ASoC: tpa6130a2: Remove goto err_gpio
[cascardo/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / fiji_hwmgr.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27
28 #include "hwmgr.h"
29 #include "fiji_smumgr.h"
30 #include "atombios.h"
31 #include "hardwaremanager.h"
32 #include "ppatomctrl.h"
33 #include "atombios.h"
34 #include "cgs_common.h"
35 #include "fiji_dyn_defaults.h"
36 #include "fiji_powertune.h"
37 #include "smu73.h"
38 #include "smu/smu_7_1_3_d.h"
39 #include "smu/smu_7_1_3_sh_mask.h"
40 #include "gmc/gmc_8_1_d.h"
41 #include "gmc/gmc_8_1_sh_mask.h"
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 #include "dce/dce_10_0_d.h"
45 #include "dce/dce_10_0_sh_mask.h"
46 #include "pppcielanes.h"
47 #include "fiji_hwmgr.h"
48 #include "tonga_processpptables.h"
49 #include "tonga_pptable.h"
50 #include "pp_debug.h"
51 #include "pp_acpi.h"
52 #include "amd_pcie_helpers.h"
53 #include "cgs_linux.h"
54 #include "ppinterrupt.h"
55
56 #include "fiji_clockpowergating.h"
57 #include "fiji_thermal.h"
58
59 #define VOLTAGE_SCALE   4
60 #define SMC_RAM_END             0x40000
61 #define VDDC_VDDCI_DELTA        300
62
63 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
64 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
65 #define MC_SEQ_MISC0_GDDR5_VALUE 5
66
67 #define MC_CG_ARB_FREQ_F0           0x0a /* boot-up default */
68 #define MC_CG_ARB_FREQ_F1           0x0b
69 #define MC_CG_ARB_FREQ_F2           0x0c
70 #define MC_CG_ARB_FREQ_F3           0x0d
71
72 /* From smc_reg.h */
73 #define SMC_CG_IND_START            0xc0030000
74 #define SMC_CG_IND_END              0xc0040000  /* First byte after SMC_CG_IND */
75
76 #define VOLTAGE_SCALE               4
77 #define VOLTAGE_VID_OFFSET_SCALE1   625
78 #define VOLTAGE_VID_OFFSET_SCALE2   100
79
80 #define VDDC_VDDCI_DELTA            300
81
82 #define ixSWRST_COMMAND_1           0x1400103
83 #define MC_SEQ_CNTL__CAC_EN_MASK    0x40000000
84
85 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
86 enum DPM_EVENT_SRC {
87     DPM_EVENT_SRC_ANALOG = 0,               /* Internal analog trip point */
88     DPM_EVENT_SRC_EXTERNAL = 1,             /* External (GPIO 17) signal */
89     DPM_EVENT_SRC_DIGITAL = 2,              /* Internal digital trip point (DIG_THERM_DPM) */
90     DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,   /* Internal analog or external */
91     DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4   /* Internal digital or external */
92 };
93
94
95 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
96  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
97  */
98 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] =
99 { {600, 1050, 3, 0}, {600, 1050, 6, 1} };
100
101 /* [FF, SS] type, [] 4 voltage ranges, and
102  * [Floor Freq, Boundary Freq, VID min , VID max]
103  */
104 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
105 { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
106   { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
107
108 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
109  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
110  */
111 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] =
112 { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
113
114 static const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
115
116 struct fiji_power_state *cast_phw_fiji_power_state(
117                                   struct pp_hw_power_state *hw_ps)
118 {
119         PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
120                                 "Invalid Powerstate Type!",
121                                  return NULL;);
122
123         return (struct fiji_power_state *)hw_ps;
124 }
125
126 const struct fiji_power_state *cast_const_phw_fiji_power_state(
127                                  const struct pp_hw_power_state *hw_ps)
128 {
129         PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
130                                 "Invalid Powerstate Type!",
131                                  return NULL;);
132
133         return (const struct fiji_power_state *)hw_ps;
134 }
135
136 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
137 {
138         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
139                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
140                         ? true : false;
141 }
142
143 static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
144 {
145         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
146         struct fiji_ulv_parm *ulv = &data->ulv;
147
148         ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
149         data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
150         data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
151         data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
152         data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
153         data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
154         data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
155         data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
156         data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
157
158         data->static_screen_threshold_unit =
159                         PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
160         data->static_screen_threshold =
161                         PPFIJI_STATICSCREENTHRESHOLD_DFLT;
162
163         /* Unset ABM cap as it moved to DAL.
164          * Add PHM_PlatformCaps_NonABMSupportInPPLib
165          * for re-direct ABM related request to DAL
166          */
167         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
168                         PHM_PlatformCaps_ABM);
169         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
170                         PHM_PlatformCaps_NonABMSupportInPPLib);
171
172         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
173                         PHM_PlatformCaps_DynamicACTiming);
174
175         fiji_initialize_power_tune_defaults(hwmgr);
176
177         data->mclk_stutter_mode_threshold = 60000;
178         data->pcie_gen_performance.max = PP_PCIEGen1;
179         data->pcie_gen_performance.min = PP_PCIEGen3;
180         data->pcie_gen_power_saving.max = PP_PCIEGen1;
181         data->pcie_gen_power_saving.min = PP_PCIEGen3;
182         data->pcie_lane_performance.max = 0;
183         data->pcie_lane_performance.min = 16;
184         data->pcie_lane_power_saving.max = 0;
185         data->pcie_lane_power_saving.min = 16;
186
187         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
188                         PHM_PlatformCaps_DynamicUVDState);
189 }
190
191 static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
192         phm_ppt_v1_voltage_lookup_table *lookup_table,
193         uint16_t virtual_voltage_id, int32_t *sclk)
194 {
195         uint8_t entryId;
196         uint8_t voltageId;
197         struct phm_ppt_v1_information *table_info =
198                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
199
200         PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
201
202         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
203         for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
204                 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
205                 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
206                         break;
207         }
208
209         PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
210                         "Can't find requested voltage id in vdd_dep_on_sclk table!",
211                         return -EINVAL;
212                         );
213
214         *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
215
216         return 0;
217 }
218
219 /**
220 * Get Leakage VDDC based on leakage ID.
221 *
222 * @param    hwmgr  the address of the powerplay hardware manager.
223 * @return   always 0
224 */
225 static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
226 {
227         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
228         uint16_t    vv_id;
229         uint16_t    vddc = 0;
230         uint16_t    evv_default = 1150;
231         uint16_t    i, j;
232         uint32_t  sclk = 0;
233         struct phm_ppt_v1_information *table_info =
234                         (struct phm_ppt_v1_information *)hwmgr->pptable;
235         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
236                         table_info->vdd_dep_on_sclk;
237         int result;
238
239         for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
240                 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
241                 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
242                                 table_info->vddc_lookup_table, vv_id, &sclk)) {
243                         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
244                                         PHM_PlatformCaps_ClockStretcher)) {
245                                 for (j = 1; j < sclk_table->count; j++) {
246                                         if (sclk_table->entries[j].clk == sclk &&
247                                                         sclk_table->entries[j].cks_enable == 0) {
248                                                 sclk += 5000;
249                                                 break;
250                                         }
251                                 }
252                         }
253
254                         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
255                                         PHM_PlatformCaps_EnableDriverEVV))
256                                 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
257                                                 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
258                         else
259                                 result = -EINVAL;
260
261                         if (result)
262                                 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
263                                                 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
264
265                         /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
266                         PP_ASSERT_WITH_CODE((vddc < 2000),
267                                         "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
268
269                         if (result)
270                                 /* 1.15V is the default safe value for Fiji */
271                                 vddc = evv_default;
272
273                         /* the voltage should not be zero nor equal to leakage ID */
274                         if (vddc != 0 && vddc != vv_id) {
275                                 data->vddc_leakage.actual_voltage
276                                 [data->vddc_leakage.count] = vddc;
277                                 data->vddc_leakage.leakage_id
278                                 [data->vddc_leakage.count] = vv_id;
279                                 data->vddc_leakage.count++;
280                         }
281                 }
282         }
283         return 0;
284 }
285
286 /**
287  * Change virtual leakage voltage to actual value.
288  *
289  * @param     hwmgr  the address of the powerplay hardware manager.
290  * @param     pointer to changing voltage
291  * @param     pointer to leakage table
292  */
293 static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
294                 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
295 {
296         uint32_t index;
297
298         /* search for leakage voltage ID 0xff01 ~ 0xff08 */
299         for (index = 0; index < leakage_table->count; index++) {
300                 /* if this voltage matches a leakage voltage ID */
301                 /* patch with actual leakage voltage */
302                 if (leakage_table->leakage_id[index] == *voltage) {
303                         *voltage = leakage_table->actual_voltage[index];
304                         break;
305                 }
306         }
307
308         if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
309                 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
310 }
311
312 /**
313 * Patch voltage lookup table by EVV leakages.
314 *
315 * @param     hwmgr  the address of the powerplay hardware manager.
316 * @param     pointer to voltage lookup table
317 * @param     pointer to leakage table
318 * @return     always 0
319 */
320 static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
321                 phm_ppt_v1_voltage_lookup_table *lookup_table,
322                 struct fiji_leakage_voltage *leakage_table)
323 {
324         uint32_t i;
325
326         for (i = 0; i < lookup_table->count; i++)
327                 fiji_patch_with_vdd_leakage(hwmgr,
328                                 &lookup_table->entries[i].us_vdd, leakage_table);
329
330         return 0;
331 }
332
333 static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
334                 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
335                 uint16_t *vddc)
336 {
337         struct phm_ppt_v1_information *table_info =
338                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
339         fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
340         hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
341                         table_info->max_clock_voltage_on_dc.vddc;
342         return 0;
343 }
344
345 static int fiji_patch_voltage_dependency_tables_with_lookup_table(
346                 struct pp_hwmgr *hwmgr)
347 {
348         uint8_t entryId;
349         uint8_t voltageId;
350         struct phm_ppt_v1_information *table_info =
351                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
352
353         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
354                         table_info->vdd_dep_on_sclk;
355         struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
356                         table_info->vdd_dep_on_mclk;
357         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
358                         table_info->mm_dep_table;
359
360         for (entryId = 0; entryId < sclk_table->count; ++entryId) {
361                 voltageId = sclk_table->entries[entryId].vddInd;
362                 sclk_table->entries[entryId].vddc =
363                                 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
364         }
365
366         for (entryId = 0; entryId < mclk_table->count; ++entryId) {
367                 voltageId = mclk_table->entries[entryId].vddInd;
368                 mclk_table->entries[entryId].vddc =
369                         table_info->vddc_lookup_table->entries[voltageId].us_vdd;
370         }
371
372         for (entryId = 0; entryId < mm_table->count; ++entryId) {
373                 voltageId = mm_table->entries[entryId].vddcInd;
374                 mm_table->entries[entryId].vddc =
375                         table_info->vddc_lookup_table->entries[voltageId].us_vdd;
376         }
377
378         return 0;
379
380 }
381
382 static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
383 {
384         /* Need to determine if we need calculated voltage. */
385         return 0;
386 }
387
388 static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
389 {
390         /* Need to determine if we need calculated voltage from mm table. */
391         return 0;
392 }
393
394 static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
395                 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
396 {
397         uint32_t table_size, i, j;
398         struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
399         table_size = lookup_table->count;
400
401         PP_ASSERT_WITH_CODE(0 != lookup_table->count,
402                 "Lookup table is empty", return -EINVAL);
403
404         /* Sorting voltages */
405         for (i = 0; i < table_size - 1; i++) {
406                 for (j = i + 1; j > 0; j--) {
407                         if (lookup_table->entries[j].us_vdd <
408                                         lookup_table->entries[j - 1].us_vdd) {
409                                 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
410                                 lookup_table->entries[j - 1] = lookup_table->entries[j];
411                                 lookup_table->entries[j] = tmp_voltage_lookup_record;
412                         }
413                 }
414         }
415
416         return 0;
417 }
418
419 static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
420 {
421         int result = 0;
422         int tmp_result;
423         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
424         struct phm_ppt_v1_information *table_info =
425                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
426
427         tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
428                         table_info->vddc_lookup_table, &(data->vddc_leakage));
429         if (tmp_result)
430                 result = tmp_result;
431
432         tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
433                         &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
434         if (tmp_result)
435                 result = tmp_result;
436
437         tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
438         if (tmp_result)
439                 result = tmp_result;
440
441         tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
442         if (tmp_result)
443                 result = tmp_result;
444
445         tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
446         if (tmp_result)
447                 result = tmp_result;
448
449         tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
450         if(tmp_result)
451                 result = tmp_result;
452
453         return result;
454 }
455
456 static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
457 {
458         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
459         struct phm_ppt_v1_information *table_info =
460                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
461
462         struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
463                         table_info->vdd_dep_on_sclk;
464         struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
465                         table_info->vdd_dep_on_mclk;
466
467         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
468                 "VDD dependency on SCLK table is missing.       \
469                 This table is mandatory", return -EINVAL);
470         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
471                 "VDD dependency on SCLK table has to have is missing.   \
472                 This table is mandatory", return -EINVAL);
473
474         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
475                 "VDD dependency on MCLK table is missing.       \
476                 This table is mandatory", return -EINVAL);
477         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
478                 "VDD dependency on MCLK table has to have is missing.    \
479                 This table is mandatory", return -EINVAL);
480
481         data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
482         data->max_vddc_in_pptable =     (uint16_t)allowed_sclk_vdd_table->
483                         entries[allowed_sclk_vdd_table->count - 1].vddc;
484
485         table_info->max_clock_voltage_on_ac.sclk =
486                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
487         table_info->max_clock_voltage_on_ac.mclk =
488                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
489         table_info->max_clock_voltage_on_ac.vddc =
490                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
491         table_info->max_clock_voltage_on_ac.vddci =
492                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
493
494         hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
495                 table_info->max_clock_voltage_on_ac.sclk;
496         hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
497                 table_info->max_clock_voltage_on_ac.mclk;
498         hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
499                 table_info->max_clock_voltage_on_ac.vddc;
500         hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
501                 table_info->max_clock_voltage_on_ac.vddci;
502
503         return 0;
504 }
505
506 static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
507 {
508         uint32_t speedCntl = 0;
509
510         /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
511         speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
512                         ixPCIE_LC_SPEED_CNTL);
513         return((uint16_t)PHM_GET_FIELD(speedCntl,
514                         PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
515 }
516
517 static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
518 {
519         uint32_t link_width;
520
521         /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
522         link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
523                         PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
524
525         PP_ASSERT_WITH_CODE((7 >= link_width),
526                         "Invalid PCIe lane width!", return 0);
527
528         return decode_pcie_lane_width(link_width);
529 }
530
531 /** Patch the Boot State to match VBIOS boot clocks and voltage.
532 *
533 * @param hwmgr Pointer to the hardware manager.
534 * @param pPowerState The address of the PowerState instance being created.
535 *
536 */
537 static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
538                 struct pp_hw_power_state *hw_ps)
539 {
540         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
541         struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
542         ATOM_FIRMWARE_INFO_V2_2 *fw_info;
543         uint16_t size;
544         uint8_t frev, crev;
545         int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
546
547         /* First retrieve the Boot clocks and VDDC from the firmware info table.
548          * We assume here that fw_info is unchanged if this call fails.
