PM / hibernate: Restore processor state before using per-CPU variables
[cascardo/linux.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES     256
42 #define PMSR_PSAFE_ENABLE       (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
44 #define PMSR_MAX(x)             ((x >> 32) & 0xFF)
45
46 #define MAX_RAMP_DOWN_TIME                              5120
47 /*
48  * On an idle system we want the global pstate to ramp-down from max value to
49  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50  * then ramp-down rapidly later on.
51  *
52  * This gives a percentage rampdown for time elapsed in milliseconds.
53  * ramp_down_percentage = ((ms * ms) >> 18)
54  *                      ~= 3.8 * (sec * sec)
55  *
56  * At 0 ms      ramp_down_percent = 0
57  * At 5120 ms   ramp_down_percent = 100
58  */
59 #define ramp_down_percent(time)         ((time * time) >> 18)
60
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL                          2000
63
64 /**
65  * struct global_pstate_info -  Per policy data structure to maintain history of
66  *                              global pstates
67  * @highest_lpstate:            The local pstate from which we are ramping down
68  * @elapsed_time:               Time in ms spent in ramping down from
69  *                              highest_lpstate
70  * @last_sampled_time:          Time from boot in ms when global pstates were
71  *                              last set
72  * @last_lpstate,last_gpstate:  Last set values for local and global pstates
73  * @timer:                      Is used for ramping down if cpu goes idle for
74  *                              a long time with global pstate held high
75  * @gpstate_lock:               A spinlock to maintain synchronization between
76  *                              routines called by the timer handler and
77  *                              governer's target_index calls
78  */
79 struct global_pstate_info {
80         int highest_lpstate;
81         unsigned int elapsed_time;
82         unsigned int last_sampled_time;
83         int last_lpstate;
84         int last_gpstate;
85         spinlock_t gpstate_lock;
86         struct timer_list timer;
87 };
88
89 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
90 static bool rebooting, throttled, occ_reset;
91
92 static const char * const throttle_reason[] = {
93         "No throttling",
94         "Power Cap",
95         "Processor Over Temperature",
96         "Power Supply Failure",
97         "Over Current",
98         "OCC Reset"
99 };
100
101 enum throttle_reason_type {
102         NO_THROTTLE = 0,
103         POWERCAP,
104         CPU_OVERTEMP,
105         POWER_SUPPLY_FAILURE,
106         OVERCURRENT,
107         OCC_RESET_THROTTLE,
108         OCC_MAX_REASON
109 };
110
111 static struct chip {
112         unsigned int id;
113         bool throttled;
114         bool restore;
115         u8 throttle_reason;
116         cpumask_t mask;
117         struct work_struct throttle;
118         int throttle_turbo;
119         int throttle_sub_turbo;
120         int reason[OCC_MAX_REASON];
121 } *chips;
122
123 static int nr_chips;
124 static DEFINE_PER_CPU(struct chip *, chip_info);
125
126 /*
127  * Note: The set of pstates consists of contiguous integers, the
128  * smallest of which is indicated by powernv_pstate_info.min, the
129  * largest of which is indicated by powernv_pstate_info.max.
130  *
131  * The nominal pstate is the highest non-turbo pstate in this
132  * platform. This is indicated by powernv_pstate_info.nominal.
