KVM: fail KVM_SET_VCPU_EVENTS with invalid exception number
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134         int nr;
135         u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139         struct user_return_notifier urn;
140         bool registered;
141         struct kvm_shared_msr_values {
142                 u64 host;
143                 u64 curr;
144         } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151         { "pf_fixed", VCPU_STAT(pf_fixed) },
152         { "pf_guest", VCPU_STAT(pf_guest) },
153         { "tlb_flush", VCPU_STAT(tlb_flush) },
154         { "invlpg", VCPU_STAT(invlpg) },
155         { "exits", VCPU_STAT(exits) },
156         { "io_exits", VCPU_STAT(io_exits) },
157         { "mmio_exits", VCPU_STAT(mmio_exits) },
158         { "signal_exits", VCPU_STAT(signal_exits) },
159         { "irq_window", VCPU_STAT(irq_window_exits) },
160         { "nmi_window", VCPU_STAT(nmi_window_exits) },
161         { "halt_exits", VCPU_STAT(halt_exits) },
162         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
165         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
166         { "hypercalls", VCPU_STAT(hypercalls) },
167         { "request_irq", VCPU_STAT(request_irq_exits) },
168         { "irq_exits", VCPU_STAT(irq_exits) },
169         { "host_state_reload", VCPU_STAT(host_state_reload) },
170         { "efer_reload", VCPU_STAT(efer_reload) },
171         { "fpu_reload", VCPU_STAT(fpu_reload) },
172         { "insn_emulation", VCPU_STAT(insn_emulation) },
173         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
174         { "irq_injections", VCPU_STAT(irq_injections) },
175         { "nmi_injections", VCPU_STAT(nmi_injections) },
176         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
177         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
178         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
179         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
180         { "mmu_flooded", VM_STAT(mmu_flooded) },
181         { "mmu_recycled", VM_STAT(mmu_recycled) },
182         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
183         { "mmu_unsync", VM_STAT(mmu_unsync) },
184         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
185         { "largepages", VM_STAT(lpages) },
186         { NULL }
187 };
188
189 u64 __read_mostly host_xcr0;
190
191 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
192
193 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
194 {
195         int i;
196         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
197                 vcpu->arch.apf.gfns[i] = ~0;
198 }
199
200 static void kvm_on_user_return(struct user_return_notifier *urn)
201 {
202         unsigned slot;
203         struct kvm_shared_msrs *locals
204                 = container_of(urn, struct kvm_shared_msrs, urn);
205         struct kvm_shared_msr_values *values;
206
207         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
208                 values = &locals->values[slot];
209                 if (values->host != values->curr) {
210                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
211                         values->curr = values->host;
212                 }
213         }
214         locals->registered = false;
215         user_return_notifier_unregister(urn);
216 }
217
218 static void shared_msr_update(unsigned slot, u32 msr)
219 {
220         u64 value;
221         unsigned int cpu = smp_processor_id();
222         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
223
224         /* only read, and nobody should modify it at this time,
225          * so don't need lock */
226         if (slot >= shared_msrs_global.nr) {
227                 printk(KERN_ERR "kvm: invalid MSR slot!");
228                 return;
229         }
230         rdmsrl_safe(msr, &value);
231         smsr->values[slot].host = value;
232         smsr->values[slot].curr = value;
233 }
234
235 void kvm_define_shared_msr(unsigned slot, u32 msr)
236 {
237         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
238         shared_msrs_global.msrs[slot] = msr;
239         if (slot >= shared_msrs_global.nr)
240                 shared_msrs_global.nr = slot + 1;
241 }
242 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
243
244 static void kvm_shared_msr_cpu_online(void)
245 {
246         unsigned i;
247
248         for (i = 0; i < shared_msrs_global.nr; ++i)
249                 shared_msr_update(i, shared_msrs_global.msrs[i]);
250 }
251
252 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
253 {
254         unsigned int cpu = smp_processor_id();
255         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256         int err;
257
258         if (((value ^ smsr->values[slot].curr) & mask) == 0)
259                 return 0;
260         smsr->values[slot].curr = value;
261         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
262         if (err)
263                 return 1;
264
265         if (!smsr->registered) {
266                 smsr->urn.on_user_return = kvm_on_user_return;
267                 user_return_notifier_register(&smsr->urn);
268                 smsr->registered = true;
269         }
270         return 0;
271 }
272 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
273
274 static void drop_user_return_notifiers(void)
275 {
276         unsigned int cpu = smp_processor_id();
277         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278
279         if (smsr->registered)
280                 kvm_on_user_return(&smsr->urn);
281 }
282
283 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
284 {
285         return vcpu->arch.apic_base;
286 }
287 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
288
289 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
290 {
291         u64 old_state = vcpu->arch.apic_base &
292                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
293         u64 new_state = msr_info->data &
294                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
295         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
296                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
297
298         if (!msr_info->host_initiated &&
299             ((msr_info->data & reserved_bits) != 0 ||
300              new_state == X2APIC_ENABLE ||
301              (new_state == MSR_IA32_APICBASE_ENABLE &&
302               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
303              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
304               old_state == 0)))
305                 return 1;
306
307         kvm_lapic_set_base(vcpu, msr_info->data);
308         return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
311
312 asmlinkage __visible void kvm_spurious_fault(void)
313 {
314         /* Fault while not rebooting.  We want the trace. */
315         BUG();
316 }
317 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
318
319 #define EXCPT_BENIGN            0
320 #define EXCPT_CONTRIBUTORY      1
321 #define EXCPT_PF                2
322
323 static int exception_class(int vector)
324 {
325         switch (vector) {
326         case PF_VECTOR:
327                 return EXCPT_PF;
328         case DE_VECTOR:
329         case TS_VECTOR:
330         case NP_VECTOR:
331         case SS_VECTOR:
332         case GP_VECTOR:
333                 return EXCPT_CONTRIBUTORY;
334         default:
335                 break;
336         }
337         return EXCPT_BENIGN;
338 }
339
340 #define EXCPT_FAULT             0
341 #define EXCPT_TRAP              1
342 #define EXCPT_ABORT             2
343 #define EXCPT_INTERRUPT         3
344
345 static int exception_type(int vector)
346 {
347         unsigned int mask;
348
349         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
350                 return EXCPT_INTERRUPT;
351
352         mask = 1 << vector;
353
354         /* #DB is trap, as instruction watchpoints are handled elsewhere */
355         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
356                 return EXCPT_TRAP;
357
358         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
359                 return EXCPT_ABORT;
360
361         /* Reserved exceptions will result in fault */
362         return EXCPT_FAULT;
363 }
364
365 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
366                 unsigned nr, bool has_error, u32 error_code,
367                 bool reinject)
368 {
369         u32 prev_nr;
370         int class1, class2;
371
372         kvm_make_request(KVM_REQ_EVENT, vcpu);
373
374         if (!vcpu->arch.exception.pending) {
375         queue:
376                 if (has_error && !is_protmode(vcpu))
377                         has_error = false;
378                 vcpu->arch.exception.pending = true;
379                 vcpu->arch.exception.has_error_code = has_error;
380                 vcpu->arch.exception.nr = nr;
381                 vcpu->arch.exception.error_code = error_code;
382                 vcpu->arch.exception.reinject = reinject;
383                 return;
384         }
385
386         /* to check exception */
387         prev_nr = vcpu->arch.exception.nr;
388         if (prev_nr == DF_VECTOR) {
389                 /* triple fault -> shutdown */
390                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
391                 return;
392         }
393         class1 = exception_class(prev_nr);
394         class2 = exception_class(nr);
395         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
396                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
397                 /* generate double fault per SDM Table 5-5 */
398                 vcpu->arch.exception.pending = true;
399                 vcpu->arch.exception.has_error_code = true;
400                 vcpu->arch.exception.nr = DF_VECTOR;
401                 vcpu->arch.exception.error_code = 0;
402         } else
403                 /* replace previous exception with a new one in a hope
404                    that instruction re-execution will regenerate lost
405                    exception */
406                 goto queue;
407 }
408
409 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
410 {
411         kvm_multiple_exception(vcpu, nr, false, 0, false);
412 }
413 EXPORT_SYMBOL_GPL(kvm_queue_exception);
414
415 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
416 {
417         kvm_multiple_exception(vcpu, nr, false, 0, true);
418 }
419 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
420
421 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
422 {
423         if (err)
424                 kvm_inject_gp(vcpu, 0);
425         else
426                 kvm_x86_ops->skip_emulated_instruction(vcpu);
427 }
428 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
429
430 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
431 {
432         ++vcpu->stat.pf_guest;
433         vcpu->arch.cr2 = fault->address;
434         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
435 }
436 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
437
438 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
439 {
440         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
441                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
442         else
443                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
444
445         return fault->nested_page_fault;
446 }
447
448 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
449 {
450         atomic_inc(&vcpu->arch.nmi_queued);
451         kvm_make_request(KVM_REQ_NMI, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
454
455 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
456 {
457         kvm_multiple_exception(vcpu, nr, true, error_code, false);
458 }
459 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
460
461 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
462 {
463         kvm_multiple_exception(vcpu, nr, true, error_code, true);
464 }
465 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
466
467 /*
468  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
469  * a #GP and return false.
470  */
471 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
472 {
473         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
474                 return true;
475         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
476         return false;
477 }
478 EXPORT_SYMBOL_GPL(kvm_require_cpl);
479
480 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
481 {
482         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
483                 return true;
484
485         kvm_queue_exception(vcpu, UD_VECTOR);
486         return false;
487 }
488 EXPORT_SYMBOL_GPL(kvm_require_dr);
489
490 /*
491  * This function will be used to read from the physical memory of the currently
492  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
493  * can read from guest physical or from the guest's guest physical memory.
494  */
495 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
496                             gfn_t ngfn, void *data, int offset, int len,
497                             u32 access)
498 {
499         struct x86_exception exception;
500         gfn_t real_gfn;
501         gpa_t ngpa;
502
503         ngpa     = gfn_to_gpa(ngfn);
504         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
505         if (real_gfn == UNMAPPED_GVA)
506                 return -EFAULT;
507
508         real_gfn = gpa_to_gfn(real_gfn);
509
510         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
511 }
512 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
513
514 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
515                                void *data, int offset, int len, u32 access)
516 {
517         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
518                                        data, offset, len, access);
519 }
520
521 /*
522  * Load the pae pdptrs.  Return true is they are all valid.
523  */
524 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
525 {
526         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
527         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
528         int i;
529         int ret;
530         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
531
532         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
533                                       offset * sizeof(u64), sizeof(pdpte),
534                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
535         if (ret < 0) {
536                 ret = 0;
537                 goto out;
538         }
539         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
540                 if (is_present_gpte(pdpte[i]) &&
541                     (pdpte[i] &
542                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
543                         ret = 0;
544                         goto out;
545                 }
546         }
547         ret = 1;
548
549         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
550         __set_bit(VCPU_EXREG_PDPTR,
551                   (unsigned long *)&vcpu->arch.regs_avail);
552         __set_bit(VCPU_EXREG_PDPTR,
553                   (unsigned long *)&vcpu->arch.regs_dirty);
554 out:
555
556         return ret;
557 }
558 EXPORT_SYMBOL_GPL(load_pdptrs);
559
560 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
561 {
562         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
563         bool changed = true;
564         int offset;
565         gfn_t gfn;
566         int r;
567
568         if (is_long_mode(vcpu) || !is_pae(vcpu))
569                 return false;
570
571         if (!test_bit(VCPU_EXREG_PDPTR,
572                       (unsigned long *)&vcpu->arch.regs_avail))
573                 return true;
574
575         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
576         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
577         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
578                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
579         if (r < 0)
580                 goto out;
581         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
582 out:
583
584         return changed;
585 }
586
587 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
588 {
589         unsigned long old_cr0 = kvm_read_cr0(vcpu);
590         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
591
592         cr0 |= X86_CR0_ET;
593
594 #ifdef CONFIG_X86_64
595         if (cr0 & 0xffffffff00000000UL)
596                 return 1;
597 #endif
598
599         cr0 &= ~CR0_RESERVED_BITS;
600
601         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
602                 return 1;
603
604         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
605                 return 1;
606
607         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
608 #ifdef CONFIG_X86_64
609                 if ((vcpu->arch.efer & EFER_LME)) {
610                         int cs_db, cs_l;
611
612                         if (!is_pae(vcpu))
613                                 return 1;
614                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
615                         if (cs_l)
616                                 return 1;
617                 } else
618 #endif
619                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
620                                                  kvm_read_cr3(vcpu)))
621                         return 1;
622         }
623
624         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
625                 return 1;
626
627         kvm_x86_ops->set_cr0(vcpu, cr0);
628
629         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
630                 kvm_clear_async_pf_completion_queue(vcpu);
631                 kvm_async_pf_hash_reset(vcpu);
632         }
633
634         if ((cr0 ^ old_cr0) & update_bits)
635                 kvm_mmu_reset_context(vcpu);
636
637         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
638             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
639             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
640                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
641
642         return 0;
643 }
644 EXPORT_SYMBOL_GPL(kvm_set_cr0);
645
646 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
647 {
648         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
649 }
650 EXPORT_SYMBOL_GPL(kvm_lmsw);
651
652 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
653 {
654         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
655                         !vcpu->guest_xcr0_loaded) {
656                 /* kvm_set_xcr() also depends on this */
657                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
658                 vcpu->guest_xcr0_loaded = 1;
659         }
660 }
661
662 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
663 {
664         if (vcpu->guest_xcr0_loaded) {
665                 if (vcpu->arch.xcr0 != host_xcr0)
666                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
667                 vcpu->guest_xcr0_loaded = 0;
668         }
669 }
670
671 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
672 {
673         u64 xcr0 = xcr;
674         u64 old_xcr0 = vcpu->arch.xcr0;
675         u64 valid_bits;
676
677         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
678         if (index != XCR_XFEATURE_ENABLED_MASK)
679                 return 1;
680         if (!(xcr0 & XFEATURE_MASK_FP))
681                 return 1;
682         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
683                 return 1;
684
685         /*
686          * Do not allow the guest to set bits that we do not support
687          * saving.  However, xcr0 bit 0 is always set, even if the
688          * emulated CPU does not support XSAVE (see fx_init).
689          */
690         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
691         if (xcr0 & ~valid_bits)
692                 return 1;
693
694         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
695             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
696                 return 1;
697
698         if (xcr0 & XFEATURE_MASK_AVX512) {
699                 if (!(xcr0 & XFEATURE_MASK_YMM))
700                         return 1;
701                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
702                         return 1;
703         }
704         vcpu->arch.xcr0 = xcr0;
705
706         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707                 kvm_update_cpuid(vcpu);
708         return 0;
709 }
710
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714             __kvm_set_xcr(vcpu, index, xcr)) {
715                 kvm_inject_gp(vcpu, 0);
716                 return 1;
717         }
718         return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724         unsigned long old_cr4 = kvm_read_cr4(vcpu);
725         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727
728         if (cr4 & CR4_RESERVED_BITS)
729                 return 1;
730
731         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732                 return 1;
733
734         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735                 return 1;
736
737         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738                 return 1;
739
740         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741                 return 1;
742
743         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744                 return 1;
745
746         if (is_long_mode(vcpu)) {
747                 if (!(cr4 & X86_CR4_PAE))
748                         return 1;
749         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750                    && ((cr4 ^ old_cr4) & pdptr_bits)
751                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752                                    kvm_read_cr3(vcpu)))
753                 return 1;
754
755         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756                 if (!guest_cpuid_has_pcid(vcpu))
757                         return 1;
758
759                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761                         return 1;
762         }
763
764         if (kvm_x86_ops->set_cr4(vcpu, cr4))
765                 return 1;
766
767         if (((cr4 ^ old_cr4) & pdptr_bits) ||
768             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769                 kvm_mmu_reset_context(vcpu);
770
771         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772                 kvm_update_cpuid(vcpu);
773
774         return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781         cr3 &= ~CR3_PCID_INVD;
782 #endif
783
784         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785                 kvm_mmu_sync_roots(vcpu);
786                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787                 return 0;
788         }
789
790         if (is_long_mode(vcpu)) {
791                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
792                         return 1;
793         } else if (is_pae(vcpu) && is_paging(vcpu) &&
794                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795                 return 1;
796
797         vcpu->arch.cr3 = cr3;
798         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799         kvm_mmu_new_cr3(vcpu);
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806         if (cr8 & CR8_RESERVED_BITS)
807                 return 1;
808         if (lapic_in_kernel(vcpu))
809                 kvm_lapic_set_tpr(vcpu, cr8);
810         else
811                 vcpu->arch.cr8 = cr8;
812         return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818         if (lapic_in_kernel(vcpu))
819                 return kvm_lapic_get_cr8(vcpu);
820         else
821                 return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827         int i;
828
829         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830                 for (i = 0; i < KVM_NR_DB_REGS; i++)
831                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833         }
834 }
835
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844         unsigned long dr7;
845
846         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847                 dr7 = vcpu->arch.guest_debug_dr7;
848         else
849                 dr7 = vcpu->arch.dr7;
850         kvm_x86_ops->set_dr7(vcpu, dr7);
851         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852         if (dr7 & DR7_BP_EN_MASK)
853                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858         u64 fixed = DR6_FIXED_1;
859
860         if (!guest_cpuid_has_rtm(vcpu))
861                 fixed |= DR6_RTM;
862         return fixed;
863 }
864
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867         switch (dr) {
868         case 0 ... 3:
869                 vcpu->arch.db[dr] = val;
870                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871                         vcpu->arch.eff_db[dr] = val;
872                 break;
873         case 4:
874                 /* fall through */
875         case 6:
876                 if (val & 0xffffffff00000000ULL)
877                         return -1; /* #GP */
878                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879                 kvm_update_dr6(vcpu);
880                 break;
881         case 5:
882                 /* fall through */
883         default: /* 7 */
884                 if (val & 0xffffffff00000000ULL)
885                         return -1; /* #GP */
886                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887                 kvm_update_dr7(vcpu);
888                 break;
889         }
890
891         return 0;
892 }
893
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896         if (__kvm_set_dr(vcpu, dr, val)) {
897                 kvm_inject_gp(vcpu, 0);
898                 return 1;
899         }
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906         switch (dr) {
907         case 0 ... 3:
908                 *val = vcpu->arch.db[dr];
909                 break;
910         case 4:
911                 /* fall through */
912         case 6:
913                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914                         *val = vcpu->arch.dr6;
915                 else
916                         *val = kvm_x86_ops->get_dr6(vcpu);
917                 break;
918         case 5:
919                 /* fall through */
920         default: /* 7 */
921                 *val = vcpu->arch.dr7;
922                 break;
923         }
924         return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931         u64 data;
932         int err;
933
934         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935         if (err)
936                 return err;
937         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939         return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952
953 static u32 msrs_to_save[] = {
954         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955         MSR_STAR,
956 #ifdef CONFIG_X86_64
957         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962
963 static unsigned num_msrs_to_save;
964
965 static u32 emulated_msrs[] = {
966         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972         HV_X64_MSR_RESET,
973         HV_X64_MSR_VP_INDEX,
974         HV_X64_MSR_VP_RUNTIME,
975         HV_X64_MSR_SCONTROL,
976         HV_X64_MSR_STIMER0_CONFIG,
977         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978         MSR_KVM_PV_EOI_EN,
979
980         MSR_IA32_TSC_ADJUST,
981         MSR_IA32_TSCDEADLINE,
982         MSR_IA32_MISC_ENABLE,
983         MSR_IA32_MCG_STATUS,
984         MSR_IA32_MCG_CTL,
985         MSR_IA32_SMBASE,
986 };
987
988 static unsigned num_emulated_msrs;
989
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992         if (efer & efer_reserved_bits)
993                 return false;
994
995         if (efer & EFER_FFXSR) {
996                 struct kvm_cpuid_entry2 *feat;
997
998                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000                         return false;
1001         }
1002
1003         if (efer & EFER_SVME) {
1004                 struct kvm_cpuid_entry2 *feat;
1005
1006                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008                         return false;
1009         }
1010
1011         return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017         u64 old_efer = vcpu->arch.efer;
1018
1019         if (!kvm_valid_efer(vcpu, efer))
1020                 return 1;
1021
1022         if (is_paging(vcpu)
1023             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024                 return 1;
1025
1026         efer &= ~EFER_LMA;
1027         efer |= vcpu->arch.efer & EFER_LMA;
1028
1029         kvm_x86_ops->set_efer(vcpu, efer);
1030
1031         /* Update reserved bits */
1032         if ((efer ^ old_efer) & EFER_NX)
1033                 kvm_mmu_reset_context(vcpu);
1034
1035         return 0;
1036 }
1037
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051         switch (msr->index) {
1052         case MSR_FS_BASE:
1053         case MSR_GS_BASE:
1054         case MSR_KERNEL_GS_BASE:
1055         case MSR_CSTAR:
1056         case MSR_LSTAR:
1057                 if (is_noncanonical_address(msr->data))
1058                         return 1;
1059                 break;
1060         case MSR_IA32_SYSENTER_EIP:
1061         case MSR_IA32_SYSENTER_ESP:
1062                 /*
1063                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064                  * non-canonical address is written on Intel but not on
1065                  * AMD (which ignores the top 32-bits, because it does
1066                  * not implement 64-bit SYSENTER).
1067                  *
1068                  * 64-bit code should hence be able to write a non-canonical
1069                  * value on AMD.  Making the address canonical ensures that
1070                  * vmentry does not fail on Intel after writing a non-canonical
1071                  * value, and that something deterministic happens if the guest
1072                  * invokes 64-bit SYSENTER.
1073                  */
1074                 msr->data = get_canonical(msr->data);
1075         }
1076         return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085         struct msr_data msr;
1086         int r;
1087
1088         msr.index = index;
1089         msr.host_initiated = true;
1090         r = kvm_get_msr(vcpu, &msr);
1091         if (r)
1092                 return r;
1093
1094         *data = msr.data;
1095         return 0;
1096 }
1097
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100         struct msr_data msr;
1101
1102         msr.data = *data;
1103         msr.index = index;
1104         msr.host_initiated = true;
1105         return kvm_set_msr(vcpu, &msr);
1106 }
1107
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110         seqcount_t      seq;
1111
1112         struct { /* extract of a clocksource struct */
1113                 int vclock_mode;
1114                 cycle_t cycle_last;
1115                 cycle_t mask;
1116                 u32     mult;
1117                 u32     shift;
1118         } clock;
1119
1120         u64             boot_ns;
1121         u64             nsec_base;
1122 };
1123
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129         u64 boot_ns;
1130
1131         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132
1133         write_seqcount_begin(&vdata->seq);
1134
1135         /* copy pvclock gtod data */
1136         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1137         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1138         vdata->clock.mask               = tk->tkr_mono.mask;
1139         vdata->clock.mult               = tk->tkr_mono.mult;
1140         vdata->clock.shift              = tk->tkr_mono.shift;
1141
1142         vdata->boot_ns                  = boot_ns;
1143         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1144
1145         write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151         /*
1152          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153          * vcpu_enter_guest.  This function is only called from
1154          * the physical CPU that is running vcpu.
1155          */
1156         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161         int version;
1162         int r;
1163         struct pvclock_wall_clock wc;
1164         struct timespec boot;
1165
1166         if (!wall_clock)
1167                 return;
1168
1169         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170         if (r)
1171                 return;
1172
1173         if (version & 1)
1174                 ++version;  /* first time write, random junk */
1175
1176         ++version;
1177
1178         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179                 return;
1180
1181         /*
1182          * The guest calculates current wall clock time by adding
1183          * system time (updated by kvm_guest_time_update below) to the
1184          * wall clock specified here.  guest system time equals host
1185          * system time for us, thus we must fill in host boot time here.
1186          */
1187         getboottime(&boot);
1188
1189         if (kvm->arch.kvmclock_offset) {
1190                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191                 boot = timespec_sub(boot, ts);
1192         }
1193         wc.sec = boot.tv_sec;
1194         wc.nsec = boot.tv_nsec;
1195         wc.version = version;
1196
1197         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198
1199         version++;
1200         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205         do_shl32_div32(dividend, divisor);
1206         return dividend;
1207 }
1208
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210                                s8 *pshift, u32 *pmultiplier)
1211 {
1212         uint64_t scaled64;
1213         int32_t  shift = 0;
1214         uint64_t tps64;
1215         uint32_t tps32;
1216
1217         tps64 = base_hz;
1218         scaled64 = scaled_hz;
1219         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220                 tps64 >>= 1;
1221                 shift--;
1222         }
1223
1224         tps32 = (uint32_t)tps64;
1225         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227                         scaled64 >>= 1;
1228                 else
1229                         tps32 <<= 1;
1230                 shift++;
1231         }
1232
1233         *pshift = shift;
1234         *pmultiplier = div_frac(scaled64, tps32);
1235
1236         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246
1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1248 {
1249         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1250                                    vcpu->arch.virtual_tsc_shift);
1251 }
1252
1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1254 {
1255         u64 v = (u64)khz * (1000000 + ppm);
1256         do_div(v, 1000000);
1257         return v;
1258 }
1259
1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1261 {
1262         u64 ratio;
1263
1264         /* Guest TSC same frequency as host TSC? */
1265         if (!scale) {
1266                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1267                 return 0;
1268         }
1269
1270         /* TSC scaling supported? */
1271         if (!kvm_has_tsc_control) {
1272                 if (user_tsc_khz > tsc_khz) {
1273                         vcpu->arch.tsc_catchup = 1;
1274                         vcpu->arch.tsc_always_catchup = 1;
1275                         return 0;
1276                 } else {
1277                         WARN(1, "user requested TSC rate below hardware speed\n");
1278                         return -1;
1279                 }
1280         }
1281
1282         /* TSC scaling required  - calculate ratio */
1283         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1284                                 user_tsc_khz, tsc_khz);
1285
1286         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1287                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1288                           user_tsc_khz);
1289                 return -1;
1290         }
1291
1292         vcpu->arch.tsc_scaling_ratio = ratio;
1293         return 0;
1294 }
1295
1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1297 {
1298         u32 thresh_lo, thresh_hi;
1299         int use_scaling = 0;
1300
1301         /* tsc_khz can be zero if TSC calibration fails */
1302         if (user_tsc_khz == 0) {
1303                 /* set tsc_scaling_ratio to a safe value */
1304                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1305                 return -1;
1306         }
1307
1308         /* Compute a scale to convert nanoseconds in TSC cycles */
1309         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1310                            &vcpu->arch.virtual_tsc_shift,
1311                            &vcpu->arch.virtual_tsc_mult);
1312         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1313
1314         /*
1315          * Compute the variation in TSC rate which is acceptable
1316          * within the range of tolerance and decide if the
1317          * rate being applied is within that bounds of the hardware
1318          * rate.  If so, no scaling or compensation need be done.
1319          */
1320         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1321         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1322         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1323                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1324                 use_scaling = 1;
1325         }
1326         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1327 }
1328
1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1330 {
1331         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1332                                       vcpu->arch.virtual_tsc_mult,
1333                                       vcpu->arch.virtual_tsc_shift);
1334         tsc += vcpu->arch.this_tsc_write;
1335         return tsc;
1336 }
1337
1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1339 {
1340 #ifdef CONFIG_X86_64
1341         bool vcpus_matched;
1342         struct kvm_arch *ka = &vcpu->kvm->arch;
1343         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344
1345         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1346                          atomic_read(&vcpu->kvm->online_vcpus));
1347
1348         /*
1349          * Once the masterclock is enabled, always perform request in
1350          * order to update it.
1351          *
1352          * In order to enable masterclock, the host clocksource must be TSC
1353          * and the vcpus need to have matched TSCs.  When that happens,
1354          * perform request to enable masterclock.
1355          */
1356         if (ka->use_master_clock ||
1357             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1358                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1359
1360         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1361                             atomic_read(&vcpu->kvm->online_vcpus),
1362                             ka->use_master_clock, gtod->clock.vclock_mode);
1363 #endif
1364 }
1365
1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1367 {
1368         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1369         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1370 }
1371
1372 /*
1373  * Multiply tsc by a fixed point number represented by ratio.