549          */
550         fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
551                         hwmgr->device, index,
552                         &size, &frev, &crev);
553         if (!fw_info)
554                 /* During a test, there is no firmware info table. */
555                 return 0;
556
557         /* Patch the state. */
558         data->vbios_boot_state.sclk_bootup_value =
559                         le32_to_cpu(fw_info->ulDefaultEngineClock);
560         data->vbios_boot_state.mclk_bootup_value =
561                         le32_to_cpu(fw_info->ulDefaultMemoryClock);
562         data->vbios_boot_state.mvdd_bootup_value =
563                         le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
564         data->vbios_boot_state.vddc_bootup_value =
565                         le16_to_cpu(fw_info->usBootUpVDDCVoltage);
566         data->vbios_boot_state.vddci_bootup_value =
567                         le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
568         data->vbios_boot_state.pcie_gen_bootup_value =
569                         fiji_get_current_pcie_speed(hwmgr);
570         data->vbios_boot_state.pcie_lane_bootup_value =
571                         (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
572
573         /* set boot power state */
574         ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
575         ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
576         ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
577         ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
578
579         return 0;
580 }
581
582 static int fiji_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
583 {
584         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
585
586         if (data->soft_pp_table) {
587                 kfree(data->soft_pp_table);
588                 data->soft_pp_table = NULL;
589         }
590
591         return phm_hwmgr_backend_fini(hwmgr);
592 }
593
594 static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
595 {
596         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
597         uint32_t i;
598         struct phm_ppt_v1_information *table_info =
599                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
600         bool stay_in_boot;
601         int result;
602
603         data->dll_default_on = false;
604         data->sram_end = SMC_RAM_END;
605
606         for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
607                 data->activity_target[i] = FIJI_AT_DFLT;
608
609         data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
610
611         data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
612         data->mclk_dpm0_activity_target = 0xa;
613
614         data->sclk_dpm_key_disabled = 0;
615         data->mclk_dpm_key_disabled = 0;
616         data->pcie_dpm_key_disabled = 0;
617
618         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
619                         PHM_PlatformCaps_UnTabledHardwareInterface);
620         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
621                         PHM_PlatformCaps_TablelessHardwareInterface);
622
623         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
624                         PHM_PlatformCaps_SclkDeepSleep);
625
626         data->gpio_debug = 0;
627
628         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
629                         PHM_PlatformCaps_DynamicPatchPowerState);
630
631         /* need to set voltage control types before EVV patching */
632         data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
633         data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
634         data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
635
636         if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
637                         VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
638                 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
639
640         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
641                         PHM_PlatformCaps_EnableMVDDControl))
642                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
643                                 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
644                         data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
645
646         if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
647                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
648                         PHM_PlatformCaps_EnableMVDDControl);
649
650         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
651                         PHM_PlatformCaps_ControlVDDCI)) {
652                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
653                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
654                         data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
655                 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
656                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
657                         data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
658         }
659
660         if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
661                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
662                                 PHM_PlatformCaps_ControlVDDCI);
663
664         if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
665                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
666                                 PHM_PlatformCaps_ClockStretcher);
667
668         fiji_init_dpm_defaults(hwmgr);
669
670         /* Get leakage voltage based on leakage ID. */
671         fiji_get_evv_voltages(hwmgr);
672
673         /* Patch our voltage dependency table with actual leakage voltage
674          * We need to perform leakage translation before it's used by other functions
675          */
676         fiji_complete_dependency_tables(hwmgr);
677
678         /* Parse pptable data read from VBIOS */
679         fiji_set_private_data_based_on_pptable(hwmgr);
680
681         /* ULV Support */
682         data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
683
684         /* Initalize Dynamic State Adjustment Rule Settings */
685         result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
686
687         if (!result) {
688                 data->uvd_enabled = false;
689                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
690                                 PHM_PlatformCaps_EnableSMU7ThermalManagement);
691                 data->vddc_phase_shed_control = false;
692         }
693
694         stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
695                         PHM_PlatformCaps_StayInBootState);
696
697         if (0 == result) {
698                 struct cgs_system_info sys_info = {0};
699
700                 data->is_tlu_enabled = 0;
701                 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
702                                 FIJI_MAX_HARDWARE_POWERLEVELS;
703                 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
704                 hwmgr->platform_descriptor.minimumClocksReductionPercentage  = 50;
705
706                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
707                                 PHM_PlatformCaps_FanSpeedInTableIsRPM);
708
709                 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
710                                 hwmgr->thermal_controller.
711                                 advanceFanControlParameters.ucFanControlMode) {
712                         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
713                                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
714                         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
715                                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
716                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
717                                         table_info->cac_dtp_table->usOperatingTempMinLimit;
718                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
719                                         table_info->cac_dtp_table->usOperatingTempMaxLimit;
720                         hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
721                                         table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
722                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
723                                         table_info->cac_dtp_table->usOperatingTempStep;
724                         hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
725                                         table_info->cac_dtp_table->usTargetOperatingTemp;
726
727                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
728                                         PHM_PlatformCaps_ODFuzzyFanControlSupport);
729                 }
730
731                 sys_info.size = sizeof(struct cgs_system_info);
732                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
733                 result = cgs_query_system_info(hwmgr->device, &sys_info);
734                 if (result)
735                         data->pcie_gen_cap = 0x30007;
736                 else
737                         data->pcie_gen_cap = (uint32_t)sys_info.value;
738                 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
739                         data->pcie_spc_cap = 20;
740                 sys_info.size = sizeof(struct cgs_system_info);
741                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
742                 result = cgs_query_system_info(hwmgr->device, &sys_info);
743                 if (result)
744                         data->pcie_lane_cap = 0x2f0000;
745                 else
746                         data->pcie_lane_cap = (uint32_t)sys_info.value;
747         } else {
748                 /* Ignore return value in here, we are cleaning up a mess. */
749                 fiji_hwmgr_backend_fini(hwmgr);
750         }
751
752         return 0;
753 }
754
755 /**
756  * Read clock related registers.
757  *
758  * @param    hwmgr  the address of the powerplay hardware manager.
759  * @return   always 0
760  */
761 static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
762 {
763         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
764
765         data->clock_registers.vCG_SPLL_FUNC_CNTL =
766                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
767                                 ixCG_SPLL_FUNC_CNTL);
768         data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
769                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
770                                 ixCG_SPLL_FUNC_CNTL_2);
771         data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
772                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
773                                 ixCG_SPLL_FUNC_CNTL_3);
774         data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
775                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
776                                 ixCG_SPLL_FUNC_CNTL_4);
777         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
778                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
779                                 ixCG_SPLL_SPREAD_SPECTRUM);
780         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
781                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
782                                 ixCG_SPLL_SPREAD_SPECTRUM_2);
783
784         return 0;
785 }
786
787 /**
788  * Find out if memory is GDDR5.
789  *
790  * @param    hwmgr  the address of the powerplay hardware manager.
791  * @return   always 0
792  */
793 static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
794 {
795         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
796         uint32_t temp;
797
798         temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
799
800         data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
801                         ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
802                          MC_SEQ_MISC0_GDDR5_SHIFT));
803
804         return 0;
805 }
806
807 /**
808  * Enables Dynamic Power Management by SMC
809  *
810  * @param    hwmgr  the address of the powerplay hardware manager.
811  * @return   always 0
812  */
813 static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
814 {
815         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
816                         GENERAL_PWRMGT, STATIC_PM_EN, 1);
817
818         return 0;
819 }
820
821 /**
822  * Initialize PowerGating States for different engines
823  *
824  * @param    hwmgr  the address of the powerplay hardware manager.
825  * @return   always 0
826  */
827 static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
828 {
829         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
830
831         data->uvd_power_gated = false;
832         data->vce_power_gated = false;
833         data->samu_power_gated = false;
834         data->acp_power_gated = false;
835         data->pg_acp_init = true;
836
837         return 0;
838 }
839
840 static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
841 {
842         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
843         data->low_sclk_interrupt_threshold = 0;
844
845         return 0;
846 }
847
848 static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
849 {
850         int tmp_result, result = 0;
851
852         tmp_result = fiji_read_clock_registers(hwmgr);
853         PP_ASSERT_WITH_CODE((0 == tmp_result),
854                         "Failed to read clock registers!", result = tmp_result);
855
856         tmp_result = fiji_get_memory_type(hwmgr);
857         PP_ASSERT_WITH_CODE((0 == tmp_result),
858                         "Failed to get memory type!", result = tmp_result);
859
860         tmp_result = fiji_enable_acpi_power_management(hwmgr);
861         PP_ASSERT_WITH_CODE((0 == tmp_result),
862                         "Failed to enable ACPI power management!", result = tmp_result);
863
864         tmp_result = fiji_init_power_gate_state(hwmgr);
865         PP_ASSERT_WITH_CODE((0 == tmp_result),
866                         "Failed to init power gate state!", result = tmp_result);
867
868         tmp_result = tonga_get_mc_microcode_version(hwmgr);
869         PP_ASSERT_WITH_CODE((0 == tmp_result),
870                         "Failed to get MC microcode version!", result = tmp_result);
871
872         tmp_result = fiji_init_sclk_threshold(hwmgr);
873         PP_ASSERT_WITH_CODE((0 == tmp_result),
874                         "Failed to init sclk threshold!", result = tmp_result);
875
876         return result;
877 }
878
879 /**
880 * Checks if we want to support voltage control
881 *
882 * @param    hwmgr  the address of the powerplay hardware manager.
883 */
884 static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
885 {
886         const struct fiji_hwmgr *data =
887                         (const struct fiji_hwmgr *)(hwmgr->backend);
888
889         return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
890 }
891
892 /**
893 * Enable voltage control
894 *
895 * @param    hwmgr  the address of the powerplay hardware manager.
896 * @return   always 0
897 */
898 static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
899 {
900         /* enable voltage control */
901         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
902                         GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
903
904         return 0;
905 }
906
907 /**
908 * Remove repeated voltage values and create table with unique values.
909 *
910 * @param    hwmgr  the address of the powerplay hardware manager.
911 * @param    vol_table  the pointer to changing voltage table
912 * @return    0 in success
913 */
914
915 static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
916                 struct pp_atomctrl_voltage_table *vol_table)
917 {
918         uint32_t i, j;
919         uint16_t vvalue;
920         bool found = false;
921         struct pp_atomctrl_voltage_table *table;
922
923         PP_ASSERT_WITH_CODE((NULL != vol_table),
924                         "Voltage Table empty.", return -EINVAL);
925         table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
926                         GFP_KERNEL);
927
928         if (NULL == table)
929                 return -ENOMEM;
930
931         table->mask_low = vol_table->mask_low;
932         table->phase_delay = vol_table->phase_delay;
933
934         for (i = 0; i < vol_table->count; i++) {
935                 vvalue = vol_table->entries[i].value;
936                 found = false;
937
938                 for (j = 0; j < table->count; j++) {
939                         if (vvalue == table->entries[j].value) {
940                                 found = true;
941                                 break;
942                         }
943                 }
944
945                 if (!found) {
946                         table->entries[table->count].value = vvalue;
947                         table->entries[table->count].smio_low =
948                                         vol_table->entries[i].smio_low;
949                         table->count++;
950                 }
951         }
952
953         memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
954         kfree(table);
955
956         return 0;
957 }
958
959 static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
960                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
961 {
962         uint32_t i;
963         int result;
964         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
965         struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
966
967         PP_ASSERT_WITH_CODE((0 != dep_table->count),
968                         "Voltage Dependency Table empty.", return -EINVAL);
969
970         vol_table->mask_low = 0;
971         vol_table->phase_delay = 0;
972         vol_table->count = dep_table->count;
973
974         for (i = 0; i < dep_table->count; i++) {
975                 vol_table->entries[i].value = dep_table->entries[i].mvdd;
976                 vol_table->entries[i].smio_low = 0;
977         }
978
979         result = fiji_trim_voltage_table(hwmgr, vol_table);
980         PP_ASSERT_WITH_CODE((0 == result),
981                         "Failed to trim MVDD table.", return result);
982
983         return 0;
984 }
985
986 static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
987                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
988 {
989         uint32_t i;
990         int result;
991         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
992         struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
993
994         PP_ASSERT_WITH_CODE((0 != dep_table->count),
995                         "Voltage Dependency Table empty.", return -EINVAL);
996
997         vol_table->mask_low = 0;
998         vol_table->phase_delay = 0;
999         vol_table->count = dep_table->count;
1000
1001         for (i = 0; i < dep_table->count; i++) {
1002                 vol_table->entries[i].value = dep_table->entries[i].vddci;
1003                 vol_table->entries[i].smio_low = 0;
1004         }
1005
1006         result = fiji_trim_voltage_table(hwmgr, vol_table);
1007         PP_ASSERT_WITH_CODE((0 == result),
1008                         "Failed to trim VDDCI table.", return result);
1009
1010         return 0;
1011 }
1012
1013 static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1014                 phm_ppt_v1_voltage_lookup_table *lookup_table)
1015 {
1016         int i = 0;
1017         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1018         struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
1019
1020         PP_ASSERT_WITH_CODE((0 != lookup_table->count),
1021                         "Voltage Lookup Table empty.", return -EINVAL);
1022
1023         vol_table->mask_low = 0;
1024         vol_table->phase_delay = 0;
1025
1026         vol_table->count = lookup_table->count;
1027
1028         for (i = 0; i < vol_table->count; i++) {
1029                 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
1030                 vol_table->entries[i].smio_low = 0;
1031         }
1032
1033         return 0;
1034 }
1035
1036 /* ---- Voltage Tables ----
1037  * If the voltage table would be bigger than
1038  * what will fit into the state table on
1039  * the SMC keep only the higher entries.
1040  */
1041 static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1042                 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1043 {
1044         unsigned int i, diff;
1045
1046         if (vol_table->count <= max_vol_steps)
1047                 return;
1048
1049         diff = vol_table->count - max_vol_steps;
1050
1051         for (i = 0; i < max_vol_steps; i++)
1052                 vol_table->entries[i] = vol_table->entries[i + diff];
1053
1054         vol_table->count = max_vol_steps;
1055
1056         return;
1057 }
1058
1059 /**
1060 * Create Voltage Tables.
1061 *
1062 * @param    hwmgr  the address of the powerplay hardware manager.
1063 * @return   always 0
1064 */
1065 static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1066 {
1067         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1068         struct phm_ppt_v1_information *table_info =
1069                         (struct phm_ppt_v1_information *)hwmgr->pptable;
1070         int result;
1071
1072         if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1073                 result = atomctrl_get_voltage_table_v3(hwmgr,
1074                                 VOLTAGE_TYPE_MVDDC,     VOLTAGE_OBJ_GPIO_LUT,
1075                                 &(data->mvdd_voltage_table));
1076                 PP_ASSERT_WITH_CODE((0 == result),
1077                                 "Failed to retrieve MVDD table.",
1078                                 return result);
1079         } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1080                 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1081                                 table_info->vdd_dep_on_mclk);
1082                 PP_ASSERT_WITH_CODE((0 == result),
1083                                 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1084                                 return result;);
1085         }
1086
1087         if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1088                 result = atomctrl_get_voltage_table_v3(hwmgr,
1089                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1090                                 &(data->vddci_voltage_table));
1091                 PP_ASSERT_WITH_CODE((0 == result),
1092                                 "Failed to retrieve VDDCI table.",
1093                                 return result);
1094         } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1095                 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1096                                 table_info->vdd_dep_on_mclk);
1097                 PP_ASSERT_WITH_CODE((0 == result),
1098                                 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1099                                 return result);
1100         }
1101
1102         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1103                 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1104                                 table_info->vddc_lookup_table);
1105                 PP_ASSERT_WITH_CODE((0 == result),
1106                                 "Failed to retrieve SVI2 VDDC table from lookup table.",
1107                                 return result);
1108         }
1109
1110         PP_ASSERT_WITH_CODE(
1111                         (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1112                         "Too many voltage values for VDDC. Trimming to fit state table.",
1113                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1114                                         SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1115
1116         PP_ASSERT_WITH_CODE(
1117                         (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1118                         "Too many voltage values for VDDCI. Trimming to fit state table.",
1119                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1120                                         SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1121
1122         PP_ASSERT_WITH_CODE(
1123                         (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1124                         "Too many voltage values for MVDD. Trimming to fit state table.",
1125                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1126                                         SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1127
1128         return 0;
1129 }
1130
1131 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1132 {
1133         /* Program additional LP registers
1134          * that are no longer programmed by VBIOS
1135          */
1136         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1137                         cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1138         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1139                         cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1140         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1141                         cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1142         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1143                         cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1144         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1145                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1146         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1147                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1148         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1149                         cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1150
1151         return 0;
1152 }
1153
1154 /**
1155 * Programs static screed detection parameters
1156 *
1157 * @param    hwmgr  the address of the powerplay hardware manager.
1158 * @return   always 0
1159 */
1160 static int fiji_program_static_screen_threshold_parameters(
1161                 struct pp_hwmgr *hwmgr)
1162 {
1163         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1164
1165         /* Set static screen threshold unit */
1166         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1167                         CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1168                         data->static_screen_threshold_unit);
1169         /* Set static screen threshold */
1170         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1171                         CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1172                         data->static_screen_threshold);
1173
1174         return 0;
1175 }
1176
1177 /**
1178 * Setup display gap for glitch free memory clock switching.
1179 *
1180 * @param    hwmgr  the address of the powerplay hardware manager.
1181 * @return   always  0
1182 */
1183 static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1184 {
1185         uint32_t displayGap =
1186                         cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1187                                         ixCG_DISPLAY_GAP_CNTL);
1188
1189         displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1190                         DISP_GAP, DISPLAY_GAP_IGNORE);
1191
1192         displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1193                         DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1194
1195         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1196                         ixCG_DISPLAY_GAP_CNTL, displayGap);
1197
1198         return 0;
1199 }
1200
1201 /**
1202 * Programs activity state transition voting clients
1203 *
1204 * @param    hwmgr  the address of the powerplay hardware manager.
1205 * @return   always  0
1206 */
1207 static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1208 {
1209         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1210
1211         /* Clear reset for voting clients before enabling DPM */
1212         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1213                         SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1214         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1215                         SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1216
1217         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1218                         ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1219         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1220                         ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1221         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1222                         ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1223         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1224                         ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1225         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1226                         ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1227         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1228                         ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1229         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1230                         ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1231         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1232                         ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1233
1234         return 0;
1235 }
1236
1237 /**
1238 * Get the location of various tables inside the FW image.
1239 *
1240 * @param    hwmgr  the address of the powerplay hardware manager.
