate,
4450         .read_write_mmio = vcpu_mmio_read,
4451         .read_write_exit_mmio = read_exit_mmio,
4452 };
4453
4454 static const struct read_write_emulator_ops write_emultor = {
4455         .read_write_emulate = write_emulate,
4456         .read_write_mmio = write_mmio,
4457         .read_write_exit_mmio = write_exit_mmio,
4458         .write = true,
4459 };
4460
4461 static int emulator_read_write_onepage(unsigned long addr, void *val,
4462                                        unsigned int bytes,
4463                                        struct x86_exception *exception,
4464                                        struct kvm_vcpu *vcpu,
4465                                        const struct read_write_emulator_ops *ops)
4466 {
4467         gpa_t gpa;
4468         int handled, ret;
4469         bool write = ops->write;
4470         struct kvm_mmio_fragment *frag;
4471
4472         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4473
4474         if (ret < 0)
4475                 return X86EMUL_PROPAGATE_FAULT;
4476
4477         /* For APIC access vmexit */
4478         if (ret)
4479                 goto mmio;
4480
4481         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4482                 return X86EMUL_CONTINUE;
4483
4484 mmio:
4485         /*
4486          * Is this MMIO handled locally?
4487          */
4488         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4489         if (handled == bytes)
4490                 return X86EMUL_CONTINUE;
4491
4492         gpa += handled;
4493         bytes -= handled;
4494         val += handled;
4495
4496         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4497         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4498         frag->gpa = gpa;
4499         frag->data = val;
4500         frag->len = bytes;
4501         return X86EMUL_CONTINUE;
4502 }
4503
4504 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4505                         unsigned long addr,
4506                         void *val, unsigned int bytes,
4507                         struct x86_exception *exception,
4508                         const struct read_write_emulator_ops *ops)
4509 {
4510         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4511         gpa_t gpa;
4512         int rc;
4513
4514         if (ops->read_write_prepare &&
4515                   ops->read_write_prepare(vcpu, val, bytes))
4516                 return X86EMUL_CONTINUE;
4517
4518         vcpu->mmio_nr_fragments = 0;
4519
4520         /* Crossing a page boundary? */
4521         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4522                 int now;
4523
4524                 now = -addr & ~PAGE_MASK;
4525                 rc = emulator_read_write_onepage(addr, val, now, exception,
4526                                                  vcpu, ops);
4527
4528                 if (rc != X86EMUL_CONTINUE)
4529                         return rc;
4530                 addr += now;
4531                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4532                         addr = (u32)addr;
4533                 val += now;
4534                 bytes -= now;
4535         }
4536
4537         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4538                                          vcpu, ops);
4539         if (rc != X86EMUL_CONTINUE)
4540                 return rc;
4541
4542         if (!vcpu->mmio_nr_fragments)
4543                 return rc;
4544
4545         gpa = vcpu->mmio_fragments[0].gpa;
4546
4547         vcpu->mmio_needed = 1;
4548         vcpu->mmio_cur_fragment = 0;
4549
4550         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4551         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4552         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4553         vcpu->run->mmio.phys_addr = gpa;
4554
4555         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4556 }
4557
4558 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4559                                   unsigned long addr,
4560                                   void *val,
4561                                   unsigned int bytes,
4562                                   struct x86_exception *exception)
4563 {
4564         return emulator_read_write(ctxt, addr, val, bytes,
4565                                    exception, &read_emultor);
4566 }
4567
4568 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4569                             unsigned long addr,
4570                             const void *val,
4571                             unsigned int bytes,
4572                             struct x86_exception *exception)
4573 {
4574         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4575                                    exception, &write_emultor);
4576 }
4577
4578 #define CMPXCHG_TYPE(t, ptr, old, new) \
4579         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4580
4581 #ifdef CONFIG_X86_64
4582 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4583 #else
4584 #  define CMPXCHG64(ptr, old, new) \
4585         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4586 #endif
4587
4588 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4589                                      unsigned long addr,
4590                                      const void *old,
4591                                      const void *new,
4592                                      unsigned int bytes,
4593                                      struct x86_exception *exception)
4594 {
4595         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4596         gpa_t gpa;
4597         struct page *page;
4598         char *kaddr;
4599         bool exchanged;
4600
4601         /* guests cmpxchg8b have to be emulated atomically */
4602         if (bytes > 8 || (bytes & (bytes - 1)))
4603                 goto emul_write;
4604
4605         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4606
4607         if (gpa == UNMAPPED_GVA ||
4608             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4609                 goto emul_write;
4610
4611         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4612                 goto emul_write;
4613
4614         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4615         if (is_error_page(page))
4616                 goto emul_write;
4617
4618         kaddr = kmap_atomic(page);
4619         kaddr += offset_in_page(gpa);
4620         switch (bytes) {
4621         case 1:
4622                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4623                 break;
4624         case 2:
4625                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4626                 break;
4627         case 4:
4628                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4629                 break;
4630         case 8:
4631                 exchanged = CMPXCHG64(kaddr, old, new);
4632                 break;
4633         default:
4634                 BUG();
4635         }
4636         kunmap_atomic(kaddr);
4637         kvm_release_page_dirty(page);
4638
4639         if (!exchanged)
4640                 return X86EMUL_CMPXCHG_FAILED;
4641
4642         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4643         kvm_page_track_write(vcpu, gpa, new, bytes);
4644
4645         return X86EMUL_CONTINUE;
4646
4647 emul_write:
4648         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4649
4650         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4651 }
4652
4653 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4654 {
4655         /* TODO: String I/O for in kernel device */
4656         int r;
4657
4658         if (vcpu->arch.pio.in)
4659                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4660                                     vcpu->arch.pio.size, pd);
4661         else
4662                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4663                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4664                                      pd);
4665         return r;
4666 }
4667
4668 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4669                                unsigned short port, void *val,
4670                                unsigned int count, bool in)
4671 {
4672         vcpu->arch.pio.port = port;
4673         vcpu->arch.pio.in = in;
4674         vcpu->arch.pio.count  = count;
4675         vcpu->arch.pio.size = size;
4676
4677         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4678                 vcpu->arch.pio.count = 0;
4679                 return 1;
4680         }
4681
4682         vcpu->run->exit_reason = KVM_EXIT_IO;
4683         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4684         vcpu->run->io.size = size;
4685         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4686         vcpu->run->io.count = count;
4687         vcpu->run->io.port = port;
4688
4689         return 0;
4690 }
4691
4692 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4693                                     int size, unsigned short port, void *val,
4694                                     unsigned int count)
4695 {
4696         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4697         int ret;
4698
4699         if (vcpu->arch.pio.count)
4700                 goto data_avail;
4701
4702         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4703         if (ret) {
4704 data_avail:
4705                 memcpy(val, vcpu->arch.pio_data, size * count);
4706                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4707                 vcpu->arch.pio.count = 0;
4708                 return 1;
4709         }
4710
4711         return 0;
4712 }
4713
4714 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4715                                      int size, unsigned short port,
4716                                      const void *val, unsigned int count)
4717 {
4718         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4719
4720         memcpy(vcpu->arch.pio_data, val, size * count);
4721         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4722         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4723 }
4724
4725 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4726 {
4727         return kvm_x86_ops->get_segment_base(vcpu, seg);
4728 }
4729
4730 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4731 {
4732         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4733 }
4734
4735 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4736 {
4737         if (!need_emulate_wbinvd(vcpu))
4738                 return X86EMUL_CONTINUE;
4739
4740         if (kvm_x86_ops->has_wbinvd_exit()) {
4741                 int cpu = get_cpu();
4742
4743                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4744                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4745                                 wbinvd_ipi, NULL, 1);
4746                 put_cpu();
4747                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4748         } else
4749                 wbinvd();
4750         return X86EMUL_CONTINUE;
4751 }
4752
4753 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4754 {
4755         kvm_x86_ops->skip_emulated_instruction(vcpu);
4756         return kvm_emulate_wbinvd_noskip(vcpu);
4757 }
4758 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4759
4760
4761
4762 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4763 {
4764         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4765 }
4766
4767 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4768                            unsigned long *dest)
4769 {
4770         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4771 }
4772
4773 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4774                            unsigned long value)
4775 {
4776
4777         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4778 }
4779
4780 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4781 {
4782         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4783 }
4784
4785 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4786 {
4787         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4788         unsigned long value;
4789
4790         switch (cr) {
4791         case 0:
4792                 value = kvm_read_cr0(vcpu);
4793                 break;
4794         case 2:
4795                 value = vcpu->arch.cr2;
4796                 break;
4797         case 3:
4798                 value = kvm_read_cr3(vcpu);
4799                 break;
4800         case 4:
4801                 value = kvm_read_cr4(vcpu);
4802                 break;
4803         case 8:
4804                 value = kvm_get_cr8(vcpu);
4805                 break;
4806         default:
4807                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4808                 return 0;
4809         }
4810
4811         return value;
4812 }
4813
4814 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4815 {
4816         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4817         int res = 0;
4818
4819         switch (cr) {
4820         case 0:
4821                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4822                 break;
4823         case 2:
4824                 vcpu->arch.cr2 = val;
4825                 break;
4826         case 3:
4827                 res = kvm_set_cr3(vcpu, val);
4828                 break;
4829         case 4:
4830                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4831                 break;
4832         case 8:
4833                 res = kvm_set_cr8(vcpu, val);
4834                 break;
4835         default:
4836                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4837                 res = -1;
4838         }
4839
4840         return res;
4841 }
4842
4843 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4844 {
4845         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4846 }
4847
4848 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4849 {
4850         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4851 }
4852
4853 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4854 {
4855         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4856 }
4857
4858 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4859 {
4860         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4861 }
4862
4863 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4864 {
4865         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4866 }
4867
4868 static unsigned long emulator_get_cached_segment_base(
4869         struct x86_emulate_ctxt *ctxt, int seg)
4870 {
4871         return get_segment_base(emul_to_vcpu(ctxt), seg);
4872 }
4873
4874 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4875                                  struct desc_struct *desc, u32 *base3,
4876                                  int seg)
4877 {
4878         struct kvm_segment var;
4879
4880         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4881         *selector = var.selector;
4882
4883         if (var.unusable) {
4884                 memset(desc, 0, sizeof(*desc));
4885                 return false;
4886         }
4887
4888         if (var.g)
4889                 var.limit >>= 12;
4890         set_desc_limit(desc, var.limit);
4891         set_desc_base(desc, (unsigned long)var.base);
4892 #ifdef CONFIG_X86_64
4893         if (base3)
4894                 *base3 = var.base >> 32;
4895 #endif
4896         desc->type = var.type;
4897         desc->s = var.s;
4898         desc->dpl = var.dpl;
4899         desc->p = var.present;
4900         desc->avl = var.avl;
4901         desc->l = var.l;
4902         desc->d = var.db;
4903         desc->g = var.g;
4904
4905         return true;
4906 }
4907
4908 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4909                                  struct desc_struct *desc, u32 base3,
4910                                  int seg)
4911 {
4912         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4913         struct kvm_segment var;
4914
4915         var.selector = selector;
4916         var.base = get_desc_base(desc);
4917 #ifdef CONFIG_X86_64
4918         var.base |= ((u64)base3) << 32;
4919 #endif
4920         var.limit = get_desc_limit(desc);
4921         if (desc->g)
4922                 var.limit = (var.limit << 12) | 0xfff;
4923         var.type = desc->type;
4924         var.dpl = desc->dpl;
4925         var.db = desc->d;
4926         var.s = desc->s;
4927         var.l = desc->l;
4928         var.g = desc->g;
4929         var.avl = desc->avl;
4930         var.present = desc->p;
4931         var.unusable = !var.present;
4932         var.padding = 0;
4933
4934         kvm_set_segment(vcpu, &var, seg);
4935         return;
4936 }
4937
4938 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4939                             u32 msr_index, u64 *pdata)
4940 {
4941         struct msr_data msr;
4942         int r;
4943
4944         msr.index = msr_index;
4945         msr.host_initiated = false;
4946         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4947         if (r)
4948                 return r;
4949
4950         *pdata = msr.data;
4951         return 0;
4952 }
4953
4954 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4955                             u32 msr_index, u64 data)
4956 {
4957         struct msr_data msr;
4958
4959         msr.data = data;
4960         msr.index = msr_index;
4961         msr.host_initiated = false;
4962         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4963 }
4964
4965 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4966 {
4967         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968
4969         return vcpu->arch.smbase;
4970 }
4971
4972 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4973 {
4974         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4975
4976         vcpu->arch.smbase = smbase;
4977 }
4978
4979 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4980                               u32 pmc)
4981 {
4982         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4983 }
4984
4985 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4986                              u32 pmc, u64 *pdata)
4987 {
4988         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4989 }
4990
4991 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4992 {
4993         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4994 }
4995
4996 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4997 {
4998         preempt_disable();
4999         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5000         /*
5001          * CR0.TS may reference the host fpu state, not the guest fpu state,
5002          * so it may be clear at this point.