1374  *
1375  * The most significant 64-N bits (mult) of ratio represent the
1376  * integral part of the fixed point number; the remaining N bits
1377  * (frac) represent the fractional part, ie. ratio represents a fixed
1378  * point number (mult + frac * 2^(-N)).
1379  *
1380  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381  */
1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1383 {
1384         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1385 }
1386
1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1388 {
1389         u64 _tsc = tsc;
1390         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1391
1392         if (ratio != kvm_default_tsc_scaling_ratio)
1393                 _tsc = __scale_tsc(ratio, tsc);
1394
1395         return _tsc;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1398
1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1400 {
1401         u64 tsc;
1402
1403         tsc = kvm_scale_tsc(vcpu, rdtsc());
1404
1405         return target_tsc - tsc;
1406 }
1407
1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1409 {
1410         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1413
1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1415 {
1416         struct kvm *kvm = vcpu->kvm;
1417         u64 offset, ns, elapsed;
1418         unsigned long flags;
1419         s64 usdiff;
1420         bool matched;
1421         bool already_matched;
1422         u64 data = msr->data;
1423
1424         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1425         offset = kvm_compute_tsc_offset(vcpu, data);
1426         ns = get_kernel_ns();
1427         elapsed = ns - kvm->arch.last_tsc_nsec;
1428
1429         if (vcpu->arch.virtual_tsc_khz) {
1430                 int faulted = 0;
1431
1432                 /* n.b - signed multiplication and division required */
1433                 usdiff = data - kvm->arch.last_tsc_write;
1434 #ifdef CONFIG_X86_64
1435                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1436 #else
1437                 /* do_div() only does unsigned */
1438                 asm("1: idivl %[divisor]\n"
1439                     "2: xor %%edx, %%edx\n"
1440                     "   movl $0, %[faulted]\n"
1441                     "3:\n"
1442                     ".section .fixup,\"ax\"\n"
1443                     "4: movl $1, %[faulted]\n"
1444                     "   jmp  3b\n"
1445                     ".previous\n"
1446
1447                 _ASM_EXTABLE(1b, 4b)
1448
1449                 : "=A"(usdiff), [faulted] "=r" (faulted)
1450                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1451
1452 #endif
1453                 do_div(elapsed, 1000);
1454                 usdiff -= elapsed;
1455                 if (usdiff < 0)
1456                         usdiff = -usdiff;
1457
1458                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1459                 if (faulted)
1460                         usdiff = USEC_PER_SEC;
1461         } else
1462                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1463
1464         /*
1465          * Special case: TSC write with a small delta (1 second) of virtual
1466          * cycle time against real time is interpreted as an attempt to
1467          * synchronize the CPU.
1468          *
1469          * For a reliable TSC, we can match TSC offsets, and for an unstable
1470          * TSC, we add elapsed time in this computation.  We could let the
1471          * compensation code attempt to catch up if we fall behind, but
1472          * it's better to try to match offsets from the beginning.
1473          */
1474         if (usdiff < USEC_PER_SEC &&
1475             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1476                 if (!check_tsc_unstable()) {
1477                         offset = kvm->arch.cur_tsc_offset;
1478                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1479                 } else {
1480                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1481                         data += delta;
1482                         offset = kvm_compute_tsc_offset(vcpu, data);
1483                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1484                 }
1485                 matched = true;
1486                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1487         } else {
1488                 /*
1489                  * We split periods of matched TSC writes into generations.
1490                  * For each generation, we track the original measured
1491                  * nanosecond time, offset, and write, so if TSCs are in
1492                  * sync, we can match exact offset, and if not, we can match
1493                  * exact software computation in compute_guest_tsc()
1494                  *
1495                  * These values are tracked in kvm->arch.cur_xxx variables.
1496                  */
1497                 kvm->arch.cur_tsc_generation++;
1498                 kvm->arch.cur_tsc_nsec = ns;
1499                 kvm->arch.cur_tsc_write = data;
1500                 kvm->arch.cur_tsc_offset = offset;
1501                 matched = false;
1502                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1503                          kvm->arch.cur_tsc_generation, data);
1504         }
1505
1506         /*
1507          * We also track th most recent recorded KHZ, write and time to
1508          * allow the matching interval to be extended at each write.
1509          */
1510         kvm->arch.last_tsc_nsec = ns;
1511         kvm->arch.last_tsc_write = data;
1512         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1513
1514         vcpu->arch.last_guest_tsc = data;
1515
1516         /* Keep track of which generation this VCPU has synchronized to */
1517         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1518         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1519         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1520
1521         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1522                 update_ia32_tsc_adjust_msr(vcpu, offset);
1523         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1524         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1525
1526         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1527         if (!matched) {
1528                 kvm->arch.nr_vcpus_matched_tsc = 0;
1529         } else if (!already_matched) {
1530                 kvm->arch.nr_vcpus_matched_tsc++;
1531         }
1532
1533         kvm_track_tsc_matching(vcpu);
1534         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1535 }
1536
1537 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1538
1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1540                                            s64 adjustment)
1541 {
1542         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1543 }
1544
1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1546 {
1547         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1548                 WARN_ON(adjustment < 0);
1549         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1550         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552
1553 #ifdef CONFIG_X86_64
1554
1555 static cycle_t read_tsc(void)
1556 {
1557         cycle_t ret = (cycle_t)rdtsc_ordered();
1558         u64 last = pvclock_gtod_data.clock.cycle_last;
1559
1560         if (likely(ret >= last))
1561                 return ret;
1562
1563         /*
1564          * GCC likes to generate cmov here, but this branch is extremely
1565          * predictable (it's just a function of time and the likely is
1566          * very likely) and there's a data dependence, so force GCC
1567          * to generate a branch instead.  I don't barrier() because
1568          * we don't actually need a barrier, and if this function
1569          * ever gets inlined it will generate worse code.
1570          */
1571         asm volatile ("");
1572         return last;
1573 }
1574
1575 static inline u64 vgettsc(cycle_t *cycle_now)
1576 {
1577         long v;
1578         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1579
1580         *cycle_now = read_tsc();
1581
1582         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1583         return v * gtod->clock.mult;
1584 }
1585
1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1587 {
1588         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589         unsigned long seq;
1590         int mode;
1591         u64 ns;
1592
1593         do {
1594                 seq = read_seqcount_begin(&gtod->seq);
1595                 mode = gtod->clock.vclock_mode;
1596                 ns = gtod->nsec_base;
1597                 ns += vgettsc(cycle_now);
1598                 ns >>= gtod->clock.shift;
1599                 ns += gtod->boot_ns;
1600         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1601         *t = ns;
1602
1603         return mode;
1604 }
1605
1606 /* returns true if host is using tsc clocksource */
1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1608 {
1609         /* checked again under seqlock below */
1610         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1611                 return false;
1612
1613         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1614 }
1615 #endif
1616
1617 /*
1618  *
1619  * Assuming a stable TSC across physical CPUS, and a stable TSC
1620  * across virtual CPUs, the following condition is possible.
1621  * Each numbered line represents an event visible to both
1622  * CPUs at the next numbered event.
1623  *
1624  * "timespecX" represents host monotonic time. "tscX" represents
1625  * RDTSC value.
1626  *
1627  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1628  *
1629  * 1.  read timespec0,tsc0
1630  * 2.                                   | timespec1 = timespec0 + N
1631  *                                      | tsc1 = tsc0 + M
1632  * 3. transition to guest               | transition to guest
1633  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1634  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1635  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636  *
1637  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1638  *
1639  *      - ret0 < ret1
1640  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641  *              ...
1642  *      - 0 < N - M => M < N
1643  *
1644  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1645  * always the case (the difference between two distinct xtime instances
1646  * might be smaller then the difference between corresponding TSC reads,
1647  * when updating guest vcpus pvclock areas).
1648  *
1649  * To avoid that problem, do not allow visibility of distinct
1650  * system_timestamp/tsc_timestamp values simultaneously: use a master
1651  * copy of host monotonic time values. Update that master copy
1652  * in lockstep.
1653  *
1654  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655  *
1656  */
1657
1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1659 {
1660 #ifdef CONFIG_X86_64
1661         struct kvm_arch *ka = &kvm->arch;
1662         int vclock_mode;
1663         bool host_tsc_clocksource, vcpus_matched;
1664
1665         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1666                         atomic_read(&kvm->online_vcpus));
1667
1668         /*
1669          * If the host uses TSC clock, then passthrough TSC as stable
1670          * to the guest.
1671          */
1672         host_tsc_clocksource = kvm_get_time_and_clockread(
1673                                         &ka->master_kernel_ns,
1674                                         &ka->master_cycle_now);
1675
1676         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1677                                 && !backwards_tsc_observed
1678                                 && !ka->boot_vcpu_runs_old_kvmclock;
1679
1680         if (ka->use_master_clock)
1681                 atomic_set(&kvm_guest_has_master_clock, 1);
1682
1683         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1684         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1685                                         vcpus_matched);
1686 #endif
1687 }
1688
1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1690 {
1691         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1692 }
1693
1694 static void kvm_gen_update_masterclock(struct kvm *kvm)
1695 {
1696 #ifdef CONFIG_X86_64
1697         int i;
1698         struct kvm_vcpu *vcpu;
1699         struct kvm_arch *ka = &kvm->arch;
1700
1701         spin_lock(&ka->pvclock_gtod_sync_lock);
1702         kvm_make_mclock_inprogress_request(kvm);
1703         /* no guest entries from this point */
1704         pvclock_update_vm_gtod_copy(kvm);
1705
1706         kvm_for_each_vcpu(i, vcpu, kvm)
1707                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1708
1709         /* guest entries allowed */
1710         kvm_for_each_vcpu(i, vcpu, kvm)
1711                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1712
1713         spin_unlock(&ka->pvclock_gtod_sync_lock);
1714 #endif
1715 }
1716
1717 static int kvm_guest_time_update(struct kvm_vcpu *v)
1718 {
1719         unsigned long flags, tgt_tsc_khz;
1720         struct kvm_vcpu_arch *vcpu = &v->arch;
1721         struct kvm_arch *ka = &v->kvm->arch;
1722         s64 kernel_ns;
1723         u64 tsc_timestamp, host_tsc;
1724         struct pvclock_vcpu_time_info guest_hv_clock;
1725         u8 pvclock_flags;
1726         bool use_master_clock;
1727
1728         kernel_ns = 0;
1729         host_tsc = 0;
1730
1731         /*
1732          * If the host uses TSC clock, then passthrough TSC as stable
1733          * to the guest.
1734          */
1735         spin_lock(&ka->pvclock_gtod_sync_lock);
1736         use_master_clock = ka->use_master_clock;
1737         if (use_master_clock) {
1738                 host_tsc = ka->master_cycle_now;
1739                 kernel_ns = ka->master_kernel_ns;
1740         }
1741         spin_unlock(&ka->pvclock_gtod_sync_lock);
1742
1743         /* Keep irq disabled to prevent changes to the clock */
1744         local_irq_save(flags);
1745         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1746         if (unlikely(tgt_tsc_khz == 0)) {
1747                 local_irq_restore(flags);
1748                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1749                 return 1;
1750         }
1751         if (!use_master_clock) {
1752                 host_tsc = rdtsc();
1753                 kernel_ns = get_kernel_ns();
1754         }
1755
1756         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1757
1758         /*
1759          * We may have to catch up the TSC to match elapsed wall clock
1760          * time for two reasons, even if kvmclock is used.
1761          *   1) CPU could have been running below the maximum TSC rate
1762          *   2) Broken TSC compensation resets the base at each VCPU
1763          *      entry to avoid unknown leaps of TSC even when running
1764          *      again on the same CPU.  This may cause apparent elapsed
1765          *      time to disappear, and the guest to stand still or run
1766          *      very slowly.
1767          */
1768         if (vcpu->tsc_catchup) {
1769                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1770                 if (tsc > tsc_timestamp) {
1771                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1772                         tsc_timestamp = tsc;
1773                 }
1774         }
1775
1776         local_irq_restore(flags);
1777
1778         if (!vcpu->pv_time_enabled)
1779                 return 0;
1780
1781         if (kvm_has_tsc_control)
1782                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1783
1784         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1785                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1786                                    &vcpu->hv_clock.tsc_shift,
1787                                    &vcpu->hv_clock.tsc_to_system_mul);
1788                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1789         }
1790
1791         /* With all the info we got, fill in the values */
1792         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1793         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1794         vcpu->last_guest_tsc = tsc_timestamp;
1795
1796         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797                 &guest_hv_clock, sizeof(guest_hv_clock))))
1798                 return 0;
1799
1800         /* This VCPU is paused, but it's legal for a guest to read another
1801          * VCPU's kvmclock, so we really have to follow the specification where
1802          * it says that version is odd if data is being modified, and even after
1803          * it is consistent.
1804          *
1805          * Version field updates must be kept separate.  This is because
1806          * kvm_write_guest_cached might use a "rep movs" instruction, and
1807          * writes within a string instruction are weakly ordered.  So there
1808          * are three writes overall.
1809          *
1810          * As a small optimization, only write the version field in the first
1811          * and third write.  The vcpu->pv_time cache is still valid, because the
1812          * version field is the first in the struct.
1813          */
1814         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815
1816         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818                                 &vcpu->hv_clock,
1819                                 sizeof(vcpu->hv_clock.version));
1820
1821         smp_wmb();
1822
1823         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825
1826         if (vcpu->pvclock_set_guest_stopped_request) {
1827                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1828                 vcpu->pvclock_set_guest_stopped_request = false;
1829         }
1830
1831         /* If the host uses TSC clocksource, then it is stable */
1832         if (use_master_clock)
1833                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1834
1835         vcpu->hv_clock.flags = pvclock_flags;
1836
1837         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1838
1839         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840                                 &vcpu->hv_clock,
1841                                 sizeof(vcpu->hv_clock));
1842
1843         smp_wmb();
1844
1845         vcpu->hv_clock.version++;
1846         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1847                                 &vcpu->hv_clock,
1848                                 sizeof(vcpu->hv_clock.version));
1849         return 0;
1850 }
1851
1852 /*
1853  * kvmclock updates which are isolated to a given vcpu, such as
1854  * vcpu->cpu migration, should not allow system_timestamp from
1855  * the rest of the vcpus to remain static. Otherwise ntp frequency
1856  * correction applies to one vcpu's system_timestamp but not
1857  * the others.
1858  *
1859  * So in those cases, request a kvmclock update for all vcpus.
1860  * We need to rate-limit these requests though, as they can
1861  * considerably slow guests that have a large number of vcpus.
1862  * The time for a remote vcpu to update its kvmclock is bound
1863  * by the delay we use to rate-limit the updates.
1864  */
1865
1866 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1867
1868 static void kvmclock_update_fn(struct work_struct *work)
1869 {
1870         int i;
1871         struct delayed_work *dwork = to_delayed_work(work);
1872         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1873                                            kvmclock_update_work);
1874         struct kvm *kvm = container_of(ka, struct kvm, arch);
1875         struct kvm_vcpu *vcpu;
1876
1877         kvm_for_each_vcpu(i, vcpu, kvm) {
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1879                 kvm_vcpu_kick(vcpu);
1880         }
1881 }
1882
1883 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1884 {
1885         struct kvm *kvm = v->kvm;
1886
1887         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1888         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1889                                         KVMCLOCK_UPDATE_DELAY);
1890 }
1891
1892 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1893
1894 static void kvmclock_sync_fn(struct work_struct *work)
1895 {
1896         struct delayed_work *dwork = to_delayed_work(work);
1897         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1898                                            kvmclock_sync_work);
1899         struct kvm *kvm = container_of(ka, struct kvm, arch);
1900
1901         if (!kvmclock_periodic_sync)
1902                 return;
1903
1904         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1905         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1906                                         KVMCLOCK_SYNC_PERIOD);
1907 }
1908
1909 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1910 {
1911         u64 mcg_cap = vcpu->arch.mcg_cap;
1912         unsigned bank_num = mcg_cap & 0xff;
1913
1914         switch (msr) {
1915         case MSR_IA32_MCG_STATUS:
1916                 vcpu->arch.mcg_status = data;
1917                 break;
1918         case MSR_IA32_MCG_CTL:
1919                 if (!(mcg_cap & MCG_CTL_P))
1920                         return 1;
1921                 if (data != 0 && data != ~(u64)0)
1922                         return -1;
1923                 vcpu->arch.mcg_ctl = data;
1924                 break;
1925         default:
1926                 if (msr >= MSR_IA32_MC0_CTL &&
1927                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1928                         u32 offset = msr - MSR_IA32_MC0_CTL;
1929                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1930                          * some Linux kernels though clear bit 10 in bank 4 to
1931                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1932                          * this to avoid an uncatched #GP in the guest
1933                          */
1934                         if ((offset & 0x3) == 0 &&
1935                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1936                                 return -1;
1937                         vcpu->arch.mce_banks[offset] = data;
1938                         break;
1939                 }
1940                 return 1;
1941         }
1942         return 0;
1943 }
1944
1945 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1946 {
1947         struct kvm *kvm = vcpu->kvm;
1948         int lm = is_long_mode(vcpu);
1949         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1950                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1951         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1952                 : kvm->arch.xen_hvm_config.blob_size_32;
1953         u32 page_num = data & ~PAGE_MASK;
1954         u64 page_addr = data & PAGE_MASK;
1955         u8 *page;
1956         int r;
1957
1958         r = -E2BIG;
1959         if (page_num >= blob_size)
1960                 goto out;
1961         r = -ENOMEM;
1962         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1963         if (IS_ERR(page)) {
1964                 r = PTR_ERR(page);
1965                 goto out;
1966         }
1967         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1968                 goto out_free;
1969         r = 0;
1970 out_free:
1971         kfree(page);
1972 out:
1973         return r;
1974 }
1975
1976 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1977 {
1978         gpa_t gpa = data & ~0x3f;
1979
1980         /* Bits 2:5 are reserved, Should be zero */
1981         if (data & 0x3c)
1982                 return 1;
1983
1984         vcpu->arch.apf.msr_val = data;
1985
1986         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1987                 kvm_clear_async_pf_completion_queue(vcpu);
1988                 kvm_async_pf_hash_reset(vcpu);
1989                 return 0;
1990         }
1991
1992         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1993                                         sizeof(u32)))
1994                 return 1;
1995
1996         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1997         kvm_async_pf_wakeup_all(vcpu);
1998         return 0;
1999 }
2000
2001 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2002 {
2003         vcpu->arch.pv_time_enabled = false;
2004 }
2005
2006 static void record_steal_time(struct kvm_vcpu *vcpu)
2007 {
2008         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2009                 return;
2010
2011         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2012                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2013                 return;
2014
2015         if (vcpu->arch.st.steal.version & 1)
2016                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2017
2018         vcpu->arch.st.steal.version += 1;
2019
2020         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2021                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2022
2023         smp_wmb();
2024
2025         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2026                 vcpu->arch.st.last_steal;
2027         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028
2029         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2030                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2031
2032         smp_wmb();
2033
2034         vcpu->arch.st.steal.version += 1;
2035
2036         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2038 }
2039
2040 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2041 {
2042         bool pr = false;
2043         u32 msr = msr_info->index;
2044         u64 data = msr_info->data;
2045
2046         switch (msr) {
2047         case MSR_AMD64_NB_CFG:
2048         case MSR_IA32_UCODE_REV:
2049         case MSR_IA32_UCODE_WRITE:
2050         case MSR_VM_HSAVE_PA:
2051         case MSR_AMD64_PATCH_LOADER:
2052         case MSR_AMD64_BU_CFG2:
2053                 break;
2054
2055         case MSR_EFER:
2056                 return set_efer(vcpu, data);
2057         case MSR_K7_HWCR:
2058                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2059                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2060                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2061                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2062                 if (data != 0) {
2063                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2064                                     data);
2065                         return 1;
2066                 }
2067                 break;
2068         case MSR_FAM10H_MMIO_CONF_BASE:
2069                 if (data != 0) {
2070                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2071                                     "0x%llx\n", data);
2072                         return 1;
2073                 }
2074                 break;
2075         case MSR_IA32_DEBUGCTLMSR:
2076                 if (!data) {
2077                         /* We support the non-activated case already */
2078                         break;
2079                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2080                         /* Values other than LBR and BTF are vendor-specific,
2081                            thus reserved and should throw a #GP */
2082                         return 1;
2083                 }
2084                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2085                             __func__, data);
2086                 break;
2087         case 0x200 ... 0x2ff:
2088                 return kvm_mtrr_set_msr(vcpu, msr, data);
2089         case MSR_IA32_APICBASE:
2090                 return kvm_set_apic_base(vcpu, msr_info);
2091         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2092                 return kvm_x2apic_msr_write(vcpu, msr, data);
2093         case MSR_IA32_TSCDEADLINE:
2094                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2095                 break;
2096         case MSR_IA32_TSC_ADJUST:
2097                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2098                         if (!msr_info->host_initiated) {
2099                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2100                                 adjust_tsc_offset_guest(vcpu, adj);
2101                         }
2102                         vcpu->arch.ia32_tsc_adjust_msr = data;
2103                 }
2104                 break;
2105         case MSR_IA32_MISC_ENABLE:
2106                 vcpu->arch.ia32_misc_enable_msr = data;
2107                 break;
2108         case MSR_IA32_SMBASE:
2109                 if (!msr_info->host_initiated)
2110                         return 1;
2111                 vcpu->arch.smbase = data;
2112                 break;
2113         case MSR_KVM_WALL_CLOCK_NEW:
2114         case MSR_KVM_WALL_CLOCK:
2115                 vcpu->kvm->arch.wall_clock = data;
2116                 kvm_write_wall_clock(vcpu->kvm, data);
2117                 break;
2118         case MSR_KVM_SYSTEM_TIME_NEW:
2119         case MSR_KVM_SYSTEM_TIME: {
2120                 u64 gpa_offset;
2121                 struct kvm_arch *ka = &vcpu->kvm->arch;
2122
2123                 kvmclock_reset(vcpu);
2124
2125                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2126                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2127
2128                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2129                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2130                                         &vcpu->requests);
2131
2132                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2133                 }
2134
2135                 vcpu->arch.time = data;
2136                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2137
2138                 /* we verify if the enable bit is set... */
2139                 if (!(data & 1))
2140                         break;
2141
2142                 gpa_offset = data & ~(PAGE_MASK | 1);
2143
2144                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2145                      &vcpu->arch.pv_time, data & ~1ULL,
2146                      sizeof(struct pvclock_vcpu_time_info)))
2147                         vcpu->arch.pv_time_enabled = false;
2148                 else
2149                         vcpu->arch.pv_time_enabled = true;
2150
2151                 break;
2152         }
2153         case MSR_KVM_ASYNC_PF_EN:
2154                 if (kvm_pv_enable_async_pf(vcpu, data))
2155                         return 1;
2156                 break;
2157         case MSR_KVM_STEAL_TIME:
2158
2159                 if (unlikely(!sched_info_on()))
2160                         return 1;
2161
2162                 if (data & KVM_STEAL_RESERVED_MASK)
2163                         return 1;
2164
2165                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2166                                                 data & KVM_STEAL_VALID_BITS,
2167                                                 sizeof(struct kvm_steal_time)))
2168                         return 1;
2169
2170                 vcpu->arch.st.msr_val = data;
2171
2172                 if (!(data & KVM_MSR_ENABLED))
2173                         break;
2174
2175                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2176
2177                 break;
2178         case MSR_KVM_PV_EOI_EN:
2179                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2180                         return 1;
2181                 break;
2182
2183         case MSR_IA32_MCG_CTL:
2184         case MSR_IA32_MCG_STATUS:
2185         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2186                 return set_msr_mce(vcpu, msr, data);
2187
2188         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2189         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2190                 pr = true; /* fall through */
2191         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2192         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2193                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2194                         return kvm_pmu_set_msr(vcpu, msr_info);
2195
2196                 if (pr || data != 0)
2197                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2198                                     "0x%x data 0x%llx\n", msr, data);
2199                 break;
2200         case MSR_K7_CLK_CTL:
2201                 /*
2202                  * Ignore all writes to this no longer documented MSR.
2203                  * Writes are only relevant for old K7 processors,
2204                  * all pre-dating SVM, but a recommended workaround from
2205                  * AMD for these chips. It is possible to specify the
2206                  * affected processor models on the command line, hence
2207                  * the need to ignore the workaround.
2208                  */
2209                 break;
2210         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2211         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2212         case HV_X64_MSR_CRASH_CTL:
2213         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2214                 return kvm_hv_set_msr_common(vcpu, msr, data,
2215                                              msr_info->host_initiated);
2216         case MSR_IA32_BBL_CR_CTL3:
2217                 /* Drop writes to this legacy MSR -- see rdmsr
2218                  * counterpart for further detail.
2219                  */
2220                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2221                 break;
2222         case MSR_AMD64_OSVW_ID_LENGTH:
2223                 if (!guest_cpuid_has_osvw(vcpu))
2224                         return 1;
2225                 vcpu->arch.osvw.length = data;
2226                 break;
2227         case MSR_AMD64_OSVW_STATUS:
2228                 if (!guest_cpuid_has_osvw(vcpu))
2229                         return 1;
2230                 vcpu->arch.osvw.status = data;
2231                 break;
2232         default:
2233                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2234                         return xen_hvm_config(vcpu, data);
2235                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2236                         return kvm_pmu_set_msr(vcpu, msr_info);
2237                 if (!ignore_msrs) {
2238                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2239                                     msr, data);
2240                         return 1;
2241                 } else {
2242                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2243                                     msr, data);
2244                         break;
2245                 }
2246         }
2247         return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2250
2251
2252 /*
2253  * Reads an msr value (of 'msr_index') into 'pdata'.
2254  * Returns 0 on success, non-0 otherwise.
2255  * Assumes vcpu_load() was already called.
2256  */
2257 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2258 {
2259         return kvm_x86_ops->get_msr(vcpu, msr);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_get_msr);
2262
2263 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2264 {
2265         u64 data;
2266         u64 mcg_cap = vcpu->arch.mcg_cap;
2267         unsigned bank_num = mcg_cap & 0xff;
2268
2269         switch (msr) {
2270         case MSR_IA32_P5_MC_ADDR:
2271         case MSR_IA32_P5_MC_TYPE:
2272                 data = 0;
2273                 break;
2274         case MSR_IA32_MCG_CAP:
2275                 data = vcpu->arch.mcg_cap;
2276                 break;
2277         case MSR_IA32_MCG_CTL:
2278                 if (!(mcg_cap & MCG_CTL_P))
2279                         return 1;
2280                 data = vcpu->arch.mcg_ctl;
2281                 break;
2282         case MSR_IA32_MCG_STATUS:
2283                 data = vcpu->arch.mcg_status;
2284                 break;
2285         default:
2286                 if (msr >= MSR_IA32_MC0_CTL &&
2287                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2288                         u32 offset = msr - MSR_IA32_MC0_CTL;
2289                         data = vcpu->arch.mce_banks[offset];
2290                         break;
2291                 }
2292                 return 1;
2293         }
2294         *pdata = data;
2295         return 0;
2296 }
2297
2298 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2299 {
2300         switch (msr_info->index) {
2301         case MSR_IA32_PLATFORM_ID:
2302         case MSR_IA32_EBL_CR_POWERON:
2303         case MSR_IA32_DEBUGCTLMSR:
2304         case MSR_IA32_LASTBRANCHFROMIP:
2305         case MSR_IA32_LASTBRANCHTOIP:
2306         case MSR_IA32_LASTINTFROMIP:
2307         case MSR_IA32_LASTINTTOIP:
2308         case MSR_K8_SYSCFG:
2309         case MSR_K8_TSEG_ADDR:
2310         case MSR_K8_TSEG_MASK:
2311         case MSR_K7_HWCR:
2312         case MSR_VM_HSAVE_PA:
2313         case MSR_K8_INT_PENDING_MSG:
2314         case MSR_AMD64_NB_CFG:
2315         case MSR_FAM10H_MMIO_CONF_BASE:
2316         case MSR_AMD64_BU_CFG2:
2317         case MSR_IA32_PERF_CTL:
2318                 msr_info->data = 0;
2319                 break;
2320         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2321         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2322         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2323         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2324                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2325                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2326                 msr_info->data = 0;
2327                 break;
2328         case MSR_IA32_UCODE_REV:
2329                 msr_info->data = 0x100000000ULL;
2330                 break;
2331         case MSR_MTRRcap:
2332         case 0x200 ... 0x2ff:
2333                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2334         case 0xcd: /* fsb frequency */
2335                 msr_info->data = 3;
2336                 break;
2337                 /*
2338                  * MSR_EBC_FREQUENCY_ID
2339                  * Conservative value valid for even the basic CPU models.