133  */
134 static struct powernv_pstate_info {
135         int min;
136         int max;
137         int nominal;
138         int nr_pstates;
139 } powernv_pstate_info;
140
141 static inline void reset_gpstates(struct cpufreq_policy *policy)
142 {
143         struct global_pstate_info *gpstates = policy->driver_data;
144
145         gpstates->highest_lpstate = 0;
146         gpstates->elapsed_time = 0;
147         gpstates->last_sampled_time = 0;
148         gpstates->last_lpstate = 0;
149         gpstates->last_gpstate = 0;
150 }
151
152 /*
153  * Initialize the freq table based on data obtained
154  * from the firmware passed via device-tree
155  */
156 static int init_powernv_pstates(void)
157 {
158         struct device_node *power_mgt;
159         int i, pstate_min, pstate_max, pstate_nominal, nr_pstates = 0;
160         const __be32 *pstate_ids, *pstate_freqs;
161         u32 len_ids, len_freqs;
162
163         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
164         if (!power_mgt) {
165                 pr_warn("power-mgt node not found\n");
166                 return -ENODEV;
167         }
168
169         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
170                 pr_warn("ibm,pstate-min node not found\n");
171                 return -ENODEV;
172         }
173
174         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
175                 pr_warn("ibm,pstate-max node not found\n");
176                 return -ENODEV;
177         }
178
179         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
180                                  &pstate_nominal)) {
181                 pr_warn("ibm,pstate-nominal not found\n");
182                 return -ENODEV;
183         }
184         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
185                 pstate_nominal, pstate_max);
186
187         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
188         if (!pstate_ids) {
189                 pr_warn("ibm,pstate-ids not found\n");
190                 return -ENODEV;
191         }
192
193         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
194                                       &len_freqs);
195         if (!pstate_freqs) {
196                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
197                 return -ENODEV;
198         }
199
200         if (len_ids != len_freqs) {
201                 pr_warn("Entries in ibm,pstate-ids and "
202                         "ibm,pstate-frequencies-mhz does not match\n");
203         }
204
205         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
206         if (!nr_pstates) {
207                 pr_warn("No PStates found\n");
208                 return -ENODEV;
209         }
210
211         pr_debug("NR PStates %d\n", nr_pstates);
212         for (i = 0; i < nr_pstates; i++) {
213                 u32 id = be32_to_cpu(pstate_ids[i]);
214                 u32 freq = be32_to_cpu(pstate_freqs[i]);
215
216                 pr_debug("PState id %d freq %d MHz\n", id, freq);
217                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
218                 powernv_freqs[i].driver_data = id;
219         }
220         /* End of list marker entry */
221         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
222
223         powernv_pstate_info.min = pstate_min;
224         powernv_pstate_info.max = pstate_max;
225         powernv_pstate_info.nominal = pstate_nominal;
226         powernv_pstate_info.nr_pstates = nr_pstates;
227
228         return 0;
229 }
230
231 /* Returns the CPU frequency corresponding to the pstate_id. */
232 static unsigned int pstate_id_to_freq(int pstate_id)
233 {
234         int i;
235
236         i = powernv_pstate_info.max - pstate_id;
237         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
238                 pr_warn("PState id %d outside of PState table, "
239                         "reporting nominal id %d instead\n",
240                         pstate_id, powernv_pstate_info.nominal);
241                 i = powernv_pstate_info.max - powernv_pstate_info.nominal;
242         }
243
244         return powernv_freqs[i].frequency;
245 }
246
247 /*
248  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
249  * the firmware
250  */
251 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
252                                         char *buf)
253 {
254         return sprintf(buf, "%u\n",
255                 pstate_id_to_freq(powernv_pstate_info.nominal));
256 }
257
258 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
259         __ATTR_RO(cpuinfo_nominal_freq);
260
261 static struct freq_attr *powernv_cpu_freq_attr[] = {
262         &cpufreq_freq_attr_scaling_available_freqs,
263         &cpufreq_freq_attr_cpuinfo_nominal_freq,
264         NULL,
265 };
266
267 #define throttle_attr(name, member)                                     \
268 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
269 {                                                                       \
270         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
271                                                                         \
272         return sprintf(buf, "%u\n", chip->member);                      \
273 }                                                                       \
274                                                                         \
275 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
276
277 throttle_attr(unthrottle, reason[NO_THROTTLE]);
278 throttle_attr(powercap, reason[POWERCAP]);
279 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
280 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
281 throttle_attr(overcurrent, reason[OVERCURRENT]);
282 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
283 throttle_attr(turbo_stat, throttle_turbo);
284 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
285
286 static struct attribute *throttle_attrs[] = {
287         &throttle_attr_unthrottle.attr,
288         &throttle_attr_powercap.attr,
289         &throttle_attr_overtemp.attr,
290         &throttle_attr_supply_fault.attr,
291         &throttle_attr_overcurrent.attr,
292         &throttle_attr_occ_reset.attr,
293         &throttle_attr_turbo_stat.attr,
294         &throttle_attr_sub_turbo_stat.attr,
295         NULL,
296 };
297
298 static const struct attribute_group throttle_attr_grp = {
299         .name   = "throttle_stats",
300         .attrs  = throttle_attrs,
301 };
302
303 /* Helper routines */
304
305 /* Access helpers to power mgt SPR */
306
307 static inline unsigned long get_pmspr(unsigned long sprn)
308 {
309         switch (sprn) {
310         case SPRN_PMCR:
311                 return mfspr(SPRN_PMCR);
312
313         case SPRN_PMICR:
314                 return mfspr(SPRN_PMICR);
315
316         case SPRN_PMSR:
317                 return mfspr(SPRN_PMSR);
318         }
319         BUG();
320 }
321
322 static inline void set_pmspr(unsigned long sprn, unsigned long val)
323 {
324         switch (sprn) {
325         case SPRN_PMCR:
326                 mtspr(SPRN_PMCR, val);
327                 return;
328
329         case SPRN_PMICR:
330                 mtspr(SPRN_PMICR, val);
331                 return;
332         }
333         BUG();
334 }
335
336 /*
337  * Use objects of this type to query/update
338  * pstates on a remote CPU via smp_call_function.