5003          */
5004         clts();
5005 }
5006
5007 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5008 {
5009         preempt_enable();
5010 }
5011
5012 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5013                               struct x86_instruction_info *info,
5014                               enum x86_intercept_stage stage)
5015 {
5016         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5017 }
5018
5019 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5020                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5021 {
5022         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5023 }
5024
5025 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5026 {
5027         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5028 }
5029
5030 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5031 {
5032         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5033 }
5034
5035 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5036 {
5037         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5038 }
5039
5040 static const struct x86_emulate_ops emulate_ops = {
5041         .read_gpr            = emulator_read_gpr,
5042         .write_gpr           = emulator_write_gpr,
5043         .read_std            = kvm_read_guest_virt_system,
5044         .write_std           = kvm_write_guest_virt_system,
5045         .read_phys           = kvm_read_guest_phys_system,
5046         .fetch               = kvm_fetch_guest_virt,
5047         .read_emulated       = emulator_read_emulated,
5048         .write_emulated      = emulator_write_emulated,
5049         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5050         .invlpg              = emulator_invlpg,
5051         .pio_in_emulated     = emulator_pio_in_emulated,
5052         .pio_out_emulated    = emulator_pio_out_emulated,
5053         .get_segment         = emulator_get_segment,
5054         .set_segment         = emulator_set_segment,
5055         .get_cached_segment_base = emulator_get_cached_segment_base,
5056         .get_gdt             = emulator_get_gdt,
5057         .get_idt             = emulator_get_idt,
5058         .set_gdt             = emulator_set_gdt,
5059         .set_idt             = emulator_set_idt,
5060         .get_cr              = emulator_get_cr,
5061         .set_cr              = emulator_set_cr,
5062         .cpl                 = emulator_get_cpl,
5063         .get_dr              = emulator_get_dr,
5064         .set_dr              = emulator_set_dr,
5065         .get_smbase          = emulator_get_smbase,
5066         .set_smbase          = emulator_set_smbase,
5067         .set_msr             = emulator_set_msr,
5068         .get_msr             = emulator_get_msr,
5069         .check_pmc           = emulator_check_pmc,
5070         .read_pmc            = emulator_read_pmc,
5071         .halt                = emulator_halt,
5072         .wbinvd              = emulator_wbinvd,
5073         .fix_hypercall       = emulator_fix_hypercall,
5074         .get_fpu             = emulator_get_fpu,
5075         .put_fpu             = emulator_put_fpu,
5076         .intercept           = emulator_intercept,
5077         .get_cpuid           = emulator_get_cpuid,
5078         .set_nmi_mask        = emulator_set_nmi_mask,
5079 };
5080
5081 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5082 {
5083         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5084         /*
5085          * an sti; sti; sequence only disable interrupts for the first
5086          * instruction. So, if the last instruction, be it emulated or
5087          * not, left the system with the INT_STI flag enabled, it
5088          * means that the last instruction is an sti. We should not
5089          * leave the flag on in this case. The same goes for mov ss
5090          */
5091         if (int_shadow & mask)
5092                 mask = 0;
5093         if (unlikely(int_shadow || mask)) {
5094                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5095                 if (!mask)
5096                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5097         }
5098 }
5099
5100 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5101 {
5102         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5103         if (ctxt->exception.vector == PF_VECTOR)
5104                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5105
5106         if (ctxt->exception.error_code_valid)
5107                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5108                                       ctxt->exception.error_code);
5109         else
5110                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5111         return false;
5112 }
5113
5114 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5115 {
5116         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5117         int cs_db, cs_l;
5118
5119         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5120
5121         ctxt->eflags = kvm_get_rflags(vcpu);
5122         ctxt->eip = kvm_rip_read(vcpu);
5123         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5124                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5125                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5126                      cs_db                              ? X86EMUL_MODE_PROT32 :
5127                                                           X86EMUL_MODE_PROT16;
5128         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5129         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5130         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5131         ctxt->emul_flags = vcpu->arch.hflags;
5132
5133         init_decode_cache(ctxt);
5134         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5135 }
5136
5137 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5138 {
5139         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5140         int ret;
5141
5142         init_emulate_ctxt(vcpu);
5143
5144         ctxt->op_bytes = 2;
5145         ctxt->ad_bytes = 2;
5146         ctxt->_eip = ctxt->eip + inc_eip;
5147         ret = emulate_int_real(ctxt, irq);
5148
5149         if (ret != X86EMUL_CONTINUE)
5150                 return EMULATE_FAIL;
5151
5152         ctxt->eip = ctxt->_eip;
5153         kvm_rip_write(vcpu, ctxt->eip);
5154         kvm_set_rflags(vcpu, ctxt->eflags);
5155
5156         if (irq == NMI_VECTOR)
5157                 vcpu->arch.nmi_pending = 0;
5158         else
5159                 vcpu->arch.interrupt.pending = false;
5160
5161         return EMULATE_DONE;
5162 }
5163 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5164
5165 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5166 {
5167         int r = EMULATE_DONE;
5168
5169         ++vcpu->stat.insn_emulation_fail;
5170         trace_kvm_emulate_insn_failed(vcpu);
5171         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5172                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5173                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5174                 vcpu->run->internal.ndata = 0;
5175                 r = EMULATE_FAIL;
5176         }
5177         kvm_queue_exception(vcpu, UD_VECTOR);
5178
5179         return r;
5180 }
5181
5182 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5183                                   bool write_fault_to_shadow_pgtable,
5184                                   int emulation_type)
5185 {
5186         gpa_t gpa = cr2;
5187         kvm_pfn_t pfn;
5188
5189         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5190                 return false;
5191
5192         if (!vcpu->arch.mmu.direct_map) {
5193                 /*
5194                  * Write permission should be allowed since only
5195                  * write access need to be emulated.
5196                  */
5197                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5198
5199                 /*
5200                  * If the mapping is invalid in guest, let cpu retry
5201                  * it to generate fault.
5202                  */
5203                 if (gpa == UNMAPPED_GVA)
5204                         return true;
5205         }
5206
5207         /*
5208          * Do not retry the unhandleable instruction if it faults on the
5209          * readonly host memory, otherwise it will goto a infinite loop:
5210          * retry instruction -> write #PF -> emulation fail -> retry
5211          * instruction -> ...
5212          */
5213         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5214
5215         /*
5216          * If the instruction failed on the error pfn, it can not be fixed,
5217          * report the error to userspace.
5218          */
5219         if (is_error_noslot_pfn(pfn))
5220                 return false;
5221
5222         kvm_release_pfn_clean(pfn);
5223
5224         /* The instructions are well-emulated on direct mmu. */
5225         if (vcpu->arch.mmu.direct_map) {
5226                 unsigned int indirect_shadow_pages;
5227
5228                 spin_lock(&vcpu->kvm->mmu_lock);
5229                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5230                 spin_unlock(&vcpu->kvm->mmu_lock);
5231
5232                 if (indirect_shadow_pages)
5233                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5234
5235                 return true;
5236         }
5237
5238         /*
5239          * if emulation was due to access to shadowed page table
5240          * and it failed try to unshadow page and re-enter the
5241          * guest to let CPU execute the instruction.
5242          */
5243         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5244
5245         /*
5246          * If the access faults on its page table, it can not
5247          * be fixed by unprotecting shadow page and it should
5248          * be reported to userspace.
5249          */
5250         return !write_fault_to_shadow_pgtable;
5251 }
5252
5253 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5254                               unsigned long cr2,  int emulation_type)
5255 {
5256         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5257         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5258
5259         last_retry_eip = vcpu->arch.last_retry_eip;
5260         last_retry_addr = vcpu->arch.last_retry_addr;
5261
5262         /*
5263          * If the emulation is caused by #PF and it is non-page_table
5264          * writing instruction, it means the VM-EXIT is caused by shadow
5265          * page protected, we can zap the shadow page and retry this
5266          * instruction directly.
5267          *
5268          * Note: if the guest uses a non-page-table modifying instruction
5269          * on the PDE that points to the instruction, then we will unmap
5270          * the instruction and go to an infinite loop. So, we cache the
5271          * last retried eip and the last fault address, if we meet the eip
5272          * and the address again, we can break out of the potential infinite
5273          * loop.
5274          */
5275         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5276
5277         if (!(emulation_type & EMULTYPE_RETRY))
5278                 return false;
5279
5280         if (x86_page_table_writing_insn(ctxt))
5281                 return false;
5282
5283         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5284                 return false;
5285
5286         vcpu->arch.last_retry_eip = ctxt->eip;
5287         vcpu->arch.last_retry_addr = cr2;
5288
5289         if (!vcpu->arch.mmu.direct_map)
5290                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5291
5292         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5293
5294         return true;
5295 }
5296
5297 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5298 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5299
5300 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5301 {
5302         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5303                 /* This is a good place to trace that we are exiting SMM.  */
5304                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5305
5306                 /* Process a latched INIT or SMI, if any.  */
5307                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5308         }
5309
5310         kvm_mmu_reset_context(vcpu);
5311 }
5312
5313 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5314 {
5315         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5316
5317         vcpu->arch.hflags = emul_flags;
5318
5319         if (changed & HF_SMM_MASK)
5320                 kvm_smm_changed(vcpu);
5321 }
5322
5323 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5324                                 unsigned long *db)
5325 {
5326         u32 dr6 = 0;
5327         int i;
5328         u32 enable, rwlen;
5329
5330         enable = dr7;
5331         rwlen = dr7 >> 16;
5332         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5333                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5334                         dr6 |= (1 << i);
5335         return dr6;
5336 }
5337
5338 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5339 {
5340         struct kvm_run *kvm_run = vcpu->run;
5341
5342         /*
5343          * rflags is the old, "raw" value of the flags.  The new value has
5344          * not been saved yet.
5345          *
5346          * This is correct even for TF set by the guest, because "the
5347          * processor will not generate this exception after the instruction
5348          * that sets the TF flag".
5349          */
5350         if (unlikely(rflags & X86_EFLAGS_TF)) {
5351                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5352                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5353                                                   DR6_RTM;
5354                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5355                         kvm_run->debug.arch.exception = DB_VECTOR;
5356                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5357                         *r = EMULATE_USER_EXIT;
5358                 } else {
5359                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5360                         /*
5361                          * "Certain debug exceptions may clear bit 0-3.  The
5362                          * remaining contents of the DR6 register are never
5363                          * cleared by the processor".
5364                          */
5365                         vcpu->arch.dr6 &= ~15;
5366                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5367                         kvm_queue_exception(vcpu, DB_VECTOR);
5368                 }
5369         }
5370 }
5371
5372 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5373 {
5374         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5375             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5376                 struct kvm_run *kvm_run = vcpu->run;
5377                 unsigned long eip = kvm_get_linear_rip(vcpu);
5378                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5379                                            vcpu->arch.guest_debug_dr7,
5380                                            vcpu->arch.eff_db);
5381
5382                 if (dr6 != 0) {
5383                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5384                         kvm_run->debug.arch.pc = eip;
5385                         kvm_run->debug.arch.exception = DB_VECTOR;
5386                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5387                         *r = EMULATE_USER_EXIT;
5388                         return true;
5389                 }
5390         }
5391
5392         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5393             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5394                 unsigned long eip = kvm_get_linear_rip(vcpu);
5395                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5396                                            vcpu->arch.dr7,
5397                                            vcpu->arch.db);
5398
5399                 if (dr6 != 0) {
5400                         vcpu->arch.dr6 &= ~15;
5401                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5402                         kvm_queue_exception(vcpu, DB_VECTOR);
5403                         *r = EMULATE_DONE;
5404                         return true;
5405                 }
5406         }
5407
5408         return false;
5409 }
5410
5411 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5412                             unsigned long cr2,
5413                             int emulation_type,
5414                             void *insn,
5415                             int insn_len)
5416 {
5417         int r;
5418         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5419         bool writeback = true;
5420         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5421
5422         /*
5423          * Clear write_fault_to_shadow_pgtable here to ensure it is
5424          * never reused.
5425          */
5426         vcpu->arch.write_fault_to_shadow_pgtable = false;
5427         kvm_clear_exception_queue(vcpu);
5428
5429         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5430                 init_emulate_ctxt(vcpu);
5431
5432                 /*
5433                  * We will reenter on the same instruction since
5434                  * we do not set complete_userspace_io.  This does not
5435                  * handle watchpoints yet, those would be handled in
5436                  * the emulate_ops.
5437                  */
5438                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5439                         return r;
5440
5441                 ctxt->interruptibility = 0;
5442                 ctxt->have_exception = false;
5443                 ctxt->exception.vector = -1;
5444                 ctxt->perm_ok = false;
5445
5446                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5447
5448                 r = x86_decode_insn(ctxt, insn, insn_len);
5449
5450                 trace_kvm_emulate_insn_start(vcpu);
5451                 ++vcpu->stat.insn_emulation;
5452                 if (r != EMULATION_OK)  {
5453                         if (emulation_type & EMULTYPE_TRAP_UD)
5454                                 return EMULATE_FAIL;
5455                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5456                                                 emulation_type))
5457                                 return EMULATE_DONE;
5458                         if (emulation_type & EMULTYPE_SKIP)
5459                                 return EMULATE_FAIL;
5460                         return handle_emulation_failure(vcpu);
5461                 }
5462         }
5463
5464         if (emulation_type & EMULTYPE_SKIP) {
5465                 kvm_rip_write(vcpu, ctxt->_eip);
5466                 if (ctxt->eflags & X86_EFLAGS_RF)
5467                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5468                 return EMULATE_DONE;
5469         }
5470
5471         if (retry_instruction(ctxt, cr2, emulation_type))
5472                 return EMULATE_DONE;
5473
5474         /* this is needed for vmware backdoor interface to work since it
5475            changes registers values  during IO operation */
5476         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5477                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5478                 emulator_invalidate_register_cache(ctxt);
5479         }
5480
5481 restart:
5482         r = x86_emulate_insn(ctxt);
5483
5484         if (r == EMULATION_INTERCEPTED)
5485                 return EMULATE_DONE;
5486
5487         if (r == EMULATION_FAILED) {
5488                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5489                                         emulation_type))
5490                         return EMULATE_DONE;
5491
5492                 return handle_emulation_failure(vcpu);
5493         }
5494
5495         if (ctxt->have_exception) {
5496                 r = EMULATE_DONE;
5497                 if (inject_emulated_exception(vcpu))
5498                         return r;
5499         } else if (vcpu->arch.pio.count) {
5500                 if (!vcpu->arch.pio.in) {
5501                         /* FIXME: return into emulator if single-stepping.  */
5502                         vcpu->arch.pio.count = 0;
5503                 } else {
5504                         writeback = false;
5505                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5506                 }
5507                 r = EMULATE_USER_EXIT;
5508         } else if (vcpu->mmio_needed) {
5509                 if (!vcpu->mmio_is_write)
5510                         writeback = false;
5511                 r = EMULATE_USER_EXIT;
5512                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5513         } else if (r == EMULATION_RESTART)
5514                 goto restart;
5515         else
5516                 r = EMULATE_DONE;
5517
5518         if (writeback) {
5519                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5520                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5521                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5522                 if (vcpu->arch.hflags != ctxt->emul_flags)
5523                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5524                 kvm_rip_write(vcpu, ctxt->eip);
5525                 if (r == EMULATE_DONE)
5526                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5527                 if (!ctxt->have_exception ||
5528                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5529                         __kvm_set_rflags(vcpu, ctxt->eflags);
5530
5531                 /*
5532                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5533                  * do nothing, and it will be requested again as soon as
5534                  * the shadow expires.  But we still need to check here,
5535                  * because POPF has no interrupt shadow.