2340                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2341                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2342                  * and 266MHz for model 3, or 4. Set Core Clock
2343                  * Frequency to System Bus Frequency Ratio to 1 (bits
2344                  * 31:24) even though these are only valid for CPU
2345                  * models > 2, however guests may end up dividing or
2346                  * multiplying by zero otherwise.
2347                  */
2348         case MSR_EBC_FREQUENCY_ID:
2349                 msr_info->data = 1 << 24;
2350                 break;
2351         case MSR_IA32_APICBASE:
2352                 msr_info->data = kvm_get_apic_base(vcpu);
2353                 break;
2354         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2355                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2356                 break;
2357         case MSR_IA32_TSCDEADLINE:
2358                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2359                 break;
2360         case MSR_IA32_TSC_ADJUST:
2361                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2362                 break;
2363         case MSR_IA32_MISC_ENABLE:
2364                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2365                 break;
2366         case MSR_IA32_SMBASE:
2367                 if (!msr_info->host_initiated)
2368                         return 1;
2369                 msr_info->data = vcpu->arch.smbase;
2370                 break;
2371         case MSR_IA32_PERF_STATUS:
2372                 /* TSC increment by tick */
2373                 msr_info->data = 1000ULL;
2374                 /* CPU multiplier */
2375                 msr_info->data |= (((uint64_t)4ULL) << 40);
2376                 break;
2377         case MSR_EFER:
2378                 msr_info->data = vcpu->arch.efer;
2379                 break;
2380         case MSR_KVM_WALL_CLOCK:
2381         case MSR_KVM_WALL_CLOCK_NEW:
2382                 msr_info->data = vcpu->kvm->arch.wall_clock;
2383                 break;
2384         case MSR_KVM_SYSTEM_TIME:
2385         case MSR_KVM_SYSTEM_TIME_NEW:
2386                 msr_info->data = vcpu->arch.time;
2387                 break;
2388         case MSR_KVM_ASYNC_PF_EN:
2389                 msr_info->data = vcpu->arch.apf.msr_val;
2390                 break;
2391         case MSR_KVM_STEAL_TIME:
2392                 msr_info->data = vcpu->arch.st.msr_val;
2393                 break;
2394         case MSR_KVM_PV_EOI_EN:
2395                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2396                 break;
2397         case MSR_IA32_P5_MC_ADDR:
2398         case MSR_IA32_P5_MC_TYPE:
2399         case MSR_IA32_MCG_CAP:
2400         case MSR_IA32_MCG_CTL:
2401         case MSR_IA32_MCG_STATUS:
2402         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2403                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2404         case MSR_K7_CLK_CTL:
2405                 /*
2406                  * Provide expected ramp-up count for K7. All other
2407                  * are set to zero, indicating minimum divisors for
2408                  * every field.
2409                  *
2410                  * This prevents guest kernels on AMD host with CPU
2411                  * type 6, model 8 and higher from exploding due to
2412                  * the rdmsr failing.
2413                  */
2414                 msr_info->data = 0x20000000;
2415                 break;
2416         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2417         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2418         case HV_X64_MSR_CRASH_CTL:
2419         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2420                 return kvm_hv_get_msr_common(vcpu,
2421                                              msr_info->index, &msr_info->data);
2422                 break;
2423         case MSR_IA32_BBL_CR_CTL3:
2424                 /* This legacy MSR exists but isn't fully documented in current
2425                  * silicon.  It is however accessed by winxp in very narrow
2426                  * scenarios where it sets bit #19, itself documented as
2427                  * a "reserved" bit.  Best effort attempt to source coherent
2428                  * read data here should the balance of the register be
2429                  * interpreted by the guest:
2430                  *
2431                  * L2 cache control register 3: 64GB range, 256KB size,
2432                  * enabled, latency 0x1, configured
2433                  */
2434                 msr_info->data = 0xbe702111;
2435                 break;
2436         case MSR_AMD64_OSVW_ID_LENGTH:
2437                 if (!guest_cpuid_has_osvw(vcpu))
2438                         return 1;
2439                 msr_info->data = vcpu->arch.osvw.length;
2440                 break;
2441         case MSR_AMD64_OSVW_STATUS:
2442                 if (!guest_cpuid_has_osvw(vcpu))
2443                         return 1;
2444                 msr_info->data = vcpu->arch.osvw.status;
2445                 break;
2446         default:
2447                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2448                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2449                 if (!ignore_msrs) {
2450                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2451                         return 1;
2452                 } else {
2453                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2454                         msr_info->data = 0;
2455                 }
2456                 break;
2457         }
2458         return 0;
2459 }
2460 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2461
2462 /*
2463  * Read or write a bunch of msrs. All parameters are kernel addresses.
2464  *
2465  * @return number of msrs set successfully.
2466  */
2467 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2468                     struct kvm_msr_entry *entries,
2469                     int (*do_msr)(struct kvm_vcpu *vcpu,
2470                                   unsigned index, u64 *data))
2471 {
2472         int i, idx;
2473
2474         idx = srcu_read_lock(&vcpu->kvm->srcu);
2475         for (i = 0; i < msrs->nmsrs; ++i)
2476                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2477                         break;
2478         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2479
2480         return i;
2481 }
2482
2483 /*
2484  * Read or write a bunch of msrs. Parameters are user addresses.
2485  *
2486  * @return number of msrs set successfully.
2487  */
2488 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2489                   int (*do_msr)(struct kvm_vcpu *vcpu,
2490                                 unsigned index, u64 *data),
2491                   int writeback)
2492 {
2493         struct kvm_msrs msrs;
2494         struct kvm_msr_entry *entries;
2495         int r, n;
2496         unsigned size;
2497
2498         r = -EFAULT;
2499         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2500                 goto out;
2501
2502         r = -E2BIG;
2503         if (msrs.nmsrs >= MAX_IO_MSRS)
2504                 goto out;
2505
2506         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2507         entries = memdup_user(user_msrs->entries, size);
2508         if (IS_ERR(entries)) {
2509                 r = PTR_ERR(entries);
2510                 goto out;
2511         }
2512
2513         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2514         if (r < 0)
2515                 goto out_free;
2516
2517         r = -EFAULT;
2518         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2519                 goto out_free;
2520
2521         r = n;
2522
2523 out_free:
2524         kfree(entries);
2525 out:
2526         return r;
2527 }
2528
2529 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2530 {
2531         int r;
2532
2533         switch (ext) {
2534         case KVM_CAP_IRQCHIP:
2535         case KVM_CAP_HLT:
2536         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2537         case KVM_CAP_SET_TSS_ADDR:
2538         case KVM_CAP_EXT_CPUID:
2539         case KVM_CAP_EXT_EMUL_CPUID:
2540         case KVM_CAP_CLOCKSOURCE:
2541         case KVM_CAP_PIT:
2542         case KVM_CAP_NOP_IO_DELAY:
2543         case KVM_CAP_MP_STATE:
2544         case KVM_CAP_SYNC_MMU:
2545         case KVM_CAP_USER_NMI:
2546         case KVM_CAP_REINJECT_CONTROL:
2547         case KVM_CAP_IRQ_INJECT_STATUS:
2548         case KVM_CAP_IOEVENTFD:
2549         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2550         case KVM_CAP_PIT2:
2551         case KVM_CAP_PIT_STATE2:
2552         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2553         case KVM_CAP_XEN_HVM:
2554         case KVM_CAP_ADJUST_CLOCK:
2555         case KVM_CAP_VCPU_EVENTS:
2556         case KVM_CAP_HYPERV:
2557         case KVM_CAP_HYPERV_VAPIC:
2558         case KVM_CAP_HYPERV_SPIN:
2559         case KVM_CAP_HYPERV_SYNIC:
2560         case KVM_CAP_PCI_SEGMENT:
2561         case KVM_CAP_DEBUGREGS:
2562         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2563         case KVM_CAP_XSAVE:
2564         case KVM_CAP_ASYNC_PF:
2565         case KVM_CAP_GET_TSC_KHZ:
2566         case KVM_CAP_KVMCLOCK_CTRL:
2567         case KVM_CAP_READONLY_MEM:
2568         case KVM_CAP_HYPERV_TIME:
2569         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2570         case KVM_CAP_TSC_DEADLINE_TIMER:
2571         case KVM_CAP_ENABLE_CAP_VM:
2572         case KVM_CAP_DISABLE_QUIRKS:
2573         case KVM_CAP_SET_BOOT_CPU_ID:
2574         case KVM_CAP_SPLIT_IRQCHIP:
2575 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2576         case KVM_CAP_ASSIGN_DEV_IRQ:
2577         case KVM_CAP_PCI_2_3:
2578 #endif
2579                 r = 1;
2580                 break;
2581         case KVM_CAP_X86_SMM:
2582                 /* SMBASE is usually relocated above 1M on modern chipsets,
2583                  * and SMM handlers might indeed rely on 4G segment limits,
2584                  * so do not report SMM to be available if real mode is
2585                  * emulated via vm86 mode.  Still, do not go to great lengths
2586                  * to avoid userspace's usage of the feature, because it is a
2587                  * fringe case that is not enabled except via specific settings
2588                  * of the module parameters.
2589                  */
2590                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2591                 break;
2592         case KVM_CAP_COALESCED_MMIO:
2593                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2594                 break;
2595         case KVM_CAP_VAPIC:
2596                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2597                 break;
2598         case KVM_CAP_NR_VCPUS:
2599                 r = KVM_SOFT_MAX_VCPUS;
2600                 break;
2601         case KVM_CAP_MAX_VCPUS:
2602                 r = KVM_MAX_VCPUS;
2603                 break;
2604         case KVM_CAP_NR_MEMSLOTS:
2605                 r = KVM_USER_MEM_SLOTS;
2606                 break;
2607         case KVM_CAP_PV_MMU:    /* obsolete */
2608                 r = 0;
2609                 break;
2610 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2611         case KVM_CAP_IOMMU:
2612                 r = iommu_present(&pci_bus_type);
2613                 break;
2614 #endif
2615         case KVM_CAP_MCE:
2616                 r = KVM_MAX_MCE_BANKS;
2617                 break;
2618         case KVM_CAP_XCRS:
2619                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2620                 break;
2621         case KVM_CAP_TSC_CONTROL:
2622                 r = kvm_has_tsc_control;
2623                 break;
2624         default:
2625                 r = 0;
2626                 break;
2627         }
2628         return r;
2629
2630 }
2631
2632 long kvm_arch_dev_ioctl(struct file *filp,
2633                         unsigned int ioctl, unsigned long arg)
2634 {
2635         void __user *argp = (void __user *)arg;
2636         long r;
2637
2638         switch (ioctl) {
2639         case KVM_GET_MSR_INDEX_LIST: {
2640                 struct kvm_msr_list __user *user_msr_list = argp;
2641                 struct kvm_msr_list msr_list;
2642                 unsigned n;
2643
2644                 r = -EFAULT;
2645                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2646                         goto out;
2647                 n = msr_list.nmsrs;
2648                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2649                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2650                         goto out;
2651                 r = -E2BIG;
2652                 if (n < msr_list.nmsrs)
2653                         goto out;
2654                 r = -EFAULT;
2655                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2656                                  num_msrs_to_save * sizeof(u32)))
2657                         goto out;
2658                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2659                                  &emulated_msrs,
2660                                  num_emulated_msrs * sizeof(u32)))
2661                         goto out;
2662                 r = 0;
2663                 break;
2664         }
2665         case KVM_GET_SUPPORTED_CPUID:
2666         case KVM_GET_EMULATED_CPUID: {
2667                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2668                 struct kvm_cpuid2 cpuid;
2669
2670                 r = -EFAULT;
2671                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2672                         goto out;
2673
2674                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2675                                             ioctl);
2676                 if (r)
2677                         goto out;
2678
2679                 r = -EFAULT;
2680                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2681                         goto out;
2682                 r = 0;
2683                 break;
2684         }
2685         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2686                 u64 mce_cap;
2687
2688                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2689                 r = -EFAULT;
2690                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2691                         goto out;
2692                 r = 0;
2693                 break;
2694         }
2695         default:
2696                 r = -EINVAL;
2697         }
2698 out:
2699         return r;
2700 }
2701
2702 static void wbinvd_ipi(void *garbage)
2703 {
2704         wbinvd();
2705 }
2706
2707 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2708 {
2709         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2710 }
2711
2712 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2713 {
2714         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2715 }
2716
2717 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2718 {
2719         /* Address WBINVD may be executed by guest */
2720         if (need_emulate_wbinvd(vcpu)) {
2721                 if (kvm_x86_ops->has_wbinvd_exit())
2722                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2723                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2724                         smp_call_function_single(vcpu->cpu,
2725                                         wbinvd_ipi, NULL, 1);
2726         }
2727
2728         kvm_x86_ops->vcpu_load(vcpu, cpu);
2729
2730         /* Apply any externally detected TSC adjustments (due to suspend) */
2731         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2732                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2733                 vcpu->arch.tsc_offset_adjustment = 0;
2734                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2735         }
2736
2737         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2738                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2739                                 rdtsc() - vcpu->arch.last_host_tsc;
2740                 if (tsc_delta < 0)
2741                         mark_tsc_unstable("KVM discovered backwards TSC");
2742                 if (check_tsc_unstable()) {
2743                         u64 offset = kvm_compute_tsc_offset(vcpu,
2744                                                 vcpu->arch.last_guest_tsc);
2745                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2746                         vcpu->arch.tsc_catchup = 1;
2747                 }
2748                 /*
2749                  * On a host with synchronized TSC, there is no need to update
2750                  * kvmclock on vcpu->cpu migration
2751                  */
2752                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2753                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2754                 if (vcpu->cpu != cpu)
2755                         kvm_migrate_timers(vcpu);
2756                 vcpu->cpu = cpu;
2757         }
2758
2759         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2760 }
2761
2762 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2763 {
2764         kvm_x86_ops->vcpu_put(vcpu);
2765         kvm_put_guest_fpu(vcpu);
2766         vcpu->arch.last_host_tsc = rdtsc();
2767 }
2768
2769 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2770                                     struct kvm_lapic_state *s)
2771 {
2772         if (vcpu->arch.apicv_active)
2773                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2774
2775         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2776
2777         return 0;
2778 }
2779
2780 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2781                                     struct kvm_lapic_state *s)
2782 {
2783         kvm_apic_post_state_restore(vcpu, s);
2784         update_cr8_intercept(vcpu);
2785
2786         return 0;
2787 }
2788
2789 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2790 {
2791         return (!lapic_in_kernel(vcpu) ||
2792                 kvm_apic_accept_pic_intr(vcpu));
2793 }
2794
2795 /*
2796  * if userspace requested an interrupt window, check that the
2797  * interrupt window is open.
2798  *
2799  * No need to exit to userspace if we already have an interrupt queued.
2800  */
2801 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2802 {
2803         return kvm_arch_interrupt_allowed(vcpu) &&
2804                 !kvm_cpu_has_interrupt(vcpu) &&
2805                 !kvm_event_needs_reinjection(vcpu) &&
2806                 kvm_cpu_accept_dm_intr(vcpu);
2807 }
2808
2809 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2810                                     struct kvm_interrupt *irq)
2811 {
2812         if (irq->irq >= KVM_NR_INTERRUPTS)
2813                 return -EINVAL;
2814
2815         if (!irqchip_in_kernel(vcpu->kvm)) {
2816                 kvm_queue_interrupt(vcpu, irq->irq, false);
2817                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2818                 return 0;
2819         }
2820
2821         /*
2822          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2823          * fail for in-kernel 8259.
2824          */
2825         if (pic_in_kernel(vcpu->kvm))
2826                 return -ENXIO;
2827
2828         if (vcpu->arch.pending_external_vector != -1)
2829                 return -EEXIST;
2830
2831         vcpu->arch.pending_external_vector = irq->irq;
2832         kvm_make_request(KVM_REQ_EVENT, vcpu);
2833         return 0;
2834 }
2835
2836 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2837 {
2838         kvm_inject_nmi(vcpu);
2839
2840         return 0;
2841 }
2842
2843 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2844 {
2845         kvm_make_request(KVM_REQ_SMI, vcpu);
2846
2847         return 0;
2848 }
2849
2850 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2851                                            struct kvm_tpr_access_ctl *tac)
2852 {
2853         if (tac->flags)
2854                 return -EINVAL;
2855         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2856         return 0;
2857 }
2858
2859 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2860                                         u64 mcg_cap)
2861 {
2862         int r;
2863         unsigned bank_num = mcg_cap & 0xff, bank;
2864
2865         r = -EINVAL;
2866         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2867                 goto out;
2868         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2869                 goto out;
2870         r = 0;
2871         vcpu->arch.mcg_cap = mcg_cap;
2872         /* Init IA32_MCG_CTL to all 1s */
2873         if (mcg_cap & MCG_CTL_P)
2874                 vcpu->arch.mcg_ctl = ~(u64)0;
2875         /* Init IA32_MCi_CTL to all 1s */
2876         for (bank = 0; bank < bank_num; bank++)
2877                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2878 out:
2879         return r;
2880 }
2881
2882 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2883                                       struct kvm_x86_mce *mce)
2884 {
2885         u64 mcg_cap = vcpu->arch.mcg_cap;
2886         unsigned bank_num = mcg_cap & 0xff;
2887         u64 *banks = vcpu->arch.mce_banks;
2888
2889         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2890                 return -EINVAL;
2891         /*
2892          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2893          * reporting is disabled
2894          */
2895         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2896             vcpu->arch.mcg_ctl != ~(u64)0)
2897                 return 0;
2898         banks += 4 * mce->bank;
2899         /*
2900          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2901          * reporting is disabled for the bank
2902          */
2903         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2904                 return 0;
2905         if (mce->status & MCI_STATUS_UC) {
2906                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2907                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2908                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2909                         return 0;
2910                 }
2911                 if (banks[1] & MCI_STATUS_VAL)
2912                         mce->status |= MCI_STATUS_OVER;
2913                 banks[2] = mce->addr;
2914                 banks[3] = mce->misc;
2915                 vcpu->arch.mcg_status = mce->mcg_status;
2916                 banks[1] = mce->status;
2917                 kvm_queue_exception(vcpu, MC_VECTOR);
2918         } else if (!(banks[1] & MCI_STATUS_VAL)
2919                    || !(banks[1] & MCI_STATUS_UC)) {
2920                 if (banks[1] & MCI_STATUS_VAL)
2921                         mce->status |= MCI_STATUS_OVER;
2922                 banks[2] = mce->addr;
2923                 banks[3] = mce->misc;
2924                 banks[1] = mce->status;
2925         } else
2926                 banks[1] |= MCI_STATUS_OVER;
2927         return 0;
2928 }
2929
2930 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2931                                                struct kvm_vcpu_events *events)
2932 {
2933         process_nmi(vcpu);
2934         events->exception.injected =
2935                 vcpu->arch.exception.pending &&
2936                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2937         events->exception.nr = vcpu->arch.exception.nr;
2938         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2939         events->exception.pad = 0;
2940         events->exception.error_code = vcpu->arch.exception.error_code;
2941
2942         events->interrupt.injected =
2943                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2944         events->interrupt.nr = vcpu->arch.interrupt.nr;
2945         events->interrupt.soft = 0;
2946         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2947
2948         events->nmi.injected = vcpu->arch.nmi_injected;
2949         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2950         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2951         events->nmi.pad = 0;
2952
2953         events->sipi_vector = 0; /* never valid when reporting to user space */
2954
2955         events->smi.smm = is_smm(vcpu);
2956         events->smi.pending = vcpu->arch.smi_pending;
2957         events->smi.smm_inside_nmi =
2958                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2959         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2960
2961         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2962                          | KVM_VCPUEVENT_VALID_SHADOW
2963                          | KVM_VCPUEVENT_VALID_SMM);
2964         memset(&events->reserved, 0, sizeof(events->reserved));
2965 }
2966
2967 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2968                                               struct kvm_vcpu_events *events)
2969 {
2970         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2971                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2972                               | KVM_VCPUEVENT_VALID_SHADOW
2973                               | KVM_VCPUEVENT_VALID_SMM))
2974                 return -EINVAL;
2975
2976         if (events->exception.injected &&
2977             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2978                 return -EINVAL;
2979
2980         process_nmi(vcpu);
2981         vcpu->arch.exception.pending = events->exception.injected;
2982         vcpu->arch.exception.nr = events->exception.nr;
2983         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2984         vcpu->arch.exception.error_code = events->exception.error_code;
2985
2986         vcpu->arch.interrupt.pending = events->interrupt.injected;
2987         vcpu->arch.interrupt.nr = events->interrupt.nr;
2988         vcpu->arch.interrupt.soft = events->interrupt.soft;
2989         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2990                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2991                                                   events->interrupt.shadow);
2992
2993         vcpu->arch.nmi_injected = events->nmi.injected;
2994         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2995                 vcpu->arch.nmi_pending = events->nmi.pending;
2996         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2997
2998         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2999             lapic_in_kernel(vcpu))
3000                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3001
3002         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3003                 if (events->smi.smm)
3004                         vcpu->arch.hflags |= HF_SMM_MASK;
3005                 else
3006                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3007                 vcpu->arch.smi_pending = events->smi.pending;
3008                 if (events->smi.smm_inside_nmi)
3009                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3010                 else
3011                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3012                 if (lapic_in_kernel(vcpu)) {
3013                         if (events->smi.latched_init)
3014                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3015                         else
3016                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3017                 }
3018         }
3019
3020         kvm_make_request(KVM_REQ_EVENT, vcpu);
3021
3022         return 0;
3023 }
3024
3025 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3026                                              struct kvm_debugregs *dbgregs)
3027 {
3028         unsigned long val;
3029
3030         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3031         kvm_get_dr(vcpu, 6, &val);
3032         dbgregs->dr6 = val;
3033         dbgregs->dr7 = vcpu->arch.dr7;
3034         dbgregs->flags = 0;
3035         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3036 }
3037
3038 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3039                                             struct kvm_debugregs *dbgregs)
3040 {
3041         if (dbgregs->flags)
3042                 return -EINVAL;
3043
3044         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3045         kvm_update_dr0123(vcpu);
3046         vcpu->arch.dr6 = dbgregs->dr6;
3047         kvm_update_dr6(vcpu);
3048         vcpu->arch.dr7 = dbgregs->dr7;
3049         kvm_update_dr7(vcpu);
3050
3051         return 0;
3052 }
3053
3054 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3055
3056 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3057 {
3058         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3059         u64 xstate_bv = xsave->header.xfeatures;
3060         u64 valid;
3061
3062         /*
3063          * Copy legacy XSAVE area, to avoid complications with CPUID
3064          * leaves 0 and 1 in the loop below.
3065          */
3066         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3067
3068         /* Set XSTATE_BV */
3069         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3070
3071         /*
3072          * Copy each region from the possibly compacted offset to the
3073          * non-compacted offset.
3074          */
3075         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3076         while (valid) {
3077                 u64 feature = valid & -valid;
3078                 int index = fls64(feature) - 1;
3079                 void *src = get_xsave_addr(xsave, feature);
3080
3081                 if (src) {
3082                         u32 size, offset, ecx, edx;
3083                         cpuid_count(XSTATE_CPUID, index,
3084                                     &size, &offset, &ecx, &edx);
3085                         memcpy(dest + offset, src, size);
3086                 }
3087
3088                 valid -= feature;
3089         }
3090 }
3091
3092 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3093 {
3094         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3095         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3096         u64 valid;
3097
3098         /*
3099          * Copy legacy XSAVE area, to avoid complications with CPUID
3100          * leaves 0 and 1 in the loop below.
3101          */
3102         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3103
3104         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3105         xsave->header.xfeatures = xstate_bv;
3106         if (boot_cpu_has(X86_FEATURE_XSAVES))
3107                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3108
3109         /*
3110          * Copy each region from the non-compacted offset to the
3111          * possibly compacted offset.
3112          */
3113         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3114         while (valid) {
3115                 u64 feature = valid & -valid;
3116                 int index = fls64(feature) - 1;
3117                 void *dest = get_xsave_addr(xsave, feature);
3118
3119                 if (dest) {
3120                         u32 size, offset, ecx, edx;
3121                         cpuid_count(XSTATE_CPUID, index,
3122                                     &size, &offset, &ecx, &edx);
3123                         memcpy(dest, src + offset, size);
3124                 }
3125
3126                 valid -= feature;
3127         }
3128 }
3129
3130 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3131                                          struct kvm_xsave *guest_xsave)
3132 {
3133         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3134                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3135                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3136         } else {
3137                 memcpy(guest_xsave->region,
3138                         &vcpu->arch.guest_fpu.state.fxsave,
3139                         sizeof(struct fxregs_state));
3140                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3141                         XFEATURE_MASK_FPSSE;
3142         }
3143 }
3144
3145 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3146                                         struct kvm_xsave *guest_xsave)
3147 {
3148         u64 xstate_bv =
3149                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3150
3151         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3152                 /*
3153                  * Here we allow setting states that are not present in
3154                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3155                  * with old userspace.
3156                  */
3157                 if (xstate_bv & ~kvm_supported_xcr0())
3158                         return -EINVAL;
3159                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3160         } else {
3161                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3162                         return -EINVAL;
3163                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3164                         guest_xsave->region, sizeof(struct fxregs_state));
3165         }
3166         return 0;
3167 }
3168
3169 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3170                                         struct kvm_xcrs *guest_xcrs)
3171 {
3172         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3173                 guest_xcrs->nr_xcrs = 0;
3174                 return;
3175         }
3176
3177         guest_xcrs->nr_xcrs = 1;
3178         guest_xcrs->flags = 0;
3179         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3180         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3181 }
3182
3183 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3184                                        struct kvm_xcrs *guest_xcrs)
3185 {
3186         int i, r = 0;
3187
3188         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3189                 return -EINVAL;
3190
3191         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3192                 return -EINVAL;
3193
3194         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3195                 /* Only support XCR0 currently */
3196                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3197                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3198                                 guest_xcrs->xcrs[i].value);
3199                         break;
3200                 }
3201         if (r)
3202                 r = -EINVAL;
3203         return r;
3204 }
3205
3206 /*
3207  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3208  * stopped by the hypervisor.  This function will be called from the host only.
3209  * EINVAL is returned when the host attempts to set the flag for a guest that
3210  * does not support pv clocks.