1241 * @return   always  0
1242 */
1243 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1244 {
1245         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1246         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1247         uint32_t tmp;
1248         int result;
1249         bool error = false;
1250
1251         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1252                         SMU7_FIRMWARE_HEADER_LOCATION +
1253                         offsetof(SMU73_Firmware_Header, DpmTable),
1254                         &tmp, data->sram_end);
1255
1256         if (0 == result)
1257                 data->dpm_table_start = tmp;
1258
1259         error |= (0 != result);
1260
1261         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1262                         SMU7_FIRMWARE_HEADER_LOCATION +
1263                         offsetof(SMU73_Firmware_Header, SoftRegisters),
1264                         &tmp, data->sram_end);
1265
1266         if (!result) {
1267                 data->soft_regs_start = tmp;
1268                 smu_data->soft_regs_start = tmp;
1269         }
1270
1271         error |= (0 != result);
1272
1273         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1274                         SMU7_FIRMWARE_HEADER_LOCATION +
1275                         offsetof(SMU73_Firmware_Header, mcRegisterTable),
1276                         &tmp, data->sram_end);
1277
1278         if (!result)
1279                 data->mc_reg_table_start = tmp;
1280
1281         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1282                         SMU7_FIRMWARE_HEADER_LOCATION +
1283                         offsetof(SMU73_Firmware_Header, FanTable),
1284                         &tmp, data->sram_end);
1285
1286         if (!result)
1287                 data->fan_table_start = tmp;
1288
1289         error |= (0 != result);
1290
1291         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1292                         SMU7_FIRMWARE_HEADER_LOCATION +
1293                         offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1294                         &tmp, data->sram_end);
1295
1296         if (!result)
1297                 data->arb_table_start = tmp;
1298
1299         error |= (0 != result);
1300
1301         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1302                         SMU7_FIRMWARE_HEADER_LOCATION +
1303                         offsetof(SMU73_Firmware_Header, Version),
1304                         &tmp, data->sram_end);
1305
1306         if (!result)
1307                 hwmgr->microcode_version_info.SMC = tmp;
1308
1309         error |= (0 != result);
1310
1311         return error ? -1 : 0;
1312 }
1313
1314 /* Copy one arb setting to another and then switch the active set.
1315  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1316  */
1317 static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1318                 uint32_t arb_src, uint32_t arb_dest)
1319 {
1320         uint32_t mc_arb_dram_timing;
1321         uint32_t mc_arb_dram_timing2;
1322         uint32_t burst_time;
1323         uint32_t mc_cg_config;
1324
1325         switch (arb_src) {
1326         case MC_CG_ARB_FREQ_F0:
1327                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1328                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1329                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1330                 break;
1331         case MC_CG_ARB_FREQ_F1:
1332                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1333                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1334                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1335                 break;
1336         default:
1337                 return -EINVAL;
1338         }
1339
1340         switch (arb_dest) {
1341         case MC_CG_ARB_FREQ_F0:
1342                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1343                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1344                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1345                 break;
1346         case MC_CG_ARB_FREQ_F1:
1347                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1348                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1349                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1350                 break;
1351         default:
1352                 return -EINVAL;
1353         }
1354
1355         mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1356         mc_cg_config |= 0x0000000F;
1357         cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1358         PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1359
1360         return 0;
1361 }
1362
1363 /**
1364 * Initial switch from ARB F0->F1
1365 *
1366 * @param    hwmgr  the address of the powerplay hardware manager.
1367 * @return   always 0
1368 * This function is to be called from the SetPowerState table.
1369 */
1370 static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1371 {
1372         return fiji_copy_and_switch_arb_sets(hwmgr,
1373                         MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1374 }
1375
1376 static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1377                 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1378 {
1379         int i;
1380         PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1381                         "Fatal error, can not set up single DPM table entries "
1382                         "to exceed max number!",);
1383
1384         dpm_table->count = count;
1385         for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1386                 dpm_table->dpm_levels[i].enabled = false;
1387
1388         return 0;
1389 }
1390
1391 static void fiji_setup_pcie_table_entry(
1392         struct fiji_single_dpm_table *dpm_table,
1393         uint32_t index, uint32_t pcie_gen,
1394         uint32_t pcie_lanes)
1395 {
1396         dpm_table->dpm_levels[index].value = pcie_gen;
1397         dpm_table->dpm_levels[index].param1 = pcie_lanes;
1398         dpm_table->dpm_levels[index].enabled = 1;
1399 }
1400
1401 static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1402 {
1403         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1404         struct phm_ppt_v1_information *table_info =
1405                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1406         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1407         uint32_t i, max_entry;
1408
1409         PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1410                         data->use_pcie_power_saving_levels), "No pcie performance levels!",
1411                         return -EINVAL);
1412
1413         if (data->use_pcie_performance_levels &&
1414                         !data->use_pcie_power_saving_levels) {
1415                 data->pcie_gen_power_saving = data->pcie_gen_performance;
1416                 data->pcie_lane_power_saving = data->pcie_lane_performance;
1417         } else if (!data->use_pcie_performance_levels &&
1418                         data->use_pcie_power_saving_levels) {
1419                 data->pcie_gen_performance = data->pcie_gen_power_saving;
1420                 data->pcie_lane_performance = data->pcie_lane_power_saving;
1421         }
1422
1423         fiji_reset_single_dpm_table(hwmgr,
1424                         &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1425
1426         if (pcie_table != NULL) {
1427                 /* max_entry is used to make sure we reserve one PCIE level
1428                  * for boot level (fix for A+A PSPP issue).
1429                  * If PCIE table from PPTable have ULV entry + 8 entries,
1430                  * then ignore the last entry.*/
1431                 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1432                                 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1433                 for (i = 1; i < max_entry; i++) {
1434                         fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1435                                         get_pcie_gen_support(data->pcie_gen_cap,
1436                                                         pcie_table->entries[i].gen_speed),
1437                                         get_pcie_lane_support(data->pcie_lane_cap,
1438                                                         pcie_table->entries[i].lane_width));
1439                 }
1440                 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1441         } else {
1442                 /* Hardcode Pcie Table */
1443                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1444                                 get_pcie_gen_support(data->pcie_gen_cap,
1445                                                 PP_Min_PCIEGen),
1446                                 get_pcie_lane_support(data->pcie_lane_cap,
1447                                                 PP_Max_PCIELane));
1448                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1449                                 get_pcie_gen_support(data->pcie_gen_cap,
1450                                                 PP_Min_PCIEGen),
1451                                 get_pcie_lane_support(data->pcie_lane_cap,
1452                                                 PP_Max_PCIELane));
1453                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1454                                 get_pcie_gen_support(data->pcie_gen_cap,
1455                                                 PP_Max_PCIEGen),
1456                                 get_pcie_lane_support(data->pcie_lane_cap,
1457                                                 PP_Max_PCIELane));
1458                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1459                                 get_pcie_gen_support(data->pcie_gen_cap,
1460                                                 PP_Max_PCIEGen),
1461                                 get_pcie_lane_support(data->pcie_lane_cap,
1462                                                 PP_Max_PCIELane));
1463                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1464                                 get_pcie_gen_support(data->pcie_gen_cap,
1465                                                 PP_Max_PCIEGen),
1466                                 get_pcie_lane_support(data->pcie_lane_cap,
1467                                                 PP_Max_PCIELane));
1468                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1469                                 get_pcie_gen_support(data->pcie_gen_cap,
1470                                                 PP_Max_PCIEGen),
1471                                 get_pcie_lane_support(data->pcie_lane_cap,
1472                                                 PP_Max_PCIELane));
1473
1474                 data->dpm_table.pcie_speed_table.count = 6;
1475         }
1476         /* Populate last level for boot PCIE level, but do not increment count. */
1477         fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1478                         data->dpm_table.pcie_speed_table.count,
1479                         get_pcie_gen_support(data->pcie_gen_cap,
1480                                         PP_Min_PCIEGen),
1481                         get_pcie_lane_support(data->pcie_lane_cap,
1482                                         PP_Max_PCIELane));
1483
1484         return 0;
1485 }
1486
1487 /*
1488  * This function is to initalize all DPM state tables
1489  * for SMU7 based on the dependency table.
1490  * Dynamic state patching function will then trim these
1491  * state tables to the allowed range based
1492  * on the power policy or external client requests,
1493  * such as UVD request, etc.
1494  */
1495 static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1496 {
1497         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1498         struct phm_ppt_v1_information *table_info =
1499                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1500         uint32_t i;
1501
1502         struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1503                         table_info->vdd_dep_on_sclk;
1504         struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1505                         table_info->vdd_dep_on_mclk;
1506
1507         PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1508                         "SCLK dependency table is missing. This table is mandatory",
1509                         return -EINVAL);
1510         PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1511                         "SCLK dependency table has to have is missing. "
1512                         "This table is mandatory",
1513                         return -EINVAL);
1514
1515         PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1516                         "MCLK dependency table is missing. This table is mandatory",
1517                         return -EINVAL);
1518         PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1519                         "MCLK dependency table has to have is missing. "
1520                         "This table is mandatory",
1521                         return -EINVAL);
1522
1523         /* clear the state table to reset everything to default */
1524         fiji_reset_single_dpm_table(hwmgr,
1525                         &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1526         fiji_reset_single_dpm_table(hwmgr,
1527                         &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1528
1529         /* Initialize Sclk DPM table based on allow Sclk values */
1530         data->dpm_table.sclk_table.count = 0;
1531         for (i = 0; i < dep_sclk_table->count; i++) {
1532                 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1533                                 [data->dpm_table.sclk_table.count - 1].value !=
1534                                                 dep_sclk_table->entries[i].clk) {
1535                         data->dpm_table.sclk_table.dpm_levels
1536                         [data->dpm_table.sclk_table.count].value =
1537                                         dep_sclk_table->entries[i].clk;
1538                         data->dpm_table.sclk_table.dpm_levels
1539                         [data->dpm_table.sclk_table.count].enabled =
1540                                         (i == 0) ? true : false;
1541                         data->dpm_table.sclk_table.count++;
1542                 }
1543         }
1544
1545         /* Initialize Mclk DPM table based on allow Mclk values */
1546         data->dpm_table.mclk_table.count = 0;
1547         for (i=0; i<dep_mclk_table->count; i++) {
1548                 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1549                                 [data->dpm_table.mclk_table.count - 1].value !=
1550                                                 dep_mclk_table->entries[i].clk) {
1551                         data->dpm_table.mclk_table.dpm_levels
1552                         [data->dpm_table.mclk_table.count].value =
1553                                         dep_mclk_table->entries[i].clk;
1554                         data->dpm_table.mclk_table.dpm_levels
1555                         [data->dpm_table.mclk_table.count].enabled =
1556                                         (i == 0) ? true : false;
1557                         data->dpm_table.mclk_table.count++;
1558                 }
1559         }
1560
1561         /* setup PCIE gen speed levels */
1562         fiji_setup_default_pcie_table(hwmgr);
1563
1564         /* save a copy of the default DPM table */
1565         memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1566                         sizeof(struct fiji_dpm_table));
1567
1568         return 0;
1569 }
1570
1571 /**
1572  * @brief PhwFiji_GetVoltageOrder
1573  *  Returns index of requested voltage record in lookup(table)
1574  * @param lookup_table - lookup list to search in
1575  * @param voltage - voltage to look for
1576  * @return 0 on success
1577  */
1578 uint8_t fiji_get_voltage_index(
1579                 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1580 {
1581         uint8_t count = (uint8_t) (lookup_table->count);
1582         uint8_t i;
1583
1584         PP_ASSERT_WITH_CODE((NULL != lookup_table),
1585                         "Lookup Table empty.", return 0);
1586         PP_ASSERT_WITH_CODE((0 != count),
1587                         "Lookup Table empty.", return 0);
1588
1589         for (i = 0; i < lookup_table->count; i++) {
1590                 /* find first voltage equal or bigger than requested */
1591                 if (lookup_table->entries[i].us_vdd >= voltage)
1592                         return i;
1593         }
1594         /* voltage is bigger than max voltage in the table */
1595         return i - 1;
1596 }
1597
1598 /**
1599 * Preparation of vddc and vddgfx CAC tables for SMC.
1600 *
1601 * @param    hwmgr  the address of the hardware manager
1602 * @param    table  the SMC DPM table structure to be populated
1603 * @return   always 0
1604 */
1605 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1606                 struct SMU73_Discrete_DpmTable *table)
1607 {
1608         uint32_t count;
1609         uint8_t index;
1610         int result = 0;
1611         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1612         struct phm_ppt_v1_information *table_info =
1613                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1614         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1615                         table_info->vddc_lookup_table;
1616         /* tables is already swapped, so in order to use the value from it,
1617          * we need to swap it back.
1618          * We are populating vddc CAC data to BapmVddc table
1619          * in split and merged mode
1620          */
1621         for( count = 0; count<lookup_table->count; count++) {
1622                 index = fiji_get_voltage_index(lookup_table,
1623                                 data->vddc_voltage_table.entries[count].value);
1624                 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1625                                 (lookup_table->entries[index].us_cac_low *
1626                                                 VOLTAGE_SCALE)) / 25);
1627                 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1628                                 (lookup_table->entries[index].us_cac_high *
1629                                                 VOLTAGE_SCALE)) / 25);
1630         }
1631
1632         return result;
1633 }
1634
1635 /**
1636 * Preparation of voltage tables for SMC.