5536                  */
5537                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5538                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5539         } else
5540                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5541
5542         return r;
5543 }
5544 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5545
5546 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5547 {
5548         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5549         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5550                                             size, port, &val, 1);
5551         /* do not return to emulator after return from userspace */
5552         vcpu->arch.pio.count = 0;
5553         return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5556
5557 static void tsc_bad(void *info)
5558 {
5559         __this_cpu_write(cpu_tsc_khz, 0);
5560 }
5561
5562 static void tsc_khz_changed(void *data)
5563 {
5564         struct cpufreq_freqs *freq = data;
5565         unsigned long khz = 0;
5566
5567         if (data)
5568                 khz = freq->new;
5569         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5570                 khz = cpufreq_quick_get(raw_smp_processor_id());
5571         if (!khz)
5572                 khz = tsc_khz;
5573         __this_cpu_write(cpu_tsc_khz, khz);
5574 }
5575
5576 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5577                                      void *data)
5578 {
5579         struct cpufreq_freqs *freq = data;
5580         struct kvm *kvm;
5581         struct kvm_vcpu *vcpu;
5582         int i, send_ipi = 0;
5583
5584         /*
5585          * We allow guests to temporarily run on slowing clocks,
5586          * provided we notify them after, or to run on accelerating
5587          * clocks, provided we notify them before.  Thus time never
5588          * goes backwards.
5589          *
5590          * However, we have a problem.  We can't atomically update
5591          * the frequency of a given CPU from this function; it is
5592          * merely a notifier, which can be called from any CPU.
5593          * Changing the TSC frequency at arbitrary points in time
5594          * requires a recomputation of local variables related to
5595          * the TSC for each VCPU.  We must flag these local variables
5596          * to be updated and be sure the update takes place with the
5597          * new frequency before any guests proceed.
5598          *
5599          * Unfortunately, the combination of hotplug CPU and frequency
5600          * change creates an intractable locking scenario; the order
5601          * of when these callouts happen is undefined with respect to
5602          * CPU hotplug, and they can race with each other.  As such,
5603          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5604          * undefined; you can actually have a CPU frequency change take
5605          * place in between the computation of X and the setting of the
5606          * variable.  To protect against this problem, all updates of
5607          * the per_cpu tsc_khz variable are done in an interrupt
5608          * protected IPI, and all callers wishing to update the value
5609          * must wait for a synchronous IPI to complete (which is trivial
5610          * if the caller is on the CPU already).  This establishes the
5611          * necessary total order on variable updates.
5612          *
5613          * Note that because a guest time update may take place
5614          * anytime after the setting of the VCPU's request bit, the
5615          * correct TSC value must be set before the request.  However,
5616          * to ensure the update actually makes it to any guest which
5617          * starts running in hardware virtualization between the set
5618          * and the acquisition of the spinlock, we must also ping the
5619          * CPU after setting the request bit.
5620          *
5621          */
5622
5623         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5624                 return 0;
5625         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5626                 return 0;
5627
5628         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5629
5630         spin_lock(&kvm_lock);
5631         list_for_each_entry(kvm, &vm_list, vm_list) {
5632                 kvm_for_each_vcpu(i, vcpu, kvm) {
5633                         if (vcpu->cpu != freq->cpu)
5634                                 continue;
5635                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5636                         if (vcpu->cpu != smp_processor_id())
5637                                 send_ipi = 1;
5638                 }
5639         }
5640         spin_unlock(&kvm_lock);
5641
5642         if (freq->old < freq->new && send_ipi) {
5643                 /*
5644                  * We upscale the frequency.  Must make the guest
5645                  * doesn't see old kvmclock values while running with
5646                  * the new frequency, otherwise we risk the guest sees
5647                  * time go backwards.
5648                  *
5649                  * In case we update the frequency for another cpu
5650                  * (which might be in guest context) send an interrupt
5651                  * to kick the cpu out of guest context.  Next time
5652                  * guest context is entered kvmclock will be updated,
5653                  * so the guest will not see stale values.
5654                  */
5655                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5656         }
5657         return 0;
5658 }
5659
5660 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5661         .notifier_call  = kvmclock_cpufreq_notifier
5662 };
5663
5664 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5665                                         unsigned long action, void *hcpu)
5666 {
5667         unsigned int cpu = (unsigned long)hcpu;
5668
5669         switch (action) {
5670                 case CPU_ONLINE:
5671                 case CPU_DOWN_FAILED:
5672                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5673                         break;
5674                 case CPU_DOWN_PREPARE:
5675                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5676                         break;
5677         }
5678         return NOTIFY_OK;
5679 }
5680
5681 static struct notifier_block kvmclock_cpu_notifier_block = {
5682         .notifier_call  = kvmclock_cpu_notifier,
5683         .priority = -INT_MAX
5684 };
5685
5686 static void kvm_timer_init(void)
5687 {
5688         int cpu;
5689
5690         max_tsc_khz = tsc_khz;
5691
5692         cpu_notifier_register_begin();
5693         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5694 #ifdef CONFIG_CPU_FREQ
5695                 struct cpufreq_policy policy;
5696                 memset(&policy, 0, sizeof(policy));
5697                 cpu = get_cpu();
5698                 cpufreq_get_policy(&policy, cpu);
5699                 if (policy.cpuinfo.max_freq)
5700                         max_tsc_khz = policy.cpuinfo.max_freq;
5701                 put_cpu();
5702 #endif
5703                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5704                                           CPUFREQ_TRANSITION_NOTIFIER);
5705         }
5706         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5707         for_each_online_cpu(cpu)
5708                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5709
5710         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5711         cpu_notifier_register_done();
5712
5713 }
5714
5715 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5716
5717 int kvm_is_in_guest(void)
5718 {
5719         return __this_cpu_read(current_vcpu) != NULL;
5720 }
5721
5722 static int kvm_is_user_mode(void)
5723 {
5724         int user_mode = 3;
5725
5726         if (__this_cpu_read(current_vcpu))
5727                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5728
5729         return user_mode != 0;
5730 }
5731
5732 static unsigned long kvm_get_guest_ip(void)
5733 {
5734         unsigned long ip = 0;
5735
5736         if (__this_cpu_read(current_vcpu))
5737                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5738
5739         return ip;
5740 }
5741
5742 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5743         .is_in_guest            = kvm_is_in_guest,
5744         .is_user_mode           = kvm_is_user_mode,
5745         .get_guest_ip           = kvm_get_guest_ip,
5746 };
5747
5748 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5749 {
5750         __this_cpu_write(current_vcpu, vcpu);
5751 }
5752 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5753
5754 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5755 {
5756         __this_cpu_write(current_vcpu, NULL);
5757 }
5758 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5759
5760 static void kvm_set_mmio_spte_mask(void)
5761 {
5762         u64 mask;
5763         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5764
5765         /*
5766          * Set the reserved bits and the present bit of an paging-structure
5767          * entry to generate page fault with PFER.RSV = 1.
5768          */
5769          /* Mask the reserved physical address bits. */
5770         mask = rsvd_bits(maxphyaddr, 51);
5771
5772         /* Bit 62 is always reserved for 32bit host. */
5773         mask |= 0x3ull << 62;
5774
5775         /* Set the present bit. */
5776         mask |= 1ull;
5777
5778 #ifdef CONFIG_X86_64
5779         /*
5780          * If reserved bit is not supported, clear the present bit to disable
5781          * mmio page fault.
5782          */
5783         if (maxphyaddr == 52)
5784                 mask &= ~1ull;
5785 #endif
5786
5787         kvm_mmu_set_mmio_spte_mask(mask);
5788 }
5789
5790 #ifdef CONFIG_X86_64
5791 static void pvclock_gtod_update_fn(struct work_struct *work)
5792 {
5793         struct kvm *kvm;
5794
5795         struct kvm_vcpu *vcpu;
5796         int i;
5797
5798         spin_lock(&kvm_lock);
5799         list_for_each_entry(kvm, &vm_list, vm_list)
5800                 kvm_for_each_vcpu(i, vcpu, kvm)
5801                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5802         atomic_set(&kvm_guest_has_master_clock, 0);
5803         spin_unlock(&kvm_lock);
5804 }
5805
5806 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5807
5808 /*
5809  * Notification about pvclock gtod data update.
5810  */
5811 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5812                                void *priv)
5813 {
5814         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5815         struct timekeeper *tk = priv;
5816
5817         update_pvclock_gtod(tk);
5818
5819         /* disable master clock if host does not trust, or does not
5820          * use, TSC clocksource
5821          */
5822         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5823             atomic_read(&kvm_guest_has_master_clock) != 0)
5824                 queue_work(system_long_wq, &pvclock_gtod_work);
5825
5826         return 0;
5827 }
5828
5829 static struct notifier_block pvclock_gtod_notifier = {
5830         .notifier_call = pvclock_gtod_notify,
5831 };
5832 #endif
5833
5834 int kvm_arch_init(void *opaque)
5835 {
5836         int r;
5837         struct kvm_x86_ops *ops = opaque;
5838
5839         if (kvm_x86_ops) {
5840                 printk(KERN_ERR "kvm: already loaded the other module\n");
5841                 r = -EEXIST;
5842                 goto out;
5843         }
5844
5845         if (!ops->cpu_has_kvm_support()) {
5846                 printk(KERN_ERR "kvm: no hardware support\n");
5847                 r = -EOPNOTSUPP;
5848                 goto out;
5849         }
5850         if (ops->disabled_by_bios()) {
5851                 printk(KERN_ERR "kvm: disabled by bios\n");
5852                 r = -EOPNOTSUPP;
5853                 goto out;
5854         }
5855
5856         r = -ENOMEM;
5857         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5858         if (!shared_msrs) {
5859                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5860                 goto out;
5861         }
5862
5863         r = kvm_mmu_module_init();
5864         if (r)
5865                 goto out_free_percpu;
5866
5867         kvm_set_mmio_spte_mask();
5868
5869         kvm_x86_ops = ops;
5870
5871         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5872                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5873
5874         kvm_timer_init();
5875
5876         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5877
5878         if (boot_cpu_has(X86_FEATURE_XSAVE))
5879                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5880
5881         kvm_lapic_init();
5882 #ifdef CONFIG_X86_64
5883         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5884 #endif
5885
5886         return 0;
5887
5888 out_free_percpu:
5889         free_percpu(shared_msrs);
5890 out:
5891         return r;
5892 }
5893
5894 void kvm_arch_exit(void)
5895 {
5896         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5897
5898         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5899                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5900                                             CPUFREQ_TRANSITION_NOTIFIER);
5901         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5902 #ifdef CONFIG_X86_64
5903         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5904 #endif
5905         kvm_x86_ops = NULL;
5906         kvm_mmu_module_exit();
5907         free_percpu(shared_msrs);
5908 }
5909
5910 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5911 {
5912         ++vcpu->stat.halt_exits;
5913         if (lapic_in_kernel(vcpu)) {
5914                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5915                 return 1;
5916         } else {
5917                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5918                 return 0;
5919         }
5920 }
5921 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5922
5923 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5924 {
5925         kvm_x86_ops->skip_emulated_instruction(vcpu);
5926         return kvm_vcpu_halt(vcpu);
5927 }
5928 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5929
5930 /*
5931  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5932  *
5933  * @apicid - apicid of vcpu to be kicked.