3211  */
3212 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3213 {
3214         if (!vcpu->arch.pv_time_enabled)
3215                 return -EINVAL;
3216         vcpu->arch.pvclock_set_guest_stopped_request = true;
3217         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3218         return 0;
3219 }
3220
3221 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3222                                      struct kvm_enable_cap *cap)
3223 {
3224         if (cap->flags)
3225                 return -EINVAL;
3226
3227         switch (cap->cap) {
3228         case KVM_CAP_HYPERV_SYNIC:
3229                 return kvm_hv_activate_synic(vcpu);
3230         default:
3231                 return -EINVAL;
3232         }
3233 }
3234
3235 long kvm_arch_vcpu_ioctl(struct file *filp,
3236                          unsigned int ioctl, unsigned long arg)
3237 {
3238         struct kvm_vcpu *vcpu = filp->private_data;
3239         void __user *argp = (void __user *)arg;
3240         int r;
3241         union {
3242                 struct kvm_lapic_state *lapic;
3243                 struct kvm_xsave *xsave;
3244                 struct kvm_xcrs *xcrs;
3245                 void *buffer;
3246         } u;
3247
3248         u.buffer = NULL;
3249         switch (ioctl) {
3250         case KVM_GET_LAPIC: {
3251                 r = -EINVAL;
3252                 if (!lapic_in_kernel(vcpu))
3253                         goto out;
3254                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3255
3256                 r = -ENOMEM;
3257                 if (!u.lapic)
3258                         goto out;
3259                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3260                 if (r)
3261                         goto out;
3262                 r = -EFAULT;
3263                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3264                         goto out;
3265                 r = 0;
3266                 break;
3267         }
3268         case KVM_SET_LAPIC: {
3269                 r = -EINVAL;
3270                 if (!lapic_in_kernel(vcpu))
3271                         goto out;
3272                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3273                 if (IS_ERR(u.lapic))
3274                         return PTR_ERR(u.lapic);
3275
3276                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3277                 break;
3278         }
3279         case KVM_INTERRUPT: {
3280                 struct kvm_interrupt irq;
3281
3282                 r = -EFAULT;
3283                 if (copy_from_user(&irq, argp, sizeof irq))
3284                         goto out;
3285                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3286                 break;
3287         }
3288         case KVM_NMI: {
3289                 r = kvm_vcpu_ioctl_nmi(vcpu);
3290                 break;
3291         }
3292         case KVM_SMI: {
3293                 r = kvm_vcpu_ioctl_smi(vcpu);
3294                 break;
3295         }
3296         case KVM_SET_CPUID: {
3297                 struct kvm_cpuid __user *cpuid_arg = argp;
3298                 struct kvm_cpuid cpuid;
3299
3300                 r = -EFAULT;
3301                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3302                         goto out;
3303                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3304                 break;
3305         }
3306         case KVM_SET_CPUID2: {
3307                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3308                 struct kvm_cpuid2 cpuid;
3309
3310                 r = -EFAULT;
3311                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3312                         goto out;
3313                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3314                                               cpuid_arg->entries);
3315                 break;
3316         }
3317         case KVM_GET_CPUID2: {
3318                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3319                 struct kvm_cpuid2 cpuid;
3320
3321                 r = -EFAULT;
3322                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3323                         goto out;
3324                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3325                                               cpuid_arg->entries);
3326                 if (r)
3327                         goto out;
3328                 r = -EFAULT;
3329                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3330                         goto out;
3331                 r = 0;
3332                 break;
3333         }
3334         case KVM_GET_MSRS:
3335                 r = msr_io(vcpu, argp, do_get_msr, 1);
3336                 break;
3337         case KVM_SET_MSRS:
3338                 r = msr_io(vcpu, argp, do_set_msr, 0);
3339                 break;
3340         case KVM_TPR_ACCESS_REPORTING: {
3341                 struct kvm_tpr_access_ctl tac;
3342
3343                 r = -EFAULT;
3344                 if (copy_from_user(&tac, argp, sizeof tac))
3345                         goto out;
3346                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3347                 if (r)
3348                         goto out;
3349                 r = -EFAULT;
3350                 if (copy_to_user(argp, &tac, sizeof tac))
3351                         goto out;
3352                 r = 0;
3353                 break;
3354         };
3355         case KVM_SET_VAPIC_ADDR: {
3356                 struct kvm_vapic_addr va;
3357
3358                 r = -EINVAL;
3359                 if (!lapic_in_kernel(vcpu))
3360                         goto out;
3361                 r = -EFAULT;
3362                 if (copy_from_user(&va, argp, sizeof va))
3363                         goto out;
3364                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3365                 break;
3366         }
3367         case KVM_X86_SETUP_MCE: {
3368                 u64 mcg_cap;
3369
3370                 r = -EFAULT;
3371                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3372                         goto out;
3373                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3374                 break;
3375         }
3376         case KVM_X86_SET_MCE: {
3377                 struct kvm_x86_mce mce;
3378
3379                 r = -EFAULT;
3380                 if (copy_from_user(&mce, argp, sizeof mce))
3381                         goto out;
3382                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3383                 break;
3384         }
3385         case KVM_GET_VCPU_EVENTS: {
3386                 struct kvm_vcpu_events events;
3387
3388                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3389
3390                 r = -EFAULT;
3391                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3392                         break;
3393                 r = 0;
3394                 break;
3395         }
3396         case KVM_SET_VCPU_EVENTS: {
3397                 struct kvm_vcpu_events events;
3398
3399                 r = -EFAULT;
3400                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3401                         break;
3402
3403                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3404                 break;
3405         }
3406         case KVM_GET_DEBUGREGS: {
3407                 struct kvm_debugregs dbgregs;
3408
3409                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3410
3411                 r = -EFAULT;
3412                 if (copy_to_user(argp, &dbgregs,
3413                                  sizeof(struct kvm_debugregs)))
3414                         break;
3415                 r = 0;
3416                 break;
3417         }
3418         case KVM_SET_DEBUGREGS: {
3419                 struct kvm_debugregs dbgregs;
3420
3421                 r = -EFAULT;
3422                 if (copy_from_user(&dbgregs, argp,
3423                                    sizeof(struct kvm_debugregs)))
3424                         break;
3425
3426                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3427                 break;
3428         }
3429         case KVM_GET_XSAVE: {
3430                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3431                 r = -ENOMEM;
3432                 if (!u.xsave)
3433                         break;
3434
3435                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3436
3437                 r = -EFAULT;
3438                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3439                         break;
3440                 r = 0;
3441                 break;
3442         }
3443         case KVM_SET_XSAVE: {
3444                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3445                 if (IS_ERR(u.xsave))
3446                         return PTR_ERR(u.xsave);
3447
3448                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3449                 break;
3450         }
3451         case KVM_GET_XCRS: {
3452                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3453                 r = -ENOMEM;
3454                 if (!u.xcrs)
3455                         break;
3456
3457                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3458
3459                 r = -EFAULT;
3460                 if (copy_to_user(argp, u.xcrs,
3461                                  sizeof(struct kvm_xcrs)))
3462                         break;
3463                 r = 0;
3464                 break;
3465         }
3466         case KVM_SET_XCRS: {
3467                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3468                 if (IS_ERR(u.xcrs))
3469                         return PTR_ERR(u.xcrs);
3470
3471                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3472                 break;
3473         }
3474         case KVM_SET_TSC_KHZ: {
3475                 u32 user_tsc_khz;
3476
3477                 r = -EINVAL;
3478                 user_tsc_khz = (u32)arg;
3479
3480                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3481                         goto out;
3482
3483                 if (user_tsc_khz == 0)
3484                         user_tsc_khz = tsc_khz;
3485
3486                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3487                         r = 0;
3488
3489                 goto out;
3490         }
3491         case KVM_GET_TSC_KHZ: {
3492                 r = vcpu->arch.virtual_tsc_khz;
3493                 goto out;
3494         }
3495         case KVM_KVMCLOCK_CTRL: {
3496                 r = kvm_set_guest_paused(vcpu);
3497                 goto out;
3498         }
3499         case KVM_ENABLE_CAP: {
3500                 struct kvm_enable_cap cap;
3501
3502                 r = -EFAULT;
3503                 if (copy_from_user(&cap, argp, sizeof(cap)))
3504                         goto out;
3505                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3506                 break;
3507         }
3508         default:
3509                 r = -EINVAL;
3510         }
3511 out:
3512         kfree(u.buffer);
3513         return r;
3514 }
3515
3516 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3517 {
3518         return VM_FAULT_SIGBUS;
3519 }
3520
3521 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3522 {
3523         int ret;
3524
3525         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3526                 return -EINVAL;
3527         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3528         return ret;
3529 }
3530
3531 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3532                                               u64 ident_addr)
3533 {
3534         kvm->arch.ept_identity_map_addr = ident_addr;
3535         return 0;
3536 }
3537
3538 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3539                                           u32 kvm_nr_mmu_pages)
3540 {
3541         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3542                 return -EINVAL;
3543
3544         mutex_lock(&kvm->slots_lock);
3545
3546         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3547         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3548
3549         mutex_unlock(&kvm->slots_lock);
3550         return 0;
3551 }
3552
3553 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3554 {
3555         return kvm->arch.n_max_mmu_pages;
3556 }
3557
3558 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3559 {
3560         int r;
3561
3562         r = 0;
3563         switch (chip->chip_id) {
3564         case KVM_IRQCHIP_PIC_MASTER:
3565                 memcpy(&chip->chip.pic,
3566                         &pic_irqchip(kvm)->pics[0],
3567                         sizeof(struct kvm_pic_state));
3568                 break;
3569         case KVM_IRQCHIP_PIC_SLAVE:
3570                 memcpy(&chip->chip.pic,
3571                         &pic_irqchip(kvm)->pics[1],
3572                         sizeof(struct kvm_pic_state));
3573                 break;
3574         case KVM_IRQCHIP_IOAPIC:
3575                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3576                 break;
3577         default:
3578                 r = -EINVAL;
3579                 break;
3580         }
3581         return r;
3582 }
3583
3584 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3585 {
3586         int r;
3587
3588         r = 0;
3589         switch (chip->chip_id) {
3590         case KVM_IRQCHIP_PIC_MASTER:
3591                 spin_lock(&pic_irqchip(kvm)->lock);
3592                 memcpy(&pic_irqchip(kvm)->pics[0],
3593                         &chip->chip.pic,
3594                         sizeof(struct kvm_pic_state));
3595                 spin_unlock(&pic_irqchip(kvm)->lock);
3596                 break;
3597         case KVM_IRQCHIP_PIC_SLAVE:
3598                 spin_lock(&pic_irqchip(kvm)->lock);
3599                 memcpy(&pic_irqchip(kvm)->pics[1],
3600                         &chip->chip.pic,
3601                         sizeof(struct kvm_pic_state));
3602                 spin_unlock(&pic_irqchip(kvm)->lock);
3603                 break;
3604         case KVM_IRQCHIP_IOAPIC:
3605                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3606                 break;
3607         default:
3608                 r = -EINVAL;
3609                 break;
3610         }
3611         kvm_pic_update_irq(pic_irqchip(kvm));
3612         return r;
3613 }
3614
3615 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3616 {
3617         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3618
3619         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3620
3621         mutex_lock(&kps->lock);
3622         memcpy(ps, &kps->channels, sizeof(*ps));
3623         mutex_unlock(&kps->lock);
3624         return 0;
3625 }
3626
3627 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3628 {
3629         int i;
3630         struct kvm_pit *pit = kvm->arch.vpit;
3631
3632         mutex_lock(&pit->pit_state.lock);
3633         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3634         for (i = 0; i < 3; i++)
3635                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3636         mutex_unlock(&pit->pit_state.lock);
3637         return 0;
3638 }
3639
3640 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3641 {
3642         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3643         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3644                 sizeof(ps->channels));
3645         ps->flags = kvm->arch.vpit->pit_state.flags;
3646         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647         memset(&ps->reserved, 0, sizeof(ps->reserved));
3648         return 0;
3649 }
3650
3651 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3652 {
3653         int start = 0;
3654         int i;
3655         u32 prev_legacy, cur_legacy;
3656         struct kvm_pit *pit = kvm->arch.vpit;
3657
3658         mutex_lock(&pit->pit_state.lock);
3659         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3660         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3661         if (!prev_legacy && cur_legacy)
3662                 start = 1;
3663         memcpy(&pit->pit_state.channels, &ps->channels,
3664                sizeof(pit->pit_state.channels));
3665         pit->pit_state.flags = ps->flags;
3666         for (i = 0; i < 3; i++)
3667                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3668                                    start && i == 0);
3669         mutex_unlock(&pit->pit_state.lock);
3670         return 0;
3671 }
3672
3673 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3674                                  struct kvm_reinject_control *control)
3675 {
3676         struct kvm_pit *pit = kvm->arch.vpit;
3677
3678         if (!pit)
3679                 return -ENXIO;
3680
3681         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3682          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3683          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3684          */
3685         mutex_lock(&pit->pit_state.lock);
3686         kvm_pit_set_reinject(pit, control->pit_reinject);
3687         mutex_unlock(&pit->pit_state.lock);
3688
3689         return 0;
3690 }
3691
3692 /**
3693  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3694  * @kvm: kvm instance
3695  * @log: slot id and address to which we copy the log
3696  *
3697  * Steps 1-4 below provide general overview of dirty page logging. See
3698  * kvm_get_dirty_log_protect() function description for additional details.
3699  *
3700  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3701  * always flush the TLB (step 4) even if previous step failed  and the dirty
3702  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3703  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3704  * writes will be marked dirty for next log read.
3705  *
3706  *   1. Take a snapshot of the bit and clear it if needed.
3707  *   2. Write protect the corresponding page.
3708  *   3. Copy the snapshot to the userspace.
3709  *   4. Flush TLB's if needed.
3710  */
3711 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3712 {
3713         bool is_dirty = false;
3714         int r;
3715
3716         mutex_lock(&kvm->slots_lock);
3717
3718         /*
3719          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3720          */
3721         if (kvm_x86_ops->flush_log_dirty)
3722                 kvm_x86_ops->flush_log_dirty(kvm);
3723
3724         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3725
3726         /*
3727          * All the TLBs can be flushed out of mmu lock, see the comments in
3728          * kvm_mmu_slot_remove_write_access().
3729          */
3730         lockdep_assert_held(&kvm->slots_lock);
3731         if (is_dirty)
3732                 kvm_flush_remote_tlbs(kvm);
3733
3734         mutex_unlock(&kvm->slots_lock);
3735         return r;
3736 }
3737
3738 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3739                         bool line_status)
3740 {
3741         if (!irqchip_in_kernel(kvm))
3742                 return -ENXIO;
3743
3744         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3745                                         irq_event->irq, irq_event->level,
3746                                         line_status);
3747         return 0;
3748 }
3749
3750 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3751                                    struct kvm_enable_cap *cap)
3752 {
3753         int r;
3754
3755         if (cap->flags)
3756                 return -EINVAL;
3757
3758         switch (cap->cap) {
3759         case KVM_CAP_DISABLE_QUIRKS:
3760                 kvm->arch.disabled_quirks = cap->args[0];
3761                 r = 0;
3762                 break;
3763         case KVM_CAP_SPLIT_IRQCHIP: {
3764                 mutex_lock(&kvm->lock);
3765                 r = -EINVAL;
3766                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3767                         goto split_irqchip_unlock;
3768                 r = -EEXIST;
3769                 if (irqchip_in_kernel(kvm))
3770                         goto split_irqchip_unlock;
3771                 if (atomic_read(&kvm->online_vcpus))
3772                         goto split_irqchip_unlock;
3773                 r = kvm_setup_empty_irq_routing(kvm);
3774                 if (r)
3775                         goto split_irqchip_unlock;
3776                 /* Pairs with irqchip_in_kernel. */
3777                 smp_wmb();
3778                 kvm->arch.irqchip_split = true;
3779                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3780                 r = 0;
3781 split_irqchip_unlock:
3782                 mutex_unlock(&kvm->lock);
3783                 break;
3784         }
3785         default:
3786                 r = -EINVAL;
3787                 break;
3788         }
3789         return r;
3790 }
3791
3792 long kvm_arch_vm_ioctl(struct file *filp,
3793                        unsigned int ioctl, unsigned long arg)
3794 {
3795         struct kvm *kvm = filp->private_data;
3796         void __user *argp = (void __user *)arg;
3797         int r = -ENOTTY;
3798         /*
3799          * This union makes it completely explicit to gcc-3.x
3800          * that these two variables' stack usage should be
3801          * combined, not added together.
3802          */
3803         union {
3804                 struct kvm_pit_state ps;
3805                 struct kvm_pit_state2 ps2;
3806                 struct kvm_pit_config pit_config;
3807         } u;
3808
3809         switch (ioctl) {
3810         case KVM_SET_TSS_ADDR:
3811                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3812                 break;
3813         case KVM_SET_IDENTITY_MAP_ADDR: {
3814                 u64 ident_addr;
3815
3816                 r = -EFAULT;
3817                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3818                         goto out;
3819                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3820                 break;
3821         }
3822         case KVM_SET_NR_MMU_PAGES:
3823                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3824                 break;
3825         case KVM_GET_NR_MMU_PAGES:
3826                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3827                 break;
3828         case KVM_CREATE_IRQCHIP: {
3829                 struct kvm_pic *vpic;
3830
3831                 mutex_lock(&kvm->lock);
3832                 r = -EEXIST;
3833                 if (kvm->arch.vpic)
3834                         goto create_irqchip_unlock;
3835                 r = -EINVAL;
3836                 if (atomic_read(&kvm->online_vcpus))
3837                         goto create_irqchip_unlock;
3838                 r = -ENOMEM;
3839                 vpic = kvm_create_pic(kvm);
3840                 if (vpic) {
3841                         r = kvm_ioapic_init(kvm);
3842                         if (r) {
3843                                 mutex_lock(&kvm->slots_lock);
3844                                 kvm_destroy_pic(vpic);
3845                                 mutex_unlock(&kvm->slots_lock);
3846                                 goto create_irqchip_unlock;
3847                         }
3848                 } else
3849                         goto create_irqchip_unlock;
3850                 r = kvm_setup_default_irq_routing(kvm);
3851                 if (r) {
3852                         mutex_lock(&kvm->slots_lock);
3853                         mutex_lock(&kvm->irq_lock);
3854                         kvm_ioapic_destroy(kvm);
3855                         kvm_destroy_pic(vpic);
3856                         mutex_unlock(&kvm->irq_lock);
3857                         mutex_unlock(&kvm->slots_lock);
3858                         goto create_irqchip_unlock;
3859                 }
3860                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3861                 smp_wmb();
3862                 kvm->arch.vpic = vpic;
3863         create_irqchip_unlock:
3864                 mutex_unlock(&kvm->lock);
3865                 break;
3866         }
3867         case KVM_CREATE_PIT:
3868                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3869                 goto create_pit;
3870         case KVM_CREATE_PIT2:
3871                 r = -EFAULT;
3872                 if (copy_from_user(&u.pit_config, argp,
3873                                    sizeof(struct kvm_pit_config)))
3874                         goto out;
3875         create_pit:
3876                 mutex_lock(&kvm->slots_lock);
3877                 r = -EEXIST;
3878                 if (kvm->arch.vpit)
3879                         goto create_pit_unlock;
3880                 r = -ENOMEM;
3881                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3882                 if (kvm->arch.vpit)
3883                         r = 0;
3884         create_pit_unlock:
3885                 mutex_unlock(&kvm->slots_lock);
3886                 break;
3887         case KVM_GET_IRQCHIP: {
3888                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3889                 struct kvm_irqchip *chip;
3890
3891                 chip = memdup_user(argp, sizeof(*chip));
3892                 if (IS_ERR(chip)) {
3893                         r = PTR_ERR(chip);
3894                         goto out;
3895                 }
3896
3897                 r = -ENXIO;
3898                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3899                         goto get_irqchip_out;
3900                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3901                 if (r)
3902                         goto get_irqchip_out;
3903                 r = -EFAULT;
3904                 if (copy_to_user(argp, chip, sizeof *chip))
3905                         goto get_irqchip_out;
3906                 r = 0;
3907         get_irqchip_out:
3908                 kfree(chip);
3909                 break;
3910         }
3911         case KVM_SET_IRQCHIP: {
3912                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3913                 struct kvm_irqchip *chip;
3914
3915                 chip = memdup_user(argp, sizeof(*chip));
3916                 if (IS_ERR(chip)) {
3917                         r = PTR_ERR(chip);
3918                         goto out;
3919                 }
3920
3921                 r = -ENXIO;
3922                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3923                         goto set_irqchip_out;
3924                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3925                 if (r)
3926                         goto set_irqchip_out;
3927                 r = 0;
3928         set_irqchip_out:
3929                 kfree(chip);
3930                 break;
3931         }
3932         case KVM_GET_PIT: {
3933                 r = -EFAULT;
3934                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3935                         goto out;
3936                 r = -ENXIO;
3937                 if (!kvm->arch.vpit)
3938                         goto out;
3939                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3940                 if (r)
3941                         goto out;
3942                 r = -EFAULT;
3943                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3944                         goto out;
3945                 r = 0;
3946                 break;
3947         }
3948         case KVM_SET_PIT: {
3949                 r = -EFAULT;
3950                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3951                         goto out;
3952                 r = -ENXIO;
3953                 if (!kvm->arch.vpit)
3954                         goto out;
3955                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3956                 break;
3957         }
3958         case KVM_GET_PIT2: {
3959                 r = -ENXIO;
3960                 if (!kvm->arch.vpit)
3961                         goto out;
3962                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3963                 if (r)
3964                         goto out;
3965                 r = -EFAULT;
3966                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3967                         goto out;
3968                 r = 0;
3969                 break;
3970         }
3971         case KVM_SET_PIT2: {
3972                 r = -EFAULT;
3973                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3974                         goto out;
3975                 r = -ENXIO;
3976                 if (!kvm->arch.vpit)
3977                         goto out;
3978                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3979                 break;
3980         }
3981         case KVM_REINJECT_CONTROL: {
3982                 struct kvm_reinject_control control;
3983                 r =  -EFAULT;
3984                 if (copy_from_user(&control, argp, sizeof(control)))
3985                         goto out;
3986                 r = kvm_vm_ioctl_reinject(kvm, &control);
3987                 break;
3988         }
3989         case KVM_SET_BOOT_CPU_ID:
3990                 r = 0;
3991                 mutex_lock(&kvm->lock);
3992                 if (atomic_read(&kvm->online_vcpus) != 0)
3993                         r = -EBUSY;
3994                 else
3995                         kvm->arch.bsp_vcpu_id = arg;
3996                 mutex_unlock(&kvm->lock);
3997                 break;
3998         case KVM_XEN_HVM_CONFIG: {
3999                 r = -EFAULT;
4000                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4001                                    sizeof(struct kvm_xen_hvm_config)))
4002                         goto out;
4003                 r = -EINVAL;
4004                 if (kvm->arch.xen_hvm_config.flags)
4005                         goto out;
4006                 r = 0;
4007                 break;
4008         }
4009         case KVM_SET_CLOCK: {
4010                 struct kvm_clock_data user_ns;
4011                 u64 now_ns;
4012                 s64 delta;
4013
4014                 r = -EFAULT;
4015                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4016                         goto out;
4017
4018                 r = -EINVAL;
4019                 if (user_ns.flags)
4020                         goto out;
4021
4022                 r = 0;
4023                 local_irq_disable();
4024                 now_ns = get_kernel_ns();
4025                 delta = user_ns.clock - now_ns;
4026                 local_irq_enable();
4027                 kvm->arch.kvmclock_offset = delta;
4028                 kvm_gen_update_masterclock(kvm);
4029                 break;
4030         }
4031         case KVM_GET_CLOCK: {
4032                 struct kvm_clock_data user_ns;
4033                 u64 now_ns;
4034
4035                 local_irq_disable();
4036                 now_ns = get_kernel_ns();
4037                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4038                 local_irq_enable();
4039                 user_ns.flags = 0;
4040                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4041
4042                 r = -EFAULT;
4043                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4044                         goto out;
4045                 r = 0;
4046                 break;
4047         }
4048         case KVM_ENABLE_CAP: {
4049                 struct kvm_enable_cap cap;
4050
4051                 r = -EFAULT;
4052                 if (copy_from_user(&cap, argp, sizeof(cap)))
4053                         goto out;
4054                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4055                 break;
4056         }
4057         default:
4058                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4059         }
4060 out:
4061         return r;
4062 }
4063
4064 static void kvm_init_msr_list(void)
4065 {
4066         u32 dummy[2];
4067         unsigned i, j;
4068
4069         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4070                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4071                         continue;
4072
4073                 /*
4074                  * Even MSRs that are valid in the host may not be exposed
4075                  * to the guests in some cases.
4076                  */
4077                 switch (msrs_to_save[i]) {
4078                 case MSR_IA32_BNDCFGS:
4079                         if (!kvm_x86_ops->mpx_supported())
4080                                 continue;
4081                         break;
4082                 case MSR_TSC_AUX:
4083                         if (!kvm_x86_ops->rdtscp_supported())
4084                                 continue;
4085                         break;
4086                 default:
4087                         break;
4088                 }
4089
4090                 if (j < i)
4091                         msrs_to_save[j] = msrs_to_save[i];
4092                 j++;
4093         }
4094         num_msrs_to_save = j;
4095
4096         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4097                 switch (emulated_msrs[i]) {
4098                 case MSR_IA32_SMBASE:
4099                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4100                                 continue;
4101                         break;
4102                 default:
4103                         break;
4104                 }
4105
4106                 if (j < i)
4107                         emulated_msrs[j] = emulated_msrs[i];
4108                 j++;
4109         }
4110         num_emulated_msrs = j;
4111 }
4112
4113 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4114                            const void *v)
4115 {
4116         int handled = 0;
4117         int n;
4118
4119         do {
4120                 n = min(len, 8);
4121                 if (!(lapic_in_kernel(vcpu) &&
4122                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4123                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4124                         break;
4125                 handled += n;
4126                 addr += n;
4127                 len -= n;
4128                 v += n;
4129         } while (len);
4130
4131         return handled;
4132 }
4133
4134 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4135 {
4136         int handled = 0;
4137         int n;
4138
4139         do {
4140                 n = min(len, 8);
4141                 if (!(lapic_in_kernel(vcpu) &&
4142                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4143                                          addr, n, v))
4144                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4145                         break;
4146                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4147                 handled += n;
4148                 addr += n;
4149                 len -= n;
4150                 v += n;
4151         } while (len);
4152
4153         return handled;
4154 }
4155
4156 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4157                         struct kvm_segment *var, int seg)
4158 {
4159         kvm_x86_ops->set_segment(vcpu, var, seg);
4160 }
4161
4162 void kvm_get_segment(struct kvm_vcpu *vcpu,
4163                      struct kvm_segment *var, int seg)
4164 {
4165         kvm_x86_ops->get_segment(vcpu, var, seg);
4166 }
4167
4168 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4169                            struct x86_exception *exception)
4170 {
4171         gpa_t t_gpa;
4172
4173         BUG_ON(!mmu_is_nested(vcpu));
4174
4175         /* NPT walks are always user-walks */
4176         access |= PFERR_USER_MASK;
4177         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4178
4179         return t_gpa;
4180 }
4181
4182 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4183                               struct x86_exception *exception)
4184 {
4185         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4186         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4187 }
4188
4189  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4190                                 struct x86_exception *exception)
4191 {
4192         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193         access |= PFERR_FETCH_MASK;
4194         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4195 }
4196
4197 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4198                                struct x86_exception *exception)
4199 {
4200         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4201         access |= PFERR_WRITE_MASK;
4202         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4203 }
4204
4205 /* uses this to access any guest's mapped memory without checking CPL */
4206 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4207                                 struct x86_exception *exception)
4208 {
4209         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4210 }
4211
4212 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4213                                       struct kvm_vcpu *vcpu, u32 access,
4214                                       struct x86_exception *exception)
4215 {
4216         void *data = val;
4217         int r = X86EMUL_CONTINUE;
4218
4219         while (bytes) {
4220                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4221                                                             exception);
4222                 unsigned offset = addr & (PAGE_SIZE-1);
4223                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4224                 int ret;
4225
4226                 if (gpa == UNMAPPED_GVA)
4227                         return X86EMUL_PROPAGATE_FAULT;
4228                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4229                                                offset, toread);
4230                 if (ret < 0) {
4231                         r = X86EMUL_IO_NEEDED;
4232                         goto out;
4233                 }
4234
4235                 bytes -= toread;
4236                 data += toread;
4237                 addr += toread;
4238         }
4239 out:
4240         return r;
4241 }
4242
4243 /* used for instruction fetching */
4244 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4245                                 gva_t addr, void *val, unsigned int bytes,
4246                                 struct x86_exception *exception)
4247 {
4248         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4249         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4250         unsigned offset;
4251         int ret;
4252
4253         /* Inline kvm_read_guest_virt_helper for speed.  */
4254         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4255                                                     exception);
4256         if (unlikely(gpa == UNMAPPED_GVA))
4257                 return X86EMUL_PROPAGATE_FAULT;
4258
4259         offset = addr & (PAGE_SIZE-1);
4260         if (WARN_ON(offset + bytes > PAGE_SIZE))
4261                 bytes = (unsigned)PAGE_SIZE - offset;
4262         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4263                                        offset, bytes);
4264         if (unlikely(ret < 0))
4265                 return X86EMUL_IO_NEEDED;
4266
4267         return X86EMUL_CONTINUE;
4268 }
4269
4270 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4271                                gva_t addr, void *val, unsigned int bytes,
4272                                struct x86_exception *exception)
4273 {
4274         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4275         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4276
4277         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4278                                           exception);
4279 }
4280 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4281
4282 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4283                                       gva_t addr, void *val, unsigned int bytes,
4284                                       struct x86_exception *exception)
4285 {
4286         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4287         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4288 }
4289
4290 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4291                 unsigned long addr, void *val, unsigned int bytes)
4292 {
4293         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4294         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4295
4296         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4297 }
4298
4299 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4300                                        gva_t addr, void *val,
4301                                        unsigned int bytes,
4302                                        struct x86_exception *exception)
4303 {
4304         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305         void *data = val;
4306         int r = X86EMUL_CONTINUE;
4307
4308         while (bytes) {
4309                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4310                                                              PFERR_WRITE_MASK,
4311                                                              exception);
4312                 unsigned offset = addr & (PAGE_SIZE-1);
4313                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4314                 int ret;
4315
4316                 if (gpa == UNMAPPED_GVA)
4317                         return X86EMUL_PROPAGATE_FAULT;
4318                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4319                 if (ret < 0) {
4320                         r = X86EMUL_IO_NEEDED;
4321                         goto out;
4322                 }
4323
4324                 bytes -= towrite;
4325                 data += towrite;
4326                 addr += towrite;
4327         }
4328 out:
4329         return r;
4330 }
4331 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4332
4333 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4334                                 gpa_t *gpa, struct x86_exception *exception,
4335                                 bool write)
4336 {
4337         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4338                 | (write ? PFERR_WRITE_MASK : 0);
4339
4340         /*
4341          * currently PKRU is only applied to ept enabled guest so
4342          * there is no pkey in EPT page table for L1 guest or EPT
4343          * shadow page table for L2 guest.