339  */
340 struct powernv_smp_call_data {
341         unsigned int freq;
342         int pstate_id;
343         int gpstate_id;
344 };
345
346 /*
347  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
348  *
349  * Called via smp_call_function.
350  *
351  * Note: The caller of the smp_call_function should pass an argument of
352  * the type 'struct powernv_smp_call_data *' along with this function.
353  *
354  * The current frequency on this CPU will be returned via
355  * ((struct powernv_smp_call_data *)arg)->freq;
356  */
357 static void powernv_read_cpu_freq(void *arg)
358 {
359         unsigned long pmspr_val;
360         s8 local_pstate_id;
361         struct powernv_smp_call_data *freq_data = arg;
362
363         pmspr_val = get_pmspr(SPRN_PMSR);
364
365         /*
366          * The local pstate id corresponds bits 48..55 in the PMSR.
367          * Note: Watch out for the sign!
368          */
369         local_pstate_id = (pmspr_val >> 48) & 0xFF;
370         freq_data->pstate_id = local_pstate_id;
371         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
372
373         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
374                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
375                 freq_data->freq);
376 }
377
378 /*
379  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
380  * firmware for CPU 'cpu'. This value is reported through the sysfs
381  * file cpuinfo_cur_freq.
382  */
383 static unsigned int powernv_cpufreq_get(unsigned int cpu)
384 {
385         struct powernv_smp_call_data freq_data;
386
387         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
388                         &freq_data, 1);
389
390         return freq_data.freq;
391 }
392
393 /*
394  * set_pstate: Sets the pstate on this CPU.
395  *
396  * This is called via an smp_call_function.
397  *
398  * The caller must ensure that freq_data is of the type
399  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
400  * on this CPU should be present in freq_data->pstate_id.
401  */
402 static void set_pstate(void *data)
403 {
404         unsigned long val;
405         struct powernv_smp_call_data *freq_data = data;
406         unsigned long pstate_ul = freq_data->pstate_id;
407         unsigned long gpstate_ul = freq_data->gpstate_id;
408
409         val = get_pmspr(SPRN_PMCR);
410         val = val & 0x0000FFFFFFFFFFFFULL;
411
412         pstate_ul = pstate_ul & 0xFF;
413         gpstate_ul = gpstate_ul & 0xFF;
414
415         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
416         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
417
418         pr_debug("Setting cpu %d pmcr to %016lX\n",
419                         raw_smp_processor_id(), val);
420         set_pmspr(SPRN_PMCR, val);
421 }
422
423 /*
424  * get_nominal_index: Returns the index corresponding to the nominal
425  * pstate in the cpufreq table
426  */
427 static inline unsigned int get_nominal_index(void)
428 {
429         return powernv_pstate_info.max - powernv_pstate_info.nominal;
430 }
431
432 static void powernv_cpufreq_throttle_check(void *data)
433 {
434         struct chip *chip;
435         unsigned int cpu = smp_processor_id();
436         unsigned long pmsr;
437         int pmsr_pmax;
438
439         pmsr = get_pmspr(SPRN_PMSR);
440         chip = this_cpu_read(chip_info);
441
442         /* Check for Pmax Capping */
443         pmsr_pmax = (s8)PMSR_MAX(pmsr);
444         if (pmsr_pmax != powernv_pstate_info.max) {
445                 if (chip->throttled)