5934  */
5935 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5936 {
5937         struct kvm_lapic_irq lapic_irq;
5938
5939         lapic_irq.shorthand = 0;
5940         lapic_irq.dest_mode = 0;
5941         lapic_irq.dest_id = apicid;
5942         lapic_irq.msi_redir_hint = false;
5943
5944         lapic_irq.delivery_mode = APIC_DM_REMRD;
5945         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5946 }
5947
5948 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5949 {
5950         vcpu->arch.apicv_active = false;
5951         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5952 }
5953
5954 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5955 {
5956         unsigned long nr, a0, a1, a2, a3, ret;
5957         int op_64_bit, r = 1;
5958
5959         kvm_x86_ops->skip_emulated_instruction(vcpu);
5960
5961         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5962                 return kvm_hv_hypercall(vcpu);
5963
5964         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5965         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5966         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5967         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5968         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5969
5970         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5971
5972         op_64_bit = is_64_bit_mode(vcpu);
5973         if (!op_64_bit) {
5974                 nr &= 0xFFFFFFFF;
5975                 a0 &= 0xFFFFFFFF;
5976                 a1 &= 0xFFFFFFFF;
5977                 a2 &= 0xFFFFFFFF;
5978                 a3 &= 0xFFFFFFFF;
5979         }
5980
5981         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5982                 ret = -KVM_EPERM;
5983                 goto out;
5984         }
5985
5986         switch (nr) {
5987         case KVM_HC_VAPIC_POLL_IRQ:
5988                 ret = 0;
5989                 break;
5990         case KVM_HC_KICK_CPU:
5991                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5992                 ret = 0;
5993                 break;
5994         default:
5995                 ret = -KVM_ENOSYS;
5996                 break;
5997         }
5998 out:
5999         if (!op_64_bit)
6000                 ret = (u32)ret;
6001         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6002         ++vcpu->stat.hypercalls;
6003         return r;
6004 }
6005 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6006
6007 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6008 {
6009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6010         char instruction[3];
6011         unsigned long rip = kvm_rip_read(vcpu);
6012
6013         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6014
6015         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6016 }
6017
6018 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6019 {
6020         return vcpu->run->request_interrupt_window &&
6021                 likely(!pic_in_kernel(vcpu->kvm));
6022 }
6023
6024 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6025 {
6026         struct kvm_run *kvm_run = vcpu->run;
6027
6028         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6029         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6030         kvm_run->cr8 = kvm_get_cr8(vcpu);
6031         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6032         kvm_run->ready_for_interrupt_injection =
6033                 pic_in_kernel(vcpu->kvm) ||
6034                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6035 }
6036
6037 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6038 {
6039         int max_irr, tpr;
6040
6041         if (!kvm_x86_ops->update_cr8_intercept)
6042                 return;
6043
6044         if (!lapic_in_kernel(vcpu))
6045                 return;
6046
6047         if (vcpu->arch.apicv_active)
6048                 return;
6049
6050         if (!vcpu->arch.apic->vapic_addr)
6051                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6052         else
6053                 max_irr = -1;
6054
6055         if (max_irr != -1)
6056                 max_irr >>= 4;
6057
6058         tpr = kvm_lapic_get_cr8(vcpu);
6059
6060         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6061 }
6062
6063 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6064 {
6065         int r;
6066
6067         /* try to reinject previous events if any */
6068         if (vcpu->arch.exception.pending) {
6069                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6070                                         vcpu->arch.exception.has_error_code,
6071                                         vcpu->arch.exception.error_code);
6072
6073                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6074                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6075                                              X86_EFLAGS_RF);
6076
6077                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6078                     (vcpu->arch.dr7 & DR7_GD)) {
6079                         vcpu->arch.dr7 &= ~DR7_GD;
6080                         kvm_update_dr7(vcpu);
6081                 }
6082
6083                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6084                                           vcpu->arch.exception.has_error_code,
6085                                           vcpu->arch.exception.error_code,
6086                                           vcpu->arch.exception.reinject);
6087                 return 0;
6088         }
6089
6090         if (vcpu->arch.nmi_injected) {
6091                 kvm_x86_ops->set_nmi(vcpu);
6092                 return 0;
6093         }
6094
6095         if (vcpu->arch.interrupt.pending) {
6096                 kvm_x86_ops->set_irq(vcpu);
6097                 return 0;
6098         }
6099
6100         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6101                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6102                 if (r != 0)
6103                         return r;
6104         }
6105
6106         /* try to inject new event if pending */
6107         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6108                 vcpu->arch.smi_pending = false;
6109                 enter_smm(vcpu);
6110         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6111                 --vcpu->arch.nmi_pending;
6112                 vcpu->arch.nmi_injected = true;
6113                 kvm_x86_ops->set_nmi(vcpu);
6114         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6115                 /*
6116                  * Because interrupts can be injected asynchronously, we are
6117                  * calling check_nested_events again here to avoid a race condition.
6118                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6119                  * proposal and current concerns.  Perhaps we should be setting
6120                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6121                  */
6122                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6123                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6124                         if (r != 0)
6125                                 return r;
6126                 }
6127                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6128                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6129                                             false);
6130                         kvm_x86_ops->set_irq(vcpu);
6131                 }
6132         }
6133
6134         return 0;
6135 }
6136
6137 static void process_nmi(struct kvm_vcpu *vcpu)
6138 {
6139         unsigned limit = 2;
6140
6141         /*
6142          * x86 is limited to one NMI running, and one NMI pending after it.
6143          * If an NMI is already in progress, limit further NMIs to just one.
6144          * Otherwise, allow two (and we'll inject the first one immediately).
6145          */
6146         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6147                 limit = 1;
6148
6149         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6150         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6151         kvm_make_request(KVM_REQ_EVENT, vcpu);
6152 }
6153
6154 #define put_smstate(type, buf, offset, val)                       \
6155         *(type *)((buf) + (offset) - 0x7e00) = val
6156
6157 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6158 {
6159         u32 flags = 0;
6160         flags |= seg->g       << 23;
6161         flags |= seg->db      << 22;
6162         flags |= seg->l       << 21;
6163         flags |= seg->avl     << 20;
6164         flags |= seg->present << 15;
6165         flags |= seg->dpl     << 13;
6166         flags |= seg->s       << 12;
6167         flags |= seg->type    << 8;
6168         return flags;
6169 }
6170
6171 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6172 {
6173         struct kvm_segment seg;
6174         int offset;
6175
6176         kvm_get_segment(vcpu, &seg, n);
6177         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6178
6179         if (n < 3)
6180                 offset = 0x7f84 + n * 12;
6181         else
6182                 offset = 0x7f2c + (n - 3) * 12;
6183
6184         put_smstate(u32, buf, offset + 8, seg.base);
6185         put_smstate(u32, buf, offset + 4, seg.limit);
6186         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6187 }
6188
6189 #ifdef CONFIG_X86_64
6190 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6191 {
6192         struct kvm_segment seg;
6193         int offset;
6194         u16 flags;
6195
6196         kvm_get_segment(vcpu, &seg, n);
6197         offset = 0x7e00 + n * 16;
6198
6199         flags = enter_smm_get_segment_flags(&seg) >> 8;
6200         put_smstate(u16, buf, offset, seg.selector);
6201         put_smstate(u16, buf, offset + 2, flags);
6202         put_smstate(u32, buf, offset + 4, seg.limit);
6203         put_smstate(u64, buf, offset + 8, seg.base);
6204 }
6205 #endif
6206
6207 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6208 {
6209         struct desc_ptr dt;
6210         struct kvm_segment seg;
6211         unsigned long val;
6212         int i;
6213
6214         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6215         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6216         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6217         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6218
6219         for (i = 0; i < 8; i++)
6220                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6221
6222         kvm_get_dr(vcpu, 6, &val);
6223         put_smstate(u32, buf, 0x7fcc, (u32)val);
6224         kvm_get_dr(vcpu, 7, &val);
6225         put_smstate(u32, buf, 0x7fc8, (u32)val);
6226
6227         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6228         put_smstate(u32, buf, 0x7fc4, seg.selector);
6229         put_smstate(u32, buf, 0x7f64, seg.base);
6230         put_smstate(u32, buf, 0x7f60, seg.limit);
6231         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6232
6233         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6234         put_smstate(u32, buf, 0x7fc0, seg.selector);
6235         put_smstate(u32, buf, 0x7f80, seg.base);
6236         put_smstate(u32, buf, 0x7f7c, seg.limit);
6237         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6238
6239         kvm_x86_ops->get_gdt(vcpu, &dt);
6240         put_smstate(u32, buf, 0x7f74, dt.address);
6241         put_smstate(u32, buf, 0x7f70, dt.size);
6242
6243         kvm_x86_ops->get_idt(vcpu, &dt);
6244         put_smstate(u32, buf, 0x7f58, dt.address);
6245         put_smstate(u32, buf, 0x7f54, dt.size);
6246
6247         for (i = 0; i < 6; i++)
6248                 enter_smm_save_seg_32(vcpu, buf, i);
6249
6250         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6251
6252         /* revision id */
6253         put_smstate(u32, buf, 0x7efc, 0x00020000);
6254         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6255 }
6256
6257 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6258 {
6259 #ifdef CONFIG_X86_64
6260         struct desc_ptr dt;
6261         struct kvm_segment seg;
6262         unsigned long val;
6263         int i;
6264
6265         for (i = 0; i < 16; i++)
6266                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6267
6268         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6269         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6270
6271         kvm_get_dr(vcpu, 6, &val);
6272         put_smstate(u64, buf, 0x7f68, val);
6273         kvm_get_dr(vcpu, 7, &val);
6274         put_smstate(u64, buf, 0x7f60, val);
6275
6276         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6277         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6278         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6279
6280         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6281
6282         /* revision id */
6283         put_smstate(u32, buf, 0x7efc, 0x00020064);
6284
6285         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6286
6287         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6288         put_smstate(u16, buf, 0x7e90, seg.selector);
6289         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6290         put_smstate(u32, buf, 0x7e94, seg.limit);
6291         put_smstate(u64, buf, 0x7e98, seg.base);
6292
6293         kvm_x86_ops->get_idt(vcpu, &dt);
6294         put_smstate(u32, buf, 0x7e84, dt.size);
6295         put_smstate(u64, buf, 0x7e88, dt.address);
6296
6297         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6298         put_smstate(u16, buf, 0x7e70, seg.selector);
6299         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6300         put_smstate(u32, buf, 0x7e74, seg.limit);
6301         put_smstate(u64, buf, 0x7e78, seg.base);
6302
6303         kvm_x86_ops->get_gdt(vcpu, &dt);
6304         put_smstate(u32, buf, 0x7e64, dt.size);
6305         put_smstate(u64, buf, 0x7e68, dt.address);
6306
6307         for (i = 0; i < 6; i++)
6308                 enter_smm_save_seg_64(vcpu, buf, i);
6309 #else
6310         WARN_ON_ONCE(1);
6311 #endif
6312 }
6313
6314 static void enter_smm(struct kvm_vcpu *vcpu)
6315 {
6316         struct kvm_segment cs, ds;
6317         struct desc_ptr dt;
6318         char buf[512];
6319         u32 cr0;
6320
6321         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6322         vcpu->arch.hflags |= HF_SMM_MASK;
6323         memset(buf, 0, 512);
6324         if (guest_cpuid_has_longmode(vcpu))
6325                 enter_smm_save_state_64(vcpu, buf);
6326         else
6327                 enter_smm_save_state_32(vcpu, buf);
6328
6329         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6330
6331         if (kvm_x86_ops->get_nmi_mask(vcpu))
6332                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6333         else
6334                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6335
6336         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6337         kvm_rip_write(vcpu, 0x8000);
6338
6339         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6340         kvm_x86_ops->set_cr0(vcpu, cr0);
6341         vcpu->arch.cr0 = cr0;
6342
6343         kvm_x86_ops->set_cr4(vcpu, 0);
6344
6345         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6346         dt.address = dt.size = 0;
6347         kvm_x86_ops->set_idt(vcpu, &dt);
6348
6349         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6350
6351         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6352         cs.base = vcpu->arch.smbase;
6353
6354         ds.selector = 0;
6355         ds.base = 0;
6356
6357         cs.limit    = ds.limit = 0xffffffff;
6358         cs.type     = ds.type = 0x3;
6359         cs.dpl      = ds.dpl = 0;
6360         cs.db       = ds.db = 0;
6361         cs.s        = ds.s = 1;
6362         cs.l        = ds.l = 0;
6363         cs.g        = ds.g = 1;
6364         cs.avl      = ds.avl = 0;
6365         cs.present  = ds.present = 1;
6366         cs.unusable = ds.unusable = 0;
6367         cs.padding  = ds.padding = 0;
6368
6369         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6370         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6371         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6372         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6373         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6374         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6375
6376         if (guest_cpuid_has_longmode(vcpu))
6377                 kvm_x86_ops->set_efer(vcpu, 0);
6378
6379         kvm_update_cpuid(vcpu);
6380         kvm_mmu_reset_context(vcpu);
6381 }
6382
6383 static void process_smi(struct kvm_vcpu *vcpu)
6384 {
6385         vcpu->arch.smi_pending = true;
6386         kvm_make_request(KVM_REQ_EVENT, vcpu);
6387 }
6388
6389 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6390 {
6391         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6392 }
6393
6394 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6395 {
6396         u64 eoi_exit_bitmap[4];
6397
6398         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6399                 return;
6400
6401         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6402
6403         if (irqchip_split(vcpu->kvm))
6404                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6405         else {
6406                 if (vcpu->arch.apicv_active)
6407                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6408                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6409         }
6410         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6411                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6412         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6413 }
6414
6415 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6416 {
6417         ++vcpu->stat.tlb_flush;
6418         kvm_x86_ops->tlb_flush(vcpu);
6419 }
6420
6421 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6422 {
6423         struct page *page = NULL;
6424
6425         if (!lapic_in_kernel(vcpu))
6426                 return;
6427
6428         if (!kvm_x86_ops->set_apic_access_page_addr)
6429                 return;
6430
6431         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6432         if (is_error_page(page))
6433                 return;
6434         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6435
6436         /*
6437          * Do not pin apic access page in memory, the MMU notifier
6438          * will call us again if it is migrated or swapped out.
6439          */
6440         put_page(page);
6441 }
6442 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6443
6444 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6445                                            unsigned long address)
6446 {
6447         /*
6448          * The physical address of apic access page is stored in the VMCS.
6449          * Update it when it becomes invalid.
6450          */
6451         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6452                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6453 }
6454
6455 /*
6456  * Returns 1 to let vcpu_run() continue the guest execution loop without
6457  * exiting to the userspace.  Otherwise, the value will be returned to the
6458  * userspace.