4344          */
4345         if (vcpu_match_mmio_gva(vcpu, gva)
4346             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4347                                  vcpu->arch.access, 0, access)) {
4348                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4349                                         (gva & (PAGE_SIZE - 1));
4350                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4351                 return 1;
4352         }
4353
4354         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4355
4356         if (*gpa == UNMAPPED_GVA)
4357                 return -1;
4358
4359         /* For APIC access vmexit */
4360         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4361                 return 1;
4362
4363         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4364                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4365                 return 1;
4366         }
4367
4368         return 0;
4369 }
4370
4371 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4372                         const void *val, int bytes)
4373 {
4374         int ret;
4375
4376         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4377         if (ret < 0)
4378                 return 0;
4379         kvm_page_track_write(vcpu, gpa, val, bytes);
4380         return 1;
4381 }
4382
4383 struct read_write_emulator_ops {
4384         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4385                                   int bytes);
4386         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4387                                   void *val, int bytes);
4388         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4389                                int bytes, void *val);
4390         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4391                                     void *val, int bytes);
4392         bool write;
4393 };
4394
4395 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4396 {
4397         if (vcpu->mmio_read_completed) {
4398                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4399                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4400                 vcpu->mmio_read_completed = 0;
4401                 return 1;
4402         }
4403
4404         return 0;
4405 }
4406
4407 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4408                         void *val, int bytes)
4409 {
4410         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4411 }
4412
4413 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4414                          void *val, int bytes)
4415 {
4416         return emulator_write_phys(vcpu, gpa, val, bytes);
4417 }
4418
4419 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4420 {
4421         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4422         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4423 }
4424
4425 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4426                           void *val, int bytes)
4427 {
4428         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4429         return X86EMUL_IO_NEEDED;
4430 }
4431
4432 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4433                            void *val, int bytes)
4434 {
4435         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4436
4437         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4438         return X86EMUL_CONTINUE;
4439 }
4440
4441 static const struct read_write_emulator_ops read_emultor = {
4442         .read_write_prepare = read_prepare,
4443         .read_write_emulate = read_emulate,
4444         .read_write_mmio = vcpu_mmio_read,
4445         .read_write_exit_mmio = read_exit_mmio,
4446 };
4447
4448 static const struct read_write_emulator_ops write_emultor = {
4449         .read_write_emulate = write_emulate,
4450         .read_write_mmio = write_mmio,
4451         .read_write_exit_mmio = write_exit_mmio,
4452         .write = true,
4453 };
4454
4455 static int emulator_read_write_onepage(unsigned long addr, void *val,
4456                                        unsigned int bytes,
4457                                        struct x86_exception *exception,
4458                                        struct kvm_vcpu *vcpu,
4459                                        const struct read_write_emulator_ops *ops)
4460 {
4461         gpa_t gpa;
4462         int handled, ret;
4463         bool write = ops->write;
4464         struct kvm_mmio_fragment *frag;
4465
4466         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4467
4468         if (ret < 0)
4469                 return X86EMUL_PROPAGATE_FAULT;
4470
4471         /* For APIC access vmexit */
4472         if (ret)
4473                 goto mmio;
4474
4475         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4476                 return X86EMUL_CONTINUE;
4477
4478 mmio:
4479         /*
4480          * Is this MMIO handled locally?
4481          */
4482         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4483         if (handled == bytes)
4484                 return X86EMUL_CONTINUE;
4485
4486         gpa += handled;
4487         bytes -= handled;
4488         val += handled;
4489
4490         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4491         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4492         frag->gpa = gpa;
4493         frag->data = val;
4494         frag->len = bytes;
4495         return X86EMUL_CONTINUE;
4496 }
4497
4498 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4499                         unsigned long addr,
4500                         void *val, unsigned int bytes,
4501                         struct x86_exception *exception,
4502                         const struct read_write_emulator_ops *ops)
4503 {
4504         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505         gpa_t gpa;
4506         int rc;
4507
4508         if (ops->read_write_prepare &&
4509                   ops->read_write_prepare(vcpu, val, bytes))
4510                 return X86EMUL_CONTINUE;
4511
4512         vcpu->mmio_nr_fragments = 0;
4513
4514         /* Crossing a page boundary? */
4515         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4516                 int now;
4517
4518                 now = -addr & ~PAGE_MASK;
4519                 rc = emulator_read_write_onepage(addr, val, now, exception,
4520                                                  vcpu, ops);
4521
4522                 if (rc != X86EMUL_CONTINUE)
4523                         return rc;
4524                 addr += now;
4525                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4526                         addr = (u32)addr;
4527                 val += now;
4528                 bytes -= now;
4529         }
4530
4531         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4532                                          vcpu, ops);
4533         if (rc != X86EMUL_CONTINUE)
4534                 return rc;
4535
4536         if (!vcpu->mmio_nr_fragments)
4537                 return rc;
4538
4539         gpa = vcpu->mmio_fragments[0].gpa;
4540
4541         vcpu->mmio_needed = 1;
4542         vcpu->mmio_cur_fragment = 0;
4543
4544         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4545         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4546         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4547         vcpu->run->mmio.phys_addr = gpa;
4548
4549         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4550 }
4551
4552 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4553                                   unsigned long addr,
4554                                   void *val,
4555                                   unsigned int bytes,
4556                                   struct x86_exception *exception)
4557 {
4558         return emulator_read_write(ctxt, addr, val, bytes,
4559                                    exception, &read_emultor);
4560 }
4561
4562 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4563                             unsigned long addr,
4564                             const void *val,
4565                             unsigned int bytes,
4566                             struct x86_exception *exception)
4567 {
4568         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4569                                    exception, &write_emultor);
4570 }
4571
4572 #define CMPXCHG_TYPE(t, ptr, old, new) \
4573         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4574
4575 #ifdef CONFIG_X86_64
4576 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4577 #else
4578 #  define CMPXCHG64(ptr, old, new) \
4579         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4580 #endif
4581
4582 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4583                                      unsigned long addr,
4584                                      const void *old,
4585                                      const void *new,
4586                                      unsigned int bytes,
4587                                      struct x86_exception *exception)
4588 {
4589         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4590         gpa_t gpa;
4591         struct page *page;
4592         char *kaddr;
4593         bool exchanged;
4594
4595         /* guests cmpxchg8b have to be emulated atomically */
4596         if (bytes > 8 || (bytes & (bytes - 1)))
4597                 goto emul_write;
4598
4599         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4600
4601         if (gpa == UNMAPPED_GVA ||
4602             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4603                 goto emul_write;
4604
4605         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4606                 goto emul_write;
4607
4608         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4609         if (is_error_page(page))
4610                 goto emul_write;
4611
4612         kaddr = kmap_atomic(page);
4613         kaddr += offset_in_page(gpa);
4614         switch (bytes) {
4615         case 1:
4616                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4617                 break;
4618         case 2:
4619                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4620                 break;
4621         case 4:
4622                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4623                 break;
4624         case 8:
4625                 exchanged = CMPXCHG64(kaddr, old, new);
4626                 break;
4627         default:
4628                 BUG();
4629         }
4630         kunmap_atomic(kaddr);
4631         kvm_release_page_dirty(page);
4632
4633         if (!exchanged)
4634                 return X86EMUL_CMPXCHG_FAILED;
4635
4636         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4637         kvm_page_track_write(vcpu, gpa, new, bytes);
4638
4639         return X86EMUL_CONTINUE;
4640
4641 emul_write:
4642         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4643
4644         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4645 }
4646
4647 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4648 {
4649         /* TODO: String I/O for in kernel device */
4650         int r;
4651
4652         if (vcpu->arch.pio.in)
4653                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4654                                     vcpu->arch.pio.size, pd);
4655         else
4656                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4657                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4658                                      pd);
4659         return r;
4660 }
4661
4662 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4663                                unsigned short port, void *val,
4664                                unsigned int count, bool in)
4665 {
4666         vcpu->arch.pio.port = port;
4667         vcpu->arch.pio.in = in;
4668         vcpu->arch.pio.count  = count;
4669         vcpu->arch.pio.size = size;
4670
4671         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4672                 vcpu->arch.pio.count = 0;
4673                 return 1;
4674         }
4675
4676         vcpu->run->exit_reason = KVM_EXIT_IO;
4677         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4678         vcpu->run->io.size = size;
4679         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4680         vcpu->run->io.count = count;
4681         vcpu->run->io.port = port;
4682
4683         return 0;
4684 }
4685
4686 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4687                                     int size, unsigned short port, void *val,
4688                                     unsigned int count)
4689 {
4690         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4691         int ret;
4692
4693         if (vcpu->arch.pio.count)
4694                 goto data_avail;
4695
4696         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4697         if (ret) {
4698 data_avail:
4699                 memcpy(val, vcpu->arch.pio_data, size * count);
4700                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4701                 vcpu->arch.pio.count = 0;
4702                 return 1;
4703         }
4704
4705         return 0;
4706 }
4707
4708 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4709                                      int size, unsigned short port,
4710                                      const void *val, unsigned int count)
4711 {
4712         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4713
4714         memcpy(vcpu->arch.pio_data, val, size * count);
4715         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4716         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4717 }
4718
4719 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4720 {
4721         return kvm_x86_ops->get_segment_base(vcpu, seg);
4722 }
4723
4724 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4725 {
4726         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4727 }
4728
4729 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4730 {
4731         if (!need_emulate_wbinvd(vcpu))
4732                 return X86EMUL_CONTINUE;
4733
4734         if (kvm_x86_ops->has_wbinvd_exit()) {
4735                 int cpu = get_cpu();
4736
4737                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4738                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4739                                 wbinvd_ipi, NULL, 1);
4740                 put_cpu();
4741                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4742         } else
4743                 wbinvd();
4744         return X86EMUL_CONTINUE;
4745 }
4746
4747 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4748 {
4749         kvm_x86_ops->skip_emulated_instruction(vcpu);
4750         return kvm_emulate_wbinvd_noskip(vcpu);
4751 }
4752 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4753
4754
4755
4756 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4757 {
4758         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4759 }
4760
4761 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4762                            unsigned long *dest)
4763 {
4764         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4765 }
4766
4767 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4768                            unsigned long value)
4769 {
4770
4771         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4772 }
4773
4774 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4775 {
4776         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4777 }
4778
4779 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4780 {
4781         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4782         unsigned long value;
4783
4784         switch (cr) {
4785         case 0:
4786                 value = kvm_read_cr0(vcpu);
4787                 break;
4788         case 2:
4789                 value = vcpu->arch.cr2;
4790                 break;
4791         case 3:
4792                 value = kvm_read_cr3(vcpu);
4793                 break;
4794         case 4:
4795                 value = kvm_read_cr4(vcpu);
4796                 break;
4797         case 8:
4798                 value = kvm_get_cr8(vcpu);
4799                 break;
4800         default:
4801                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4802                 return 0;
4803         }
4804
4805         return value;
4806 }
4807
4808 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4809 {
4810         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4811         int res = 0;
4812
4813         switch (cr) {
4814         case 0:
4815                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4816                 break;
4817         case 2:
4818                 vcpu->arch.cr2 = val;
4819                 break;
4820         case 3:
4821                 res = kvm_set_cr3(vcpu, val);
4822                 break;
4823         case 4:
4824                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4825                 break;
4826         case 8:
4827                 res = kvm_set_cr8(vcpu, val);
4828                 break;
4829         default:
4830                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4831                 res = -1;
4832         }
4833
4834         return res;
4835 }
4836
4837 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4838 {
4839         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4840 }
4841
4842 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4843 {
4844         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4845 }
4846
4847 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4848 {
4849         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4850 }
4851
4852 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4853 {
4854         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4855 }
4856
4857 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4858 {
4859         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4860 }
4861
4862 static unsigned long emulator_get_cached_segment_base(
4863         struct x86_emulate_ctxt *ctxt, int seg)
4864 {
4865         return get_segment_base(emul_to_vcpu(ctxt), seg);
4866 }
4867
4868 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4869                                  struct desc_struct *desc, u32 *base3,
4870                                  int seg)
4871 {
4872         struct kvm_segment var;
4873
4874         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4875         *selector = var.selector;
4876
4877         if (var.unusable) {
4878                 memset(desc, 0, sizeof(*desc));
4879                 return false;
4880         }
4881
4882         if (var.g)
4883                 var.limit >>= 12;
4884         set_desc_limit(desc, var.limit);
4885         set_desc_base(desc, (unsigned long)var.base);
4886 #ifdef CONFIG_X86_64
4887         if (base3)
4888                 *base3 = var.base >> 32;
4889 #endif
4890         desc->type = var.type;
4891         desc->s = var.s;
4892         desc->dpl = var.dpl;
4893         desc->p = var.present;
4894         desc->avl = var.avl;
4895         desc->l = var.l;
4896         desc->d = var.db;
4897         desc->g = var.g;
4898
4899         return true;
4900 }
4901
4902 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4903                                  struct desc_struct *desc, u32 base3,
4904                                  int seg)
4905 {
4906         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4907         struct kvm_segment var;
4908
4909         var.selector = selector;
4910         var.base = get_desc_base(desc);
4911 #ifdef CONFIG_X86_64
4912         var.base |= ((u64)base3) << 32;
4913 #endif
4914         var.limit = get_desc_limit(desc);
4915         if (desc->g)
4916                 var.limit = (var.limit << 12) | 0xfff;
4917         var.type = desc->type;
4918         var.dpl = desc->dpl;
4919         var.db = desc->d;
4920         var.s = desc->s;
4921         var.l = desc->l;
4922         var.g = desc->g;
4923         var.avl = desc->avl;
4924         var.present = desc->p;
4925         var.unusable = !var.present;
4926         var.padding = 0;
4927
4928         kvm_set_segment(vcpu, &var, seg);
4929         return;
4930 }
4931
4932 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4933                             u32 msr_index, u64 *pdata)
4934 {
4935         struct msr_data msr;
4936         int r;
4937
4938         msr.index = msr_index;
4939         msr.host_initiated = false;
4940         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4941         if (r)
4942                 return r;
4943
4944         *pdata = msr.data;
4945         return 0;
4946 }
4947
4948 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4949                             u32 msr_index, u64 data)
4950 {
4951         struct msr_data msr;
4952
4953         msr.data = data;
4954         msr.index = msr_index;
4955         msr.host_initiated = false;
4956         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4957 }
4958
4959 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4960 {
4961         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4962
4963         return vcpu->arch.smbase;
4964 }
4965
4966 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4967 {
4968         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4969
4970         vcpu->arch.smbase = smbase;
4971 }
4972
4973 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4974                               u32 pmc)
4975 {
4976         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4977 }
4978
4979 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4980                              u32 pmc, u64 *pdata)
4981 {
4982         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4983 }
4984
4985 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4986 {
4987         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4988 }
4989
4990 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4991 {
4992         preempt_disable();
4993         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4994         /*
4995          * CR0.TS may reference the host fpu state, not the guest fpu state,
4996          * so it may be clear at this point.
4997          */
4998         clts();
4999 }
5000
5001 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5002 {
5003         preempt_enable();
5004 }
5005
5006 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5007                               struct x86_instruction_info *info,
5008                               enum x86_intercept_stage stage)
5009 {
5010         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5011 }
5012
5013 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5014                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5015 {
5016         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5017 }
5018
5019 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5020 {
5021         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5022 }
5023
5024 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5025 {
5026         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5027 }
5028
5029 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5030 {
5031         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5032 }
5033
5034 static const struct x86_emulate_ops emulate_ops = {
5035         .read_gpr            = emulator_read_gpr,
5036         .write_gpr           = emulator_write_gpr,
5037         .read_std            = kvm_read_guest_virt_system,
5038         .write_std           = kvm_write_guest_virt_system,
5039         .read_phys           = kvm_read_guest_phys_system,
5040         .fetch               = kvm_fetch_guest_virt,
5041         .read_emulated       = emulator_read_emulated,
5042         .write_emulated      = emulator_write_emulated,
5043         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5044         .invlpg              = emulator_invlpg,
5045         .pio_in_emulated     = emulator_pio_in_emulated,
5046         .pio_out_emulated    = emulator_pio_out_emulated,
5047         .get_segment         = emulator_get_segment,
5048         .set_segment         = emulator_set_segment,
5049         .get_cached_segment_base = emulator_get_cached_segment_base,
5050         .get_gdt             = emulator_get_gdt,
5051         .get_idt             = emulator_get_idt,
5052         .set_gdt             = emulator_set_gdt,
5053         .set_idt             = emulator_set_idt,
5054         .get_cr              = emulator_get_cr,
5055         .set_cr              = emulator_set_cr,
5056         .cpl                 = emulator_get_cpl,
5057         .get_dr              = emulator_get_dr,
5058         .set_dr              = emulator_set_dr,
5059         .get_smbase          = emulator_get_smbase,
5060         .set_smbase          = emulator_set_smbase,
5061         .set_msr             = emulator_set_msr,
5062         .get_msr             = emulator_get_msr,
5063         .check_pmc           = emulator_check_pmc,
5064         .read_pmc            = emulator_read_pmc,
5065         .halt                = emulator_halt,
5066         .wbinvd              = emulator_wbinvd,
5067         .fix_hypercall       = emulator_fix_hypercall,
5068         .get_fpu             = emulator_get_fpu,
5069         .put_fpu             = emulator_put_fpu,
5070         .intercept           = emulator_intercept,
5071         .get_cpuid           = emulator_get_cpuid,
5072         .set_nmi_mask        = emulator_set_nmi_mask,
5073 };
5074
5075 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5076 {
5077         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5078         /*
5079          * an sti; sti; sequence only disable interrupts for the first
5080          * instruction. So, if the last instruction, be it emulated or
5081          * not, left the system with the INT_STI flag enabled, it
5082          * means that the last instruction is an sti. We should not
5083          * leave the flag on in this case. The same goes for mov ss
5084          */
5085         if (int_shadow & mask)
5086                 mask = 0;
5087         if (unlikely(int_shadow || mask)) {
5088                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5089                 if (!mask)
5090                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5091         }
5092 }
5093
5094 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5095 {
5096         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5097         if (ctxt->exception.vector == PF_VECTOR)
5098                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5099
5100         if (ctxt->exception.error_code_valid)
5101                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5102                                       ctxt->exception.error_code);
5103         else
5104                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5105         return false;
5106 }
5107
5108 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5109 {
5110         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5111         int cs_db, cs_l;
5112
5113         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5114
5115         ctxt->eflags = kvm_get_rflags(vcpu);
5116         ctxt->eip = kvm_rip_read(vcpu);
5117         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5118                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5119                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5120                      cs_db                              ? X86EMUL_MODE_PROT32 :
5121                                                           X86EMUL_MODE_PROT16;
5122         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5123         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5124         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5125         ctxt->emul_flags = vcpu->arch.hflags;
5126
5127         init_decode_cache(ctxt);
5128         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5129 }
5130
5131 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5132 {
5133         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5134         int ret;
5135
5136         init_emulate_ctxt(vcpu);
5137
5138         ctxt->op_bytes = 2;
5139         ctxt->ad_bytes = 2;
5140         ctxt->_eip = ctxt->eip + inc_eip;
5141         ret = emulate_int_real(ctxt, irq);
5142
5143         if (ret != X86EMUL_CONTINUE)
5144                 return EMULATE_FAIL;
5145
5146         ctxt->eip = ctxt->_eip;
5147         kvm_rip_write(vcpu, ctxt->eip);
5148         kvm_set_rflags(vcpu, ctxt->eflags);
5149
5150         if (irq == NMI_VECTOR)
5151                 vcpu->arch.nmi_pending = 0;
5152         else
5153                 vcpu->arch.interrupt.pending = false;
5154
5155         return EMULATE_DONE;
5156 }
5157 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5158
5159 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5160 {
5161         int r = EMULATE_DONE;
5162
5163         ++vcpu->stat.insn_emulation_fail;
5164         trace_kvm_emulate_insn_failed(vcpu);
5165         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5166                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5167                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5168                 vcpu->run->internal.ndata = 0;
5169                 r = EMULATE_FAIL;
5170         }
5171         kvm_queue_exception(vcpu, UD_VECTOR);
5172
5173         return r;
5174 }
5175
5176 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5177                                   bool write_fault_to_shadow_pgtable,
5178                                   int emulation_type)
5179 {
5180         gpa_t gpa = cr2;
5181         kvm_pfn_t pfn;
5182
5183         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5184                 return false;
5185
5186         if (!vcpu->arch.mmu.direct_map) {
5187                 /*
5188                  * Write permission should be allowed since only
5189                  * write access need to be emulated.
5190                  */
5191                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5192
5193                 /*
5194                  * If the mapping is invalid in guest, let cpu retry
5195                  * it to generate fault.
5196                  */
5197                 if (gpa == UNMAPPED_GVA)
5198                         return true;
5199         }
5200
5201         /*
5202          * Do not retry the unhandleable instruction if it faults on the
5203          * readonly host memory, otherwise it will goto a infinite loop:
5204          * retry instruction -> write #PF -> emulation fail -> retry
5205          * instruction -> ...
5206          */
5207         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5208
5209         /*
5210          * If the instruction failed on the error pfn, it can not be fixed,
5211          * report the error to userspace.
5212          */
5213         if (is_error_noslot_pfn(pfn))
5214                 return false;
5215
5216         kvm_release_pfn_clean(pfn);
5217
5218         /* The instructions are well-emulated on direct mmu. */
5219         if (vcpu->arch.mmu.direct_map) {
5220                 unsigned int indirect_shadow_pages;
5221
5222                 spin_lock(&vcpu->kvm->mmu_lock);
5223                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5224                 spin_unlock(&vcpu->kvm->mmu_lock);
5225
5226                 if (indirect_shadow_pages)
5227                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5228
5229                 return true;
5230         }
5231
5232         /*
5233          * if emulation was due to access to shadowed page table
5234          * and it failed try to unshadow page and re-enter the
5235          * guest to let CPU execute the instruction.
5236          */
5237         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5238
5239         /*
5240          * If the access faults on its page table, it can not
5241          * be fixed by unprotecting shadow page and it should
5242          * be reported to userspace.
5243          */
5244         return !write_fault_to_shadow_pgtable;
5245 }
5246
5247 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5248                               unsigned long cr2,  int emulation_type)
5249 {
5250         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5251         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5252
5253         last_retry_eip = vcpu->arch.last_retry_eip;
5254         last_retry_addr = vcpu->arch.last_retry_addr;
5255
5256         /*
5257          * If the emulation is caused by #PF and it is non-page_table
5258          * writing instruction, it means the VM-EXIT is caused by shadow
5259          * page protected, we can zap the shadow page and retry this
5260          * instruction directly.
5261          *
5262          * Note: if the guest uses a non-page-table modifying instruction
5263          * on the PDE that points to the instruction, then we will unmap
5264          * the instruction and go to an infinite loop. So, we cache the
5265          * last retried eip and the last fault address, if we meet the eip
5266          * and the address again, we can break out of the potential infinite
5267          * loop.
5268          */
5269         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5270
5271         if (!(emulation_type & EMULTYPE_RETRY))
5272                 return false;
5273
5274         if (x86_page_table_writing_insn(ctxt))
5275                 return false;
5276
5277         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5278                 return false;
5279
5280         vcpu->arch.last_retry_eip = ctxt->eip;
5281         vcpu->arch.last_retry_addr = cr2;
5282
5283         if (!vcpu->arch.mmu.direct_map)
5284                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5285
5286         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5287
5288         return true;
5289 }
5290
5291 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5292 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5293
5294 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5295 {
5296         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5297                 /* This is a good place to trace that we are exiting SMM.  */
5298                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5299
5300                 if (unlikely(vcpu->arch.smi_pending)) {
5301                         kvm_make_request(KVM_REQ_SMI, vcpu);
5302                         vcpu->arch.smi_pending = 0;
5303                 } else {
5304                         /* Process a latched INIT, if any.  */
5305                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5306                 }
5307         }
5308
5309         kvm_mmu_reset_context(vcpu);
5310 }
5311
5312 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5313 {
5314         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5315
5316         vcpu->arch.hflags = emul_flags;
5317
5318         if (changed & HF_SMM_MASK)
5319                 kvm_smm_changed(vcpu);
5320 }
5321
5322 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5323                                 unsigned long *db)
5324 {
5325         u32 dr6 = 0;
5326         int i;
5327         u32 enable, rwlen;
5328
5329         enable = dr7;
5330         rwlen = dr7 >> 16;
5331         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5332                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5333                         dr6 |= (1 << i);
5334         return dr6;
5335 }
5336
5337 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5338 {
5339         struct kvm_run *kvm_run = vcpu->run;
5340
5341         /*
5342          * rflags is the old, "raw" value of the flags.  The new value has
5343          * not been saved yet.
5344          *
5345          * This is correct even for TF set by the guest, because "the
5346          * processor will not generate this exception after the instruction
5347          * that sets the TF flag".
5348          */
5349         if (unlikely(rflags & X86_EFLAGS_TF)) {
5350                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5351                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5352                                                   DR6_RTM;
5353                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5354                         kvm_run->debug.arch.exception = DB_VECTOR;
5355                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5356                         *r = EMULATE_USER_EXIT;
5357                 } else {
5358                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5359                         /*
5360                          * "Certain debug exceptions may clear bit 0-3.  The
5361                          * remaining contents of the DR6 register are never
5362                          * cleared by the processor".
5363                          */
5364                         vcpu->arch.dr6 &= ~15;
5365                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5366                         kvm_queue_exception(vcpu, DB_VECTOR);
5367                 }
5368         }
5369 }
5370
5371 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5372 {
5373         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5374             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5375                 struct kvm_run *kvm_run = vcpu->run;
5376                 unsigned long eip = kvm_get_linear_rip(vcpu);
5377                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5378                                            vcpu->arch.guest_debug_dr7,
5379                                            vcpu->arch.eff_db);
5380
5381                 if (dr6 != 0) {
5382                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5383                         kvm_run->debug.arch.pc = eip;
5384                         kvm_run->debug.arch.exception = DB_VECTOR;
5385                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5386                         *r = EMULATE_USER_EXIT;
5387                         return true;
5388                 }
5389         }
5390
5391         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5392             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5393                 unsigned long eip = kvm_get_linear_rip(vcpu);
5394                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5395                                            vcpu->arch.dr7,
5396                                            vcpu->arch.db);
5397
5398                 if (dr6 != 0) {
5399                         vcpu->arch.dr6 &= ~15;
5400                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5401                         kvm_queue_exception(vcpu, DB_VECTOR);
5402                         *r = EMULATE_DONE;
5403                         return true;
5404                 }
5405         }
5406
5407         return false;
5408 }
5409
5410 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5411                             unsigned long cr2,
5412                             int emulation_type,
5413                             void *insn,
5414                             int insn_len)
5415 {
5416         int r;
5417         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5418         bool writeback = true;
5419         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5420
5421         /*
5422          * Clear write_fault_to_shadow_pgtable here to ensure it is
5423          * never reused.