1637 *
1638 * @param    hwmgr   the address of the hardware manager
1639 * @param    table   the SMC DPM table structure to be populated
1640 * @return   always  0
1641 */
1642
1643 int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1644                 struct SMU73_Discrete_DpmTable *table)
1645 {
1646         int result;
1647
1648         result = fiji_populate_cac_table(hwmgr, table);
1649         PP_ASSERT_WITH_CODE(0 == result,
1650                         "can not populate CAC voltage tables to SMC",
1651                         return -EINVAL);
1652
1653         return 0;
1654 }
1655
1656 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1657                 struct SMU73_Discrete_Ulv *state)
1658 {
1659         int result = 0;
1660         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1661         struct phm_ppt_v1_information *table_info =
1662                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1663
1664         state->CcPwrDynRm = 0;
1665         state->CcPwrDynRm1 = 0;
1666
1667         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1668         state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1669                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1670
1671         state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1672
1673         if (!result) {
1674                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1675                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1676                 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1677         }
1678         return result;
1679 }
1680
1681 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1682                 struct SMU73_Discrete_DpmTable *table)
1683 {
1684         return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1685 }
1686
1687 static int32_t fiji_get_dpm_level_enable_mask_value(
1688                 struct fiji_single_dpm_table* dpm_table)
1689 {
1690         int32_t i;
1691         int32_t mask = 0;
1692
1693         for (i = dpm_table->count; i > 0; i--) {
1694                 mask = mask << 1;
1695                 if (dpm_table->dpm_levels[i - 1].enabled)
1696                         mask |= 0x1;
1697                 else
1698                         mask &= 0xFFFFFFFE;
1699         }
1700         return mask;
1701 }
1702
1703 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1704                 struct SMU73_Discrete_DpmTable *table)
1705 {
1706         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1707         struct fiji_dpm_table *dpm_table = &data->dpm_table;
1708         int i;
1709
1710         /* Index (dpm_table->pcie_speed_table.count)
1711          * is reserved for PCIE boot level. */
1712         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1713                 table->LinkLevel[i].PcieGenSpeed  =
1714                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1715                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1716                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1717                 table->LinkLevel[i].EnabledForActivity = 1;
1718                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1719                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1720                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1721         }
1722
1723         data->smc_state_table.LinkLevelCount =
1724                         (uint8_t)dpm_table->pcie_speed_table.count;
1725         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1726                         fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1727
1728         return 0;
1729 }
1730
1731 /**
1732 * Calculates the SCLK dividers using the provided engine clock
1733 *
1734 * @param    hwmgr  the address of the hardware manager
1735 * @param    clock  the engine clock to use to populate the structure
1736 * @param    sclk   the SMC SCLK structure to be populated
1737 */
1738 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1739                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1740 {
1741         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1742         struct pp_atomctrl_clock_dividers_vi dividers;
1743         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1744         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1745         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1746         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1747         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1748         uint32_t ref_clock;
1749         uint32_t ref_divider;
1750         uint32_t fbdiv;
1751         int result;
1752
1753         /* get the engine clock dividers for this clock value */
1754         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
1755
1756         PP_ASSERT_WITH_CODE(result == 0,
1757                         "Error retrieving Engine Clock dividers from VBIOS.",
1758                         return result);
1759
1760         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1761         ref_clock = atomctrl_get_reference_clock(hwmgr);
1762         ref_divider = 1 + dividers.uc_pll_ref_div;
1763
1764         /* low 14 bits is fraction and high 12 bits is divider */
1765         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1766
1767         /* SPLL_FUNC_CNTL setup */
1768         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1769                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
1770         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1771                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
1772
1773         /* SPLL_FUNC_CNTL_3 setup*/
1774         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1775                         SPLL_FB_DIV, fbdiv);
1776
1777         /* set to use fractional accumulation*/
1778         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1779                         SPLL_DITHEN, 1);
1780
1781         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1782                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1783                 struct pp_atomctrl_internal_ss_info ssInfo;
1784
1785                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1786                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1787                                 vco_freq, &ssInfo)) {
1788                         /*
1789                          * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1790                          * ss_info.speed_spectrum_rate -- in unit of khz
1791                          *
1792                          * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1793                          */
1794                         uint32_t clk_s = ref_clock * 5 /
1795                                         (ref_divider * ssInfo.speed_spectrum_rate);
1796                         /* clkv = 2 * D * fbdiv / NS */
1797                         uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1798                                         fbdiv / (clk_s * 10000);
1799
1800                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1801                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1802                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1803                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1804                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1805                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1806                 }
1807         }
1808
1809         sclk->SclkFrequency        = clock;
1810         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
1811         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
1812         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
1813         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
1814         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
1815
1816         return 0;
1817 }
1818
1819 static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1820 {
1821         uint32_t  i;
1822         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1823         struct pp_atomctrl_voltage_table *vddci_table =
1824                         &(data->vddci_voltage_table);
1825
1826         for (i = 0; i < vddci_table->count; i++) {
1827                 if (vddci_table->entries[i].value >= vddci)
1828                         return vddci_table->entries[i].value;
1829         }
1830
1831         PP_ASSERT_WITH_CODE(false,
1832                         "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1833                         return vddci_table->entries[i].value);
1834 }
1835
1836 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1837                 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1838                 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1839 {
1840         uint32_t i;
1841         uint16_t vddci;
1842         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1843
1844         *voltage = *mvdd = 0;
1845
1846         /* clock - voltage dependency table is empty table */
1847         if (dep_table->count == 0)
1848                 return -EINVAL;
1849
1850         for (i = 0; i < dep_table->count; i++) {
1851                 /* find first sclk bigger than request */
1852                 if (dep_table->entries[i].clk >= clock) {
1853                         *voltage |= (dep_table->entries[i].vddc *
1854                                         VOLTAGE_SCALE) << VDDC_SHIFT;
1855                         if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1856                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1857                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1858                         else if (dep_table->entries[i].vddci)
1859                                 *voltage |= (dep_table->entries[i].vddci *
1860                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1861                         else {
1862                                 vddci = fiji_find_closest_vddci(hwmgr,
1863                                                 (dep_table->entries[i].vddc -
1864                                                                 (uint16_t)data->vddc_vddci_delta));
1865                                 *voltage |= (vddci * VOLTAGE_SCALE) <<  VDDCI_SHIFT;
1866                         }
1867
1868                         if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1869                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1870                                         VOLTAGE_SCALE;
1871                         else if (dep_table->entries[i].mvdd)
1872                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1873                                         VOLTAGE_SCALE;
1874
1875                         *voltage |= 1 << PHASES_SHIFT;
1876                         return 0;
1877                 }
1878         }
1879
1880         /* sclk is bigger than max sclk in the dependence table */
1881         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1882
1883         if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1884                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1885                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1886         else if (dep_table->entries[i-1].vddci) {
1887                 vddci = fiji_find_closest_vddci(hwmgr,
1888                                 (dep_table->entries[i].vddc -
1889                                                 (uint16_t)data->vddc_vddci_delta));
1890                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1891         }
1892
1893         if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1894                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1895         else if (dep_table->entries[i].mvdd)
1896                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1897
1898         return 0;
1899 }
1900
1901 static uint8_t fiji_get_sleep_divider_id_from_clock(uint32_t clock,
1902                 uint32_t clock_insr)
1903 {
1904         uint8_t i;
1905         uint32_t temp;
1906         uint32_t min = max(clock_insr, (uint32_t)FIJI_MINIMUM_ENGINE_CLOCK);
1907
1908         PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
1909         for (i = FIJI_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
1910                 temp = clock >> i;
1911
1912                 if (temp >= min || i == 0)
1913                         break;
1914         }
1915         return i;
1916 }
1917 /**
1918 * Populates single SMC SCLK structure using the provided engine clock
1919 *
1920 * @param    hwmgr      the address of the hardware manager
1921 * @param    clock the engine clock to use to populate the structure
1922 * @param    sclk        the SMC SCLK structure to be populated
1923 */
1924
1925 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1926                 uint32_t clock, uint16_t sclk_al_threshold,
1927                 struct SMU73_Discrete_GraphicsLevel *level)
1928 {
1929         int result;
1930         /* PP_Clocks minClocks; */
1931         uint32_t threshold, mvdd;
1932         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1933         struct phm_ppt_v1_information *table_info =
1934                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1935
1936         result = fiji_calculate_sclk_params(hwmgr, clock, level);
1937
1938         /* populate graphics levels */
1939         result = fiji_get_dependency_volt_by_clk(hwmgr,
1940                         table_info->vdd_dep_on_sclk, clock,
1941                         &level->MinVoltage, &mvdd);
1942         PP_ASSERT_WITH_CODE((0 == result),
1943                         "can not find VDDC voltage value for "
1944                         "VDDC engine clock dependency table",
1945                         return result);
1946
1947         level->SclkFrequency = clock;
1948         level->ActivityLevel = sclk_al_threshold;
1949         level->CcPwrDynRm = 0;
1950         level->CcPwrDynRm1 = 0;
1951         level->EnabledForActivity = 0;
1952         level->EnabledForThrottle = 1;
1953         level->UpHyst = 10;
1954         level->DownHyst = 0;
1955         level->VoltageDownHyst = 0;
1956         level->PowerThrottle = 0;
1957
1958         threshold = clock * data->fast_watermark_threshold / 100;
1959
1960
1961         data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
1962
1963         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
1964                 level->DeepSleepDivId = fiji_get_sleep_divider_id_from_clock(clock,
1965                                                                 hwmgr->display_config.min_core_set_clock_in_sr);
1966
1967
1968         /* Default to slow, highest DPM level will be
1969          * set to PPSMC_DISPLAY_WATERMARK_LOW later.
1970          */
1971         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1972
1973         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1974         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
1975         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1976         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
1977         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
1978         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
1979         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
1980         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1981         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1982
1983         return 0;
1984 }
1985 /**
1986 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1987 *
1988 * @param    hwmgr      the address of the hardware manager
1989 */
1990 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1991 {
1992         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1993         struct fiji_dpm_table *dpm_table = &data->dpm_table;
1994         struct phm_ppt_v1_information *table_info =
1995                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1996         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1997         uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1998         int result = 0;
1999         uint32_t array = data->dpm_table_start +
2000                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2001         uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
2002                         SMU73_MAX_LEVELS_GRAPHICS;
2003         struct SMU73_Discrete_GraphicsLevel *levels =
2004                         data->smc_state_table.GraphicsLevel;
2005         uint32_t i, max_entry;
2006         uint8_t hightest_pcie_level_enabled = 0,
2007                         lowest_pcie_level_enabled = 0,
2008                         mid_pcie_level_enabled = 0,
2009                         count = 0;
2010
2011         for (i = 0; i < dpm_table->sclk_table.count; i++) {
2012                 result = fiji_populate_single_graphic_level(hwmgr,
2013                                 dpm_table->sclk_table.dpm_levels[i].value,
2014                                 (uint16_t)data->activity_target[i],
2015                                 &levels[i]);
2016                 if (result)
2017                         return result;
2018
2019                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2020                 if (i > 1)
2021                         levels[i].DeepSleepDivId = 0;
2022         }
2023
2024         /* Only enable level 0 for now.*/
2025         levels[0].EnabledForActivity = 1;
2026
2027         /* set highest level watermark to high */
2028         levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
2029                         PPSMC_DISPLAY_WATERMARK_HIGH;
2030
2031         data->smc_state_table.GraphicsDpmLevelCount =
2032                         (uint8_t)dpm_table->sclk_table.count;
2033         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2034                         fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2035
2036         if (pcie_table != NULL) {
2037                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
2038                                 "There must be 1 or more PCIE levels defined in PPTable.",
2039                                 return -EINVAL);
2040                 max_entry = pcie_entry_cnt - 1;
2041                 for (i = 0; i < dpm_table->sclk_table.count; i++)
2042                         levels[i].pcieDpmLevel =
2043                                         (uint8_t) ((i < max_entry)? i : max_entry);
2044         } else {
2045                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2046                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2047                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
2048                         hightest_pcie_level_enabled++;
2049
2050                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2051                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2052                                                 (1 << lowest_pcie_level_enabled)) == 0 ))
2053                         lowest_pcie_level_enabled++;
2054
2055                 while ((count < hightest_pcie_level_enabled) &&
2056                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2057                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2058                         count++;
2059
2060                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2061                                 hightest_pcie_level_enabled?
2062                                                 (lowest_pcie_level_enabled + 1 + count) :
2063                                                 hightest_pcie_level_enabled;
2064
2065                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2066                 for(i = 2; i < dpm_table->sclk_table.count; i++)
2067                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2068
2069                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2070                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2071
2072                 /* set pcieDpmLevel to mid_pcie_level_enabled */
2073                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2074         }
2075         /* level count will send to smc once at init smc table and never change */
2076         result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2077                         (uint32_t)array_size, data->sram_end);
2078
2079         return result;
2080 }
2081
2082 /**
2083  * MCLK Frequency Ratio
2084  * SEQ_CG_RESP  Bit[31:24] - 0x0
2085  * Bit[27:24] \96 DDR3 Frequency ratio
2086  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
2087  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
2088  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
2089  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
2090  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
2091  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
2092  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
2093  * 400 < 0x7 <= 450MHz,       800 < 0xF
2094  */
2095 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2096 {
2097         if (mem_clock <= 10000) return 0x0;
2098         if (mem_clock <= 15000) return 0x1;
2099         if (mem_clock <= 20000) return 0x2;
2100         if (mem_clock <= 25000) return 0x3;
2101         if (mem_clock <= 30000) return 0x4;
2102         if (mem_clock <= 35000) return 0x5;
2103         if (mem_clock <= 40000) return 0x6;
2104         if (mem_clock <= 45000) return 0x7;
2105         if (mem_clock <= 50000) return 0x8;
2106         if (mem_clock <= 55000) return 0x9;
2107         if (mem_clock <= 60000) return 0xa;
2108         if (mem_clock <= 65000) return 0xb;
2109         if (mem_clock <= 70000) return 0xc;
2110         if (mem_clock <= 75000) return 0xd;
2111         if (mem_clock <= 80000) return 0xe;
2112         /* mem_clock > 800MHz */
2113         return 0xf;
2114 }
2115
2116 /**
2117 * Populates the SMC MCLK structure using the provided memory clock
2118 *
2119 * @param    hwmgr   the address of the hardware manager
2120 * @param    clock   the memory clock to use to populate the structure
2121 * @param    sclk    the SMC SCLK structure to be populated
2122 */
2123 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2124     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2125 {
2126         struct pp_atomctrl_memory_clock_param mem_param;
2127         int result;
2128
2129         result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2130         PP_ASSERT_WITH_CODE((0 == result),
2131                         "Failed to get Memory PLL Dividers.",);
2132
2133         /* Save the result data to outpupt memory level structure */
2134         mclk->MclkFrequency   = clock;
2135         mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
2136         mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
2137
2138         return result;
2139 }
2140
2141 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2142                 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2143 {
2144         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2145         struct phm_ppt_v1_information *table_info =
2146                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2147         int result = 0;
2148
2149         if (table_info->vdd_dep_on_mclk) {
2150                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2151                                 table_info->vdd_dep_on_mclk, clock,
2152                                 &mem_level->MinVoltage, &mem_level->MinMvdd);
2153                 PP_ASSERT_WITH_CODE((0 == result),
2154                                 "can not find MinVddc voltage value from memory "
2155                                 "VDDC voltage dependency table", return result);
2156         }
2157
2158         mem_level->EnabledForThrottle = 1;
2159         mem_level->EnabledForActivity = 0;
2160         mem_level->UpHyst = 0;
2161         mem_level->DownHyst = 100;
2162         mem_level->VoltageDownHyst = 0;
2163         mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2164         mem_level->StutterEnable = false;
2165
2166         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2167
2168         /* enable stutter mode if all the follow condition applied
2169          * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2170          * &(data->DisplayTiming.numExistingDisplays));
2171          */
2172         data->display_timing.num_existing_displays = 1;
2173
2174         if ((data->mclk_stutter_mode_threshold) &&
2175                 (clock <= data->mclk_stutter_mode_threshold) &&
2176                 (!data->is_uvd_enabled) &&
2177                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2178                                 STUTTER_ENABLE) & 0x1))
2179                 mem_level->StutterEnable = true;
2180
2181         result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2182         if (!result) {
2183                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2184                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2185                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2186                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2187         }
2188         return result;
2189 }
2190
2191 /**
2192 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2193 *
2194 * @param    hwmgr      the address of the hardware manager
2195 */
2196 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2197 {
2198         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2199         struct fiji_dpm_table *dpm_table = &data->dpm_table;
2200         int result;
2201         /* populate MCLK dpm table to SMU7 */
2202         uint32_t array = data->dpm_table_start +
2203                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2204         uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2205                         SMU73_MAX_LEVELS_MEMORY;
2206         struct SMU73_Discrete_MemoryLevel *levels =
2207                         data->smc_state_table.MemoryLevel;
2208         uint32_t i;
2209
2210         for (i = 0; i < dpm_table->mclk_table.count; i++) {
2211                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2212                                 "can not populate memory level as memory clock is zero",
2213                                 return -EINVAL);
2214                 result = fiji_populate_single_memory_level(hwmgr,
2215                                 dpm_table->mclk_table.dpm_levels[i].value,
2216                                 &levels[i]);
2217                 if (result)
2218                         return result;
2219         }
2220
2221         /* Only enable level 0 for now. */
2222         levels[0].EnabledForActivity = 1;
2223
2224         /* in order to prevent MC activity from stutter mode to push DPM up.
2225          * the UVD change complements this by putting the MCLK in
2226          * a higher state by default such that we are not effected by
2227          * up threshold or and MCLK DPM latency.
2228          */
2229         levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2230         CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2231
2232         data->smc_state_table.MemoryDpmLevelCount =
2233                         (uint8_t)dpm_table->mclk_table.count;
2234         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2235                         fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2236         /* set highest level watermark to high */
2237         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2238                         PPSMC_DISPLAY_WATERMARK_HIGH;
2239
2240         /* level count will send to smc once at init smc table and never change */
2241         result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2242                         (uint32_t)array_size, data->sram_end);
2243
2244         return result;
2245 }
2246
2247 /**
2248 * Populates the SMC MVDD structure using the provided memory clock.