6459  */
6460 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6461 {
6462         int r;
6463         bool req_int_win =
6464                 dm_request_for_irq_injection(vcpu) &&
6465                 kvm_cpu_accept_dm_intr(vcpu);
6466
6467         bool req_immediate_exit = false;
6468
6469         if (vcpu->requests) {
6470                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6471                         kvm_mmu_unload(vcpu);
6472                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6473                         __kvm_migrate_timers(vcpu);
6474                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6475                         kvm_gen_update_masterclock(vcpu->kvm);
6476                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6477                         kvm_gen_kvmclock_update(vcpu);
6478                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6479                         r = kvm_guest_time_update(vcpu);
6480                         if (unlikely(r))
6481                                 goto out;
6482                 }
6483                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6484                         kvm_mmu_sync_roots(vcpu);
6485                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6486                         kvm_vcpu_flush_tlb(vcpu);
6487                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6488                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6489                         r = 0;
6490                         goto out;
6491                 }
6492                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6493                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6494                         r = 0;
6495                         goto out;
6496                 }
6497                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6498                         vcpu->fpu_active = 0;
6499                         kvm_x86_ops->fpu_deactivate(vcpu);
6500                 }
6501                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6502                         /* Page is swapped out. Do synthetic halt */
6503                         vcpu->arch.apf.halted = true;
6504                         r = 1;
6505                         goto out;
6506                 }
6507                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6508                         record_steal_time(vcpu);
6509                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6510                         process_smi(vcpu);
6511                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6512                         process_nmi(vcpu);
6513                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6514                         kvm_pmu_handle_event(vcpu);
6515                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6516                         kvm_pmu_deliver_pmi(vcpu);
6517                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6518                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6519                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6520                                      vcpu->arch.ioapic_handled_vectors)) {
6521                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6522                                 vcpu->run->eoi.vector =
6523                                                 vcpu->arch.pending_ioapic_eoi;
6524                                 r = 0;
6525                                 goto out;
6526                         }
6527                 }
6528                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6529                         vcpu_scan_ioapic(vcpu);
6530                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6531                         kvm_vcpu_reload_apic_access_page(vcpu);
6532                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6533                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6534                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6535                         r = 0;
6536                         goto out;
6537                 }
6538                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6539                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6540                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6541                         r = 0;
6542                         goto out;
6543                 }
6544                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6545                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6546                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6547                         r = 0;
6548                         goto out;
6549                 }
6550
6551                 /*
6552                  * KVM_REQ_HV_STIMER has to be processed after
6553                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6554                  * depend on the guest clock being up-to-date
6555                  */
6556                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6557                         kvm_hv_process_stimers(vcpu);
6558         }
6559
6560         /*
6561          * KVM_REQ_EVENT is not set when posted interrupts are set by
6562          * VT-d hardware, so we have to update RVI unconditionally.
6563          */
6564         if (kvm_lapic_enabled(vcpu)) {
6565                 /*
6566                  * Update architecture specific hints for APIC
6567                  * virtual interrupt delivery.
6568                  */
6569                 if (vcpu->arch.apicv_active)
6570                         kvm_x86_ops->hwapic_irr_update(vcpu,
6571                                 kvm_lapic_find_highest_irr(vcpu));
6572         }
6573
6574         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6575                 kvm_apic_accept_events(vcpu);
6576                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6577                         r = 1;
6578                         goto out;
6579                 }
6580
6581                 if (inject_pending_event(vcpu, req_int_win) != 0)
6582                         req_immediate_exit = true;
6583                 else {
6584                         /* Enable NMI/IRQ window open exits if needed.
6585                          *
6586                          * SMIs have two cases: 1) they can be nested, and
6587                          * then there is nothing to do here because RSM will
6588                          * cause a vmexit anyway; 2) or the SMI can be pending
6589                          * because inject_pending_event has completed the
6590                          * injection of an IRQ or NMI from the previous vmexit,
6591                          * and then we request an immediate exit to inject the SMI.
6592                          */
6593                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6594                                 req_immediate_exit = true;
6595                         if (vcpu->arch.nmi_pending)
6596                                 kvm_x86_ops->enable_nmi_window(vcpu);
6597                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6598                                 kvm_x86_ops->enable_irq_window(vcpu);
6599                 }
6600
6601                 if (kvm_lapic_enabled(vcpu)) {
6602                         update_cr8_intercept(vcpu);
6603                         kvm_lapic_sync_to_vapic(vcpu);
6604                 }
6605         }
6606
6607         r = kvm_mmu_reload(vcpu);
6608         if (unlikely(r)) {
6609                 goto cancel_injection;
6610         }
6611
6612         preempt_disable();
6613
6614         kvm_x86_ops->prepare_guest_switch(vcpu);
6615         if (vcpu->fpu_active)
6616                 kvm_load_guest_fpu(vcpu);
6617         vcpu->mode = IN_GUEST_MODE;
6618
6619         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6620
6621         /*
6622          * We should set ->mode before check ->requests,
6623          * Please see the comment in kvm_make_all_cpus_request.
6624          * This also orders the write to mode from any reads
6625          * to the page tables done while the VCPU is running.
6626          * Please see the comment in kvm_flush_remote_tlbs.
6627          */
6628         smp_mb__after_srcu_read_unlock();
6629
6630         local_irq_disable();
6631
6632         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6633             || need_resched() || signal_pending(current)) {
6634                 vcpu->mode = OUTSIDE_GUEST_MODE;
6635                 smp_wmb();
6636                 local_irq_enable();
6637                 preempt_enable();
6638                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6639                 r = 1;
6640                 goto cancel_injection;
6641         }
6642
6643         kvm_load_guest_xcr0(vcpu);
6644
6645         if (req_immediate_exit) {
6646                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6647                 smp_send_reschedule(vcpu->cpu);
6648         }
6649
6650         trace_kvm_entry(vcpu->vcpu_id);
6651         wait_lapic_expire(vcpu);
6652         __kvm_guest_enter();
6653
6654         if (unlikely(vcpu->arch.switch_db_regs)) {
6655                 set_debugreg(0, 7);
6656                 set_debugreg(vcpu->arch.eff_db[0], 0);
6657                 set_debugreg(vcpu->arch.eff_db[1], 1);
6658                 set_debugreg(vcpu->arch.eff_db[2], 2);
6659                 set_debugreg(vcpu->arch.eff_db[3], 3);
6660                 set_debugreg(vcpu->arch.dr6, 6);
6661                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6662         }
6663
6664         kvm_x86_ops->run(vcpu);
6665
6666         /*
6667          * Do this here before restoring debug registers on the host.  And
6668          * since we do this before handling the vmexit, a DR access vmexit
6669          * can (a) read the correct value of the debug registers, (b) set
6670          * KVM_DEBUGREG_WONT_EXIT again.
6671          */
6672         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6673                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6674                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6675                 kvm_update_dr0123(vcpu);
6676                 kvm_update_dr6(vcpu);
6677                 kvm_update_dr7(vcpu);
6678                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6679         }
6680
6681         /*
6682          * If the guest has used debug registers, at least dr7
6683          * will be disabled while returning to the host.
6684          * If we don't have active breakpoints in the host, we don't
6685          * care about the messed up debug address registers. But if
6686          * we have some of them active, restore the old state.
6687          */
6688         if (hw_breakpoint_active())
6689                 hw_breakpoint_restore();
6690
6691         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6692
6693         vcpu->mode = OUTSIDE_GUEST_MODE;
6694         smp_wmb();
6695
6696         kvm_put_guest_xcr0(vcpu);
6697
6698         /* Interrupt is enabled by handle_external_intr() */
6699         kvm_x86_ops->handle_external_intr(vcpu);
6700
6701         ++vcpu->stat.exits;
6702
6703         /*
6704          * We must have an instruction between local_irq_enable() and
6705          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6706          * the interrupt shadow.  The stat.exits increment will do nicely.
6707          * But we need to prevent reordering, hence this barrier():
6708          */
6709         barrier();
6710
6711         kvm_guest_exit();
6712
6713         preempt_enable();
6714
6715         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6716
6717         /*
6718          * Profile KVM exit RIPs:
6719          */
6720         if (unlikely(prof_on == KVM_PROFILING)) {
6721                 unsigned long rip = kvm_rip_read(vcpu);
6722                 profile_hit(KVM_PROFILING, (void *)rip);
6723         }
6724
6725         if (unlikely(vcpu->arch.tsc_always_catchup))
6726                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6727
6728         if (vcpu->arch.apic_attention)
6729                 kvm_lapic_sync_from_vapic(vcpu);
6730
6731         r = kvm_x86_ops->handle_exit(vcpu);
6732         return r;
6733
6734 cancel_injection:
6735         kvm_x86_ops->cancel_injection(vcpu);
6736         if (unlikely(vcpu->arch.apic_attention))
6737                 kvm_lapic_sync_from_vapic(vcpu);
6738 out:
6739         return r;
6740 }
6741
6742 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6743 {
6744         if (!kvm_arch_vcpu_runnable(vcpu) &&
6745             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6746                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6747                 kvm_vcpu_block(vcpu);
6748                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6749
6750                 if (kvm_x86_ops->post_block)
6751                         kvm_x86_ops->post_block(vcpu);
6752
6753                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6754                         return 1;
6755         }
6756
6757         kvm_apic_accept_events(vcpu);
6758         switch(vcpu->arch.mp_state) {
6759         case KVM_MP_STATE_HALTED:
6760                 vcpu->arch.pv.pv_unhalted = false;
6761                 vcpu->arch.mp_state =
6762                         KVM_MP_STATE_RUNNABLE;
6763         case KVM_MP_STATE_RUNNABLE:
6764                 vcpu->arch.apf.halted = false;
6765                 break;
6766         case KVM_MP_STATE_INIT_RECEIVED:
6767                 break;
6768         default:
6769                 return -EINTR;
6770                 break;
6771         }
6772         return 1;
6773 }
6774
6775 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6776 {
6777         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6778                 !vcpu->arch.apf.halted);
6779 }
6780
6781 static int vcpu_run(struct kvm_vcpu *vcpu)
6782 {
6783         int r;
6784         struct kvm *kvm = vcpu->kvm;
6785
6786         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6787
6788         for (;;) {
6789                 if (kvm_vcpu_running(vcpu)) {
6790                         r = vcpu_enter_guest(vcpu);
6791                 } else {
6792                         r = vcpu_block(kvm, vcpu);
6793                 }
6794
6795                 if (r <= 0)
6796                         break;
6797
6798                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6799                 if (kvm_cpu_has_pending_timer(vcpu))
6800                         kvm_inject_pending_timer_irqs(vcpu);
6801
6802                 if (dm_request_for_irq_injection(vcpu) &&
6803                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6804                         r = 0;
6805                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6806                         ++vcpu->stat.request_irq_exits;
6807                         break;
6808                 }
6809
6810                 kvm_check_async_pf_completion(vcpu);
6811
6812                 if (signal_pending(current)) {
6813                         r = -EINTR;
6814                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6815                         ++vcpu->stat.signal_exits;
6816                         break;
6817                 }
6818                 if (need_resched()) {
6819                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6820                         cond_resched();
6821                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6822                 }
6823         }
6824
6825         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6826
6827         return r;
6828 }
6829
6830 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6831 {
6832         int r;
6833         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6834         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6835         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6836         if (r != EMULATE_DONE)
6837                 return 0;
6838         return 1;
6839 }
6840
6841 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6842 {
6843         BUG_ON(!vcpu->arch.pio.count);
6844
6845         return complete_emulated_io(vcpu);
6846 }
6847
6848 /*
6849  * Implements the following, as a state machine:
6850  *
6851  * read:
6852  *   for each fragment
6853  *     for each mmio piece in the fragment
6854  *       write gpa, len
6855  *       exit
6856  *       copy data
6857  *   execute insn
6858  *
6859  * write:
6860  *   for each fragment
6861  *     for each mmio piece in the fragment
6862  *       write gpa, len
6863  *       copy data
6864  *       exit
6865  */
6866 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6867 {
6868         struct kvm_run *run = vcpu->run;
6869         struct kvm_mmio_fragment *frag;
6870         unsigned len;
6871
6872         BUG_ON(!vcpu->mmio_needed);
6873
6874         /* Complete previous fragment */
6875         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6876         len = min(8u, frag->len);
6877         if (!vcpu->mmio_is_write)
6878                 memcpy(frag->data, run->mmio.data, len);
6879
6880         if (frag->len <= 8) {
6881                 /* Switch to the next fragment. */
6882                 frag++;
6883                 vcpu->mmio_cur_fragment++;
6884         } else {
6885                 /* Go forward to the next mmio piece. */
6886                 frag->data += len;
6887                 frag->gpa += len;
6888                 frag->len -= len;
6889         }
6890
6891         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6892                 vcpu->mmio_needed = 0;
6893
6894                 /* FIXME: return into emulator if single-stepping.  */
6895                 if (vcpu->mmio_is_write)
6896                         return 1;
6897                 vcpu->mmio_read_completed = 1;
6898                 return complete_emulated_io(vcpu);
6899         }
6900
6901         run->exit_reason = KVM_EXIT_MMIO;
6902         run->mmio.phys_addr = frag->gpa;
6903         if (vcpu->mmio_is_write)
6904                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6905         run->mmio.len = min(8u, frag->len);
6906         run->mmio.is_write = vcpu->mmio_is_write;
6907         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6908         return 0;
6909 }
6910
6911
6912 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6913 {
6914         struct fpu *fpu = &current->thread.fpu;
6915         int r;
6916         sigset_t sigsaved;
6917
6918         fpu__activate_curr(fpu);
6919
6920         if (vcpu->sigset_active)
6921                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6922
6923         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6924                 kvm_vcpu_block(vcpu);
6925                 kvm_apic_accept_events(vcpu);
6926                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6927                 r = -EAGAIN;
6928                 goto out;
6929         }
6930
6931         /* re-sync apic's tpr */
6932         if (!lapic_in_kernel(vcpu)) {
6933                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6934                         r = -EINVAL;
6935                         goto out;
6936                 }
6937         }
6938
6939         if (unlikely(vcpu->arch.complete_userspace_io)) {
6940                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6941                 vcpu->arch.complete_userspace_io = NULL;
6942                 r = cui(vcpu);
6943                 if (r <= 0)
6944                         goto out;
6945         } else
6946                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6947
6948         r = vcpu_run(vcpu);
6949
6950 out:
6951         post_kvm_run_save(vcpu);
6952         if (vcpu->sigset_active)
6953                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6954
6955         return r;
6956 }
6957
6958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6959 {
6960         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6961                 /*
6962                  * We are here if userspace calls get_regs() in the middle of
6963                  * instruction emulation. Registers state needs to be copied
6964                  * back from emulation context to vcpu. Userspace shouldn't do
6965                  * that usually, but some bad designed PV devices (vmware
6966                  * backdoor interface) need this to work
6967                  */
6968                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6969                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6970         }