5424          */
5425         vcpu->arch.write_fault_to_shadow_pgtable = false;
5426         kvm_clear_exception_queue(vcpu);
5427
5428         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5429                 init_emulate_ctxt(vcpu);
5430
5431                 /*
5432                  * We will reenter on the same instruction since
5433                  * we do not set complete_userspace_io.  This does not
5434                  * handle watchpoints yet, those would be handled in
5435                  * the emulate_ops.
5436                  */
5437                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5438                         return r;
5439
5440                 ctxt->interruptibility = 0;
5441                 ctxt->have_exception = false;
5442                 ctxt->exception.vector = -1;
5443                 ctxt->perm_ok = false;
5444
5445                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5446
5447                 r = x86_decode_insn(ctxt, insn, insn_len);
5448
5449                 trace_kvm_emulate_insn_start(vcpu);
5450                 ++vcpu->stat.insn_emulation;
5451                 if (r != EMULATION_OK)  {
5452                         if (emulation_type & EMULTYPE_TRAP_UD)
5453                                 return EMULATE_FAIL;
5454                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5455                                                 emulation_type))
5456                                 return EMULATE_DONE;
5457                         if (emulation_type & EMULTYPE_SKIP)
5458                                 return EMULATE_FAIL;
5459                         return handle_emulation_failure(vcpu);
5460                 }
5461         }
5462
5463         if (emulation_type & EMULTYPE_SKIP) {
5464                 kvm_rip_write(vcpu, ctxt->_eip);
5465                 if (ctxt->eflags & X86_EFLAGS_RF)
5466                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5467                 return EMULATE_DONE;
5468         }
5469
5470         if (retry_instruction(ctxt, cr2, emulation_type))
5471                 return EMULATE_DONE;
5472
5473         /* this is needed for vmware backdoor interface to work since it
5474            changes registers values  during IO operation */
5475         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5476                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5477                 emulator_invalidate_register_cache(ctxt);
5478         }
5479
5480 restart:
5481         r = x86_emulate_insn(ctxt);
5482
5483         if (r == EMULATION_INTERCEPTED)
5484                 return EMULATE_DONE;
5485
5486         if (r == EMULATION_FAILED) {
5487                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5488                                         emulation_type))
5489                         return EMULATE_DONE;
5490
5491                 return handle_emulation_failure(vcpu);
5492         }
5493
5494         if (ctxt->have_exception) {
5495                 r = EMULATE_DONE;
5496                 if (inject_emulated_exception(vcpu))
5497                         return r;
5498         } else if (vcpu->arch.pio.count) {
5499                 if (!vcpu->arch.pio.in) {
5500                         /* FIXME: return into emulator if single-stepping.  */
5501                         vcpu->arch.pio.count = 0;
5502                 } else {
5503                         writeback = false;
5504                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5505                 }
5506                 r = EMULATE_USER_EXIT;
5507         } else if (vcpu->mmio_needed) {
5508                 if (!vcpu->mmio_is_write)
5509                         writeback = false;
5510                 r = EMULATE_USER_EXIT;
5511                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5512         } else if (r == EMULATION_RESTART)
5513                 goto restart;
5514         else
5515                 r = EMULATE_DONE;
5516
5517         if (writeback) {
5518                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5519                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5520                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5521                 if (vcpu->arch.hflags != ctxt->emul_flags)
5522                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5523                 kvm_rip_write(vcpu, ctxt->eip);
5524                 if (r == EMULATE_DONE)
5525                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5526                 if (!ctxt->have_exception ||
5527                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5528                         __kvm_set_rflags(vcpu, ctxt->eflags);
5529
5530                 /*
5531                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5532                  * do nothing, and it will be requested again as soon as
5533                  * the shadow expires.  But we still need to check here,
5534                  * because POPF has no interrupt shadow.
5535                  */
5536                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5537                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5538         } else
5539                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5540
5541         return r;
5542 }
5543 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5544
5545 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5546 {
5547         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5548         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5549                                             size, port, &val, 1);
5550         /* do not return to emulator after return from userspace */
5551         vcpu->arch.pio.count = 0;
5552         return ret;
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5555
5556 static void tsc_bad(void *info)
5557 {
5558         __this_cpu_write(cpu_tsc_khz, 0);
5559 }
5560
5561 static void tsc_khz_changed(void *data)
5562 {
5563         struct cpufreq_freqs *freq = data;
5564         unsigned long khz = 0;
5565
5566         if (data)
5567                 khz = freq->new;
5568         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5569                 khz = cpufreq_quick_get(raw_smp_processor_id());
5570         if (!khz)
5571                 khz = tsc_khz;
5572         __this_cpu_write(cpu_tsc_khz, khz);
5573 }
5574
5575 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5576                                      void *data)
5577 {
5578         struct cpufreq_freqs *freq = data;
5579         struct kvm *kvm;
5580         struct kvm_vcpu *vcpu;
5581         int i, send_ipi = 0;
5582
5583         /*
5584          * We allow guests to temporarily run on slowing clocks,
5585          * provided we notify them after, or to run on accelerating
5586          * clocks, provided we notify them before.  Thus time never
5587          * goes backwards.
5588          *
5589          * However, we have a problem.  We can't atomically update
5590          * the frequency of a given CPU from this function; it is
5591          * merely a notifier, which can be called from any CPU.
5592          * Changing the TSC frequency at arbitrary points in time
5593          * requires a recomputation of local variables related to
5594          * the TSC for each VCPU.  We must flag these local variables
5595          * to be updated and be sure the update takes place with the
5596          * new frequency before any guests proceed.
5597          *
5598          * Unfortunately, the combination of hotplug CPU and frequency
5599          * change creates an intractable locking scenario; the order
5600          * of when these callouts happen is undefined with respect to
5601          * CPU hotplug, and they can race with each other.  As such,
5602          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5603          * undefined; you can actually have a CPU frequency change take
5604          * place in between the computation of X and the setting of the
5605          * variable.  To protect against this problem, all updates of
5606          * the per_cpu tsc_khz variable are done in an interrupt
5607          * protected IPI, and all callers wishing to update the value
5608          * must wait for a synchronous IPI to complete (which is trivial
5609          * if the caller is on the CPU already).  This establishes the
5610          * necessary total order on variable updates.
5611          *
5612          * Note that because a guest time update may take place
5613          * anytime after the setting of the VCPU's request bit, the
5614          * correct TSC value must be set before the request.  However,
5615          * to ensure the update actually makes it to any guest which
5616          * starts running in hardware virtualization between the set
5617          * and the acquisition of the spinlock, we must also ping the
5618          * CPU after setting the request bit.
5619          *
5620          */
5621
5622         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5623                 return 0;
5624         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5625                 return 0;
5626
5627         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5628
5629         spin_lock(&kvm_lock);
5630         list_for_each_entry(kvm, &vm_list, vm_list) {
5631                 kvm_for_each_vcpu(i, vcpu, kvm) {
5632                         if (vcpu->cpu != freq->cpu)
5633                                 continue;
5634                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5635                         if (vcpu->cpu != smp_processor_id())
5636                                 send_ipi = 1;
5637                 }
5638         }
5639         spin_unlock(&kvm_lock);
5640
5641         if (freq->old < freq->new && send_ipi) {
5642                 /*
5643                  * We upscale the frequency.  Must make the guest
5644                  * doesn't see old kvmclock values while running with
5645                  * the new frequency, otherwise we risk the guest sees
5646                  * time go backwards.
5647                  *
5648                  * In case we update the frequency for another cpu
5649                  * (which might be in guest context) send an interrupt
5650                  * to kick the cpu out of guest context.  Next time
5651                  * guest context is entered kvmclock will be updated,
5652                  * so the guest will not see stale values.
5653                  */
5654                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5655         }
5656         return 0;
5657 }
5658
5659 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5660         .notifier_call  = kvmclock_cpufreq_notifier
5661 };
5662
5663 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5664                                         unsigned long action, void *hcpu)
5665 {
5666         unsigned int cpu = (unsigned long)hcpu;
5667
5668         switch (action) {
5669                 case CPU_ONLINE:
5670                 case CPU_DOWN_FAILED:
5671                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5672                         break;
5673                 case CPU_DOWN_PREPARE:
5674                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5675                         break;
5676         }
5677         return NOTIFY_OK;
5678 }
5679
5680 static struct notifier_block kvmclock_cpu_notifier_block = {
5681         .notifier_call  = kvmclock_cpu_notifier,
5682         .priority = -INT_MAX
5683 };
5684
5685 static void kvm_timer_init(void)
5686 {
5687         int cpu;
5688
5689         max_tsc_khz = tsc_khz;
5690
5691         cpu_notifier_register_begin();
5692         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5693 #ifdef CONFIG_CPU_FREQ
5694                 struct cpufreq_policy policy;
5695                 memset(&policy, 0, sizeof(policy));
5696                 cpu = get_cpu();
5697                 cpufreq_get_policy(&policy, cpu);
5698                 if (policy.cpuinfo.max_freq)
5699                         max_tsc_khz = policy.cpuinfo.max_freq;
5700                 put_cpu();
5701 #endif
5702                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5703                                           CPUFREQ_TRANSITION_NOTIFIER);
5704         }
5705         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5706         for_each_online_cpu(cpu)
5707                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5708
5709         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5710         cpu_notifier_register_done();
5711
5712 }
5713
5714 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5715
5716 int kvm_is_in_guest(void)
5717 {
5718         return __this_cpu_read(current_vcpu) != NULL;
5719 }
5720
5721 static int kvm_is_user_mode(void)
5722 {
5723         int user_mode = 3;
5724
5725         if (__this_cpu_read(current_vcpu))
5726                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5727
5728         return user_mode != 0;
5729 }
5730
5731 static unsigned long kvm_get_guest_ip(void)
5732 {
5733         unsigned long ip = 0;
5734
5735         if (__this_cpu_read(current_vcpu))
5736                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5737
5738         return ip;
5739 }
5740
5741 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5742         .is_in_guest            = kvm_is_in_guest,
5743         .is_user_mode           = kvm_is_user_mode,
5744         .get_guest_ip           = kvm_get_guest_ip,
5745 };
5746
5747 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5748 {
5749         __this_cpu_write(current_vcpu, vcpu);
5750 }
5751 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5752
5753 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5754 {
5755         __this_cpu_write(current_vcpu, NULL);
5756 }
5757 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5758
5759 static void kvm_set_mmio_spte_mask(void)
5760 {
5761         u64 mask;
5762         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5763
5764         /*
5765          * Set the reserved bits and the present bit of an paging-structure
5766          * entry to generate page fault with PFER.RSV = 1.
5767          */
5768          /* Mask the reserved physical address bits. */
5769         mask = rsvd_bits(maxphyaddr, 51);
5770
5771         /* Bit 62 is always reserved for 32bit host. */
5772         mask |= 0x3ull << 62;
5773
5774         /* Set the present bit. */
5775         mask |= 1ull;
5776
5777 #ifdef CONFIG_X86_64
5778         /*
5779          * If reserved bit is not supported, clear the present bit to disable
5780          * mmio page fault.
5781          */
5782         if (maxphyaddr == 52)
5783                 mask &= ~1ull;
5784 #endif
5785
5786         kvm_mmu_set_mmio_spte_mask(mask);
5787 }
5788
5789 #ifdef CONFIG_X86_64
5790 static void pvclock_gtod_update_fn(struct work_struct *work)
5791 {
5792         struct kvm *kvm;
5793
5794         struct kvm_vcpu *vcpu;
5795         int i;
5796
5797         spin_lock(&kvm_lock);
5798         list_for_each_entry(kvm, &vm_list, vm_list)
5799                 kvm_for_each_vcpu(i, vcpu, kvm)
5800                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5801         atomic_set(&kvm_guest_has_master_clock, 0);
5802         spin_unlock(&kvm_lock);
5803 }
5804
5805 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5806
5807 /*
5808  * Notification about pvclock gtod data update.
5809  */
5810 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5811                                void *priv)
5812 {
5813         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5814         struct timekeeper *tk = priv;
5815
5816         update_pvclock_gtod(tk);
5817
5818         /* disable master clock if host does not trust, or does not
5819          * use, TSC clocksource
5820          */
5821         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5822             atomic_read(&kvm_guest_has_master_clock) != 0)
5823                 queue_work(system_long_wq, &pvclock_gtod_work);
5824
5825         return 0;
5826 }
5827
5828 static struct notifier_block pvclock_gtod_notifier = {
5829         .notifier_call = pvclock_gtod_notify,
5830 };
5831 #endif
5832
5833 int kvm_arch_init(void *opaque)
5834 {
5835         int r;
5836         struct kvm_x86_ops *ops = opaque;
5837
5838         if (kvm_x86_ops) {
5839                 printk(KERN_ERR "kvm: already loaded the other module\n");
5840                 r = -EEXIST;
5841                 goto out;
5842         }
5843
5844         if (!ops->cpu_has_kvm_support()) {
5845                 printk(KERN_ERR "kvm: no hardware support\n");
5846                 r = -EOPNOTSUPP;
5847                 goto out;
5848         }
5849         if (ops->disabled_by_bios()) {
5850                 printk(KERN_ERR "kvm: disabled by bios\n");
5851                 r = -EOPNOTSUPP;
5852                 goto out;
5853         }
5854
5855         r = -ENOMEM;
5856         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5857         if (!shared_msrs) {
5858                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5859                 goto out;
5860         }
5861
5862         r = kvm_mmu_module_init();
5863         if (r)
5864                 goto out_free_percpu;
5865
5866         kvm_set_mmio_spte_mask();
5867
5868         kvm_x86_ops = ops;
5869
5870         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5871                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5872
5873         kvm_timer_init();
5874
5875         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5876
5877         if (boot_cpu_has(X86_FEATURE_XSAVE))
5878                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5879
5880         kvm_lapic_init();
5881 #ifdef CONFIG_X86_64
5882         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5883 #endif
5884
5885         return 0;
5886
5887 out_free_percpu:
5888         free_percpu(shared_msrs);
5889 out:
5890         return r;
5891 }
5892
5893 void kvm_arch_exit(void)
5894 {
5895         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5896
5897         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5898                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5899                                             CPUFREQ_TRANSITION_NOTIFIER);
5900         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5901 #ifdef CONFIG_X86_64
5902         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5903 #endif
5904         kvm_x86_ops = NULL;
5905         kvm_mmu_module_exit();
5906         free_percpu(shared_msrs);
5907 }
5908
5909 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5910 {
5911         ++vcpu->stat.halt_exits;
5912         if (lapic_in_kernel(vcpu)) {
5913                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5914                 return 1;
5915         } else {
5916                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5917                 return 0;
5918         }
5919 }
5920 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5921
5922 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5923 {
5924         kvm_x86_ops->skip_emulated_instruction(vcpu);
5925         return kvm_vcpu_halt(vcpu);
5926 }
5927 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5928
5929 /*
5930  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5931  *
5932  * @apicid - apicid of vcpu to be kicked.
5933  */
5934 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5935 {
5936         struct kvm_lapic_irq lapic_irq;
5937
5938         lapic_irq.shorthand = 0;
5939         lapic_irq.dest_mode = 0;
5940         lapic_irq.dest_id = apicid;
5941         lapic_irq.msi_redir_hint = false;
5942
5943         lapic_irq.delivery_mode = APIC_DM_REMRD;
5944         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5945 }
5946
5947 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5948 {
5949         vcpu->arch.apicv_active = false;
5950         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5951 }
5952
5953 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5954 {
5955         unsigned long nr, a0, a1, a2, a3, ret;
5956         int op_64_bit, r = 1;
5957
5958         kvm_x86_ops->skip_emulated_instruction(vcpu);
5959
5960         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5961                 return kvm_hv_hypercall(vcpu);
5962
5963         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5964         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5965         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5966         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5967         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5968
5969         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5970
5971         op_64_bit = is_64_bit_mode(vcpu);
5972         if (!op_64_bit) {
5973                 nr &= 0xFFFFFFFF;
5974                 a0 &= 0xFFFFFFFF;
5975                 a1 &= 0xFFFFFFFF;
5976                 a2 &= 0xFFFFFFFF;
5977                 a3 &= 0xFFFFFFFF;
5978         }
5979
5980         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5981                 ret = -KVM_EPERM;
5982                 goto out;
5983         }
5984
5985         switch (nr) {
5986         case KVM_HC_VAPIC_POLL_IRQ:
5987                 ret = 0;
5988                 break;
5989         case KVM_HC_KICK_CPU:
5990                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5991                 ret = 0;
5992                 break;
5993         default:
5994                 ret = -KVM_ENOSYS;
5995                 break;
5996         }
5997 out:
5998         if (!op_64_bit)
5999                 ret = (u32)ret;
6000         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6001         ++vcpu->stat.hypercalls;
6002         return r;
6003 }
6004 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6005
6006 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6007 {
6008         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6009         char instruction[3];
6010         unsigned long rip = kvm_rip_read(vcpu);
6011
6012         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6013
6014         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6015 }
6016
6017 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6018 {
6019         return vcpu->run->request_interrupt_window &&
6020                 likely(!pic_in_kernel(vcpu->kvm));
6021 }
6022
6023 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6024 {
6025         struct kvm_run *kvm_run = vcpu->run;
6026
6027         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6028         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6029         kvm_run->cr8 = kvm_get_cr8(vcpu);
6030         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6031         kvm_run->ready_for_interrupt_injection =
6032                 pic_in_kernel(vcpu->kvm) ||
6033                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6034 }
6035
6036 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6037 {
6038         int max_irr, tpr;
6039
6040         if (!kvm_x86_ops->update_cr8_intercept)
6041                 return;
6042
6043         if (!lapic_in_kernel(vcpu))
6044                 return;
6045
6046         if (vcpu->arch.apicv_active)
6047                 return;
6048
6049         if (!vcpu->arch.apic->vapic_addr)
6050                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6051         else
6052                 max_irr = -1;
6053
6054         if (max_irr != -1)
6055                 max_irr >>= 4;
6056
6057         tpr = kvm_lapic_get_cr8(vcpu);
6058
6059         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6060 }
6061
6062 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6063 {
6064         int r;
6065
6066         /* try to reinject previous events if any */
6067         if (vcpu->arch.exception.pending) {
6068                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6069                                         vcpu->arch.exception.has_error_code,
6070                                         vcpu->arch.exception.error_code);
6071
6072                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6073                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6074                                              X86_EFLAGS_RF);
6075
6076                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6077                     (vcpu->arch.dr7 & DR7_GD)) {
6078                         vcpu->arch.dr7 &= ~DR7_GD;
6079                         kvm_update_dr7(vcpu);
6080                 }
6081
6082                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6083                                           vcpu->arch.exception.has_error_code,
6084                                           vcpu->arch.exception.error_code,
6085                                           vcpu->arch.exception.reinject);
6086                 return 0;
6087         }
6088
6089         if (vcpu->arch.nmi_injected) {
6090                 kvm_x86_ops->set_nmi(vcpu);
6091                 return 0;
6092         }
6093
6094         if (vcpu->arch.interrupt.pending) {
6095                 kvm_x86_ops->set_irq(vcpu);
6096                 return 0;
6097         }
6098
6099         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6100                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6101                 if (r != 0)
6102                         return r;
6103         }
6104
6105         /* try to inject new event if pending */
6106         if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6107                 --vcpu->arch.nmi_pending;
6108                 vcpu->arch.nmi_injected = true;
6109                 kvm_x86_ops->set_nmi(vcpu);
6110         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6111                 /*
6112                  * Because interrupts can be injected asynchronously, we are
6113                  * calling check_nested_events again here to avoid a race condition.
6114                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6115                  * proposal and current concerns.  Perhaps we should be setting
6116                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6117                  */
6118                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6119                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6120                         if (r != 0)
6121                                 return r;
6122                 }
6123                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6124                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6125                                             false);
6126                         kvm_x86_ops->set_irq(vcpu);
6127                 }
6128         }
6129         return 0;
6130 }
6131
6132 static void process_nmi(struct kvm_vcpu *vcpu)
6133 {
6134         unsigned limit = 2;
6135
6136         /*
6137          * x86 is limited to one NMI running, and one NMI pending after it.
6138          * If an NMI is already in progress, limit further NMIs to just one.
6139          * Otherwise, allow two (and we'll inject the first one immediately).
6140          */
6141         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6142                 limit = 1;
6143
6144         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6145         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6146         kvm_make_request(KVM_REQ_EVENT, vcpu);
6147 }
6148
6149 #define put_smstate(type, buf, offset, val)                       \
6150         *(type *)((buf) + (offset) - 0x7e00) = val
6151
6152 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6153 {
6154         u32 flags = 0;
6155         flags |= seg->g       << 23;
6156         flags |= seg->db      << 22;
6157         flags |= seg->l       << 21;
6158         flags |= seg->avl     << 20;
6159         flags |= seg->present << 15;
6160         flags |= seg->dpl     << 13;
6161         flags |= seg->s       << 12;
6162         flags |= seg->type    << 8;
6163         return flags;
6164 }
6165
6166 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6167 {
6168         struct kvm_segment seg;
6169         int offset;
6170
6171         kvm_get_segment(vcpu, &seg, n);
6172         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6173
6174         if (n < 3)
6175                 offset = 0x7f84 + n * 12;
6176         else
6177                 offset = 0x7f2c + (n - 3) * 12;
6178
6179         put_smstate(u32, buf, offset + 8, seg.base);
6180         put_smstate(u32, buf, offset + 4, seg.limit);
6181         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6182 }
6183
6184 #ifdef CONFIG_X86_64
6185 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6186 {
6187         struct kvm_segment seg;
6188         int offset;
6189         u16 flags;
6190
6191         kvm_get_segment(vcpu, &seg, n);
6192         offset = 0x7e00 + n * 16;
6193
6194         flags = process_smi_get_segment_flags(&seg) >> 8;
6195         put_smstate(u16, buf, offset, seg.selector);
6196         put_smstate(u16, buf, offset + 2, flags);
6197         put_smstate(u32, buf, offset + 4, seg.limit);
6198         put_smstate(u64, buf, offset + 8, seg.base);
6199 }
6200 #endif
6201
6202 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6203 {
6204         struct desc_ptr dt;
6205         struct kvm_segment seg;
6206         unsigned long val;
6207         int i;
6208
6209         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6210         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6211         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6212         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6213
6214         for (i = 0; i < 8; i++)
6215                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6216
6217         kvm_get_dr(vcpu, 6, &val);
6218         put_smstate(u32, buf, 0x7fcc, (u32)val);
6219         kvm_get_dr(vcpu, 7, &val);
6220         put_smstate(u32, buf, 0x7fc8, (u32)val);
6221
6222         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6223         put_smstate(u32, buf, 0x7fc4, seg.selector);
6224         put_smstate(u32, buf, 0x7f64, seg.base);
6225         put_smstate(u32, buf, 0x7f60, seg.limit);
6226         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6227
6228         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6229         put_smstate(u32, buf, 0x7fc0, seg.selector);
6230         put_smstate(u32, buf, 0x7f80, seg.base);
6231         put_smstate(u32, buf, 0x7f7c, seg.limit);
6232         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6233
6234         kvm_x86_ops->get_gdt(vcpu, &dt);
6235         put_smstate(u32, buf, 0x7f74, dt.address);
6236         put_smstate(u32, buf, 0x7f70, dt.size);
6237
6238         kvm_x86_ops->get_idt(vcpu, &dt);
6239         put_smstate(u32, buf, 0x7f58, dt.address);
6240         put_smstate(u32, buf, 0x7f54, dt.size);
6241
6242         for (i = 0; i < 6; i++)
6243                 process_smi_save_seg_32(vcpu, buf, i);
6244
6245         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6246
6247         /* revision id */
6248         put_smstate(u32, buf, 0x7efc, 0x00020000);
6249         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6250 }
6251
6252 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6253 {
6254 #ifdef CONFIG_X86_64
6255         struct desc_ptr dt;
6256         struct kvm_segment seg;
6257         unsigned long val;
6258         int i;
6259
6260         for (i = 0; i < 16; i++)
6261                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6262
6263         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6264         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6265
6266         kvm_get_dr(vcpu, 6, &val);
6267         put_smstate(u64, buf, 0x7f68, val);
6268         kvm_get_dr(vcpu, 7, &val);
6269         put_smstate(u64, buf, 0x7f60, val);
6270
6271         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6272         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6273         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6274
6275         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6276
6277         /* revision id */
6278         put_smstate(u32, buf, 0x7efc, 0x00020064);
6279
6280         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6281
6282         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6283         put_smstate(u16, buf, 0x7e90, seg.selector);
6284         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6285         put_smstate(u32, buf, 0x7e94, seg.limit);
6286         put_smstate(u64, buf, 0x7e98, seg.base);
6287
6288         kvm_x86_ops->get_idt(vcpu, &dt);
6289         put_smstate(u32, buf, 0x7e84, dt.size);
6290         put_smstate(u64, buf, 0x7e88, dt.address);
6291
6292         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6293         put_smstate(u16, buf, 0x7e70, seg.selector);
6294         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6295         put_smstate(u32, buf, 0x7e74, seg.limit);
6296         put_smstate(u64, buf, 0x7e78, seg.base);
6297
6298         kvm_x86_ops->get_gdt(vcpu, &dt);
6299         put_smstate(u32, buf, 0x7e64, dt.size);
6300         put_smstate(u64, buf, 0x7e68, dt.address);
6301
6302         for (i = 0; i < 6; i++)
6303                 process_smi_save_seg_64(vcpu, buf, i);
6304 #else
6305         WARN_ON_ONCE(1);
6306 #endif
6307 }
6308
6309 static void process_smi(struct kvm_vcpu *vcpu)
6310 {
6311         struct kvm_segment cs, ds;
6312         struct desc_ptr dt;
6313         char buf[512];
6314         u32 cr0;
6315
6316         if (is_smm(vcpu)) {
6317                 vcpu->arch.smi_pending = true;
6318                 return;
6319         }
6320
6321         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6322         vcpu->arch.hflags |= HF_SMM_MASK;
6323         memset(buf, 0, 512);
6324         if (guest_cpuid_has_longmode(vcpu))
6325                 process_smi_save_state_64(vcpu, buf);
6326         else
6327                 process_smi_save_state_32(vcpu, buf);
6328
6329         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6330
6331         if (kvm_x86_ops->get_nmi_mask(vcpu))
6332                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6333         else
6334                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6335
6336         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6337         kvm_rip_write(vcpu, 0x8000);
6338
6339         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6340         kvm_x86_ops->set_cr0(vcpu, cr0);
6341         vcpu->arch.cr0 = cr0;
6342
6343         kvm_x86_ops->set_cr4(vcpu, 0);
6344
6345         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6346         dt.address = dt.size = 0;
6347         kvm_x86_ops->set_idt(vcpu, &dt);
6348
6349         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6350
6351         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6352         cs.base = vcpu->arch.smbase;
6353
6354         ds.selector = 0;
6355         ds.base = 0;
6356
6357         cs.limit    = ds.limit = 0xffffffff;
6358         cs.type     = ds.type = 0x3;
6359         cs.dpl      = ds.dpl = 0;
6360         cs.db       = ds.db = 0;
6361         cs.s        = ds.s = 1;
6362         cs.l        = ds.l = 0;
6363         cs.g        = ds.g = 1;
6364         cs.avl      = ds.avl = 0;
6365         cs.present  = ds.present = 1;
6366         cs.unusable = ds.unusable = 0;
6367         cs.padding  = ds.padding = 0;
6368
6369         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6370         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6371         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6372         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6373         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6374         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6375
6376         if (guest_cpuid_has_longmode(vcpu))
6377                 kvm_x86_ops->set_efer(vcpu, 0);
6378
6379         kvm_update_cpuid(vcpu);
6380         kvm_mmu_reset_context(vcpu);
6381 }
6382
6383 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6384 {
6385         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6386 }
6387
6388 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6389 {
6390         u64 eoi_exit_bitmap[4];
6391
6392         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6393                 return;
6394
6395         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6396
6397         if (irqchip_split(vcpu->kvm))
6398                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6399         else {
6400                 if (vcpu->arch.apicv_active)
6401                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6402                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6403         }
6404         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6405                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6406         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6407 }
6408
6409 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6410 {
6411         ++vcpu->stat.tlb_flush;
6412         kvm_x86_ops->tlb_flush(vcpu);
6413 }
6414
6415 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6416 {
6417         struct page *page = NULL;
6418
6419         if (!lapic_in_kernel(vcpu))
6420                 return;
6421
6422         if (!kvm_x86_ops->set_apic_access_page_addr)
6423                 return;
6424
6425         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6426         if (is_error_page(page))
6427                 return;
6428         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6429
6430         /*
6431          * Do not pin apic access page in memory, the MMU notifier
6432          * will call us again if it is migrated or swapped out.