446                         goto next;
447                 chip->throttled = true;
448                 if (pmsr_pmax < powernv_pstate_info.nominal) {
449                         pr_warn_once("CPU %d on Chip %u has Pmax reduced below nominal frequency (%d < %d)\n",
450                                      cpu, chip->id, pmsr_pmax,
451                                      powernv_pstate_info.nominal);
452                         chip->throttle_sub_turbo++;
453                 } else {
454                         chip->throttle_turbo++;
455                 }
456                 trace_powernv_throttle(chip->id,
457                                       throttle_reason[chip->throttle_reason],
458                                       pmsr_pmax);
459         } else if (chip->throttled) {
460                 chip->throttled = false;
461                 trace_powernv_throttle(chip->id,
462                                       throttle_reason[chip->throttle_reason],
463                                       pmsr_pmax);
464         }
465
466         /* Check if Psafe_mode_active is set in PMSR. */
467 next:
468         if (pmsr & PMSR_PSAFE_ENABLE) {
469                 throttled = true;
470                 pr_info("Pstate set to safe frequency\n");
471         }
472
473         /* Check if SPR_EM_DISABLE is set in PMSR */
474         if (pmsr & PMSR_SPR_EM_DISABLE) {
475                 throttled = true;
476                 pr_info("Frequency Control disabled from OS\n");
477         }
478
479         if (throttled) {
480                 pr_info("PMSR = %16lx\n", pmsr);
481                 pr_warn("CPU Frequency could be throttled\n");
482         }
483 }
484
485 /**
486  * calc_global_pstate - Calculate global pstate
487  * @elapsed_time:       Elapsed time in milliseconds
488  * @local_pstate:       New local pstate
489  * @highest_lpstate:    pstate from which its ramping down
490  *
491  * Finds the appropriate global pstate based on the pstate from which its
492  * ramping down and the time elapsed in ramping down. It follows a quadratic
493  * equation which ensures that it reaches ramping down to pmin in 5sec.
494  */
495 static inline int calc_global_pstate(unsigned int elapsed_time,
496                                      int highest_lpstate, int local_pstate)
497 {
498         int pstate_diff;
499
500         /*
501          * Using ramp_down_percent we get the percentage of rampdown
502          * that we are expecting to be dropping. Difference between
503          * highest_lpstate and powernv_pstate_info.min will give a absolute
504          * number of how many pstates we will drop eventually by the end of
505          * 5 seconds, then just scale it get the number pstates to be dropped.
506          */
507         pstate_diff =  ((int)ramp_down_percent(elapsed_time) *
508                         (highest_lpstate - powernv_pstate_info.min)) / 100;
509
510         /* Ensure that global pstate is >= to local pstate */
511         if (highest_lpstate - pstate_diff < local_pstate)
512                 return local_pstate;
513         else
514                 return highest_lpstate - pstate_diff;
515 }
516
517 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
518 {
519         unsigned int timer_interval;
520
521         /*
522          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
523          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
524          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
525          * seconds of ramp down time.