6971         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6972         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6973         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6974         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6975         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6976         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6977         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6978         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6979 #ifdef CONFIG_X86_64
6980         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6981         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6982         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6983         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6984         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6985         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6986         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6987         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6988 #endif
6989
6990         regs->rip = kvm_rip_read(vcpu);
6991         regs->rflags = kvm_get_rflags(vcpu);
6992
6993         return 0;
6994 }
6995
6996 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6997 {
6998         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6999         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7000
7001         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7002         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7003         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7004         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7005         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7006         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7007         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7008         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7009 #ifdef CONFIG_X86_64
7010         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7011         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7012         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7013         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7014         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7015         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7016         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7017         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7018 #endif
7019
7020         kvm_rip_write(vcpu, regs->rip);
7021         kvm_set_rflags(vcpu, regs->rflags);
7022
7023         vcpu->arch.exception.pending = false;
7024
7025         kvm_make_request(KVM_REQ_EVENT, vcpu);
7026
7027         return 0;
7028 }
7029
7030 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7031 {
7032         struct kvm_segment cs;
7033
7034         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7035         *db = cs.db;
7036         *l = cs.l;
7037 }
7038 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7039
7040 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7041                                   struct kvm_sregs *sregs)
7042 {
7043         struct desc_ptr dt;
7044
7045         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7046         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7047         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7048         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7049         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7050         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7051
7052         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7053         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7054
7055         kvm_x86_ops->get_idt(vcpu, &dt);
7056         sregs->idt.limit = dt.size;
7057         sregs->idt.base = dt.address;
7058         kvm_x86_ops->get_gdt(vcpu, &dt);
7059         sregs->gdt.limit = dt.size;
7060         sregs->gdt.base = dt.address;
7061
7062         sregs->cr0 = kvm_read_cr0(vcpu);
7063         sregs->cr2 = vcpu->arch.cr2;
7064         sregs->cr3 = kvm_read_cr3(vcpu);
7065         sregs->cr4 = kvm_read_cr4(vcpu);
7066         sregs->cr8 = kvm_get_cr8(vcpu);
7067         sregs->efer = vcpu->arch.efer;
7068         sregs->apic_base = kvm_get_apic_base(vcpu);
7069
7070         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7071
7072         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7073                 set_bit(vcpu->arch.interrupt.nr,
7074                         (unsigned long *)sregs->interrupt_bitmap);
7075
7076         return 0;
7077 }
7078
7079 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7080                                     struct kvm_mp_state *mp_state)
7081 {
7082         kvm_apic_accept_events(vcpu);
7083         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7084                                         vcpu->arch.pv.pv_unhalted)
7085                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7086         else
7087                 mp_state->mp_state = vcpu->arch.mp_state;
7088
7089         return 0;
7090 }
7091
7092 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7093                                     struct kvm_mp_state *mp_state)
7094 {
7095         if (!lapic_in_kernel(vcpu) &&
7096             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7097                 return -EINVAL;
7098
7099         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7100                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7101                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7102         } else
7103                 vcpu->arch.mp_state = mp_state->mp_state;
7104         kvm_make_request(KVM_REQ_EVENT, vcpu);
7105         return 0;
7106 }
7107
7108 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7109                     int reason, bool has_error_code, u32 error_code)
7110 {
7111         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7112         int ret;
7113
7114         init_emulate_ctxt(vcpu);
7115
7116         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7117                                    has_error_code, error_code);
7118
7119         if (ret)
7120                 return EMULATE_FAIL;
7121
7122         kvm_rip_write(vcpu, ctxt->eip);
7123         kvm_set_rflags(vcpu, ctxt->eflags);
7124         kvm_make_request(KVM_REQ_EVENT, vcpu);
7125         return EMULATE_DONE;
7126 }
7127 EXPORT_SYMBOL_GPL(kvm_task_switch);
7128
7129 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7130                                   struct kvm_sregs *sregs)
7131 {
7132         struct msr_data apic_base_msr;
7133         int mmu_reset_needed = 0;
7134         int pending_vec, max_bits, idx;
7135         struct desc_ptr dt;
7136
7137         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7138                 return -EINVAL;
7139
7140         dt.size = sregs->idt.limit;
7141         dt.address = sregs->idt.base;
7142         kvm_x86_ops->set_idt(vcpu, &dt);
7143         dt.size = sregs->gdt.limit;
7144         dt.address = sregs->gdt.base;
7145         kvm_x86_ops->set_gdt(vcpu, &dt);
7146
7147         vcpu->arch.cr2 = sregs->cr2;
7148         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7149         vcpu->arch.cr3 = sregs->cr3;
7150         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7151
7152         kvm_set_cr8(vcpu, sregs->cr8);
7153
7154         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7155         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7156         apic_base_msr.data = sregs->apic_base;
7157         apic_base_msr.host_initiated = true;
7158         kvm_set_apic_base(vcpu, &apic_base_msr);
7159
7160         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7161         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7162         vcpu->arch.cr0 = sregs->cr0;
7163
7164         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7165         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7166         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7167                 kvm_update_cpuid(vcpu);
7168
7169         idx = srcu_read_lock(&vcpu->kvm->srcu);
7170         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7171                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7172                 mmu_reset_needed = 1;
7173         }
7174         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7175
7176         if (mmu_reset_needed)
7177                 kvm_mmu_reset_context(vcpu);
7178
7179         max_bits = KVM_NR_INTERRUPTS;
7180         pending_vec = find_first_bit(
7181                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7182         if (pending_vec < max_bits) {
7183                 kvm_queue_interrupt(vcpu, pending_vec, false);
7184                 pr_debug("Set back pending irq %d\n", pending_vec);
7185         }
7186
7187         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7188         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7189         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7190         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7191         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7192         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7193
7194         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7195         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7196
7197         update_cr8_intercept(vcpu);
7198
7199         /* Older userspace won't unhalt the vcpu on reset. */
7200         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7201             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7202             !is_protmode(vcpu))
7203                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7204
7205         kvm_make_request(KVM_REQ_EVENT, vcpu);
7206
7207         return 0;
7208 }
7209
7210 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7211                                         struct kvm_guest_debug *dbg)
7212 {
7213         unsigned long rflags;
7214         int i, r;
7215
7216         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7217                 r = -EBUSY;
7218                 if (vcpu->arch.exception.pending)
7219                         goto out;
7220                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7221                         kvm_queue_exception(vcpu, DB_VECTOR);
7222                 else
7223                         kvm_queue_exception(vcpu, BP_VECTOR);
7224         }
7225
7226         /*
7227          * Read rflags as long as potentially injected trace flags are still
7228          * filtered out.
7229          */
7230         rflags = kvm_get_rflags(vcpu);
7231
7232         vcpu->guest_debug = dbg->control;
7233         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7234                 vcpu->guest_debug = 0;
7235
7236         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7237                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7238                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7239                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7240         } else {
7241                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7242                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7243         }
7244         kvm_update_dr7(vcpu);
7245
7246         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7247                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7248                         get_segment_base(vcpu, VCPU_SREG_CS);
7249
7250         /*
7251          * Trigger an rflags update that will inject or remove the trace
7252          * flags.
7253          */
7254         kvm_set_rflags(vcpu, rflags);
7255
7256         kvm_x86_ops->update_bp_intercept(vcpu);
7257
7258         r = 0;
7259
7260 out:
7261
7262         return r;
7263 }
7264
7265 /*
7266  * Translate a guest virtual address to a guest physical address.
7267  */
7268 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7269                                     struct kvm_translation *tr)
7270 {
7271         unsigned long vaddr = tr->linear_address;
7272         gpa_t gpa;
7273         int idx;
7274
7275         idx = srcu_read_lock(&vcpu->kvm->srcu);
7276         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7277         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7278         tr->physical_address = gpa;
7279         tr->valid = gpa != UNMAPPED_GVA;
7280         tr->writeable = 1;
7281         tr->usermode = 0;
7282
7283         return 0;
7284 }
7285
7286 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7287 {
7288         struct fxregs_state *fxsave =
7289                         &vcpu->arch.guest_fpu.state.fxsave;
7290
7291         memcpy(fpu->fpr, fxsave->st_space, 128);
7292         fpu->fcw = fxsave->cwd;
7293         fpu->fsw = fxsave->swd;
7294         fpu->ftwx = fxsave->twd;
7295         fpu->last_opcode = fxsave->fop;
7296         fpu->last_ip = fxsave->rip;
7297         fpu->last_dp = fxsave->rdp;
7298         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7299
7300         return 0;
7301 }
7302
7303 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7304 {
7305         struct fxregs_state *fxsave =
7306                         &vcpu->arch.guest_fpu.state.fxsave;
7307
7308         memcpy(fxsave->st_space, fpu->fpr, 128);
7309         fxsave->cwd = fpu->fcw;
7310         fxsave->swd = fpu->fsw;
7311         fxsave->twd = fpu->ftwx;
7312         fxsave->fop = fpu->last_opcode;
7313         fxsave->rip = fpu->last_ip;
7314         fxsave->rdp = fpu->last_dp;
7315         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7316
7317         return 0;
7318 }
7319
7320 static void fx_init(struct kvm_vcpu *vcpu)
7321 {
7322         fpstate_init(&vcpu->arch.guest_fpu.state);
7323         if (boot_cpu_has(X86_FEATURE_XSAVES))
7324                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7325                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7326
7327         /*
7328          * Ensure guest xcr0 is valid for loading
7329          */
7330         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7331
7332         vcpu->arch.cr0 |= X86_CR0_ET;
7333 }
7334
7335 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7336 {
7337         if (vcpu->guest_fpu_loaded)
7338                 return;
7339
7340         /*
7341          * Restore all possible states in the guest,
7342          * and assume host would use all available bits.
7343          * Guest xcr0 would be loaded later.
7344          */
7345         vcpu->guest_fpu_loaded = 1;
7346         __kernel_fpu_begin();
7347         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7348         trace_kvm_fpu(1);
7349 }
7350
7351 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7352 {
7353         if (!vcpu->guest_fpu_loaded) {
7354                 vcpu->fpu_counter = 0;
7355                 return;
7356         }
7357
7358         vcpu->guest_fpu_loaded = 0;
7359         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7360         __kernel_fpu_end();
7361         ++vcpu->stat.fpu_reload;
7362         /*
7363          * If using eager FPU mode, or if the guest is a frequent user
7364          * of the FPU, just leave the FPU active for next time.
7365          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7366          * the FPU in bursts will revert to loading it on demand.
7367          */
7368         if (!use_eager_fpu()) {
7369                 if (++vcpu->fpu_counter < 5)
7370                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7371         }
7372         trace_kvm_fpu(0);
7373 }
7374
7375 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7376 {
7377         kvmclock_reset(vcpu);
7378
7379         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7380         kvm_x86_ops->vcpu_free(vcpu);
7381 }
7382
7383 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7384                                                 unsigned int id)
7385 {
7386         struct kvm_vcpu *vcpu;
7387
7388         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7389                 printk_once(KERN_WARNING
7390                 "kvm: SMP vm created on host with unstable TSC; "
7391                 "guest TSC will not be reliable\n");
7392
7393         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7394
7395         return vcpu;
7396 }
7397
7398 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7399 {
7400         int r;
7401
7402         kvm_vcpu_mtrr_init(vcpu);
7403         r = vcpu_load(vcpu);
7404         if (r)
7405                 return r;
7406         kvm_vcpu_reset(vcpu, false);
7407         kvm_mmu_setup(vcpu);
7408         vcpu_put(vcpu);
7409         return r;
7410 }
7411
7412 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7413 {
7414         struct msr_data msr;
7415         struct kvm *kvm = vcpu->kvm;
7416
7417         if (vcpu_load(vcpu))
7418                 return;
7419         msr.data = 0x0;
7420         msr.index = MSR_IA32_TSC;
7421         msr.host_initiated = true;
7422         kvm_write_tsc(vcpu, &msr);
7423         vcpu_put(vcpu);
7424
7425         if (!kvmclock_periodic_sync)
7426                 return;
7427
7428         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7429                                         KVMCLOCK_SYNC_PERIOD);
7430 }
7431
7432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7433 {
7434         int r;
7435         vcpu->arch.apf.msr_val = 0;
7436
7437         r = vcpu_load(vcpu);
7438         BUG_ON(r);
7439         kvm_mmu_unload(vcpu);
7440         vcpu_put(vcpu);
7441
7442         kvm_x86_ops->vcpu_free(vcpu);
7443 }
7444
7445 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7446 {
7447         vcpu->arch.hflags = 0;
7448
7449         vcpu->arch.smi_pending = 0;
7450         atomic_set(&vcpu->arch.nmi_queued, 0);
7451         vcpu->arch.nmi_pending = 0;
7452         vcpu->arch.nmi_injected = false;
7453         kvm_clear_interrupt_queue(vcpu);
7454         kvm_clear_exception_queue(vcpu);
7455
7456         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7457         kvm_update_dr0123(vcpu);
7458         vcpu->arch.dr6 = DR6_INIT;
7459         kvm_update_dr6(vcpu);
7460         vcpu->arch.dr7 = DR7_FIXED_1;
7461         kvm_update_dr7(vcpu);
7462
7463         vcpu->arch.cr2 = 0;
7464
7465         kvm_make_request(KVM_REQ_EVENT, vcpu);
7466         vcpu->arch.apf.msr_val = 0;
7467         vcpu->arch.st.msr_val = 0;
7468
7469         kvmclock_reset(vcpu);
7470
7471         kvm_clear_async_pf_completion_queue(vcpu);
7472         kvm_async_pf_hash_reset(vcpu);
7473         vcpu->arch.apf.halted = false;
7474
7475         if (!init_event) {
7476                 kvm_pmu_reset(vcpu);
7477                 vcpu->arch.smbase = 0x30000;
7478         }
7479
7480         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7481         vcpu->arch.regs_avail = ~0;
7482         vcpu->arch.regs_dirty = ~0;
7483
7484         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7485 }
7486
7487 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7488 {
7489         struct kvm_segment cs;
7490
7491         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7492         cs.selector = vector << 8;
7493         cs.base = vector << 12;
7494         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7495         kvm_rip_write(vcpu, 0);
7496 }
7497
7498 int kvm_arch_hardware_enable(void)
7499 {
7500         struct kvm *kvm;
7501         struct kvm_vcpu *vcpu;
7502         int i;
7503         int ret;
7504         u64 local_tsc;
7505         u64 max_tsc = 0;
7506         bool stable, backwards_tsc = false;
7507
7508         kvm_shared_msr_cpu_online();
7509         ret = kvm_x86_ops->hardware_enable();
7510         if (ret != 0)
7511                 return ret;
7512
7513         local_tsc = rdtsc();
7514         stable = !check_tsc_unstable();
7515         list_for_each_entry(kvm, &vm_list, vm_list) {
7516                 kvm_for_each_vcpu(i, vcpu, kvm) {
7517                         if (!stable && vcpu->cpu == smp_processor_id())
7518                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7519                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7520                                 backwards_tsc = true;
7521                                 if (vcpu->arch.last_host_tsc > max_tsc)
7522                                         max_tsc = vcpu->arch.last_host_tsc;
7523                         }
7524                 }
7525         }
7526
7527         /*
7528          * Sometimes, even reliable TSCs go backwards.  This happens on
7529          * platforms that reset TSC during suspend or hibernate actions, but
7530          * maintain synchronization.  We must compensate.  Fortunately, we can
7531          * detect that condition here, which happens early in CPU bringup,
7532          * before any KVM threads can be running.  Unfortunately, we can't
7533          * bring the TSCs fully up to date with real time, as we aren't yet far
7534          * enough into CPU bringup that we know how much real time has actually
7535          * elapsed; our helper function, get_kernel_ns() will be using boot
7536          * variables that haven't been updated yet.