2249 *
2250 * @param    hwmgr      the address of the hardware manager
2251 * @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
2252 * @param    voltage     the SMC VOLTAGE structure to be populated
2253 */
2254 int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2255                 uint32_t mclk, SMIO_Pattern *smio_pat)
2256 {
2257         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2258         struct phm_ppt_v1_information *table_info =
2259                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2260         uint32_t i = 0;
2261
2262         if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2263                 /* find mvdd value which clock is more than request */
2264                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2265                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2266                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2267                                 break;
2268                         }
2269                 }
2270                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2271                                 "MVDD Voltage is outside the supported range.",
2272                                 return -EINVAL);
2273         } else
2274                 return -EINVAL;
2275
2276         return 0;
2277 }
2278
2279 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2280                 SMU73_Discrete_DpmTable *table)
2281 {
2282         int result = 0;
2283         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2284         struct phm_ppt_v1_information *table_info =
2285                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2286         struct pp_atomctrl_clock_dividers_vi dividers;
2287         SMIO_Pattern vol_level;
2288         uint32_t mvdd;
2289         uint16_t us_mvdd;
2290         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2291         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2292
2293         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2294
2295         if (!data->sclk_dpm_key_disabled) {
2296                 /* Get MinVoltage and Frequency from DPM0,
2297                  * already converted to SMC_UL */
2298                 table->ACPILevel.SclkFrequency =
2299                                 data->dpm_table.sclk_table.dpm_levels[0].value;
2300                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2301                                 table_info->vdd_dep_on_sclk,
2302                                 table->ACPILevel.SclkFrequency,
2303                                 &table->ACPILevel.MinVoltage, &mvdd);
2304                 PP_ASSERT_WITH_CODE((0 == result),
2305                                 "Cannot find ACPI VDDC voltage value "
2306                                 "in Clock Dependency Table",);
2307         } else {
2308                 table->ACPILevel.SclkFrequency =
2309                                 data->vbios_boot_state.sclk_bootup_value;
2310                 table->ACPILevel.MinVoltage =
2311                                 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2312         }
2313
2314         /* get the engine clock dividers for this clock value */
2315         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2316                         table->ACPILevel.SclkFrequency,  &dividers);
2317         PP_ASSERT_WITH_CODE(result == 0,
2318                         "Error retrieving Engine Clock dividers from VBIOS.",
2319                         return result);
2320
2321         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2322         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2323         table->ACPILevel.DeepSleepDivId = 0;
2324
2325         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2326                         SPLL_PWRON, 0);
2327         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2328                         SPLL_RESET, 1);
2329         spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2330                         SCLK_MUX_SEL, 4);
2331
2332         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2333         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2334         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2335         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2336         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2337         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2338         table->ACPILevel.CcPwrDynRm = 0;
2339         table->ACPILevel.CcPwrDynRm1 = 0;
2340
2341         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2342         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2343         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2344         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2345         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2346         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2347         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2348         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2349         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2350         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2351         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2352
2353         if (!data->mclk_dpm_key_disabled) {
2354                 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2355                 table->MemoryACPILevel.MclkFrequency =
2356                                 data->dpm_table.mclk_table.dpm_levels[0].value;
2357                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2358                                 table_info->vdd_dep_on_mclk,
2359                                 table->MemoryACPILevel.MclkFrequency,
2360                                 &table->MemoryACPILevel.MinVoltage, &mvdd);
2361                 PP_ASSERT_WITH_CODE((0 == result),
2362                                 "Cannot find ACPI VDDCI voltage value "
2363                                 "in Clock Dependency Table",);
2364         } else {
2365                 table->MemoryACPILevel.MclkFrequency =
2366                                 data->vbios_boot_state.mclk_bootup_value;
2367                 table->MemoryACPILevel.MinVoltage =
2368                                 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2369         }
2370
2371         us_mvdd = 0;
2372         if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2373                         (data->mclk_dpm_key_disabled))
2374                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2375         else {
2376                 if (!fiji_populate_mvdd_value(hwmgr,
2377                                 data->dpm_table.mclk_table.dpm_levels[0].value,
2378                                 &vol_level))
2379                         us_mvdd = vol_level.Voltage;
2380         }
2381
2382         table->MemoryACPILevel.MinMvdd =
2383                         PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2384
2385         table->MemoryACPILevel.EnabledForThrottle = 0;
2386         table->MemoryACPILevel.EnabledForActivity = 0;
2387         table->MemoryACPILevel.UpHyst = 0;
2388         table->MemoryACPILevel.DownHyst = 100;
2389         table->MemoryACPILevel.VoltageDownHyst = 0;
2390         table->MemoryACPILevel.ActivityLevel =
2391                         PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2392
2393         table->MemoryACPILevel.StutterEnable = false;
2394         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2395         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2396
2397         return result;
2398 }
2399
2400 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2401                 SMU73_Discrete_DpmTable *table)
2402 {
2403         int result = -EINVAL;
2404         uint8_t count;
2405         struct pp_atomctrl_clock_dividers_vi dividers;
2406         struct phm_ppt_v1_information *table_info =
2407                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2408         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2409                         table_info->mm_dep_table;
2410         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2411
2412         table->VceLevelCount = (uint8_t)(mm_table->count);
2413         table->VceBootLevel = 0;
2414
2415         for(count = 0; count < table->VceLevelCount; count++) {
2416                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2417                 table->VceLevel[count].MinVoltage = 0;
2418                 table->VceLevel[count].MinVoltage |=
2419                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2420                 table->VceLevel[count].MinVoltage |=
2421                                 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2422                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
2423                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2424
2425                 /*retrieve divider value for VBIOS */
2426                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2427                                 table->VceLevel[count].Frequency, &dividers);
2428                 PP_ASSERT_WITH_CODE((0 == result),
2429                                 "can not find divide id for VCE engine clock",
2430                                 return result);
2431
2432                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2433
2434                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2435                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2436         }
2437         return result;
2438 }
2439
2440 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2441                 SMU73_Discrete_DpmTable *table)
2442 {
2443         int result = -EINVAL;
2444         uint8_t count;
2445         struct pp_atomctrl_clock_dividers_vi dividers;
2446         struct phm_ppt_v1_information *table_info =
2447                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2448         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2449                         table_info->mm_dep_table;
2450         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2451
2452         table->AcpLevelCount = (uint8_t)(mm_table->count);
2453         table->AcpBootLevel = 0;
2454
2455         for (count = 0; count < table->AcpLevelCount; count++) {
2456                 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2457                 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2458                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2459                 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2460                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2461                 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2462
2463                 /* retrieve divider value for VBIOS */
2464                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2465                                 table->AcpLevel[count].Frequency, &dividers);
2466                 PP_ASSERT_WITH_CODE((0 == result),
2467                                 "can not find divide id for engine clock", return result);
2468
2469                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2470
2471                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2472                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2473         }
2474         return result;
2475 }
2476
2477 static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2478                 SMU73_Discrete_DpmTable *table)
2479 {
2480         int result = -EINVAL;
2481         uint8_t count;
2482         struct pp_atomctrl_clock_dividers_vi dividers;
2483         struct phm_ppt_v1_information *table_info =
2484                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2485         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2486                         table_info->mm_dep_table;
2487         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2488
2489         table->SamuBootLevel = 0;
2490         table->SamuLevelCount = (uint8_t)(mm_table->count);
2491
2492         for (count = 0; count < table->SamuLevelCount; count++) {
2493                 /* not sure whether we need evclk or not */
2494                 table->SamuLevel[count].MinVoltage = 0;
2495                 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2496                 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2497                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2498                 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2499                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2500                 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2501
2502                 /* retrieve divider value for VBIOS */
2503                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2504                                 table->SamuLevel[count].Frequency, &dividers);
2505                 PP_ASSERT_WITH_CODE((0 == result),
2506                                 "can not find divide id for samu clock", return result);
2507
2508                 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2509
2510                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2511                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2512         }
2513         return result;
2514 }
2515
2516 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2517                 int32_t eng_clock, int32_t mem_clock,
2518                 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2519 {
2520         uint32_t dram_timing;
2521         uint32_t dram_timing2;
2522         uint32_t burstTime;
2523         ULONG state, trrds, trrdl;
2524         int result;
2525
2526         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2527                         eng_clock, mem_clock);
2528         PP_ASSERT_WITH_CODE(result == 0,
2529                         "Error calling VBIOS to set DRAM_TIMING.", return result);
2530
2531         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2532         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2533         burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2534
2535         state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2536         trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2537         trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2538
2539         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
2540         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2541         arb_regs->McArbBurstTime   = (uint8_t)burstTime;
2542         arb_regs->TRRDS            = (uint8_t)trrds;
2543         arb_regs->TRRDL            = (uint8_t)trrdl;
2544
2545         return 0;
2546 }
2547
2548 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2549 {
2550         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2551         struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2552         uint32_t i, j;
2553         int result = 0;
2554
2555         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2556                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2557                         result = fiji_populate_memory_timing_parameters(hwmgr,
2558                                         data->dpm_table.sclk_table.dpm_levels[i].value,
2559                                         data->dpm_table.mclk_table.dpm_levels[j].value,
2560                                         &arb_regs.entries[i][j]);
2561                         if (result)
2562                                 break;
2563                 }
2564         }
2565
2566         if (!result)
2567                 result = fiji_copy_bytes_to_smc(
2568                                 hwmgr->smumgr,
2569                                 data->arb_table_start,
2570                                 (uint8_t *)&arb_regs,
2571                                 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2572                                 data->sram_end);
2573         return result;
2574 }
2575
2576 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2577                 struct SMU73_Discrete_DpmTable *table)
2578 {
2579         int result = -EINVAL;
2580         uint8_t count;
2581         struct pp_atomctrl_clock_dividers_vi dividers;
2582         struct phm_ppt_v1_information *table_info =
2583                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2584         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2585                         table_info->mm_dep_table;
2586         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2587
2588         table->UvdLevelCount = (uint8_t)(mm_table->count);
2589         table->UvdBootLevel = 0;
2590
2591         for (count = 0; count < table->UvdLevelCount; count++) {
2592                 table->UvdLevel[count].MinVoltage = 0;
2593                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2594                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2595                 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2596                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2597                 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2598                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2599                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2600
2601                 /* retrieve divider value for VBIOS */
2602                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2603                                 table->UvdLevel[count].VclkFrequency, &dividers);
2604                 PP_ASSERT_WITH_CODE((0 == result),
2605                                 "can not find divide id for Vclk clock", return result);
2606
2607                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2608
2609                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2610                                 table->UvdLevel[count].DclkFrequency, &dividers);
2611                 PP_ASSERT_WITH_CODE((0 == result),
2612                                 "can not find divide id for Dclk clock", return result);
2613
2614                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2615
2616                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2617                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2618                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2619
2620         }
2621         return result;
2622 }
2623
2624 static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2625                 uint32_t value, uint32_t *boot_level)
2626 {
2627         int result = -EINVAL;
2628         uint32_t i;
2629
2630         for (i = 0; i < table->count; i++) {
2631                 if (value == table->dpm_levels[i].value) {
2632                         *boot_level = i;
2633                         result = 0;
2634                 }
2635         }
2636         return result;
2637 }
2638
2639 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2640                 struct SMU73_Discrete_DpmTable *table)
2641 {
2642         int result = 0;
2643         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2644
2645         table->GraphicsBootLevel = 0;
2646         table->MemoryBootLevel = 0;
2647
2648         /* find boot level from dpm table */
2649         result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2650                         data->vbios_boot_state.sclk_bootup_value,
2651                         (uint32_t *)&(table->GraphicsBootLevel));
2652
2653         result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2654                         data->vbios_boot_state.mclk_bootup_value,
2655                         (uint32_t *)&(table->MemoryBootLevel));
2656
2657         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
2658                         VOLTAGE_SCALE;
2659         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2660                         VOLTAGE_SCALE;
2661         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
2662                         VOLTAGE_SCALE;
2663
2664         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2665         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2666         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2667
2668         return 0;
2669 }
2670
2671 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2672 {
2673         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2674         struct phm_ppt_v1_information *table_info =
2675                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2676         uint8_t count, level;
2677
2678         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2679         for (level = 0; level < count; level++) {
2680                 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2681                                 data->vbios_boot_state.sclk_bootup_value) {
2682                         data->smc_state_table.GraphicsBootLevel = level;
2683                         break;
2684                 }
2685         }
2686
2687         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2688         for (level = 0; level < count; level++) {
2689                 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2690                                 data->vbios_boot_state.mclk_bootup_value) {
2691                         data->smc_state_table.MemoryBootLevel = level;
2692                         break;
2693                 }
2694         }
2695
2696         return 0;
2697 }
2698
2699 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2700 {
2701         uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2702                         volt_with_cks, value;
2703         uint16_t clock_freq_u16;
2704         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2705         uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2706                         volt_offset = 0;
2707         struct phm_ppt_v1_information *table_info =
2708                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2709         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2710                         table_info->vdd_dep_on_sclk;
2711
2712         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2713
2714         /* Read SMU_Eefuse to read and calculate RO and determine
2715          * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2716          */
2717         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2718                         ixSMU_EFUSE_0 + (146 * 4));
2719         efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2720                         ixSMU_EFUSE_0 + (148 * 4));
2721         efuse &= 0xFF000000;
2722         efuse = efuse >> 24;
2723         efuse2 &= 0xF;
2724
2725         if (efuse2 == 1)
2726                 ro = (2300 - 1350) * efuse / 255 + 1350;
2727         else
2728                 ro = (2500 - 1000) * efuse / 255 + 1000;
2729
2730         if (ro >= 1660)
2731                 type = 0;
2732         else
2733                 type = 1;
2734
2735         /* Populate Stretch amount */
2736         data->smc_state_table.ClockStretcherAmount = stretch_amount;
2737
2738         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2739         for (i = 0; i < sclk_table->count; i++) {
2740                 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2741                                 sclk_table->entries[i].cks_enable << i;
2742                 volt_without_cks = (uint32_t)((14041 *
2743                         (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2744                         (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2745                 volt_with_cks = (uint32_t)((13946 *
2746                         (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2747                         (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2748                 if (volt_without_cks >= volt_with_cks)
2749                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2750                                         sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2751                 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2752         }
2753
2754         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2755                         STRETCH_ENABLE, 0x0);
2756         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2757                         masterReset, 0x1);
2758         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2759                         staticEnable, 0x1);
2760         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2761                         masterReset, 0x0);
2762
2763         /* Populate CKS Lookup Table */
2764         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2765                 stretch_amount2 = 0;
2766         else if (stretch_amount == 3 || stretch_amount == 4)
2767                 stretch_amount2 = 1;
2768         else {
2769                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2770                                 PHM_PlatformCaps_ClockStretcher);
2771                 PP_ASSERT_WITH_CODE(false,
2772                                 "Stretch Amount in PPTable not supported\n",
2773                                 return -EINVAL);
2774         }
2775
2776         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2777                         ixPWR_CKS_CNTL);
2778         value &= 0xFFC2FF87;
2779         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2780                         fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2781         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2782                         fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2783         clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2784                         GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2785                         SclkFrequency) / 100);
2786         if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2787                         clock_freq_u16 &&
2788             fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2789                         clock_freq_u16) {
2790                 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2791                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2792                 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2793                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2794                 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2795                 value |= (fiji_clock_stretch_amount_conversion
2796                                 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2797                                  [stretch_amount]) << 3;
2798         }
2799         CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2800                         CKS_LOOKUPTableEntry[0].minFreq);
2801         CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2802                         CKS_LOOKUPTableEntry[0].maxFreq);
2803         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2804                         fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2805         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2806                         (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2807
2808         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2809                         ixPWR_CKS_CNTL, value);
2810
2811         /* Populate DDT Lookup Table */
2812         for (i = 0; i < 4; i++) {
2813                 /* Assign the minimum and maximum VID stored
2814                  * in the last row of Clock Stretcher Voltage Table.
2815                  */
2816                 data->smc_state_table.ClockStretcherDataTable.
2817                 ClockStretcherDataTableEntry[i].minVID =
2818                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2819                 data->smc_state_table.ClockStretcherDataTable.
2820                 ClockStretcherDataTableEntry[i].maxVID =
2821                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2822                 /* Loop through each SCLK and check the frequency
2823                  * to see if it lies within the frequency for clock stretcher.
2824                  */
2825                 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2826                         cks_setting = 0;
2827                         clock_freq = PP_SMC_TO_HOST_UL(
2828                                         data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2829                         /* Check the allowed frequency against the sclk level[j].
2830                          *  Sclk's endianness has already been converted,
2831                          *  and it's in 10Khz unit,
2832                          *  as opposed to Data table, which is in Mhz unit.
2833                          */
2834                         if (clock_freq >=
2835                                         (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2836                                 cks_setting |= 0x2;
2837                                 if (clock_freq <
2838                                                 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2839                                         cks_setting |= 0x1;
2840                         }
2841                         data->smc_state_table.ClockStretcherDataTable.
2842                         ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2843                 }
2844                 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2845                                 ClockStretcherDataTable.
2846                                 ClockStretcherDataTableEntry[i].setting);
2847         }
2848
2849         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2850         value &= 0xFFFFFFFE;
2851         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2852
2853         return 0;
2854 }
2855
2856 /**
2857 * Populates the SMC VRConfig field in DPM table.
2858 *
2859 * @param    hwmgr   the address of the hardware manager
2860 * @param    table   the SMC DPM table structure to be populated
2861 * @return   always 0
2862 */
2863 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2864                 struct SMU73_Discrete_DpmTable *table)
2865 {
2866         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2867         uint16_t config;
2868
2869         config = VR_MERGED_WITH_VDDC;
2870         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2871
2872         /* Set Vddc Voltage Controller */
2873         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2874                 config = VR_SVI2_PLANE_1;
2875                 table->VRConfig |= config;
2876         } else {
2877                 PP_ASSERT_WITH_CODE(false,
2878                                 "VDDC should be on SVI2 control in merged mode!",);
2879         }
2880         /* Set Vddci Voltage Controller */
2881         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2882                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
2883                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2884         } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2885                 config = VR_SMIO_PATTERN_1;
2886                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2887         } else {
2888                 config = VR_STATIC_VOLTAGE;
2889                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2890         }
2891         /* Set Mvdd Voltage Controller */
2892         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2893                 config = VR_SVI2_PLANE_2;
2894                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2895         } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2896                 config = VR_SMIO_PATTERN_2;
2897                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2898         } else {
2899                 config = VR_STATIC_VOLTAGE;
2900                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2901         }
2902
2903         return 0;
2904 }
2905
2906 /**
2907 * Initializes the SMC table and uploads it
2908 *
2909 * @param    hwmgr  the address of the powerplay hardware manager.