6433          */
6434         put_page(page);
6435 }
6436 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6437
6438 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6439                                            unsigned long address)
6440 {
6441         /*
6442          * The physical address of apic access page is stored in the VMCS.
6443          * Update it when it becomes invalid.
6444          */
6445         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6446                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6447 }
6448
6449 /*
6450  * Returns 1 to let vcpu_run() continue the guest execution loop without
6451  * exiting to the userspace.  Otherwise, the value will be returned to the
6452  * userspace.
6453  */
6454 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6455 {
6456         int r;
6457         bool req_int_win =
6458                 dm_request_for_irq_injection(vcpu) &&
6459                 kvm_cpu_accept_dm_intr(vcpu);
6460
6461         bool req_immediate_exit = false;
6462
6463         if (vcpu->requests) {
6464                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6465                         kvm_mmu_unload(vcpu);
6466                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6467                         __kvm_migrate_timers(vcpu);
6468                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6469                         kvm_gen_update_masterclock(vcpu->kvm);
6470                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6471                         kvm_gen_kvmclock_update(vcpu);
6472                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6473                         r = kvm_guest_time_update(vcpu);
6474                         if (unlikely(r))
6475                                 goto out;
6476                 }
6477                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6478                         kvm_mmu_sync_roots(vcpu);
6479                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6480                         kvm_vcpu_flush_tlb(vcpu);
6481                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6482                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6483                         r = 0;
6484                         goto out;
6485                 }
6486                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6487                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6488                         r = 0;
6489                         goto out;
6490                 }
6491                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6492                         vcpu->fpu_active = 0;
6493                         kvm_x86_ops->fpu_deactivate(vcpu);
6494                 }
6495                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6496                         /* Page is swapped out. Do synthetic halt */
6497                         vcpu->arch.apf.halted = true;
6498                         r = 1;
6499                         goto out;
6500                 }
6501                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6502                         record_steal_time(vcpu);
6503                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6504                         process_smi(vcpu);
6505                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6506                         process_nmi(vcpu);
6507                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6508                         kvm_pmu_handle_event(vcpu);
6509                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6510                         kvm_pmu_deliver_pmi(vcpu);
6511                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6512                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6513                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6514                                      vcpu->arch.ioapic_handled_vectors)) {
6515                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6516                                 vcpu->run->eoi.vector =
6517                                                 vcpu->arch.pending_ioapic_eoi;
6518                                 r = 0;
6519                                 goto out;
6520                         }
6521                 }
6522                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6523                         vcpu_scan_ioapic(vcpu);
6524                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6525                         kvm_vcpu_reload_apic_access_page(vcpu);
6526                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6527                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6528                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6529                         r = 0;
6530                         goto out;
6531                 }
6532                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6533                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6534                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6535                         r = 0;
6536                         goto out;
6537                 }
6538                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6539                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6540                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6541                         r = 0;
6542                         goto out;
6543                 }
6544
6545                 /*
6546                  * KVM_REQ_HV_STIMER has to be processed after
6547                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6548                  * depend on the guest clock being up-to-date
6549                  */
6550                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6551                         kvm_hv_process_stimers(vcpu);
6552         }
6553
6554         /*
6555          * KVM_REQ_EVENT is not set when posted interrupts are set by
6556          * VT-d hardware, so we have to update RVI unconditionally.
6557          */
6558         if (kvm_lapic_enabled(vcpu)) {
6559                 /*
6560                  * Update architecture specific hints for APIC
6561                  * virtual interrupt delivery.
6562                  */
6563                 if (vcpu->arch.apicv_active)
6564                         kvm_x86_ops->hwapic_irr_update(vcpu,
6565                                 kvm_lapic_find_highest_irr(vcpu));
6566         }
6567
6568         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6569                 kvm_apic_accept_events(vcpu);
6570                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6571                         r = 1;
6572                         goto out;
6573                 }
6574
6575                 if (inject_pending_event(vcpu, req_int_win) != 0)
6576                         req_immediate_exit = true;
6577                 /* enable NMI/IRQ window open exits if needed */
6578                 else {
6579                         if (vcpu->arch.nmi_pending)
6580                                 kvm_x86_ops->enable_nmi_window(vcpu);
6581                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6582                                 kvm_x86_ops->enable_irq_window(vcpu);
6583                 }
6584
6585                 if (kvm_lapic_enabled(vcpu)) {
6586                         update_cr8_intercept(vcpu);
6587                         kvm_lapic_sync_to_vapic(vcpu);
6588                 }
6589         }
6590
6591         r = kvm_mmu_reload(vcpu);
6592         if (unlikely(r)) {
6593                 goto cancel_injection;
6594         }
6595
6596         preempt_disable();
6597
6598         kvm_x86_ops->prepare_guest_switch(vcpu);
6599         if (vcpu->fpu_active)
6600                 kvm_load_guest_fpu(vcpu);
6601         vcpu->mode = IN_GUEST_MODE;
6602
6603         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6604
6605         /*
6606          * We should set ->mode before check ->requests,
6607          * Please see the comment in kvm_make_all_cpus_request.
6608          * This also orders the write to mode from any reads
6609          * to the page tables done while the VCPU is running.
6610          * Please see the comment in kvm_flush_remote_tlbs.
6611          */
6612         smp_mb__after_srcu_read_unlock();
6613
6614         local_irq_disable();
6615
6616         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6617             || need_resched() || signal_pending(current)) {
6618                 vcpu->mode = OUTSIDE_GUEST_MODE;
6619                 smp_wmb();
6620                 local_irq_enable();
6621                 preempt_enable();
6622                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6623                 r = 1;
6624                 goto cancel_injection;
6625         }
6626
6627         kvm_load_guest_xcr0(vcpu);
6628
6629         if (req_immediate_exit)
6630                 smp_send_reschedule(vcpu->cpu);
6631
6632         trace_kvm_entry(vcpu->vcpu_id);
6633         wait_lapic_expire(vcpu);
6634         __kvm_guest_enter();
6635
6636         if (unlikely(vcpu->arch.switch_db_regs)) {
6637                 set_debugreg(0, 7);
6638                 set_debugreg(vcpu->arch.eff_db[0], 0);
6639                 set_debugreg(vcpu->arch.eff_db[1], 1);
6640                 set_debugreg(vcpu->arch.eff_db[2], 2);
6641                 set_debugreg(vcpu->arch.eff_db[3], 3);
6642                 set_debugreg(vcpu->arch.dr6, 6);
6643                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6644         }
6645
6646         kvm_x86_ops->run(vcpu);
6647
6648         /*
6649          * Do this here before restoring debug registers on the host.  And
6650          * since we do this before handling the vmexit, a DR access vmexit
6651          * can (a) read the correct value of the debug registers, (b) set
6652          * KVM_DEBUGREG_WONT_EXIT again.
6653          */
6654         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6655                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6656                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6657                 kvm_update_dr0123(vcpu);
6658                 kvm_update_dr6(vcpu);
6659                 kvm_update_dr7(vcpu);
6660                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6661         }
6662
6663         /*
6664          * If the guest has used debug registers, at least dr7
6665          * will be disabled while returning to the host.
6666          * If we don't have active breakpoints in the host, we don't
6667          * care about the messed up debug address registers. But if
6668          * we have some of them active, restore the old state.
6669          */
6670         if (hw_breakpoint_active())
6671                 hw_breakpoint_restore();
6672
6673         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6674
6675         vcpu->mode = OUTSIDE_GUEST_MODE;
6676         smp_wmb();
6677
6678         kvm_put_guest_xcr0(vcpu);
6679
6680         /* Interrupt is enabled by handle_external_intr() */
6681         kvm_x86_ops->handle_external_intr(vcpu);
6682
6683         ++vcpu->stat.exits;
6684
6685         /*
6686          * We must have an instruction between local_irq_enable() and
6687          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6688          * the interrupt shadow.  The stat.exits increment will do nicely.
6689          * But we need to prevent reordering, hence this barrier():
6690          */
6691         barrier();
6692
6693         kvm_guest_exit();
6694
6695         preempt_enable();
6696
6697         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6698
6699         /*
6700          * Profile KVM exit RIPs:
6701          */
6702         if (unlikely(prof_on == KVM_PROFILING)) {
6703                 unsigned long rip = kvm_rip_read(vcpu);
6704                 profile_hit(KVM_PROFILING, (void *)rip);
6705         }
6706
6707         if (unlikely(vcpu->arch.tsc_always_catchup))
6708                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6709
6710         if (vcpu->arch.apic_attention)
6711                 kvm_lapic_sync_from_vapic(vcpu);
6712
6713         r = kvm_x86_ops->handle_exit(vcpu);
6714         return r;
6715
6716 cancel_injection:
6717         kvm_x86_ops->cancel_injection(vcpu);
6718         if (unlikely(vcpu->arch.apic_attention))
6719                 kvm_lapic_sync_from_vapic(vcpu);
6720 out:
6721         return r;
6722 }
6723
6724 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6725 {
6726         if (!kvm_arch_vcpu_runnable(vcpu) &&
6727             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6728                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6729                 kvm_vcpu_block(vcpu);
6730                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6731
6732                 if (kvm_x86_ops->post_block)
6733                         kvm_x86_ops->post_block(vcpu);
6734
6735                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6736                         return 1;
6737         }
6738
6739         kvm_apic_accept_events(vcpu);
6740         switch(vcpu->arch.mp_state) {
6741         case KVM_MP_STATE_HALTED:
6742                 vcpu->arch.pv.pv_unhalted = false;
6743                 vcpu->arch.mp_state =
6744                         KVM_MP_STATE_RUNNABLE;
6745         case KVM_MP_STATE_RUNNABLE:
6746                 vcpu->arch.apf.halted = false;
6747                 break;
6748         case KVM_MP_STATE_INIT_RECEIVED:
6749                 break;
6750         default:
6751                 return -EINTR;
6752                 break;
6753         }
6754         return 1;
6755 }
6756
6757 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6758 {
6759         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6760                 !vcpu->arch.apf.halted);
6761 }
6762
6763 static int vcpu_run(struct kvm_vcpu *vcpu)
6764 {
6765         int r;
6766         struct kvm *kvm = vcpu->kvm;
6767
6768         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6769
6770         for (;;) {
6771                 if (kvm_vcpu_running(vcpu)) {
6772                         r = vcpu_enter_guest(vcpu);
6773                 } else {
6774                         r = vcpu_block(kvm, vcpu);
6775                 }
6776
6777                 if (r <= 0)
6778                         break;
6779
6780                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6781                 if (kvm_cpu_has_pending_timer(vcpu))
6782                         kvm_inject_pending_timer_irqs(vcpu);
6783
6784                 if (dm_request_for_irq_injection(vcpu) &&
6785                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6786                         r = 0;
6787                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6788                         ++vcpu->stat.request_irq_exits;
6789                         break;
6790                 }
6791
6792                 kvm_check_async_pf_completion(vcpu);
6793
6794                 if (signal_pending(current)) {
6795                         r = -EINTR;
6796                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6797                         ++vcpu->stat.signal_exits;
6798                         break;
6799                 }
6800                 if (need_resched()) {
6801                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6802                         cond_resched();
6803                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6804                 }
6805         }
6806
6807         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6808
6809         return r;
6810 }
6811
6812 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6813 {
6814         int r;
6815         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6816         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6817         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6818         if (r != EMULATE_DONE)
6819                 return 0;
6820         return 1;
6821 }
6822
6823 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6824 {
6825         BUG_ON(!vcpu->arch.pio.count);
6826
6827         return complete_emulated_io(vcpu);
6828 }
6829
6830 /*
6831  * Implements the following, as a state machine:
6832  *
6833  * read:
6834  *   for each fragment
6835  *     for each mmio piece in the fragment
6836  *       write gpa, len
6837  *       exit
6838  *       copy data
6839  *   execute insn
6840  *
6841  * write:
6842  *   for each fragment
6843  *     for each mmio piece in the fragment
6844  *       write gpa, len
6845  *       copy data
6846  *       exit
6847  */
6848 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6849 {
6850         struct kvm_run *run = vcpu->run;
6851         struct kvm_mmio_fragment *frag;
6852         unsigned len;
6853
6854         BUG_ON(!vcpu->mmio_needed);
6855
6856         /* Complete previous fragment */
6857         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6858         len = min(8u, frag->len);
6859         if (!vcpu->mmio_is_write)
6860                 memcpy(frag->data, run->mmio.data, len);
6861
6862         if (frag->len <= 8) {
6863                 /* Switch to the next fragment. */
6864                 frag++;
6865                 vcpu->mmio_cur_fragment++;
6866         } else {
6867                 /* Go forward to the next mmio piece. */
6868                 frag->data += len;
6869                 frag->gpa += len;
6870                 frag->len -= len;
6871         }
6872
6873         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6874                 vcpu->mmio_needed = 0;
6875
6876                 /* FIXME: return into emulator if single-stepping.  */
6877                 if (vcpu->mmio_is_write)
6878                         return 1;
6879                 vcpu->mmio_read_completed = 1;
6880                 return complete_emulated_io(vcpu);
6881         }
6882
6883         run->exit_reason = KVM_EXIT_MMIO;
6884         run->mmio.phys_addr = frag->gpa;
6885         if (vcpu->mmio_is_write)
6886                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6887         run->mmio.len = min(8u, frag->len);
6888         run->mmio.is_write = vcpu->mmio_is_write;
6889         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6890         return 0;
6891 }
6892
6893
6894 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6895 {
6896         struct fpu *fpu = &current->thread.fpu;
6897         int r;
6898         sigset_t sigsaved;
6899
6900         fpu__activate_curr(fpu);
6901
6902         if (vcpu->sigset_active)
6903                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6904
6905         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6906                 kvm_vcpu_block(vcpu);
6907                 kvm_apic_accept_events(vcpu);
6908                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6909                 r = -EAGAIN;
6910                 goto out;
6911         }
6912
6913         /* re-sync apic's tpr */
6914         if (!lapic_in_kernel(vcpu)) {
6915                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6916                         r = -EINVAL;
6917                         goto out;
6918                 }
6919         }
6920
6921         if (unlikely(vcpu->arch.complete_userspace_io)) {
6922                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6923                 vcpu->arch.complete_userspace_io = NULL;
6924                 r = cui(vcpu);
6925                 if (r <= 0)
6926                         goto out;
6927         } else
6928                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6929
6930         r = vcpu_run(vcpu);
6931
6932 out:
6933         post_kvm_run_save(vcpu);
6934         if (vcpu->sigset_active)
6935                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6936
6937         return r;
6938 }
6939
6940 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6941 {
6942         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6943                 /*
6944                  * We are here if userspace calls get_regs() in the middle of
6945                  * instruction emulation. Registers state needs to be copied
6946                  * back from emulation context to vcpu. Userspace shouldn't do
6947                  * that usually, but some bad designed PV devices (vmware
6948                  * backdoor interface) need this to work
6949                  */
6950                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6951                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6952         }
6953         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6954         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6955         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6956         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6957         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6958         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6959         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6960         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6961 #ifdef CONFIG_X86_64
6962         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6963         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6964         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6965         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6966         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6967         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6968         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6969         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6970 #endif
6971
6972         regs->rip = kvm_rip_read(vcpu);
6973         regs->rflags = kvm_get_rflags(vcpu);
6974
6975         return 0;
6976 }
6977
6978 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6979 {
6980         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6981         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6982
6983         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6984         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6985         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6986         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6987         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6988         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6989         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6990         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6991 #ifdef CONFIG_X86_64
6992         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6993         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6994         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6995         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6996         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6997         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6998         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6999         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7000 #endif
7001
7002         kvm_rip_write(vcpu, regs->rip);
7003         kvm_set_rflags(vcpu, regs->rflags);
7004
7005         vcpu->arch.exception.pending = false;
7006
7007         kvm_make_request(KVM_REQ_EVENT, vcpu);
7008
7009         return 0;
7010 }
7011
7012 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7013 {
7014         struct kvm_segment cs;
7015
7016         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7017         *db = cs.db;
7018         *l = cs.l;
7019 }
7020 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7021
7022 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7023                                   struct kvm_sregs *sregs)
7024 {
7025         struct desc_ptr dt;
7026
7027         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7028         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7029         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7030         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7031         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7032         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7033
7034         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7035         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7036
7037         kvm_x86_ops->get_idt(vcpu, &dt);
7038         sregs->idt.limit = dt.size;
7039         sregs->idt.base = dt.address;
7040         kvm_x86_ops->get_gdt(vcpu, &dt);
7041         sregs->gdt.limit = dt.size;
7042         sregs->gdt.base = dt.address;
7043
7044         sregs->cr0 = kvm_read_cr0(vcpu);
7045         sregs->cr2 = vcpu->arch.cr2;
7046         sregs->cr3 = kvm_read_cr3(vcpu);
7047         sregs->cr4 = kvm_read_cr4(vcpu);
7048         sregs->cr8 = kvm_get_cr8(vcpu);
7049         sregs->efer = vcpu->arch.efer;
7050         sregs->apic_base = kvm_get_apic_base(vcpu);
7051
7052         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7053
7054         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7055                 set_bit(vcpu->arch.interrupt.nr,
7056                         (unsigned long *)sregs->interrupt_bitmap);
7057
7058         return 0;
7059 }
7060
7061 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7062                                     struct kvm_mp_state *mp_state)
7063 {
7064         kvm_apic_accept_events(vcpu);
7065         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7066                                         vcpu->arch.pv.pv_unhalted)
7067                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7068         else
7069                 mp_state->mp_state = vcpu->arch.mp_state;
7070
7071         return 0;
7072 }
7073
7074 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7075                                     struct kvm_mp_state *mp_state)
7076 {
7077         if (!lapic_in_kernel(vcpu) &&
7078             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7079                 return -EINVAL;
7080
7081         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7082                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7083                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7084         } else
7085                 vcpu->arch.mp_state = mp_state->mp_state;
7086         kvm_make_request(KVM_REQ_EVENT, vcpu);
7087         return 0;
7088 }
7089
7090 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7091                     int reason, bool has_error_code, u32 error_code)
7092 {
7093         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7094         int ret;
7095
7096         init_emulate_ctxt(vcpu);
7097
7098         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7099                                    has_error_code, error_code);
7100
7101         if (ret)
7102                 return EMULATE_FAIL;
7103
7104         kvm_rip_write(vcpu, ctxt->eip);
7105         kvm_set_rflags(vcpu, ctxt->eflags);
7106         kvm_make_request(KVM_REQ_EVENT, vcpu);
7107         return EMULATE_DONE;
7108 }
7109 EXPORT_SYMBOL_GPL(kvm_task_switch);
7110
7111 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7112                                   struct kvm_sregs *sregs)
7113 {
7114         struct msr_data apic_base_msr;
7115         int mmu_reset_needed = 0;
7116         int pending_vec, max_bits, idx;
7117         struct desc_ptr dt;
7118
7119         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7120                 return -EINVAL;
7121
7122         dt.size = sregs->idt.limit;
7123         dt.address = sregs->idt.base;
7124         kvm_x86_ops->set_idt(vcpu, &dt);
7125         dt.size = sregs->gdt.limit;
7126         dt.address = sregs->gdt.base;
7127         kvm_x86_ops->set_gdt(vcpu, &dt);
7128
7129         vcpu->arch.cr2 = sregs->cr2;
7130         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7131         vcpu->arch.cr3 = sregs->cr3;
7132         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7133
7134         kvm_set_cr8(vcpu, sregs->cr8);
7135
7136         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7137         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7138         apic_base_msr.data = sregs->apic_base;
7139         apic_base_msr.host_initiated = true;
7140         kvm_set_apic_base(vcpu, &apic_base_msr);
7141
7142         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7143         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7144         vcpu->arch.cr0 = sregs->cr0;
7145
7146         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7147         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7148         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7149                 kvm_update_cpuid(vcpu);
7150
7151         idx = srcu_read_lock(&vcpu->kvm->srcu);
7152         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7153                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7154                 mmu_reset_needed = 1;
7155         }
7156         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7157
7158         if (mmu_reset_needed)
7159                 kvm_mmu_reset_context(vcpu);
7160
7161         max_bits = KVM_NR_INTERRUPTS;
7162         pending_vec = find_first_bit(
7163                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7164         if (pending_vec < max_bits) {
7165                 kvm_queue_interrupt(vcpu, pending_vec, false);
7166                 pr_debug("Set back pending irq %d\n", pending_vec);
7167         }
7168
7169         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7170         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7171         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7172         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7173         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7174         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7175
7176         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7177         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7178
7179         update_cr8_intercept(vcpu);
7180
7181         /* Older userspace won't unhalt the vcpu on reset. */
7182         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7183             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7184             !is_protmode(vcpu))
7185                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7186
7187         kvm_make_request(KVM_REQ_EVENT, vcpu);
7188
7189         return 0;
7190 }
7191
7192 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7193                                         struct kvm_guest_debug *dbg)
7194 {
7195         unsigned long rflags;
7196         int i, r;
7197
7198         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7199                 r = -EBUSY;
7200                 if (vcpu->arch.exception.pending)
7201                         goto out;
7202                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7203                         kvm_queue_exception(vcpu, DB_VECTOR);
7204                 else
7205                         kvm_queue_exception(vcpu, BP_VECTOR);
7206         }
7207
7208         /*
7209          * Read rflags as long as potentially injected trace flags are still
7210          * filtered out.
7211          */
7212         rflags = kvm_get_rflags(vcpu);
7213
7214         vcpu->guest_debug = dbg->control;
7215         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7216                 vcpu->guest_debug = 0;
7217
7218         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7219                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7220                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7221                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7222         } else {
7223                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7224                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7225         }
7226         kvm_update_dr7(vcpu);
7227
7228         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7229                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7230                         get_segment_base(vcpu, VCPU_SREG_CS);
7231
7232         /*
7233          * Trigger an rflags update that will inject or remove the trace
7234          * flags.
7235          */
7236         kvm_set_rflags(vcpu, rflags);
7237
7238         kvm_x86_ops->update_bp_intercept(vcpu);
7239
7240         r = 0;
7241
7242 out:
7243
7244         return r;
7245 }
7246
7247 /*
7248  * Translate a guest virtual address to a guest physical address.
7249  */
7250 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7251                                     struct kvm_translation *tr)
7252 {
7253         unsigned long vaddr = tr->linear_address;
7254         gpa_t gpa;
7255         int idx;
7256
7257         idx = srcu_read_lock(&vcpu->kvm->srcu);
7258         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7259         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7260         tr->physical_address = gpa;
7261         tr->valid = gpa != UNMAPPED_GVA;
7262         tr->writeable = 1;
7263         tr->usermode = 0;
7264
7265         return 0;
7266 }
7267
7268 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7269 {
7270         struct fxregs_state *fxsave =
7271                         &vcpu->arch.guest_fpu.state.fxsave;
7272
7273         memcpy(fpu->fpr, fxsave->st_space, 128);
7274         fpu->fcw = fxsave->cwd;
7275         fpu->fsw = fxsave->swd;
7276         fpu->ftwx = fxsave->twd;
7277         fpu->last_opcode = fxsave->fop;
7278         fpu->last_ip = fxsave->rip;
7279         fpu->last_dp = fxsave->rdp;
7280         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7281
7282         return 0;
7283 }
7284
7285 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7286 {
7287         struct fxregs_state *fxsave =
7288                         &vcpu->arch.guest_fpu.state.fxsave;
7289
7290         memcpy(fxsave->st_space, fpu->fpr, 128);
7291         fxsave->cwd = fpu->fcw;
7292         fxsave->swd = fpu->fsw;
7293         fxsave->twd = fpu->ftwx;
7294         fxsave->fop = fpu->last_opcode;
7295         fxsave->rip = fpu->last_ip;
7296         fxsave->rdp = fpu->last_dp;
7297         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7298
7299         return 0;
7300 }
7301
7302 static void fx_init(struct kvm_vcpu *vcpu)
7303 {
7304         fpstate_init(&vcpu->arch.guest_fpu.state);
7305         if (boot_cpu_has(X86_FEATURE_XSAVES))
7306                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7307                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7308
7309         /*
7310          * Ensure guest xcr0 is valid for loading
7311          */
7312         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7313
7314         vcpu->arch.cr0 |= X86_CR0_ET;
7315 }
7316
7317 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7318 {
7319         if (vcpu->guest_fpu_loaded)
7320                 return;
7321
7322         /*
7323          * Restore all possible states in the guest,
7324          * and assume host would use all available bits.
7325          * Guest xcr0 would be loaded later.
7326          */
7327         vcpu->guest_fpu_loaded = 1;
7328         __kernel_fpu_begin();
7329         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7330         trace_kvm_fpu(1);
7331 }
7332
7333 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7334 {
7335         if (!vcpu->guest_fpu_loaded) {
7336                 vcpu->fpu_counter = 0;
7337                 return;
7338         }
7339
7340         vcpu->guest_fpu_loaded = 0;
7341         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7342         __kernel_fpu_end();
7343         ++vcpu->stat.fpu_reload;
7344         /*
7345          * If using eager FPU mode, or if the guest is a frequent user
7346          * of the FPU, just leave the FPU active for next time.
7347          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7348          * the FPU in bursts will revert to loading it on demand.