7537          *
7538          * So we simply find the maximum observed TSC above, then record the
7539          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7540          * the adjustment will be applied.  Note that we accumulate
7541          * adjustments, in case multiple suspend cycles happen before some VCPU
7542          * gets a chance to run again.  In the event that no KVM threads get a
7543          * chance to run, we will miss the entire elapsed period, as we'll have
7544          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7545          * loose cycle time.  This isn't too big a deal, since the loss will be
7546          * uniform across all VCPUs (not to mention the scenario is extremely
7547          * unlikely). It is possible that a second hibernate recovery happens
7548          * much faster than a first, causing the observed TSC here to be
7549          * smaller; this would require additional padding adjustment, which is
7550          * why we set last_host_tsc to the local tsc observed here.
7551          *
7552          * N.B. - this code below runs only on platforms with reliable TSC,
7553          * as that is the only way backwards_tsc is set above.  Also note
7554          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7555          * have the same delta_cyc adjustment applied if backwards_tsc
7556          * is detected.  Note further, this adjustment is only done once,
7557          * as we reset last_host_tsc on all VCPUs to stop this from being
7558          * called multiple times (one for each physical CPU bringup).
7559          *
7560          * Platforms with unreliable TSCs don't have to deal with this, they
7561          * will be compensated by the logic in vcpu_load, which sets the TSC to
7562          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7563          * guarantee that they stay in perfect synchronization.
7564          */
7565         if (backwards_tsc) {
7566                 u64 delta_cyc = max_tsc - local_tsc;
7567                 backwards_tsc_observed = true;
7568                 list_for_each_entry(kvm, &vm_list, vm_list) {
7569                         kvm_for_each_vcpu(i, vcpu, kvm) {
7570                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7571                                 vcpu->arch.last_host_tsc = local_tsc;
7572                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7573                         }
7574
7575                         /*
7576                          * We have to disable TSC offset matching.. if you were
7577                          * booting a VM while issuing an S4 host suspend....
7578                          * you may have some problem.  Solving this issue is
7579                          * left as an exercise to the reader.
7580                          */
7581                         kvm->arch.last_tsc_nsec = 0;
7582                         kvm->arch.last_tsc_write = 0;
7583                 }
7584
7585         }
7586         return 0;
7587 }
7588
7589 void kvm_arch_hardware_disable(void)
7590 {
7591         kvm_x86_ops->hardware_disable();
7592         drop_user_return_notifiers();
7593 }
7594
7595 int kvm_arch_hardware_setup(void)
7596 {
7597         int r;
7598
7599         r = kvm_x86_ops->hardware_setup();
7600         if (r != 0)
7601                 return r;
7602
7603         if (kvm_has_tsc_control) {
7604                 /*
7605                  * Make sure the user can only configure tsc_khz values that
7606                  * fit into a signed integer.
7607                  * A min value is not calculated needed because it will always
7608                  * be 1 on all machines.
7609                  */
7610                 u64 max = min(0x7fffffffULL,
7611                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7612                 kvm_max_guest_tsc_khz = max;
7613
7614                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7615         }
7616
7617         kvm_init_msr_list();
7618         return 0;
7619 }
7620
7621 void kvm_arch_hardware_unsetup(void)
7622 {
7623         kvm_x86_ops->hardware_unsetup();
7624 }
7625
7626 void kvm_arch_check_processor_compat(void *rtn)
7627 {
7628         kvm_x86_ops->check_processor_compatibility(rtn);
7629 }
7630
7631 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7632 {
7633         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7634 }
7635 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7636
7637 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7638 {
7639         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7640 }
7641
7642 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7643 {
7644         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7645 }
7646
7647 struct static_key kvm_no_apic_vcpu __read_mostly;
7648 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7649
7650 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7651 {
7652         struct page *page;
7653         struct kvm *kvm;
7654         int r;
7655
7656         BUG_ON(vcpu->kvm == NULL);
7657         kvm = vcpu->kvm;
7658
7659         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7660         vcpu->arch.pv.pv_unhalted = false;
7661         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7662         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7663                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7664         else
7665                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7666
7667         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7668         if (!page) {
7669                 r = -ENOMEM;
7670                 goto fail;
7671         }
7672         vcpu->arch.pio_data = page_address(page);
7673
7674         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7675
7676         r = kvm_mmu_create(vcpu);
7677         if (r < 0)
7678                 goto fail_free_pio_data;
7679
7680         if (irqchip_in_kernel(kvm)) {
7681                 r = kvm_create_lapic(vcpu);
7682                 if (r < 0)
7683                         goto fail_mmu_destroy;
7684         } else
7685                 static_key_slow_inc(&kvm_no_apic_vcpu);
7686
7687         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7688                                        GFP_KERNEL);
7689         if (!vcpu->arch.mce_banks) {
7690                 r = -ENOMEM;
7691                 goto fail_free_lapic;
7692         }
7693         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7694
7695         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7696                 r = -ENOMEM;
7697                 goto fail_free_mce_banks;
7698         }
7699
7700         fx_init(vcpu);
7701
7702         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7703         vcpu->arch.pv_time_enabled = false;
7704
7705         vcpu->arch.guest_supported_xcr0 = 0;
7706         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7707
7708         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7709
7710         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7711
7712         kvm_async_pf_hash_reset(vcpu);
7713         kvm_pmu_init(vcpu);
7714
7715         vcpu->arch.pending_external_vector = -1;
7716
7717         kvm_hv_vcpu_init(vcpu);
7718
7719         return 0;
7720
7721 fail_free_mce_banks:
7722         kfree(vcpu->arch.mce_banks);
7723 fail_free_lapic:
7724         kvm_free_lapic(vcpu);
7725 fail_mmu_destroy:
7726         kvm_mmu_destroy(vcpu);
7727 fail_free_pio_data:
7728         free_page((unsigned long)vcpu->arch.pio_data);
7729 fail:
7730         return r;
7731 }
7732
7733 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7734 {
7735         int idx;
7736
7737         kvm_hv_vcpu_uninit(vcpu);
7738         kvm_pmu_destroy(vcpu);
7739         kfree(vcpu->arch.mce_banks);
7740         kvm_free_lapic(vcpu);
7741         idx = srcu_read_lock(&vcpu->kvm->srcu);
7742         kvm_mmu_destroy(vcpu);
7743         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7744         free_page((unsigned long)vcpu->arch.pio_data);
7745         if (!lapic_in_kernel(vcpu))
7746                 static_key_slow_dec(&kvm_no_apic_vcpu);
7747 }
7748
7749 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7750 {
7751         kvm_x86_ops->sched_in(vcpu, cpu);
7752 }
7753
7754 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7755 {
7756         if (type)
7757                 return -EINVAL;
7758
7759         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7760         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7761         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7762         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7763         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7764
7765         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7766         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7767         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7768         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7769                 &kvm->arch.irq_sources_bitmap);
7770
7771         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7772         mutex_init(&kvm->arch.apic_map_lock);
7773         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7774
7775         pvclock_update_vm_gtod_copy(kvm);
7776
7777         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7778         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7779
7780         kvm_page_track_init(kvm);
7781         kvm_mmu_init_vm(kvm);
7782
7783         if (kvm_x86_ops->vm_init)
7784                 return kvm_x86_ops->vm_init(kvm);
7785
7786         return 0;
7787 }
7788
7789 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7790 {
7791         int r;
7792         r = vcpu_load(vcpu);
7793         BUG_ON(r);
7794         kvm_mmu_unload(vcpu);
7795         vcpu_put(vcpu);
7796 }
7797
7798 static void kvm_free_vcpus(struct kvm *kvm)
7799 {
7800         unsigned int i;
7801         struct kvm_vcpu *vcpu;
7802
7803         /*
7804          * Unpin any mmu pages first.
7805          */
7806         kvm_for_each_vcpu(i, vcpu, kvm) {
7807                 kvm_clear_async_pf_completion_queue(vcpu);
7808                 kvm_unload_vcpu_mmu(vcpu);
7809         }
7810         kvm_for_each_vcpu(i, vcpu, kvm)
7811                 kvm_arch_vcpu_free(vcpu);
7812
7813         mutex_lock(&kvm->lock);
7814         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7815                 kvm->vcpus[i] = NULL;
7816
7817         atomic_set(&kvm->online_vcpus, 0);
7818         mutex_unlock(&kvm->lock);
7819 }
7820
7821 void kvm_arch_sync_events(struct kvm *kvm)
7822 {
7823         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7824         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7825         kvm_free_all_assigned_devices(kvm);
7826         kvm_free_pit(kvm);
7827 }
7828
7829 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7830 {
7831         int i, r;
7832         unsigned long hva;
7833         struct kvm_memslots *slots = kvm_memslots(kvm);
7834         struct kvm_memory_slot *slot, old;
7835
7836         /* Called with kvm->slots_lock held.  */
7837         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7838                 return -EINVAL;
7839
7840         slot = id_to_memslot(slots, id);
7841         if (size) {
7842                 if (slot->npages)
7843                         return -EEXIST;
7844
7845                 /*
7846                  * MAP_SHARED to prevent internal slot pages from being moved
7847                  * by fork()/COW.
7848                  */
7849                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7850                               MAP_SHARED | MAP_ANONYMOUS, 0);
7851                 if (IS_ERR((void *)hva))
7852                         return PTR_ERR((void *)hva);
7853         } else {
7854                 if (!slot->npages)
7855                         return 0;
7856
7857                 hva = 0;
7858         }
7859
7860         old = *slot;
7861         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7862                 struct kvm_userspace_memory_region m;
7863
7864                 m.slot = id | (i << 16);
7865                 m.flags = 0;
7866                 m.guest_phys_addr = gpa;
7867                 m.userspace_addr = hva;
7868                 m.memory_size = size;
7869                 r = __kvm_set_memory_region(kvm, &m);
7870                 if (r < 0)
7871                         return r;
7872         }
7873
7874         if (!size) {
7875                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7876                 WARN_ON(r < 0);
7877         }
7878
7879         return 0;
7880 }
7881 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7882
7883 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7884 {
7885         int r;
7886
7887         mutex_lock(&kvm->slots_lock);
7888         r = __x86_set_memory_region(kvm, id, gpa, size);
7889         mutex_unlock(&kvm->slots_lock);
7890
7891         return r;
7892 }
7893 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7894
7895 void kvm_arch_destroy_vm(struct kvm *kvm)
7896 {
7897         if (current->mm == kvm->mm) {
7898                 /*
7899                  * Free memory regions allocated on behalf of userspace,
7900                  * unless the the memory map has changed due to process exit
7901                  * or fd copying.