2910 * @param    pInput  the pointer to input data (PowerState)
2911 * @return   always 0
2912 */
2913 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2914 {
2915         int result;
2916         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2917         struct phm_ppt_v1_information *table_info =
2918                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2919         struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2920         const struct fiji_ulv_parm *ulv = &(data->ulv);
2921         uint8_t i;
2922         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2923
2924         result = fiji_setup_default_dpm_tables(hwmgr);
2925         PP_ASSERT_WITH_CODE(0 == result,
2926                         "Failed to setup default DPM tables!", return result);
2927
2928         if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2929                 fiji_populate_smc_voltage_tables(hwmgr, table);
2930
2931         table->SystemFlags = 0;
2932
2933         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2934                         PHM_PlatformCaps_AutomaticDCTransition))
2935                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2936
2937         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2938                         PHM_PlatformCaps_StepVddc))
2939                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2940
2941         if (data->is_memory_gddr5)
2942                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2943
2944         if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2945                 result = fiji_populate_ulv_state(hwmgr, table);
2946                 PP_ASSERT_WITH_CODE(0 == result,
2947                                 "Failed to initialize ULV state!", return result);
2948                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2949                                 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
2950         }
2951
2952         result = fiji_populate_smc_link_level(hwmgr, table);
2953         PP_ASSERT_WITH_CODE(0 == result,
2954                         "Failed to initialize Link Level!", return result);
2955
2956         result = fiji_populate_all_graphic_levels(hwmgr);
2957         PP_ASSERT_WITH_CODE(0 == result,
2958                         "Failed to initialize Graphics Level!", return result);
2959
2960         result = fiji_populate_all_memory_levels(hwmgr);
2961         PP_ASSERT_WITH_CODE(0 == result,
2962                         "Failed to initialize Memory Level!", return result);
2963
2964         result = fiji_populate_smc_acpi_level(hwmgr, table);
2965         PP_ASSERT_WITH_CODE(0 == result,
2966                         "Failed to initialize ACPI Level!", return result);
2967
2968         result = fiji_populate_smc_vce_level(hwmgr, table);
2969         PP_ASSERT_WITH_CODE(0 == result,
2970                         "Failed to initialize VCE Level!", return result);
2971
2972         result = fiji_populate_smc_acp_level(hwmgr, table);
2973         PP_ASSERT_WITH_CODE(0 == result,
2974                         "Failed to initialize ACP Level!", return result);
2975
2976         result = fiji_populate_smc_samu_level(hwmgr, table);
2977         PP_ASSERT_WITH_CODE(0 == result,
2978                         "Failed to initialize SAMU Level!", return result);
2979
2980         /* Since only the initial state is completely set up at this point
2981          * (the other states are just copies of the boot state) we only
2982          * need to populate the  ARB settings for the initial state.
2983          */
2984         result = fiji_program_memory_timing_parameters(hwmgr);
2985         PP_ASSERT_WITH_CODE(0 == result,
2986                         "Failed to Write ARB settings for the initial state.", return result);
2987
2988         result = fiji_populate_smc_uvd_level(hwmgr, table);
2989         PP_ASSERT_WITH_CODE(0 == result,
2990                         "Failed to initialize UVD Level!", return result);
2991
2992         result = fiji_populate_smc_boot_level(hwmgr, table);
2993         PP_ASSERT_WITH_CODE(0 == result,
2994                         "Failed to initialize Boot Level!", return result);
2995
2996         result = fiji_populate_smc_initailial_state(hwmgr);
2997         PP_ASSERT_WITH_CODE(0 == result,
2998                         "Failed to initialize Boot State!", return result);
2999
3000         result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
3001         PP_ASSERT_WITH_CODE(0 == result,
3002                         "Failed to populate BAPM Parameters!", return result);
3003
3004         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3005                         PHM_PlatformCaps_ClockStretcher)) {
3006                 result = fiji_populate_clock_stretcher_data_table(hwmgr);
3007                 PP_ASSERT_WITH_CODE(0 == result,
3008                                 "Failed to populate Clock Stretcher Data Table!",
3009                                 return result);
3010         }
3011
3012         table->GraphicsVoltageChangeEnable  = 1;
3013         table->GraphicsThermThrottleEnable  = 1;
3014         table->GraphicsInterval = 1;
3015         table->VoltageInterval  = 1;
3016         table->ThermalInterval  = 1;
3017         table->TemperatureLimitHigh =
3018                         table_info->cac_dtp_table->usTargetOperatingTemp *
3019                         FIJI_Q88_FORMAT_CONVERSION_UNIT;
3020         table->TemperatureLimitLow  =
3021                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3022                         FIJI_Q88_FORMAT_CONVERSION_UNIT;
3023         table->MemoryVoltageChangeEnable = 1;
3024         table->MemoryInterval = 1;
3025         table->VoltageResponseTime = 0;
3026         table->PhaseResponseTime = 0;
3027         table->MemoryThermThrottleEnable = 1;
3028         table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
3029         table->PCIeGenInterval = 1;
3030         table->VRConfig = 0;
3031
3032         result = fiji_populate_vr_config(hwmgr, table);
3033         PP_ASSERT_WITH_CODE(0 == result,
3034                         "Failed to populate VRConfig setting!", return result);
3035
3036         table->ThermGpio = 17;
3037         table->SclkStepSize = 0x4000;
3038
3039         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
3040                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
3041                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3042                                 PHM_PlatformCaps_RegulatorHot);
3043         } else {
3044                 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
3045                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3046                                 PHM_PlatformCaps_RegulatorHot);
3047         }
3048
3049         if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3050                         &gpio_pin)) {
3051                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
3052                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3053                                 PHM_PlatformCaps_AutomaticDCTransition);
3054         } else {
3055                 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3056                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3057                                 PHM_PlatformCaps_AutomaticDCTransition);
3058         }
3059
3060         /* Thermal Output GPIO */
3061         if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3062                         &gpio_pin)) {
3063                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3064                                 PHM_PlatformCaps_ThermalOutGPIO);
3065
3066                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3067
3068                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3069                  * since VBIOS will program this register to set 'inactive state',
3070                  * driver can then determine 'active state' from this and
3071                  * program SMU with correct polarity
3072                  */
3073                 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3074                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3075                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3076
3077                 /* if required, combine VRHot/PCC with thermal out GPIO */
3078                 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3079                                 PHM_PlatformCaps_RegulatorHot) &&
3080                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3081                                         PHM_PlatformCaps_CombinePCCWithThermalSignal))
3082                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3083         } else {
3084                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3085                                 PHM_PlatformCaps_ThermalOutGPIO);
3086                 table->ThermOutGpio = 17;
3087                 table->ThermOutPolarity = 1;
3088                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3089         }
3090
3091         for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3092                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3093
3094         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3095         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3096         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3097         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3098         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3099         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3100         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3101         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3102         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3103
3104         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3105         result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3106                         data->dpm_table_start +
3107                         offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3108                         (uint8_t *)&(table->SystemFlags),
3109                         sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3110                         data->sram_end);
3111         PP_ASSERT_WITH_CODE(0 == result,
3112                         "Failed to upload dpm data to SMC memory!", return result);
3113
3114         return 0;
3115 }
3116
3117 /**
3118 * Initialize the ARB DRAM timing table's index field.
3119 *
3120 * @param    hwmgr  the address of the powerplay hardware manager.
3121 * @return   always 0
3122 */
3123 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3124 {
3125         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3126         uint32_t tmp;
3127         int result;
3128
3129         /* This is a read-modify-write on the first byte of the ARB table.
3130          * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3131          * is the field 'current'.
3132          * This solution is ugly, but we never write the whole table only
3133          * individual fields in it.
3134          * In reality this field should not be in that structure
3135          * but in a soft register.
3136          */
3137         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3138                         data->arb_table_start, &tmp, data->sram_end);
3139
3140         if (result)
3141                 return result;
3142
3143         tmp &= 0x00FFFFFF;
3144         tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3145
3146         return fiji_write_smc_sram_dword(hwmgr->smumgr,
3147                         data->arb_table_start,  tmp, data->sram_end);
3148 }
3149
3150 static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3151 {
3152         if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3153                         PHM_PlatformCaps_RegulatorHot))
3154                 return smum_send_msg_to_smc(hwmgr->smumgr,
3155                                 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3156
3157         return 0;
3158 }
3159
3160 static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3161 {
3162         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3163                         SCLK_PWRMGT_OFF, 0);
3164         return 0;
3165 }
3166
3167 static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3168 {
3169         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3170         struct fiji_ulv_parm *ulv = &(data->ulv);
3171
3172         if (ulv->ulv_supported)
3173                 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3174
3175         return 0;
3176 }
3177
3178 static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3179 {
3180         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3181                         PHM_PlatformCaps_SclkDeepSleep)) {
3182                 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3183                         PP_ASSERT_WITH_CODE(false,
3184                                         "Attempt to enable Master Deep Sleep switch failed!",
3185                                         return -1);
3186         } else {
3187                 if (smum_send_msg_to_smc(hwmgr->smumgr,
3188                                 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3189                         PP_ASSERT_WITH_CODE(false,
3190                                         "Attempt to disable Master Deep Sleep switch failed!",
3191                                         return -1);
3192                 }
3193         }
3194
3195         return 0;
3196 }
3197
3198 static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3199 {
3200         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3201         uint32_t   val, val0, val2;
3202         uint32_t   i, cpl_cntl, cpl_threshold, mc_threshold;
3203
3204         /* enable SCLK dpm */
3205         if(!data->sclk_dpm_key_disabled)
3206                 PP_ASSERT_WITH_CODE(
3207                 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3208                 "Failed to enable SCLK DPM during DPM Start Function!",
3209                 return -1);
3210
3211         /* enable MCLK dpm */
3212         if(0 == data->mclk_dpm_key_disabled) {
3213                 cpl_threshold = 0;
3214                 mc_threshold = 0;
3215
3216                 /* Read per MCD tile (0 - 7) */
3217                 for (i = 0; i < 8; i++) {
3218                         PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3219                         val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3220                         if (0xf0000000 != val) {
3221                                 /* count number of MCQ that has channel(s) enabled */
3222                                 cpl_threshold++;
3223                                 /* only harvest 3 or full 4 supported */
3224                                 mc_threshold = val ? 3 : 4;
3225                         }
3226                 }
3227                 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3228                                 "Number of MCQ is zero!", return -EINVAL;);
3229
3230                 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3231                                 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3232                                                 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3233                 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3234                                 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3235                                                 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3236                 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3237                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3238                                 ixLCAC_MC0_CNTL, mc_threshold);
3239                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3240                                 ixLCAC_MC1_CNTL, mc_threshold);
3241                 if (8 == cpl_threshold) {
3242                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3243                                         ixLCAC_MC2_CNTL, mc_threshold);
3244                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3245                                         ixLCAC_MC3_CNTL, mc_threshold);
3246                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3247                                         ixLCAC_MC4_CNTL, mc_threshold);
3248                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3249                                         ixLCAC_MC5_CNTL, mc_threshold);
3250                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3251                                         ixLCAC_MC6_CNTL, mc_threshold);
3252                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3253                                         ixLCAC_MC7_CNTL, mc_threshold);
3254                 }
3255                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3256                                 ixLCAC_CPL_CNTL, cpl_cntl);
3257
3258                 udelay(5);
3259
3260                 mc_threshold = mc_threshold |
3261                                 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3262                 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3263                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3264                                 ixLCAC_MC0_CNTL, mc_threshold);
3265                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3266                                 ixLCAC_MC1_CNTL, mc_threshold);
3267                 if (8 == cpl_threshold) {
3268                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3269                                         ixLCAC_MC2_CNTL, mc_threshold);
3270                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3271                                         ixLCAC_MC3_CNTL, mc_threshold);
3272                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3273                                         ixLCAC_MC4_CNTL, mc_threshold);
3274                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3275                                         ixLCAC_MC5_CNTL, mc_threshold);
3276                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3277                                         ixLCAC_MC6_CNTL, mc_threshold);
3278                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3279                                         ixLCAC_MC7_CNTL, mc_threshold);
3280                 }
3281                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3282                                 ixLCAC_CPL_CNTL, cpl_cntl);
3283
3284                 /* Program CAC_EN per MCD (0-7) Tile */
3285                 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3286                 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3287                                 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3288                                 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3289                                 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3290                                 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3291                                 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3292                                 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3293                                 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3294                                 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3295
3296                 for (i = 0; i < 8; i++) {
3297                         /* Enable MCD i Tile read & write */
3298                         val2  = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3299                                         (1 << i));
3300                         cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3301                         /* Enbale CAC_ON MCD i Tile */
3302                         val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3303                         val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3304                         cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3305                 }
3306                 /* Set MC_CONFIG_MCD back to its default setting val0 */
3307                 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3308
3309                 PP_ASSERT_WITH_CODE(
3310                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3311                                                 PPSMC_MSG_MCLKDPM_Enable)),
3312                                 "Failed to enable MCLK DPM during DPM Start Function!",
3313                                 return -1);
3314         }
3315         return 0;
3316 }
3317
3318 static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3319 {
3320         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3321
3322         /*enable general power management */
3323         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3324                         GLOBAL_PWRMGT_EN, 1);
3325         /* enable sclk deep sleep */
3326         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3327                         DYNAMIC_PM_EN, 1);
3328         /* prepare for PCIE DPM */
3329         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3330                         data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3331                                         VoltageChangeTimeout), 0x1000);
3332         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3333                         SWRST_COMMAND_1, RESETLC, 0x0);
3334
3335         PP_ASSERT_WITH_CODE(
3336                         (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3337                                         PPSMC_MSG_Voltage_Cntl_Enable)),
3338                         "Failed to enable voltage DPM during DPM Start Function!",
3339                         return -1);
3340
3341         if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3342                 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3343                 return -1;
3344         }
3345
3346         /* enable PCIE dpm */
3347         if(!data->pcie_dpm_key_disabled) {
3348                 PP_ASSERT_WITH_CODE(
3349                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3350                                                 PPSMC_MSG_PCIeDPM_Enable)),
3351                                 "Failed to enable pcie DPM during DPM Start Function!",
3352                                 return -1);
3353         }
3354
3355         return 0;
3356 }
3357
3358 static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3359                 uint32_t sources)
3360 {
3361         bool protection;
3362         enum DPM_EVENT_SRC src;
3363
3364         switch (sources) {
3365         default:
3366                 printk(KERN_ERR "Unknown throttling event sources.");
3367                 /* fall through */
3368         case 0:
3369                 protection = false;
3370                 /* src is unused */
3371                 break;
3372         case (1 << PHM_AutoThrottleSource_Thermal):
3373                 protection = true;
3374                 src = DPM_EVENT_SRC_DIGITAL;
3375                 break;
3376         case (1 << PHM_AutoThrottleSource_External):
3377                 protection = true;
3378                 src = DPM_EVENT_SRC_EXTERNAL;
3379                 break;
3380         case (1 << PHM_AutoThrottleSource_External) |
3381                         (1 << PHM_AutoThrottleSource_Thermal):
3382                 protection = true;
3383                 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3384                 break;
3385         }
3386         /* Order matters - don't enable thermal protection for the wrong source. */
3387         if (protection) {
3388                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3389                                 DPM_EVENT_SRC, src);
3390                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3391                                 THERMAL_PROTECTION_DIS,
3392                                 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3393                                                 PHM_PlatformCaps_ThermalController));
3394         } else
3395                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3396                                 THERMAL_PROTECTION_DIS, 1);
3397 }
3398
3399 static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3400                 PHM_AutoThrottleSource source)
3401 {
3402         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3403
3404         if (!(data->active_auto_throttle_sources & (1 << source))) {
3405                 data->active_auto_throttle_sources |= 1 << source;
3406                 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3407         }
3408         return 0;
3409 }
3410
3411 static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3412 {
3413         return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3414 }
3415
3416 static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3417 {
3418         int tmp_result, result = 0;
3419
3420         tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3421         PP_ASSERT_WITH_CODE(result == 0,
3422                         "DPM is already running right now, no need to enable DPM!",
3423                         return 0);
3424
3425         if (fiji_voltage_control(hwmgr)) {
3426                 tmp_result = fiji_enable_voltage_control(hwmgr);
3427                 PP_ASSERT_WITH_CODE(tmp_result == 0,
3428                                 "Failed to enable voltage control!",
3429                                 result = tmp_result);
3430         }
3431
3432         if (fiji_voltage_control(hwmgr)) {
3433                 tmp_result = fiji_construct_voltage_tables(hwmgr);
3434                 PP_ASSERT_WITH_CODE((0 == tmp_result),
3435                                 "Failed to contruct voltage tables!",
3436                                 result = tmp_result);
3437         }
3438
3439         tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3440         PP_ASSERT_WITH_CODE((0 == tmp_result),
3441                         "Failed to initialize MC reg table!", result = tmp_result);
3442
3443         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3444                         PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3445                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3446                                 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3447
3448         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3449                         PHM_PlatformCaps_ThermalController))
3450                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3451                                 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3452
3453         tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3454         PP_ASSERT_WITH_CODE((0 == tmp_result),
3455                         "Failed to program static screen threshold parameters!",
3456                         result = tmp_result);
3457
3458         tmp_result = fiji_enable_display_gap(hwmgr);
3459         PP_ASSERT_WITH_CODE((0 == tmp_result),
3460                         "Failed to enable display gap!", result = tmp_result);
3461