526          */
527         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
528              > MAX_RAMP_DOWN_TIME)
529                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
530         else
531                 timer_interval = GPSTATE_TIMER_INTERVAL;
532
533         mod_timer_pinned(&gpstates->timer, jiffies +
534                         msecs_to_jiffies(timer_interval));
535 }
536
537 /**
538  * gpstate_timer_handler
539  *
540  * @data: pointer to cpufreq_policy on which timer was queued
541  *
542  * This handler brings down the global pstate closer to the local pstate
543  * according quadratic equation. Queues a new timer if it is still not equal
544  * to local pstate
545  */
546 void gpstate_timer_handler(unsigned long data)
547 {
548         struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
549         struct global_pstate_info *gpstates = policy->driver_data;
550         int gpstate_id;
551         unsigned int time_diff = jiffies_to_msecs(jiffies)
552                                         - gpstates->last_sampled_time;
553         struct powernv_smp_call_data freq_data;
554
555         if (!spin_trylock(&gpstates->gpstate_lock))
556                 return;
557
558         gpstates->last_sampled_time += time_diff;
559         gpstates->elapsed_time += time_diff;
560         freq_data.pstate_id = gpstates->last_lpstate;
561
562         if ((gpstates->last_gpstate == freq_data.pstate_id) ||
563             (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
564                 gpstate_id = freq_data.pstate_id;
565                 reset_gpstates(policy);
566                 gpstates->highest_lpstate = freq_data.pstate_id;
567         } else {
568                 gpstate_id = calc_global_pstate(gpstates->elapsed_time,
569                                                 gpstates->highest_lpstate,
570                                                 freq_data.pstate_id);
571         }
572
573         /*
574          * If local pstate is equal to global pstate, rampdown is over
575          * So timer is not required to be queued.
576          */
577         if (gpstate_id != freq_data.pstate_id)
578                 queue_gpstate_timer(gpstates);
579
580         freq_data.gpstate_id = gpstate_id;
581         gpstates->last_gpstate = freq_data.gpstate_id;
582         gpstates->last_lpstate = freq_data.pstate_id;
583
584         spin_unlock(&gpstates->gpstate_lock);
585
586         /* Timer may get migrated to a different cpu on cpu hot unplug */
587         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
588 }
589
590 /*
591  * powernv_cpufreq_target_index: Sets the frequency corresponding to
592  * the cpufreq table entry indexed by new_index on the cpus in the
593  * mask policy->cpus
594  */
595 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
596                                         unsigned int new_index)
597 {
598         struct powernv_smp_call_data freq_data;
599         unsigned int cur_msec, gpstate_id;
600         struct global_pstate_info *gpstates = policy->driver_data;
601
602         if (unlikely(rebooting) && new_index != get_nominal_index())
603                 return 0;
604
605         if (!throttled)
606                 powernv_cpufreq_throttle_check(NULL);
607
608         cur_msec = jiffies_to_msecs(get_jiffies_64());
609
610         spin_lock(&gpstates->gpstate_lock);
611         freq_data.pstate_id = powernv_freqs[new_index].driver_data;
612
613         if (!gpstates->last_sampled_time) {
614                 gpstate_id = freq_data.pstate_id;
615                 gpstates->highest_lpstate = freq_data.pstate_id;
616                 goto gpstates_done;
617         }
618
619         if (gpstates->last_gpstate > freq_data.pstate_id) {
620                 gpstates->elapsed_time += cur_msec -
621                                                  gpstates->last_sampled_time;
622
623                 /*
624                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
625                  * we should be resetting all global pstate related data. Set it
626                  * equal to local pstate to start fresh.
627                  */
628                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
629                         reset_gpstates(policy);
630                         gpstates->highest_lpstate = freq_data.pstate_id;
631                         gpstate_id = freq_data.pstate_id;
632                 } else {
633                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
634                         gpstate_id = calc_global_pstate(gpstates->elapsed_time,
635                                                         gpstates->highest_lpstate,
636                                                         freq_data.pstate_id);
637                 }
638         } else {
639                 reset_gpstates(policy);
640                 gpstates->highest_lpstate = freq_data.pstate_id;
641                 gpstate_id = freq_data.pstate_id;
642         }
643
644         /*
645          * If local pstate is equal to global pstate, rampdown is over
646          * So timer is not required to be queued.