7349          */
7350         if (!use_eager_fpu()) {
7351                 if (++vcpu->fpu_counter < 5)
7352                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7353         }
7354         trace_kvm_fpu(0);
7355 }
7356
7357 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7358 {
7359         kvmclock_reset(vcpu);
7360
7361         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7362         kvm_x86_ops->vcpu_free(vcpu);
7363 }
7364
7365 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7366                                                 unsigned int id)
7367 {
7368         struct kvm_vcpu *vcpu;
7369
7370         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7371                 printk_once(KERN_WARNING
7372                 "kvm: SMP vm created on host with unstable TSC; "
7373                 "guest TSC will not be reliable\n");
7374
7375         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7376
7377         return vcpu;
7378 }
7379
7380 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7381 {
7382         int r;
7383
7384         kvm_vcpu_mtrr_init(vcpu);
7385         r = vcpu_load(vcpu);
7386         if (r)
7387                 return r;
7388         kvm_vcpu_reset(vcpu, false);
7389         kvm_mmu_setup(vcpu);
7390         vcpu_put(vcpu);
7391         return r;
7392 }
7393
7394 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7395 {
7396         struct msr_data msr;
7397         struct kvm *kvm = vcpu->kvm;
7398
7399         if (vcpu_load(vcpu))
7400                 return;
7401         msr.data = 0x0;
7402         msr.index = MSR_IA32_TSC;
7403         msr.host_initiated = true;
7404         kvm_write_tsc(vcpu, &msr);
7405         vcpu_put(vcpu);
7406
7407         if (!kvmclock_periodic_sync)
7408                 return;
7409
7410         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7411                                         KVMCLOCK_SYNC_PERIOD);
7412 }
7413
7414 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7415 {
7416         int r;
7417         vcpu->arch.apf.msr_val = 0;
7418
7419         r = vcpu_load(vcpu);
7420         BUG_ON(r);
7421         kvm_mmu_unload(vcpu);
7422         vcpu_put(vcpu);
7423
7424         kvm_x86_ops->vcpu_free(vcpu);
7425 }
7426
7427 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7428 {
7429         vcpu->arch.hflags = 0;
7430
7431         atomic_set(&vcpu->arch.nmi_queued, 0);
7432         vcpu->arch.nmi_pending = 0;
7433         vcpu->arch.nmi_injected = false;
7434         kvm_clear_interrupt_queue(vcpu);
7435         kvm_clear_exception_queue(vcpu);
7436
7437         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7438         kvm_update_dr0123(vcpu);
7439         vcpu->arch.dr6 = DR6_INIT;
7440         kvm_update_dr6(vcpu);
7441         vcpu->arch.dr7 = DR7_FIXED_1;
7442         kvm_update_dr7(vcpu);
7443
7444         vcpu->arch.cr2 = 0;
7445
7446         kvm_make_request(KVM_REQ_EVENT, vcpu);
7447         vcpu->arch.apf.msr_val = 0;
7448         vcpu->arch.st.msr_val = 0;
7449
7450         kvmclock_reset(vcpu);
7451
7452         kvm_clear_async_pf_completion_queue(vcpu);
7453         kvm_async_pf_hash_reset(vcpu);
7454         vcpu->arch.apf.halted = false;
7455
7456         if (!init_event) {
7457                 kvm_pmu_reset(vcpu);
7458                 vcpu->arch.smbase = 0x30000;
7459         }
7460
7461         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7462         vcpu->arch.regs_avail = ~0;
7463         vcpu->arch.regs_dirty = ~0;
7464
7465         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7466 }
7467
7468 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7469 {
7470         struct kvm_segment cs;
7471
7472         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7473         cs.selector = vector << 8;
7474         cs.base = vector << 12;
7475         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7476         kvm_rip_write(vcpu, 0);
7477 }
7478
7479 int kvm_arch_hardware_enable(void)
7480 {
7481         struct kvm *kvm;
7482         struct kvm_vcpu *vcpu;
7483         int i;
7484         int ret;
7485         u64 local_tsc;
7486         u64 max_tsc = 0;
7487         bool stable, backwards_tsc = false;
7488
7489         kvm_shared_msr_cpu_online();
7490         ret = kvm_x86_ops->hardware_enable();
7491         if (ret != 0)
7492                 return ret;
7493
7494         local_tsc = rdtsc();
7495         stable = !check_tsc_unstable();
7496         list_for_each_entry(kvm, &vm_list, vm_list) {
7497                 kvm_for_each_vcpu(i, vcpu, kvm) {
7498                         if (!stable && vcpu->cpu == smp_processor_id())
7499                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7500                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7501                                 backwards_tsc = true;
7502                                 if (vcpu->arch.last_host_tsc > max_tsc)
7503                                         max_tsc = vcpu->arch.last_host_tsc;
7504                         }
7505                 }
7506         }
7507
7508         /*
7509          * Sometimes, even reliable TSCs go backwards.  This happens on
7510          * platforms that reset TSC during suspend or hibernate actions, but
7511          * maintain synchronization.  We must compensate.  Fortunately, we can
7512          * detect that condition here, which happens early in CPU bringup,
7513          * before any KVM threads can be running.  Unfortunately, we can't
7514          * bring the TSCs fully up to date with real time, as we aren't yet far
7515          * enough into CPU bringup that we know how much real time has actually
7516          * elapsed; our helper function, get_kernel_ns() will be using boot
7517          * variables that haven't been updated yet.
7518          *
7519          * So we simply find the maximum observed TSC above, then record the
7520          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7521          * the adjustment will be applied.  Note that we accumulate
7522          * adjustments, in case multiple suspend cycles happen before some VCPU
7523          * gets a chance to run again.  In the event that no KVM threads get a
7524          * chance to run, we will miss the entire elapsed period, as we'll have
7525          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7526          * loose cycle time.  This isn't too big a deal, since the loss will be
7527          * uniform across all VCPUs (not to mention the scenario is extremely
7528          * unlikely). It is possible that a second hibernate recovery happens
7529          * much faster than a first, causing the observed TSC here to be
7530          * smaller; this would require additional padding adjustment, which is
7531          * why we set last_host_tsc to the local tsc observed here.
7532          *
7533          * N.B. - this code below runs only on platforms with reliable TSC,
7534          * as that is the only way backwards_tsc is set above.  Also note
7535          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7536          * have the same delta_cyc adjustment applied if backwards_tsc
7537          * is detected.  Note further, this adjustment is only done once,
7538          * as we reset last_host_tsc on all VCPUs to stop this from being
7539          * called multiple times (one for each physical CPU bringup).
7540          *
7541          * Platforms with unreliable TSCs don't have to deal with this, they
7542          * will be compensated by the logic in vcpu_load, which sets the TSC to
7543          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7544          * guarantee that they stay in perfect synchronization.
7545          */
7546         if (backwards_tsc) {
7547                 u64 delta_cyc = max_tsc - local_tsc;
7548                 backwards_tsc_observed = true;
7549                 list_for_each_entry(kvm, &vm_list, vm_list) {
7550                         kvm_for_each_vcpu(i, vcpu, kvm) {
7551                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7552                                 vcpu->arch.last_host_tsc = local_tsc;
7553                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7554                         }
7555
7556                         /*
7557                          * We have to disable TSC offset matching.. if you were
7558                          * booting a VM while issuing an S4 host suspend....
7559                          * you may have some problem.  Solving this issue is
7560                          * left as an exercise to the reader.
7561                          */
7562                         kvm->arch.last_tsc_nsec = 0;
7563                         kvm->arch.last_tsc_write = 0;
7564                 }
7565
7566         }
7567         return 0;
7568 }
7569
7570 void kvm_arch_hardware_disable(void)
7571 {
7572         kvm_x86_ops->hardware_disable();
7573         drop_user_return_notifiers();
7574 }
7575
7576 int kvm_arch_hardware_setup(void)
7577 {
7578         int r;
7579
7580         r = kvm_x86_ops->hardware_setup();
7581         if (r != 0)
7582                 return r;
7583
7584         if (kvm_has_tsc_control) {
7585                 /*
7586                  * Make sure the user can only configure tsc_khz values that
7587                  * fit into a signed integer.
7588                  * A min value is not calculated needed because it will always
7589                  * be 1 on all machines.
7590                  */
7591                 u64 max = min(0x7fffffffULL,
7592                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7593                 kvm_max_guest_tsc_khz = max;
7594
7595                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7596         }
7597
7598         kvm_init_msr_list();
7599         return 0;
7600 }
7601
7602 void kvm_arch_hardware_unsetup(void)
7603 {
7604         kvm_x86_ops->hardware_unsetup();
7605 }
7606
7607 void kvm_arch_check_processor_compat(void *rtn)
7608 {
7609         kvm_x86_ops->check_processor_compatibility(rtn);
7610 }
7611
7612 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7613 {
7614         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7615 }
7616 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7617
7618 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7619 {
7620         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7621 }
7622
7623 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7624 {
7625         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7626 }
7627
7628 struct static_key kvm_no_apic_vcpu __read_mostly;
7629 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7630
7631 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7632 {
7633         struct page *page;
7634         struct kvm *kvm;
7635         int r;
7636
7637         BUG_ON(vcpu->kvm == NULL);
7638         kvm = vcpu->kvm;
7639
7640         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7641         vcpu->arch.pv.pv_unhalted = false;
7642         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7643         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7644                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7645         else
7646                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7647
7648         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7649         if (!page) {
7650                 r = -ENOMEM;
7651                 goto fail;
7652         }
7653         vcpu->arch.pio_data = page_address(page);
7654
7655         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7656
7657         r = kvm_mmu_create(vcpu);
7658         if (r < 0)
7659                 goto fail_free_pio_data;
7660
7661         if (irqchip_in_kernel(kvm)) {
7662                 r = kvm_create_lapic(vcpu);
7663                 if (r < 0)
7664                         goto fail_mmu_destroy;
7665         } else
7666                 static_key_slow_inc(&kvm_no_apic_vcpu);
7667
7668         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7669                                        GFP_KERNEL);
7670         if (!vcpu->arch.mce_banks) {
7671                 r = -ENOMEM;
7672                 goto fail_free_lapic;
7673         }
7674         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7675
7676         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7677                 r = -ENOMEM;
7678                 goto fail_free_mce_banks;
7679         }
7680
7681         fx_init(vcpu);
7682
7683         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7684         vcpu->arch.pv_time_enabled = false;
7685
7686         vcpu->arch.guest_supported_xcr0 = 0;
7687         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7688
7689         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7690
7691         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7692
7693         kvm_async_pf_hash_reset(vcpu);
7694         kvm_pmu_init(vcpu);
7695
7696         vcpu->arch.pending_external_vector = -1;
7697
7698         kvm_hv_vcpu_init(vcpu);
7699
7700         return 0;
7701
7702 fail_free_mce_banks:
7703         kfree(vcpu->arch.mce_banks);
7704 fail_free_lapic:
7705         kvm_free_lapic(vcpu);
7706 fail_mmu_destroy:
7707         kvm_mmu_destroy(vcpu);
7708 fail_free_pio_data:
7709         free_page((unsigned long)vcpu->arch.pio_data);
7710 fail:
7711         return r;
7712 }
7713
7714 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7715 {
7716         int idx;
7717
7718         kvm_hv_vcpu_uninit(vcpu);
7719         kvm_pmu_destroy(vcpu);
7720         kfree(vcpu->arch.mce_banks);
7721         kvm_free_lapic(vcpu);
7722         idx = srcu_read_lock(&vcpu->kvm->srcu);
7723         kvm_mmu_destroy(vcpu);
7724         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7725         free_page((unsigned long)vcpu->arch.pio_data);
7726         if (!lapic_in_kernel(vcpu))
7727                 static_key_slow_dec(&kvm_no_apic_vcpu);
7728 }
7729
7730 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7731 {
7732         kvm_x86_ops->sched_in(vcpu, cpu);
7733 }
7734
7735 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7736 {
7737         if (type)
7738                 return -EINVAL;
7739
7740         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7741         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7742         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7743         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7744         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7745
7746         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7747         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7748         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7749         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7750                 &kvm->arch.irq_sources_bitmap);
7751
7752         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7753         mutex_init(&kvm->arch.apic_map_lock);
7754         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7755
7756         pvclock_update_vm_gtod_copy(kvm);
7757
7758         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7759         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7760
7761         kvm_page_track_init(kvm);
7762         kvm_mmu_init_vm(kvm);
7763
7764         if (kvm_x86_ops->vm_init)
7765                 return kvm_x86_ops->vm_init(kvm);
7766
7767         return 0;
7768 }
7769
7770 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7771 {
7772         int r;
7773         r = vcpu_load(vcpu);
7774         BUG_ON(r);
7775         kvm_mmu_unload(vcpu);
7776         vcpu_put(vcpu);
7777 }
7778
7779 static void kvm_free_vcpus(struct kvm *kvm)
7780 {
7781         unsigned int i;
7782         struct kvm_vcpu *vcpu;
7783
7784         /*
7785          * Unpin any mmu pages first.
7786          */
7787         kvm_for_each_vcpu(i, vcpu, kvm) {
7788                 kvm_clear_async_pf_completion_queue(vcpu);
7789                 kvm_unload_vcpu_mmu(vcpu);
7790         }
7791         kvm_for_each_vcpu(i, vcpu, kvm)
7792                 kvm_arch_vcpu_free(vcpu);
7793
7794         mutex_lock(&kvm->lock);
7795         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7796                 kvm->vcpus[i] = NULL;
7797
7798         atomic_set(&kvm->online_vcpus, 0);
7799         mutex_unlock(&kvm->lock);
7800 }
7801
7802 void kvm_arch_sync_events(struct kvm *kvm)
7803 {
7804         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7805         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7806         kvm_free_all_assigned_devices(kvm);
7807         kvm_free_pit(kvm);
7808 }
7809
7810 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7811 {
7812         int i, r;
7813         unsigned long hva;
7814         struct kvm_memslots *slots = kvm_memslots(kvm);
7815         struct kvm_memory_slot *slot, old;
7816
7817         /* Called with kvm->slots_lock held.  */
7818         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7819                 return -EINVAL;
7820
7821         slot = id_to_memslot(slots, id);
7822         if (size) {
7823                 if (slot->npages)
7824                         return -EEXIST;
7825
7826                 /*
7827                  * MAP_SHARED to prevent internal slot pages from being moved
7828                  * by fork()/COW.
7829                  */
7830                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7831                               MAP_SHARED | MAP_ANONYMOUS, 0);
7832                 if (IS_ERR((void *)hva))
7833                         return PTR_ERR((void *)hva);
7834         } else {
7835                 if (!slot->npages)
7836                         return 0;
7837
7838                 hva = 0;
7839         }
7840
7841         old = *slot;
7842         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7843                 struct kvm_userspace_memory_region m;
7844
7845                 m.slot = id | (i << 16);
7846                 m.flags = 0;
7847                 m.guest_phys_addr = gpa;
7848                 m.userspace_addr = hva;
7849                 m.memory_size = size;
7850                 r = __kvm_set_memory_region(kvm, &m);
7851                 if (r < 0)
7852                         return r;
7853         }
7854
7855         if (!size) {
7856                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7857                 WARN_ON(r < 0);
7858         }
7859
7860         return 0;
7861 }
7862 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7863
7864 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7865 {
7866         int r;
7867
7868         mutex_lock(&kvm->slots_lock);
7869         r = __x86_set_memory_region(kvm, id, gpa, size);
7870         mutex_unlock(&kvm->slots_lock);
7871
7872         return r;
7873 }
7874 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7875
7876 void kvm_arch_destroy_vm(struct kvm *kvm)
7877 {
7878         if (current->mm == kvm->mm) {
7879                 /*
7880                  * Free memory regions allocated on behalf of userspace,
7881                  * unless the the memory map has changed due to process exit
7882                  * or fd copying.
7883                  */
7884                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7885                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7886                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7887         }
7888         if (kvm_x86_ops->vm_destroy)
7889                 kvm_x86_ops->vm_destroy(kvm);
7890         kvm_iommu_unmap_guest(kvm);
7891         kfree(kvm->arch.vpic);
7892         kfree(kvm->arch.vioapic);
7893         kvm_free_vcpus(kvm);
7894         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7895         kvm_mmu_uninit_vm(kvm);
7896 }
7897
7898 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7899                            struct kvm_memory_slot *dont)
7900 {
7901         int i;
7902
7903         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7904                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7905                         kvfree(free->arch.rmap[i]);
7906                         free->arch.rmap[i] = NULL;
7907                 }
7908                 if (i == 0)
7909                         continue;
7910
7911                 if (!dont || free->arch.lpage_info[i - 1] !=
7912                              dont->arch.lpage_info[i - 1]) {
7913                         kvfree(free->arch.lpage_info[i - 1]);
7914                         free->arch.lpage_info[i - 1] = NULL;
7915                 }
7916         }
7917
7918         kvm_page_track_free_memslot(free, dont);
7919 }
7920
7921 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7922                             unsigned long npages)
7923 {
7924         int i;
7925
7926         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7927                 struct kvm_lpage_info *linfo;
7928                 unsigned long ugfn;
7929                 int lpages;
7930                 int level = i + 1;
7931
7932                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7933                                       slot->base_gfn, level) + 1;
7934
7935                 slot->arch.rmap[i] =
7936                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7937                 if (!slot->arch.rmap[i])
7938                         goto out_free;
7939                 if (i == 0)
7940                         continue;
7941
7942                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7943                 if (!linfo)
7944                         goto out_free;
7945
7946                 slot->arch.lpage_info[i - 1] = linfo;
7947
7948                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7949                         linfo[0].disallow_lpage = 1;
7950                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7951                         linfo[lpages - 1].disallow_lpage = 1;
7952                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7953                 /*
7954                  * If the gfn and userspace address are not aligned wrt each
7955                  * other, or if explicitly asked to, disable large page
7956                  * support for this slot
7957                  */
7958                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7959                     !kvm_largepages_enabled()) {
7960                         unsigned long j;
7961
7962                         for (j = 0; j < lpages; ++j)
7963                                 linfo[j].disallow_lpage = 1;
7964                 }
7965         }
7966
7967         if (kvm_page_track_create_memslot(slot, npages))
7968                 goto out_free;
7969
7970         return 0;
7971
7972 out_free:
7973         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7974                 kvfree(slot->arch.rmap[i]);
7975                 slot->arch.rmap[i] = NULL;
7976                 if (i == 0)
7977                         continue;
7978
7979                 kvfree(slot->arch.lpage_info[i - 1]);
7980                 slot->arch.lpage_info[i - 1] = NULL;
7981         }
7982         return -ENOMEM;
7983 }
7984
7985 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7986 {
7987         /*
7988          * memslots->generation has been incremented.
7989          * mmio generation may have reached its maximum value.
7990          */
7991         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7992 }
7993
7994 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7995                                 struct kvm_memory_slot *memslot,
7996                                 const struct kvm_userspace_memory_region *mem,
7997                                 enum kvm_mr_change change)
7998 {
7999         return 0;
8000 }
8001
8002 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8003                                      struct kvm_memory_slot *new)
8004 {
8005         /* Still write protect RO slot */
8006         if (new->flags & KVM_MEM_READONLY) {
8007                 kvm_mmu_slot_remove_write_access(kvm, new);
8008                 return;
8009         }
8010
8011         /*
8012          * Call kvm_x86_ops dirty logging hooks when they are valid.
8013          *
8014          * kvm_x86_ops->slot_disable_log_dirty is called when:
8015          *
8016          *  - KVM_MR_CREATE with dirty logging is disabled
8017          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8018          *
8019          * The reason is, in case of PML, we need to set D-bit for any slots
8020          * with dirty logging disabled in order to eliminate unnecessary GPA
8021          * logging in PML buffer (and potential PML buffer full VMEXT). This
8022          * guarantees leaving PML enabled during guest's lifetime won't have
8023          * any additonal overhead from PML when guest is running with dirty
8024          * logging disabled for memory slots.
8025          *
8026          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8027          * to dirty logging mode.
8028          *
8029          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8030          *
8031          * In case of write protect:
8032          *
8033          * Write protect all pages for dirty logging.
8034          *
8035          * All the sptes including the large sptes which point to this
8036          * slot are set to readonly. We can not create any new large
8037          * spte on this slot until the end of the logging.
8038          *
8039          * See the comments in fast_page_fault().
8040          */
8041         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8042                 if (kvm_x86_ops->slot_enable_log_dirty)
8043                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8044                 else
8045                         kvm_mmu_slot_remove_write_access(kvm, new);
8046         } else {
8047                 if (kvm_x86_ops->slot_disable_log_dirty)
8048                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8049         }
8050 }
8051
8052 void kvm_arch_commit_memory_region(struct kvm *kvm,
8053                                 const struct kvm_userspace_memory_region *mem,
8054                                 const struct kvm_memory_slot *old,
8055                                 const struct kvm_memory_slot *new,
8056                                 enum kvm_mr_change change)
8057 {
8058         int nr_mmu_pages = 0;
8059
8060         if (!kvm->arch.n_requested_mmu_pages)
8061                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8062
8063         if (nr_mmu_pages)
8064                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8065
8066         /*
8067          * Dirty logging tracks sptes in 4k granularity, meaning that large
8068          * sptes have to be split.  If live migration is successful, the guest
8069          * in the source machine will be destroyed and large sptes will be
8070          * created in the destination. However, if the guest continues to run
8071          * in the source machine (for example if live migration fails), small
8072          * sptes will remain around and cause bad performance.
8073          *
8074          * Scan sptes if dirty logging has been stopped, dropping those
8075          * which can be collapsed into a single large-page spte.  Later
8076          * page faults will create the large-page sptes.
8077          */
8078         if ((change != KVM_MR_DELETE) &&
8079                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8080                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8081                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8082
8083         /*
8084          * Set up write protection and/or dirty logging for the new slot.
8085          *
8086          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8087          * been zapped so no dirty logging staff is needed for old slot. For
8088          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8089          * new and it's also covered when dealing with the new slot.
8090          *
8091          * FIXME: const-ify all uses of struct kvm_memory_slot.
8092          */
8093         if (change != KVM_MR_DELETE)
8094                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8095 }
8096
8097 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8098 {
8099         kvm_mmu_invalidate_zap_all_pages(kvm);
8100 }
8101
8102 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8103                                    struct kvm_memory_slot *slot)
8104 {
8105         kvm_mmu_invalidate_zap_all_pages(kvm);
8106 }
8107
8108 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8109 {
8110         if (!list_empty_careful(&vcpu->async_pf.done))
8111                 return true;
8112
8113         if (kvm_apic_has_events(vcpu))
8114                 return true;
8115
8116         if (vcpu->arch.pv.pv_unhalted)
8117                 return true;
8118
8119         if (atomic_read(&vcpu->arch.nmi_queued))
8120                 return true;
8121
8122         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8123                 return true;
8124
8125         if (kvm_arch_interrupt_allowed(vcpu) &&
8126             kvm_cpu_has_interrupt(vcpu))
8127                 return true;
8128
8129         if (kvm_hv_has_stimer_pending(vcpu))
8130                 return true;
8131
8132         return false;
8133 }
8134
8135 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8136 {
8137         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8138                 kvm_x86_ops->check_nested_events(vcpu, false);
8139
8140         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8141 }
8142
8143 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8144 {
8145         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8146 }
8147
8148 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8149 {
8150         return kvm_x86_ops->interrupt_allowed(vcpu);
8151 }
8152
8153 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8154 {
8155         if (is_64_bit_mode(vcpu))
8156                 return kvm_rip_read(vcpu);
8157         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8158                      kvm_rip_read(vcpu));
8159 }
8160 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8161
8162 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8163 {
8164         return kvm_get_linear_rip(vcpu) == linear_rip;
8165 }
8166 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8167
8168 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8169 {
8170         unsigned long rflags;
8171
8172         rflags = kvm_x86_ops->get_rflags(vcpu);
8173         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8174                 rflags &= ~X86_EFLAGS_TF;
8175         return rflags;
8176 }
8177 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8178
8179 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8180 {
8181         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8182             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8183                 rflags |= X86_EFLAGS_TF;
8184         kvm_x86_ops->set_rflags(vcpu, rflags);
8185 }
8186
8187 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8188 {
8189         __kvm_set_rflags(vcpu, rflags);
8190         kvm_make_request(KVM_REQ_EVENT, vcpu);
8191 }
8192 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8193
8194 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8195 {
8196         int r;
8197
8198         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8199               work->wakeup_all)
8200                 return;
8201
8202         r = kvm_mmu_reload(vcpu);
8203         if (unlikely(r))
8204                 return;
8205
8206         if (!vcpu->arch.mmu.direct_map &&
8207               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8208                 return;
8209
8210         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8211 }
8212
8213 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8214 {
8215         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8216 }
8217
8218 static inline u32 kvm_async_pf_next_probe(u32 key)
8219 {
8220         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8221 }
8222
8223 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8224 {
8225         u32 key = kvm_async_pf_hash_fn(gfn);
8226
8227         while (vcpu->arch.apf.gfns[key] != ~0)
8228                 key = kvm_async_pf_next_probe(key);
8229
8230         vcpu->arch.apf.gfns[key] = gfn;
8231 }
8232
8233 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8234 {
8235         int i;
8236         u32 key = kvm_async_pf_hash_fn(gfn);
8237
8238         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8239                      (vcpu->arch.apf.gfns[key] != gfn &&
8240                       vcpu->arch.apf.gfns[key] != ~0); i++)
8241                 key = kvm_async_pf_next_probe(key);
8242
8243         return key;
8244 }
8245
8246 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8247 {
8248         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8249 }
8250
8251 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8252 {
8253         u32 i, j, k;
8254
8255         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8256         while (true) {
8257                 vcpu->arch.apf.gfns[i] = ~0;
8258                 do {
8259                         j = kvm_async_pf_next_probe(j);
8260                         if (vcpu->arch.apf.gfns[j] == ~0)
8261                                 return;
8262                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8263                         /*
8264                          * k lies cyclically in ]i,j]
8265                          * |    i.k.j |
8266                          * |....j i.k.| or  |.k..j i...|
8267                          */
8268                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8269                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8270                 i = j;
8271         }
8272 }
8273
8274 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8275 {
8276
8277         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8278                                       sizeof(val));
8279 }
8280
8281 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8282                                      struct kvm_async_pf *work)
8283 {
8284         struct x86_exception fault;
8285
8286         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8287         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8288
8289         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8290             (vcpu->arch.apf.send_user_only &&
8291              kvm_x86_ops->get_cpl(vcpu) == 0))
8292                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8293         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8294                 fault.vector = PF_VECTOR;
8295                 fault.error_code_valid = true;
8296                 fault.error_code = 0;
8297                 fault.nested_page_fault = false;
8298                 fault.address = work->arch.token;
8299                 kvm_inject_page_fault(vcpu, &fault);
8300         }
8301 }
8302
8303 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8304                                  struct kvm_async_pf *work)
8305 {
8306         struct x86_exception fault;
8307
8308         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8309         if (work->wakeup_all)
8310                 work->arch.token = ~0; /* broadcast wakeup */
8311         else
8312                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8313
8314         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8315             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8316                 fault.vector = PF_VECTOR;
8317                 fault.error_code_valid = true;
8318                 fault.error_code = 0;
8319                 fault.nested_page_fault = false;
8320                 fault.address = work->arch.token;
8321                 kvm_inject_page_fault(vcpu, &fault);
8322         }
8323         vcpu->arch.apf.halted = false;
8324         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8325 }
8326
8327 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8328 {
8329         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8330                 return true;
8331         else
8332                 return !kvm_event_needs_reinjection(vcpu) &&
8333                         kvm_x86_ops->interrupt_allowed(vcpu);
8334 }
8335
8336 void kvm_arch_start_assignment(struct kvm *kvm)
8337 {
8338         atomic_inc(&kvm->arch.assigned_device_count);
8339 }
8340 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8341
8342 void kvm_arch_end_assignment(struct kvm *kvm)
8343 {
8344         atomic_dec(&kvm->arch.assigned_device_count);
8345 }
8346 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8347
8348 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8349 {
8350         return atomic_read(&kvm->arch.assigned_device_count);
8351 }
8352 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8353
8354 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8355 {
8356         atomic_inc(&kvm->arch.noncoherent_dma_count);
8357 }
8358 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8359
8360 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8361 {
8362         atomic_dec(&kvm->arch.noncoherent_dma_count);
8363 }
8364 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8365
8366 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8367 {
8368         return atomic_read(&kvm->arch.noncoherent_dma_count);
8369 }
8370 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8371
8372 bool kvm_arch_has_irq_bypass(void)
8373 {
8374         return kvm_x86_ops->update_pi_irte != NULL;
8375 }
8376
8377 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8378                                       struct irq_bypass_producer *prod)
8379 {
8380         struct kvm_kernel_irqfd *irqfd =
8381                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8382
8383         irqfd->producer = prod;
8384
8385         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8386                                            prod->irq, irqfd->gsi, 1);
8387 }
8388
8389 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8390                                       struct irq_bypass_producer *prod)
8391 {
8392         int ret;
8393         struct kvm_kernel_irqfd *irqfd =
8394                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8395
8396         WARN_ON(irqfd->producer != prod);
8397         irqfd->producer = NULL;
8398
8399         /*
8400          * When producer of consumer is unregistered, we change back to
8401          * remapped mode, so we can re-use the current implementation
8402          * when the irq is masked/disabed or the consumer side (KVM
8403          * int this case doesn't want to receive the interrupts.
8404         */
8405         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8406         if (ret)
8407                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8408                        " fails: %d\n", irqfd->consumer.token, ret);
8409 }
8410
8411 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8412                                    uint32_t guest_irq, bool set)
8413 {
8414         if (!kvm_x86_ops->update_pi_irte)
8415                 return -EINVAL;
8416
8417         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8418 }
8419
8420 bool kvm_vector_hashing_enabled(void)
8421 {
8422         return vector_hashing;
8423 }
8424 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8425
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);