3462         tmp_result = fiji_program_voting_clients(hwmgr);
3463         PP_ASSERT_WITH_CODE((0 == tmp_result),
3464                         "Failed to program voting clients!", result = tmp_result);
3465
3466         tmp_result = fiji_process_firmware_header(hwmgr);
3467         PP_ASSERT_WITH_CODE((0 == tmp_result),
3468                         "Failed to process firmware header!", result = tmp_result);
3469
3470         tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3471         PP_ASSERT_WITH_CODE((0 == tmp_result),
3472                         "Failed to initialize switch from ArbF0 to F1!",
3473                         result = tmp_result);
3474
3475         tmp_result = fiji_init_smc_table(hwmgr);
3476         PP_ASSERT_WITH_CODE((0 == tmp_result),
3477                         "Failed to initialize SMC table!", result = tmp_result);
3478
3479         tmp_result = fiji_init_arb_table_index(hwmgr);
3480         PP_ASSERT_WITH_CODE((0 == tmp_result),
3481                         "Failed to initialize ARB table index!", result = tmp_result);
3482
3483         tmp_result = fiji_populate_pm_fuses(hwmgr);
3484         PP_ASSERT_WITH_CODE((0 == tmp_result),
3485                         "Failed to populate PM fuses!", result = tmp_result);
3486
3487         tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3488         PP_ASSERT_WITH_CODE((0 == tmp_result),
3489                         "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3490
3491         tmp_result = tonga_notify_smc_display_change(hwmgr, false);
3492         PP_ASSERT_WITH_CODE((0 == tmp_result),
3493                         "Failed to notify no display!", result = tmp_result);
3494
3495         tmp_result = fiji_enable_sclk_control(hwmgr);
3496         PP_ASSERT_WITH_CODE((0 == tmp_result),
3497                         "Failed to enable SCLK control!", result = tmp_result);
3498
3499         tmp_result = fiji_enable_ulv(hwmgr);
3500         PP_ASSERT_WITH_CODE((0 == tmp_result),
3501                         "Failed to enable ULV!", result = tmp_result);
3502
3503         tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3504         PP_ASSERT_WITH_CODE((0 == tmp_result),
3505                         "Failed to enable deep sleep master switch!", result = tmp_result);
3506
3507         tmp_result = fiji_start_dpm(hwmgr);
3508         PP_ASSERT_WITH_CODE((0 == tmp_result),
3509                         "Failed to start DPM!", result = tmp_result);
3510
3511         tmp_result = fiji_enable_smc_cac(hwmgr);
3512         PP_ASSERT_WITH_CODE((0 == tmp_result),
3513                         "Failed to enable SMC CAC!", result = tmp_result);
3514
3515         tmp_result = fiji_enable_power_containment(hwmgr);
3516         PP_ASSERT_WITH_CODE((0 == tmp_result),
3517                         "Failed to enable power containment!", result = tmp_result);
3518
3519         tmp_result = fiji_power_control_set_level(hwmgr);
3520         PP_ASSERT_WITH_CODE((0 == tmp_result),
3521                         "Failed to power control set level!", result = tmp_result);
3522
3523         tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3524         PP_ASSERT_WITH_CODE((0 == tmp_result),
3525                         "Failed to enable thermal auto throttle!", result = tmp_result);
3526
3527         return result;
3528 }
3529
3530 static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3531 {
3532         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3533         uint32_t level, tmp;
3534
3535         if (!data->sclk_dpm_key_disabled) {
3536                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3537                         level = 0;
3538                         tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3539                         while (tmp >>= 1)
3540                                 level++;
3541                         if (level)
3542                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3543                                                 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3544                                                 (1 << level));
3545                 }
3546         }
3547
3548         if (!data->mclk_dpm_key_disabled) {
3549                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3550                         level = 0;
3551                         tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3552                         while (tmp >>= 1)
3553                                 level++;
3554                         if (level)
3555                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3556                                                 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3557                                                 (1 << level));
3558                 }
3559         }
3560
3561         if (!data->pcie_dpm_key_disabled) {
3562                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3563                         level = 0;
3564                         tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3565                         while (tmp >>= 1)
3566                                 level++;
3567                         if (level)
3568                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3569                                                 PPSMC_MSG_PCIeDPM_ForceLevel,
3570                                                 (1 << level));
3571                 }
3572         }
3573         return 0;
3574 }
3575
3576 static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3577 {
3578         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3579
3580         phm_apply_dal_min_voltage_request(hwmgr);
3581
3582         if (!data->sclk_dpm_key_disabled) {
3583                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3584                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3585                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
3586                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3587         }
3588         return 0;
3589 }
3590
3591 static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3592 {
3593         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3594
3595         if (!fiji_is_dpm_running(hwmgr))
3596                 return -EINVAL;
3597
3598         if (!data->pcie_dpm_key_disabled) {
3599                 smum_send_msg_to_smc(hwmgr->smumgr,
3600                                 PPSMC_MSG_PCIeDPM_UnForceLevel);
3601         }
3602
3603         return fiji_upload_dpmlevel_enable_mask(hwmgr);
3604 }
3605
3606 static uint32_t fiji_get_lowest_enabled_level(
3607                 struct pp_hwmgr *hwmgr, uint32_t mask)
3608 {
3609         uint32_t level = 0;
3610
3611         while(0 == (mask & (1 << level)))
3612                 level++;
3613
3614         return level;
3615 }
3616
3617 static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3618 {
3619         struct fiji_hwmgr *data =
3620                         (struct fiji_hwmgr *)(hwmgr->backend);
3621         uint32_t level;
3622
3623         if (!data->sclk_dpm_key_disabled)
3624                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3625                         level = fiji_get_lowest_enabled_level(hwmgr,
3626                                                               data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3627                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3628                                                             PPSMC_MSG_SCLKDPM_SetEnabledMask,
3629                                                             (1 << level));
3630
3631         }
3632
3633         if (!data->mclk_dpm_key_disabled) {
3634                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3635                         level = fiji_get_lowest_enabled_level(hwmgr,
3636                                                               data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3637                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3638                                                             PPSMC_MSG_MCLKDPM_SetEnabledMask,
3639                                                             (1 << level));
3640                 }
3641         }
3642
3643         if (!data->pcie_dpm_key_disabled) {
3644                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3645                         level = fiji_get_lowest_enabled_level(hwmgr,
3646                                                               data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3647                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3648                                                             PPSMC_MSG_PCIeDPM_ForceLevel,
3649                                                             (1 << level));
3650                 }
3651         }
3652
3653         return 0;
3654
3655 }
3656 static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3657                                 enum amd_dpm_forced_level level)
3658 {
3659         int ret = 0;
3660
3661         switch (level) {
3662         case AMD_DPM_FORCED_LEVEL_HIGH:
3663                 ret = fiji_force_dpm_highest(hwmgr);
3664                 if (ret)
3665                         return ret;
3666                 break;
3667         case AMD_DPM_FORCED_LEVEL_LOW:
3668                 ret = fiji_force_dpm_lowest(hwmgr);
3669                 if (ret)
3670                         return ret;
3671                 break;
3672         case AMD_DPM_FORCED_LEVEL_AUTO:
3673                 ret = fiji_unforce_dpm_levels(hwmgr);
3674                 if (ret)
3675                         return ret;
3676                 break;
3677         default:
3678                 break;
3679         }
3680
3681         hwmgr->dpm_level = level;
3682
3683         return ret;
3684 }
3685
3686 static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3687 {
3688         return sizeof(struct fiji_power_state);
3689 }
3690
3691 static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3692                 void *state, struct pp_power_state *power_state,
3693                 void *pp_table, uint32_t classification_flag)
3694 {
3695         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3696         struct fiji_power_state  *fiji_power_state =
3697                         (struct fiji_power_state *)(&(power_state->hardware));
3698         struct fiji_performance_level *performance_level;
3699         ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3700         ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3701                         (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3702         ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3703                         (ATOM_Tonga_SCLK_Dependency_Table *)
3704                         (((unsigned long)powerplay_table) +
3705                                 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3706         ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3707                         (ATOM_Tonga_MCLK_Dependency_Table *)
3708                         (((unsigned long)powerplay_table) +
3709                                 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3710
3711         /* The following fields are not initialized here: id orderedList allStatesList */
3712         power_state->classification.ui_label =
3713                         (le16_to_cpu(state_entry->usClassification) &
3714                         ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3715                         ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3716         power_state->classification.flags = classification_flag;
3717         /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3718
3719         power_state->classification.temporary_state = false;
3720         power_state->classification.to_be_deleted = false;
3721
3722         power_state->validation.disallowOnDC =
3723                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3724                                         ATOM_Tonga_DISALLOW_ON_DC));
3725
3726         power_state->pcie.lanes = 0;
3727
3728         power_state->display.disableFrameModulation = false;
3729         power_state->display.limitRefreshrate = false;
3730         power_state->display.enableVariBright =
3731                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3732                                         ATOM_Tonga_ENABLE_VARIBRIGHT));
3733
3734         power_state->validation.supportedPowerLevels = 0;
3735         power_state->uvd_clocks.VCLK = 0;
3736         power_state->uvd_clocks.DCLK = 0;
3737         power_state->temperatures.min = 0;
3738         power_state->temperatures.max = 0;
3739
3740         performance_level = &(fiji_power_state->performance_levels
3741                         [fiji_power_state->performance_level_count++]);
3742
3743         PP_ASSERT_WITH_CODE(
3744                         (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3745                         "Performance levels exceeds SMC limit!",
3746                         return -1);
3747
3748         PP_ASSERT_WITH_CODE(
3749                         (fiji_power_state->performance_level_count <=
3750                                         hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3751                         "Performance levels exceeds Driver limit!",
3752                         return -1);
3753
3754         /* Performance levels are arranged from low to high. */
3755         performance_level->memory_clock = mclk_dep_table->entries
3756                         [state_entry->ucMemoryClockIndexLow].ulMclk;
3757         performance_level->engine_clock = sclk_dep_table->entries
3758                         [state_entry->ucEngineClockIndexLow].ulSclk;
3759         performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3760                         state_entry->ucPCIEGenLow);
3761         performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3762                         state_entry->ucPCIELaneHigh);
3763
3764         performance_level = &(fiji_power_state->performance_levels
3765                         [fiji_power_state->performance_level_count++]);
3766         performance_level->memory_clock = mclk_dep_table->entries
3767                         [state_entry->ucMemoryClockIndexHigh].ulMclk;
3768         performance_level->engine_clock = sclk_dep_table->entries
3769                         [state_entry->ucEngineClockIndexHigh].ulSclk;
3770         performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3771                         state_entry->ucPCIEGenHigh);
3772         performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3773                         state_entry->ucPCIELaneHigh);
3774
3775         return 0;
3776 }
3777
3778 static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3779                 unsigned long entry_index, struct pp_power_state *state)
3780 {
3781         int result;
3782         struct fiji_power_state *ps;
3783         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3784         struct phm_ppt_v1_information *table_info =
3785                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
3786         struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3787                         table_info->vdd_dep_on_mclk;
3788
3789         state->hardware.magic = PHM_VIslands_Magic;
3790
3791         ps = (struct fiji_power_state *)(&state->hardware);
3792
3793         result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3794                         fiji_get_pp_table_entry_callback_func);
3795
3796         /* This is the earliest time we have all the dependency table and the VBIOS boot state
3797          * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3798          * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3799          */
3800         if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3801                 if (dep_mclk_table->entries[0].clk !=
3802                                 data->vbios_boot_state.mclk_bootup_value)
3803                         printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3804                                         "does not match VBIOS boot MCLK level");
3805                 if (dep_mclk_table->entries[0].vddci !=
3806                                 data->vbios_boot_state.vddci_bootup_value)
3807                         printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3808                                         "does not match VBIOS boot VDDCI level");
3809         }
3810
3811         /* set DC compatible flag if this state supports DC */
3812         if (!state->validation.disallowOnDC)
3813                 ps->dc_compatible = true;
3814
3815         if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3816                 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3817
3818         ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3819         ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3820
3821         if (!result) {
3822                 uint32_t i;
3823
3824                 switch (state->classification.ui_label) {
3825                 case PP_StateUILabel_Performance:
3826                         data->use_pcie_performance_levels = true;
3827
3828                         for (i = 0; i < ps->performance_level_count; i++) {
3829                                 if (data->pcie_gen_performance.max <
3830                                                 ps->performance_levels[i].pcie_gen)
3831                                         data->pcie_gen_performance.max =
3832                                                         ps->performance_levels[i].pcie_gen;
3833
3834                                 if (data->pcie_gen_performance.min >
3835                                                 ps->performance_levels[i].pcie_gen)
3836                                         data->pcie_gen_performance.min =
3837                                                         ps->performance_levels[i].pcie_gen;
3838
3839                                 if (data->pcie_lane_performance.max <
3840                                                 ps->performance_levels[i].pcie_lane)
3841                                         data->pcie_lane_performance.max =
3842                                                         ps->performance_levels[i].pcie_lane;
3843
3844                                 if (data->pcie_lane_performance.min >
3845                                                 ps->performance_levels[i].pcie_lane)
3846                                         data->pcie_lane_performance.min =
3847                                                         ps->performance_levels[i].pcie_lane;
3848                         }
3849                         break;
3850                 case PP_StateUILabel_Battery:
3851                         data->use_pcie_power_saving_levels = true;
3852
3853                         for (i = 0; i < ps->performance_level_count; i++) {
3854                                 if (data->pcie_gen_power_saving.max <
3855                                                 ps->performance_levels[i].pcie_gen)
3856                                         data->pcie_gen_power_saving.max =
3857                                                         ps->performance_levels[i].pcie_gen;
3858
3859                                 if (data->pcie_gen_power_saving.min >
3860                                                 ps->performance_levels[i].pcie_gen)
3861                                         data->pcie_gen_power_saving.min =
3862                                                         ps->performance_levels[i].pcie_gen;
3863
3864                                 if (data->pcie_lane_power_saving.max <
3865                                                 ps->performance_levels[i].pcie_lane)
3866                                         data->pcie_lane_power_saving.max =
3867                                                         ps->performance_levels[i].pcie_lane;
3868
3869                                 if (data->pcie_lane_power_saving.min >
3870                                                 ps->performance_levels[i].pcie_lane)
3871                                         data->pcie_lane_power_saving.min =
3872                                                         ps->performance_levels[i].pcie_lane;
3873                         }
3874                         break;
3875                 default:
3876                         break;
3877                 }
3878         }
3879         return 0;
3880 }
3881
3882 static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3883                                 struct pp_power_state  *request_ps,
3884                         const struct pp_power_state *current_ps)
3885 {
3886         struct fiji_power_state *fiji_ps =
3887                                 cast_phw_fiji_power_state(&request_ps->hardware);
3888         uint32_t sclk;
3889         uint32_t mclk;
3890         struct PP_Clocks minimum_clocks = {0};
3891         bool disable_mclk_switching;
3892         bool disable_mclk_switching_for_frame_lock;
3893         struct cgs_display_info info = {0};
3894         const struct phm_clock_and_voltage_limits *max_limits;
3895         uint32_t i;
3896         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3897         struct phm_ppt_v1_information *table_info =
3898                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
3899         int32_t count;
3900         int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3901
3902         data->battery_state = (PP_StateUILabel_Battery ==
3903                         request_ps->classification.ui_label);
3904
3905         PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
3906                                  "VI should always have 2 performance levels",);
3907
3908         max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3909                         &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3910                         &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3911
3912         /* Cap clock DPM tables at DC MAX if it is in DC. */
3913         if (PP_PowerSource_DC == hwmgr->power_source) {
3914                 for (i = 0; i < fiji_ps->performance_level_count; i++) {
3915                         if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
3916                                 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
3917                         if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
3918                                 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
3919                 }
3920         }
3921
3922         fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
3923         fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3924
3925         fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
3926
3927         cgs_get_active_displays_info(hwmgr->device, &info);
3928
3929         /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3930
3931         /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
3932
3933         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3934                         PHM_PlatformCaps_StablePState)) {
3935                 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3936                 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3937
3938                 for (count = table_info->vdd_dep_on_sclk->count - 1;
3939                                 count >= 0; count--) {
3940                         if (stable_pstate_sclk >=
3941                                         table_info->vdd_dep_on_sclk->entries[count].clk) {
3942                                 stable_pstate_sclk =
3943                                                 table_info->vdd_dep_on_sclk->entries[count].clk;
3944                                 break;
3945                         }
3946                 }
3947
3948                 if (count < 0)
3949                         stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3950
3951                 stable_pstate_mclk = max_limits->mclk;
3952
3953                 minimum_clocks.engineClock = stable_pstate_sclk;
3954                 minimum_clocks.memoryClock = stable_pstate_mclk;
3955         }
3956
3957         if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3958                 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3959
3960         if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3961                 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3962
3963         fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3964
3965         if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3966                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
3967                                 hwmgr->platform_descriptor.overdriveLimit.engineClock),
3968                                 "Overdrive sclk exceeds limit",
3969                                 hwmgr->gfx_arbiter.sclk_over_drive =
3970                                                 hwmgr->platform_descriptor.overdriveLimit.engineClock);
3971
3972                 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3973                         fiji_ps->performance_levels[1].engine_clock =
3974                                         hwmgr->gfx_arbiter.sclk_over_drive;
3975         }
3976
3977         if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
3978                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
3979                                 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
3980                                 "Overdrive mclk exceeds limit",
3981                                 hwmgr->gfx_arbiter.mclk_over_drive =
3982                                                 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
3983
3984                 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3985                         fiji_ps->performance_levels[1].memory_clock =
3986                                         hwmgr->gfx_arbiter.mclk_over_drive;
3987         }
3988
3989         disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3990                                     hwmgr->platform_descriptor.platformCaps,
3991                                     PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3992
3993         disable_mclk_switching = (1 < info.display_count) ||
3994                                     disable_mclk_switching_for_frame_lock;
3995
3996         sclk = fiji_ps->performance_levels[0].engine_clock;
3997         mclk = fiji_ps->performance_levels[0].memory_clock;
3998
3999         if (disable_mclk_switching)
4000                 mclk = fiji_ps->performance_levels
4001                 [fiji_ps->performance_level_count - 1].memory_clock;
4002
4003         if (sclk < minimum_clocks.engineClock)
4004                 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
4005                                 max_limits->sclk : minimum_clocks.engineClock;
4006
4007         if (mclk < minimum_clocks.memoryClock)
4008                 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
4009                                 max_limits->mclk : minimum_clocks.memoryClock;
4010
4011         fiji_ps->performance_levels[0].engine_clock = sclk;
4012         fiji_ps->performance_levels[0].memory_clock = mclk;
4013
4014         fiji_ps->performance_levels[1].engine_clock =
4015                 (fiji_ps->performance_levels[1].engine_clock >=
4016                                 fiji_ps->performance_levels[0].engine_clock) ?