647          */
648         if (gpstate_id != freq_data.pstate_id)
649                 queue_gpstate_timer(gpstates);
650         else
651                 del_timer_sync(&gpstates->timer);
652
653 gpstates_done:
654         freq_data.gpstate_id = gpstate_id;
655         gpstates->last_sampled_time = cur_msec;
656         gpstates->last_gpstate = freq_data.gpstate_id;
657         gpstates->last_lpstate = freq_data.pstate_id;
658
659         spin_unlock(&gpstates->gpstate_lock);
660
661         /*
662          * Use smp_call_function to send IPI and execute the
663          * mtspr on target CPU.  We could do that without IPI
664          * if current CPU is within policy->cpus (core)
665          */
666         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
667         return 0;
668 }
669
670 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
671 {
672         int base, i, ret;
673         struct kernfs_node *kn;
674         struct global_pstate_info *gpstates;
675
676         base = cpu_first_thread_sibling(policy->cpu);
677
678         for (i = 0; i < threads_per_core; i++)
679                 cpumask_set_cpu(base + i, policy->cpus);
680
681         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
682         if (!kn) {
683                 int ret;
684
685                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
686                 if (ret) {
687                         pr_info("Failed to create throttle stats directory for cpu %d\n",
688                                 policy->cpu);
689                         return ret;
690                 }
691         } else {
692                 kernfs_put(kn);
693         }
694
695         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
696         if (!gpstates)
697                 return -ENOMEM;
698
699         policy->driver_data = gpstates;
700
701         /* initialize timer */
702         init_timer_deferrable(&gpstates->timer);
703         gpstates->timer.data = (unsigned long)policy;
704         gpstates->timer.function = gpstate_timer_handler;
705         gpstates->timer.expires = jiffies +
706                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
707         spin_lock_init(&gpstates->gpstate_lock);
708         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
709
710         if (ret < 0)
711                 kfree(policy->driver_data);
712
713         return ret;
714 }
715
716 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
717 {
718         /* timer is deleted in cpufreq_cpu_stop() */
719         kfree(policy->driver_data);
720
721         return 0;
722 }
723
724 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
725                                 unsigned long action, void *unused)
726 {
727         int cpu;
728         struct cpufreq_policy cpu_policy;
729
730         rebooting = true;
731         for_each_online_cpu(cpu) {
732                 cpufreq_get_policy(&cpu_policy, cpu);
733                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
734         }
735
736         return NOTIFY_DONE;
737 }
738
739 static struct notifier_block powernv_cpufreq_reboot_nb = {
740         .notifier_call = powernv_cpufreq_reboot_notifier,
741 };
742
743 void powernv_cpufreq_work_fn(struct work_struct *work)
744 {
745         struct chip *chip = container_of(work, struct chip, throttle);
746         unsigned int cpu;
747         cpumask_t mask;
748
749         get_online_cpus();
750         cpumask_and(&mask, &chip->mask, cpu_online_mask);
751         smp_call_function_any(&mask,
752                               powernv_cpufreq_throttle_check, NULL, 0);
753
754         if (!chip->restore)
755                 goto out;
756
757         chip->restore = false;
758         for_each_cpu(cpu, &mask) {
759                 int index;
760                 struct cpufreq_policy policy;
761
762                 cpufreq_get_policy(&policy, cpu);
763                 cpufreq_frequency_table_target(&policy, policy.freq_table,
764                                                policy.cur,
765                                                CPUFREQ_RELATION_C, &index);
766                 powernv_cpufreq_target_index(&policy, index);
767                 cpumask_andnot(&mask, &mask, policy.cpus);
768         }
769 out:
770         put_online_cpus();
771 }
772
773 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
774                                    unsigned long msg_type, void *_msg)
775 {
776         struct opal_msg *msg = _msg;
777         struct opal_occ_msg omsg;
778         int i;
779
780         if (msg_type != OPAL_MSG_OCC)
781                 return 0;
782
783         omsg.type = be64_to_cpu(msg->params[0]);
784
785         switch (omsg.type) {
786         case OCC_RESET:
787                 occ_reset = true;
788                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
789                 /*
790                  * powernv_cpufreq_throttle_check() is called in
791                  * target() callback which can detect the throttle state
792                  * for governors like ondemand.
793                  * But static governors will not call target() often thus
794                  * report throttling here.