7902                  */
7903                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7904                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7905                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7906         }
7907         if (kvm_x86_ops->vm_destroy)
7908                 kvm_x86_ops->vm_destroy(kvm);
7909         kvm_iommu_unmap_guest(kvm);
7910         kfree(kvm->arch.vpic);
7911         kfree(kvm->arch.vioapic);
7912         kvm_free_vcpus(kvm);
7913         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7914         kvm_mmu_uninit_vm(kvm);
7915 }
7916
7917 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7918                            struct kvm_memory_slot *dont)
7919 {
7920         int i;
7921
7922         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7923                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7924                         kvfree(free->arch.rmap[i]);
7925                         free->arch.rmap[i] = NULL;
7926                 }
7927                 if (i == 0)
7928                         continue;
7929
7930                 if (!dont || free->arch.lpage_info[i - 1] !=
7931                              dont->arch.lpage_info[i - 1]) {
7932                         kvfree(free->arch.lpage_info[i - 1]);
7933                         free->arch.lpage_info[i - 1] = NULL;
7934                 }
7935         }
7936
7937         kvm_page_track_free_memslot(free, dont);
7938 }
7939
7940 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7941                             unsigned long npages)
7942 {
7943         int i;
7944
7945         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7946                 struct kvm_lpage_info *linfo;
7947                 unsigned long ugfn;
7948                 int lpages;
7949                 int level = i + 1;
7950
7951                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7952                                       slot->base_gfn, level) + 1;
7953
7954                 slot->arch.rmap[i] =
7955                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7956                 if (!slot->arch.rmap[i])
7957                         goto out_free;
7958                 if (i == 0)
7959                         continue;
7960
7961                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7962                 if (!linfo)
7963                         goto out_free;
7964
7965                 slot->arch.lpage_info[i - 1] = linfo;
7966
7967                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7968                         linfo[0].disallow_lpage = 1;
7969                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7970                         linfo[lpages - 1].disallow_lpage = 1;
7971                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7972                 /*
7973                  * If the gfn and userspace address are not aligned wrt each
7974                  * other, or if explicitly asked to, disable large page
7975                  * support for this slot
7976                  */
7977                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7978                     !kvm_largepages_enabled()) {
7979                         unsigned long j;
7980
7981                         for (j = 0; j < lpages; ++j)
7982                                 linfo[j].disallow_lpage = 1;
7983                 }
7984         }
7985
7986         if (kvm_page_track_create_memslot(slot, npages))
7987                 goto out_free;
7988
7989         return 0;
7990
7991 out_free:
7992         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7993                 kvfree(slot->arch.rmap[i]);
7994                 slot->arch.rmap[i] = NULL;
7995                 if (i == 0)
7996                         continue;
7997
7998                 kvfree(slot->arch.lpage_info[i - 1]);
7999                 slot->arch.lpage_info[i - 1] = NULL;
8000         }
8001         return -ENOMEM;
8002 }
8003
8004 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8005 {
8006         /*
8007          * memslots->generation has been incremented.
8008          * mmio generation may have reached its maximum value.
8009          */
8010         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8011 }
8012
8013 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8014                                 struct kvm_memory_slot *memslot,
8015                                 const struct kvm_userspace_memory_region *mem,
8016                                 enum kvm_mr_change change)
8017 {
8018         return 0;
8019 }
8020
8021 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8022                                      struct kvm_memory_slot *new)
8023 {
8024         /* Still write protect RO slot */
8025         if (new->flags & KVM_MEM_READONLY) {
8026                 kvm_mmu_slot_remove_write_access(kvm, new);
8027                 return;
8028         }
8029
8030         /*
8031          * Call kvm_x86_ops dirty logging hooks when they are valid.
8032          *
8033          * kvm_x86_ops->slot_disable_log_dirty is called when:
8034          *
8035          *  - KVM_MR_CREATE with dirty logging is disabled
8036          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8037          *
8038          * The reason is, in case of PML, we need to set D-bit for any slots
8039          * with dirty logging disabled in order to eliminate unnecessary GPA
8040          * logging in PML buffer (and potential PML buffer full VMEXT). This
8041          * guarantees leaving PML enabled during guest's lifetime won't have
8042          * any additonal overhead from PML when guest is running with dirty
8043          * logging disabled for memory slots.
8044          *
8045          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8046          * to dirty logging mode.
8047          *
8048          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8049          *
8050          * In case of write protect:
8051          *
8052          * Write protect all pages for dirty logging.
8053          *
8054          * All the sptes including the large sptes which point to this
8055          * slot are set to readonly. We can not create any new large
8056          * spte on this slot until the end of the logging.
8057          *
8058          * See the comments in fast_page_fault().
8059          */
8060         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8061                 if (kvm_x86_ops->slot_enable_log_dirty)
8062                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8063                 else
8064                         kvm_mmu_slot_remove_write_access(kvm, new);
8065         } else {
8066                 if (kvm_x86_ops->slot_disable_log_dirty)
8067                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8068         }
8069 }
8070
8071 void kvm_arch_commit_memory_region(struct kvm *kvm,
8072                                 const struct kvm_userspace_memory_region *mem,
8073                                 const struct kvm_memory_slot *old,
8074                                 const struct kvm_memory_slot *new,
8075                                 enum kvm_mr_change change)
8076 {
8077         int nr_mmu_pages = 0;
8078
8079         if (!kvm->arch.n_requested_mmu_pages)
8080                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8081
8082         if (nr_mmu_pages)
8083                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8084
8085         /*
8086          * Dirty logging tracks sptes in 4k granularity, meaning that large
8087          * sptes have to be split.  If live migration is successful, the guest
8088          * in the source machine will be destroyed and large sptes will be
8089          * created in the destination. However, if the guest continues to run
8090          * in the source machine (for example if live migration fails), small
8091          * sptes will remain around and cause bad performance.
8092          *
8093          * Scan sptes if dirty logging has been stopped, dropping those
8094          * which can be collapsed into a single large-page spte.  Later
8095          * page faults will create the large-page sptes.
8096          */
8097         if ((change != KVM_MR_DELETE) &&
8098                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8099                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8100                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8101
8102         /*
8103          * Set up write protection and/or dirty logging for the new slot.
8104          *
8105          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8106          * been zapped so no dirty logging staff is needed for old slot. For
8107          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8108          * new and it's also covered when dealing with the new slot.
8109          *
8110          * FIXME: const-ify all uses of struct kvm_memory_slot.
8111          */
8112         if (change != KVM_MR_DELETE)
8113                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8114 }
8115
8116 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8117 {
8118         kvm_mmu_invalidate_zap_all_pages(kvm);
8119 }
8120
8121 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8122                                    struct kvm_memory_slot *slot)
8123 {
8124         kvm_mmu_invalidate_zap_all_pages(kvm);
8125 }
8126
8127 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8128 {
8129         if (!list_empty_careful(&vcpu->async_pf.done))
8130                 return true;
8131
8132         if (kvm_apic_has_events(vcpu))
8133                 return true;
8134
8135         if (vcpu->arch.pv.pv_unhalted)
8136                 return true;
8137
8138         if (atomic_read(&vcpu->arch.nmi_queued))
8139                 return true;
8140
8141         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8142                 return true;
8143
8144         if (kvm_arch_interrupt_allowed(vcpu) &&
8145             kvm_cpu_has_interrupt(vcpu))
8146                 return true;
8147
8148         if (kvm_hv_has_stimer_pending(vcpu))
8149                 return true;
8150
8151         return false;
8152 }
8153
8154 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8155 {
8156         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8157                 kvm_x86_ops->check_nested_events(vcpu, false);
8158
8159         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8160 }
8161
8162 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8163 {
8164         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8165 }
8166
8167 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8168 {
8169         return kvm_x86_ops->interrupt_allowed(vcpu);
8170 }
8171
8172 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8173 {
8174         if (is_64_bit_mode(vcpu))
8175                 return kvm_rip_read(vcpu);
8176         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8177                      kvm_rip_read(vcpu));
8178 }
8179 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8180
8181 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8182 {
8183         return kvm_get_linear_rip(vcpu) == linear_rip;
8184 }
8185 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8186
8187 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8188 {
8189         unsigned long rflags;
8190
8191         rflags = kvm_x86_ops->get_rflags(vcpu);
8192         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8193                 rflags &= ~X86_EFLAGS_TF;
8194         return rflags;
8195 }
8196 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8197
8198 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8199 {
8200         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8201             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8202                 rflags |= X86_EFLAGS_TF;
8203         kvm_x86_ops->set_rflags(vcpu, rflags);
8204 }
8205
8206 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8207 {
8208         __kvm_set_rflags(vcpu, rflags);
8209         kvm_make_request(KVM_REQ_EVENT, vcpu);
8210 }
8211 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8212
8213 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8214 {
8215         int r;
8216
8217         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8218               work->wakeup_all)
8219                 return;
8220
8221         r = kvm_mmu_reload(vcpu);
8222         if (unlikely(r))
8223                 return;
8224
8225         if (!vcpu->arch.mmu.direct_map &&
8226               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8227                 return;
8228
8229         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8230 }
8231
8232 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8233 {
8234         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8235 }
8236
8237 static inline u32 kvm_async_pf_next_probe(u32 key)
8238 {
8239         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8240 }
8241
8242 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8243 {
8244         u32 key = kvm_async_pf_hash_fn(gfn);
8245
8246         while (vcpu->arch.apf.gfns[key] != ~0)
8247                 key = kvm_async_pf_next_probe(key);
8248
8249         vcpu->arch.apf.gfns[key] = gfn;
8250 }
8251
8252 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8253 {
8254         int i;
8255         u32 key = kvm_async_pf_hash_fn(gfn);
8256
8257         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8258                      (vcpu->arch.apf.gfns[key] != gfn &&
8259                       vcpu->arch.apf.gfns[key] != ~0); i++)
8260                 key = kvm_async_pf_next_probe(key);
8261
8262         return key;
8263 }
8264
8265 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8266 {
8267         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8268 }
8269
8270 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8271 {
8272         u32 i, j, k;
8273
8274         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8275         while (true) {
8276                 vcpu->arch.apf.gfns[i] = ~0;
8277                 do {
8278                         j = kvm_async_pf_next_probe(j);
8279                         if (vcpu->arch.apf.gfns[j] == ~0)
8280                                 return;
8281                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8282                         /*
8283                          * k lies cyclically in ]i,j]
8284                          * |    i.k.j |
8285                          * |....j i.k.| or  |.k..j i...|
8286                          */
8287                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8288                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8289                 i = j;
8290         }
8291 }
8292
8293 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8294 {
8295
8296         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8297                                       sizeof(val));
8298 }
8299
8300 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8301                                      struct kvm_async_pf *work)
8302 {
8303         struct x86_exception fault;
8304
8305         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8306         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8307
8308         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8309             (vcpu->arch.apf.send_user_only &&
8310              kvm_x86_ops->get_cpl(vcpu) == 0))
8311                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8312         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8313                 fault.vector = PF_VECTOR;
8314                 fault.error_code_valid = true;
8315                 fault.error_code = 0;
8316                 fault.nested_page_fault = false;
8317                 fault.address = work->arch.token;
8318                 kvm_inject_page_fault(vcpu, &fault);
8319         }
8320 }
8321
8322 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8323                                  struct kvm_async_pf *work)
8324 {
8325         struct x86_exception fault;
8326
8327         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8328         if (work->wakeup_all)
8329                 work->arch.token = ~0; /* broadcast wakeup */
8330         else
8331                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8332
8333         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8334             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8335                 fault.vector = PF_VECTOR;
8336                 fault.error_code_valid = true;
8337                 fault.error_code = 0;
8338                 fault.nested_page_fault = false;
8339                 fault.address = work->arch.token;
8340                 kvm_inject_page_fault(vcpu, &fault);
8341         }
8342         vcpu->arch.apf.halted = false;
8343         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8344 }
8345
8346 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8347 {
8348         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8349                 return true;
8350         else
8351                 return !kvm_event_needs_reinjection(vcpu) &&
8352                         kvm_x86_ops->interrupt_allowed(vcpu);
8353 }
8354
8355 void kvm_arch_start_assignment(struct kvm *kvm)
8356 {
8357         atomic_inc(&kvm->arch.assigned_device_count);
8358 }
8359 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8360
8361 void kvm_arch_end_assignment(struct kvm *kvm)
8362 {
8363         atomic_dec(&kvm->arch.assigned_device_count);
8364 }
8365 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8366
8367 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8368 {
8369         return atomic_read(&kvm->arch.assigned_device_count);
8370 }
8371 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8372
8373 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8374 {
8375         atomic_inc(&kvm->arch.noncoherent_dma_count);
8376 }
8377 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8378
8379 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8380 {
8381         atomic_dec(&kvm->arch.noncoherent_dma_count);
8382 }
8383 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8384
8385 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8386 {
8387         return atomic_read(&kvm->arch.noncoherent_dma_count);
8388 }
8389 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8390
8391 bool kvm_arch_has_irq_bypass(void)
8392 {
8393         return kvm_x86_ops->update_pi_irte != NULL;
8394 }
8395
8396 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8397                                       struct irq_bypass_producer *prod)
8398 {
8399         struct kvm_kernel_irqfd *irqfd =
8400                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8401
8402         irqfd->producer = prod;
8403
8404         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8405                                            prod->irq, irqfd->gsi, 1);
8406 }
8407
8408 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8409                                       struct irq_bypass_producer *prod)
8410 {
8411         int ret;
8412         struct kvm_kernel_irqfd *irqfd =
8413                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8414
8415         WARN_ON(irqfd->producer != prod);
8416         irqfd->producer = NULL;
8417
8418         /*
8419          * When producer of consumer is unregistered, we change back to
8420          * remapped mode, so we can re-use the current implementation
8421          * when the irq is masked/disabled or the consumer side (KVM
8422          * int this case doesn't want to receive the interrupts.
8423         */
8424         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8425         if (ret)
8426                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8427                        " fails: %d\n", irqfd->consumer.token, ret);
8428 }
8429
8430 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8431                                    uint32_t guest_irq, bool set)
8432 {
8433         if (!kvm_x86_ops->update_pi_irte)
8434                 return -EINVAL;
8435
8436         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8437 }
8438
8439 bool kvm_vector_hashing_enabled(void)
8440 {
8441         return vector_hashing;
8442 }
8443 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8444
8445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);