795                  */
796                 if (!throttled) {
797                         throttled = true;
798                         pr_warn("CPU frequency is throttled for duration\n");
799                 }
800
801                 break;
802         case OCC_LOAD:
803                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
804                 break;
805         case OCC_THROTTLE:
806                 omsg.chip = be64_to_cpu(msg->params[1]);
807                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
808
809                 if (occ_reset) {
810                         occ_reset = false;
811                         throttled = false;
812                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
813
814                         for (i = 0; i < nr_chips; i++) {
815                                 chips[i].restore = true;
816                                 schedule_work(&chips[i].throttle);
817                         }
818
819                         return 0;
820                 }
821
822                 for (i = 0; i < nr_chips; i++)
823                         if (chips[i].id == omsg.chip)
824                                 break;
825
826                 if (omsg.throttle_status >= 0 &&
827                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
828                         chips[i].throttle_reason = omsg.throttle_status;
829                         chips[i].reason[omsg.throttle_status]++;
830                 }
831
832                 if (!omsg.throttle_status)
833                         chips[i].restore = true;
834
835                 schedule_work(&chips[i].throttle);
836         }
837         return 0;
838 }
839
840 static struct notifier_block powernv_cpufreq_opal_nb = {
841         .notifier_call  = powernv_cpufreq_occ_msg,
842         .next           = NULL,
843         .priority       = 0,
844 };
845
846 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
847 {
848         struct powernv_smp_call_data freq_data;
849         struct global_pstate_info *gpstates = policy->driver_data;
850
851         freq_data.pstate_id = powernv_pstate_info.min;
852         freq_data.gpstate_id = powernv_pstate_info.min;
853         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
854         del_timer_sync(&gpstates->timer);
855 }
856
857 static struct cpufreq_driver powernv_cpufreq_driver = {
858         .name           = "powernv-cpufreq",
859         .flags          = CPUFREQ_CONST_LOOPS,
860         .init           = powernv_cpufreq_cpu_init,
861         .exit           = powernv_cpufreq_cpu_exit,
862         .verify         = cpufreq_generic_frequency_table_verify,
863         .target_index   = powernv_cpufreq_target_index,
864         .get            = powernv_cpufreq_get,
865         .stop_cpu       = powernv_cpufreq_stop_cpu,
866         .attr           = powernv_cpu_freq_attr,
867 };
868
869 static int init_chip_info(void)
870 {
871         unsigned int chip[256];
872         unsigned int cpu, i;
873         unsigned int prev_chip_id = UINT_MAX;
874
875         for_each_possible_cpu(cpu) {
876                 unsigned int id = cpu_to_chip_id(cpu);
877
878                 if (prev_chip_id != id) {
879                         prev_chip_id = id;
880                         chip[nr_chips++] = id;
881                 }
882         }
883
884         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
885         if (!chips)
886                 return -ENOMEM;
887
888         for (i = 0; i < nr_chips; i++) {
889                 chips[i].id = chip[i];
890                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
891                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
892                 for_each_cpu(cpu, &chips[i].mask)
893                         per_cpu(chip_info, cpu) =  &chips[i];
894         }
895
896         return 0;
897 }
898
899 static inline void clean_chip_info(void)
900 {
901         kfree(chips);
902 }
903
904 static inline void unregister_all_notifiers(void)
905 {
906         opal_message_notifier_unregister(OPAL_MSG_OCC,
907                                          &powernv_cpufreq_opal_nb);
908         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
909 }
910
911 static int __init powernv_cpufreq_init(void)
912 {
913         int rc = 0;
914
915         /* Don't probe on pseries (guest) platforms */
916         if (!firmware_has_feature(FW_FEATURE_OPAL))
917                 return -ENODEV;
918
919         /* Discover pstates from device tree and init */
920         rc = init_powernv_pstates();
921         if (rc)
922                 goto out;
923
924         /* Populate chip info */
925         rc = init_chip_info();
926         if (rc)
927                 goto out;
928
929         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
930         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
931
932         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
933         if (!rc)
934                 return 0;
935
936         pr_info("Failed to register the cpufreq driver (%d)\n", rc);
937         unregister_all_notifiers();
938         clean_chip_info();
939 out:
940         pr_info("Platform driver disabled. System does not support PState control\n");
941         return rc;
942 }
943 module_init(powernv_cpufreq_init);
944
945 static void __exit powernv_cpufreq_exit(void)
946 {
947         cpufreq_unregister_driver(&powernv_cpufreq_driver);
948         unregister_all_notifiers();
949         clean_chip_info();
950 }
951 module_exit(powernv_cpufreq_exit);
952
953 MODULE_LICENSE("GPL");
954 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");