4017                                                 fiji_ps->performance_levels[1].engine_clock :
4018                                                 fiji_ps->performance_levels[0].engine_clock;
4019
4020         if (disable_mclk_switching) {
4021                 if (mclk < fiji_ps->performance_levels[1].memory_clock)
4022                         mclk = fiji_ps->performance_levels[1].memory_clock;
4023
4024                 fiji_ps->performance_levels[0].memory_clock = mclk;
4025                 fiji_ps->performance_levels[1].memory_clock = mclk;
4026         } else {
4027                 if (fiji_ps->performance_levels[1].memory_clock <
4028                                 fiji_ps->performance_levels[0].memory_clock)
4029                         fiji_ps->performance_levels[1].memory_clock =
4030                                         fiji_ps->performance_levels[0].memory_clock;
4031         }
4032
4033         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4034                         PHM_PlatformCaps_StablePState)) {
4035                 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4036                         fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4037                         fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4038                         fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4039                         fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4040                 }
4041         }
4042
4043         return 0;
4044 }
4045
4046 static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4047 {
4048         const struct phm_set_power_state_input *states =
4049                         (const struct phm_set_power_state_input *)input;
4050         const struct fiji_power_state *fiji_ps =
4051                         cast_const_phw_fiji_power_state(states->pnew_state);
4052         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4053         struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4054         uint32_t sclk = fiji_ps->performance_levels
4055                         [fiji_ps->performance_level_count - 1].engine_clock;
4056         struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4057         uint32_t mclk = fiji_ps->performance_levels
4058                         [fiji_ps->performance_level_count - 1].memory_clock;
4059         uint32_t i;
4060         struct cgs_display_info info = {0};
4061
4062         data->need_update_smu7_dpm_table = 0;
4063
4064         for (i = 0; i < sclk_table->count; i++) {
4065                 if (sclk == sclk_table->dpm_levels[i].value)
4066                         break;
4067         }
4068
4069         if (i >= sclk_table->count)
4070                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4071         else {
4072                 if(data->display_timing.min_clock_in_sr !=
4073                         hwmgr->display_config.min_core_set_clock_in_sr)
4074                         data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4075         }
4076
4077         for (i = 0; i < mclk_table->count; i++) {
4078                 if (mclk == mclk_table->dpm_levels[i].value)
4079                         break;
4080         }
4081
4082         if (i >= mclk_table->count)
4083                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4084
4085         cgs_get_active_displays_info(hwmgr->device, &info);
4086
4087         if (data->display_timing.num_existing_displays != info.display_count)
4088                 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4089
4090         return 0;
4091 }
4092
4093 static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4094                 const struct fiji_power_state *fiji_ps)
4095 {
4096         uint32_t i;
4097         uint32_t sclk, max_sclk = 0;
4098         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4099         struct fiji_dpm_table *dpm_table = &data->dpm_table;
4100
4101         for (i = 0; i < fiji_ps->performance_level_count; i++) {
4102                 sclk = fiji_ps->performance_levels[i].engine_clock;
4103                 if (max_sclk < sclk)
4104                         max_sclk = sclk;
4105         }
4106
4107         for (i = 0; i < dpm_table->sclk_table.count; i++) {
4108                 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4109                         return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4110                                         dpm_table->pcie_speed_table.dpm_levels
4111                                         [dpm_table->pcie_speed_table.count - 1].value :
4112                                         dpm_table->pcie_speed_table.dpm_levels[i].value);
4113         }
4114
4115         return 0;
4116 }
4117
4118 static int fiji_request_link_speed_change_before_state_change(
4119                 struct pp_hwmgr *hwmgr, const void *input)
4120 {
4121         const struct phm_set_power_state_input *states =
4122                         (const struct phm_set_power_state_input *)input;
4123         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4124         const struct fiji_power_state *fiji_nps =
4125                         cast_const_phw_fiji_power_state(states->pnew_state);
4126         const struct fiji_power_state *fiji_cps =
4127                         cast_const_phw_fiji_power_state(states->pcurrent_state);
4128
4129         uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4130         uint16_t current_link_speed;
4131
4132         if (data->force_pcie_gen == PP_PCIEGenInvalid)
4133                 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4134         else
4135                 current_link_speed = data->force_pcie_gen;
4136
4137         data->force_pcie_gen = PP_PCIEGenInvalid;
4138         data->pspp_notify_required = false;
4139         if (target_link_speed > current_link_speed) {
4140                 switch(target_link_speed) {
4141                 case PP_PCIEGen3:
4142                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4143                                 break;
4144                         data->force_pcie_gen = PP_PCIEGen2;
4145                         if (current_link_speed == PP_PCIEGen2)
4146                                 break;
4147                 case PP_PCIEGen2:
4148                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4149                                 break;
4150                 default:
4151                         data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4152                         break;
4153                 }
4154         } else {
4155                 if (target_link_speed < current_link_speed)
4156                         data->pspp_notify_required = true;
4157         }
4158
4159         return 0;
4160 }
4161
4162 static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4163 {
4164         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4165
4166         if (0 == data->need_update_smu7_dpm_table)
4167                 return 0;
4168
4169         if ((0 == data->sclk_dpm_key_disabled) &&
4170                 (data->need_update_smu7_dpm_table &
4171                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4172                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4173                                 "Trying to freeze SCLK DPM when DPM is disabled",);
4174                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4175                                 PPSMC_MSG_SCLKDPM_FreezeLevel),
4176                                 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4177                                 return -1);
4178         }
4179
4180         if ((0 == data->mclk_dpm_key_disabled) &&
4181                 (data->need_update_smu7_dpm_table &
4182                  DPMTABLE_OD_UPDATE_MCLK)) {
4183                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4184                                 "Trying to freeze MCLK DPM when DPM is disabled",);
4185                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4186                                 PPSMC_MSG_MCLKDPM_FreezeLevel),
4187                                 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4188                                 return -1);
4189         }
4190
4191         return 0;
4192 }
4193
4194 static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4195                 struct pp_hwmgr *hwmgr, const void *input)
4196 {
4197         int result = 0;
4198         const struct phm_set_power_state_input *states =
4199                         (const struct phm_set_power_state_input *)input;
4200         const struct fiji_power_state *fiji_ps =
4201                         cast_const_phw_fiji_power_state(states->pnew_state);
4202         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4203         uint32_t sclk = fiji_ps->performance_levels
4204                         [fiji_ps->performance_level_count - 1].engine_clock;
4205         uint32_t mclk = fiji_ps->performance_levels
4206                         [fiji_ps->performance_level_count - 1].memory_clock;
4207         struct fiji_dpm_table *dpm_table = &data->dpm_table;
4208
4209         struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4210         uint32_t dpm_count, clock_percent;
4211         uint32_t i;
4212
4213         if (0 == data->need_update_smu7_dpm_table)
4214                 return 0;
4215
4216         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4217                 dpm_table->sclk_table.dpm_levels
4218                 [dpm_table->sclk_table.count - 1].value = sclk;
4219
4220                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4221                                 PHM_PlatformCaps_OD6PlusinACSupport) ||
4222                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4223                                         PHM_PlatformCaps_OD6PlusinDCSupport)) {
4224                 /* Need to do calculation based on the golden DPM table
4225                  * as the Heatmap GPU Clock axis is also based on the default values
4226                  */
4227                         PP_ASSERT_WITH_CODE(
4228                                 (golden_dpm_table->sclk_table.dpm_levels
4229                                                 [golden_dpm_table->sclk_table.count - 1].value != 0),
4230                                 "Divide by 0!",
4231                                 return -1);
4232                         dpm_count = dpm_table->sclk_table.count < 2 ?
4233                                         0 : dpm_table->sclk_table.count - 2;
4234                         for (i = dpm_count; i > 1; i--) {
4235                                 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4236                                                 [golden_dpm_table->sclk_table.count-1].value) {
4237                                         clock_percent =
4238                                                 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4239                                                         [golden_dpm_table->sclk_table.count-1].value) * 100) /
4240                                                 golden_dpm_table->sclk_table.dpm_levels
4241                                                         [golden_dpm_table->sclk_table.count-1].value;
4242
4243                                         dpm_table->sclk_table.dpm_levels[i].value =
4244                                                         golden_dpm_table->sclk_table.dpm_levels[i].value +
4245                                                         (golden_dpm_table->sclk_table.dpm_levels[i].value *
4246                                                                 clock_percent)/100;
4247
4248                                 } else if (golden_dpm_table->sclk_table.dpm_levels
4249                                                 [dpm_table->sclk_table.count-1].value > sclk) {
4250                                         clock_percent =
4251                                                 ((golden_dpm_table->sclk_table.dpm_levels
4252                                                 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4253                                                                 100) /
4254                                                 golden_dpm_table->sclk_table.dpm_levels
4255                                                         [golden_dpm_table->sclk_table.count-1].value;
4256
4257                                         dpm_table->sclk_table.dpm_levels[i].value =
4258                                                         golden_dpm_table->sclk_table.dpm_levels[i].value -
4259                                                         (golden_dpm_table->sclk_table.dpm_levels[i].value *
4260                                                                         clock_percent) / 100;
4261                                 } else
4262                                         dpm_table->sclk_table.dpm_levels[i].value =
4263                                                         golden_dpm_table->sclk_table.dpm_levels[i].value;
4264                         }
4265                 }
4266         }
4267
4268         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4269                 dpm_table->mclk_table.dpm_levels
4270                         [dpm_table->mclk_table.count - 1].value = mclk;
4271                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4272                                 PHM_PlatformCaps_OD6PlusinACSupport) ||
4273                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4274                                 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4275
4276                         PP_ASSERT_WITH_CODE(
4277                                         (golden_dpm_table->mclk_table.dpm_levels
4278                                                 [golden_dpm_table->mclk_table.count-1].value != 0),
4279                                         "Divide by 0!",
4280                                         return -1);
4281                         dpm_count = dpm_table->mclk_table.count < 2 ?
4282                                         0 : dpm_table->mclk_table.count - 2;
4283                         for (i = dpm_count; i > 1; i--) {
4284                                 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4285                                                 [golden_dpm_table->mclk_table.count-1].value) {
4286                                         clock_percent = ((mclk -
4287                                                         golden_dpm_table->mclk_table.dpm_levels
4288                                                         [golden_dpm_table->mclk_table.count-1].value) * 100) /
4289                                                         golden_dpm_table->mclk_table.dpm_levels
4290                                                         [golden_dpm_table->mclk_table.count-1].value;
4291
4292                                         dpm_table->mclk_table.dpm_levels[i].value =
4293                                                         golden_dpm_table->mclk_table.dpm_levels[i].value +
4294                                                         (golden_dpm_table->mclk_table.dpm_levels[i].value *
4295                                                                         clock_percent) / 100;
4296
4297                                 } else if (golden_dpm_table->mclk_table.dpm_levels
4298                                                 [dpm_table->mclk_table.count-1].value > mclk) {
4299                                         clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4300                                                         [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4301                                                                         golden_dpm_table->mclk_table.dpm_levels
4302                                                                         [golden_dpm_table->mclk_table.count-1].value;
4303
4304                                         dpm_table->mclk_table.dpm_levels[i].value =
4305                                                         golden_dpm_table->mclk_table.dpm_levels[i].value -
4306                                                         (golden_dpm_table->mclk_table.dpm_levels[i].value *
4307                                                                         clock_percent) / 100;
4308                                 } else
4309                                         dpm_table->mclk_table.dpm_levels[i].value =
4310                                                         golden_dpm_table->mclk_table.dpm_levels[i].value;
4311                         }
4312                 }
4313         }
4314
4315         if (data->need_update_smu7_dpm_table &
4316                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4317                 result = fiji_populate_all_graphic_levels(hwmgr);
4318                 PP_ASSERT_WITH_CODE((0 == result),
4319                                 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4320                                 return result);
4321         }
4322
4323         if (data->need_update_smu7_dpm_table &
4324                         (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4325                 /*populate MCLK dpm table to SMU7 */
4326                 result = fiji_populate_all_memory_levels(hwmgr);
4327                 PP_ASSERT_WITH_CODE((0 == result),
4328                                 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4329                                 return result);
4330         }
4331
4332         return result;
4333 }
4334
4335 static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4336                           struct fiji_single_dpm_table * dpm_table,
4337                              uint32_t low_limit, uint32_t high_limit)
4338 {
4339         uint32_t i;
4340
4341         for (i = 0; i < dpm_table->count; i++) {
4342                 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4343                     (dpm_table->dpm_levels[i].value > high_limit))
4344                         dpm_table->dpm_levels[i].enabled = false;
4345                 else
4346                         dpm_table->dpm_levels[i].enabled = true;
4347         }
4348         return 0;
4349 }
4350
4351 static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4352                 const struct fiji_power_state *fiji_ps)
4353 {
4354         int result = 0;
4355         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4356         uint32_t high_limit_count;
4357
4358         PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4359                         "power state did not have any performance level",
4360                         return -1);
4361
4362         high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4363
4364         fiji_trim_single_dpm_states(hwmgr,
4365                         &(data->dpm_table.sclk_table),
4366                         fiji_ps->performance_levels[0].engine_clock,
4367                         fiji_ps->performance_levels[high_limit_count].engine_clock);
4368
4369         fiji_trim_single_dpm_states(hwmgr,
4370                         &(data->dpm_table.mclk_table),
4371                         fiji_ps->performance_levels[0].memory_clock,
4372                         fiji_ps->performance_levels[high_limit_count].memory_clock);
4373
4374         return result;
4375 }
4376
4377 static int fiji_generate_dpm_level_enable_mask(
4378                 struct pp_hwmgr *hwmgr, const void *input)
4379 {
4380         int result;
4381         const struct phm_set_power_state_input *states =
4382                         (const struct phm_set_power_state_input *)input;
4383         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4384         const struct fiji_power_state *fiji_ps =
4385                         cast_const_phw_fiji_power_state(states->pnew_state);
4386
4387         result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4388         if (result)
4389                 return result;
4390
4391         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4392                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4393         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4394                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4395         data->last_mclk_dpm_enable_mask =
4396                         data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4397
4398         if (data->uvd_enabled) {
4399                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4400                         data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4401         }
4402
4403         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4404                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4405
4406         return 0;
4407 }
4408
4409 int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4410 {
4411         return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4412                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
4413                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
4414 }
4415
4416 int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4417 {
4418         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4419                         PPSMC_MSG_VCEDPM_Enable :
4420                         PPSMC_MSG_VCEDPM_Disable);
4421 }
4422
4423 int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4424 {
4425         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4426                         PPSMC_MSG_SAMUDPM_Enable :
4427                         PPSMC_MSG_SAMUDPM_Disable);
4428 }
4429
4430 int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
4431 {
4432         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4433                         PPSMC_MSG_ACPDPM_Enable :
4434                         PPSMC_MSG_ACPDPM_Disable);
4435 }
4436
4437 int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4438 {
4439         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4440         uint32_t mm_boot_level_offset, mm_boot_level_value;
4441         struct phm_ppt_v1_information *table_info =
4442                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4443
4444         if (!bgate) {
4445                 data->smc_state_table.UvdBootLevel = 0;
4446                 if (table_info->mm_dep_table->count > 0)
4447                         data->smc_state_table.UvdBootLevel =
4448                                         (uint8_t) (table_info->mm_dep_table->count - 1);
4449                 mm_boot_level_offset = data->dpm_table_start +
4450                                 offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
4451                 mm_boot_level_offset /= 4;
4452                 mm_boot_level_offset *= 4;
4453                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4454                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4455                 mm_boot_level_value &= 0x00FFFFFF;
4456                 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4457                 cgs_write_ind_register(hwmgr->device,
4458                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4459
4460                 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4461                                 PHM_PlatformCaps_UVDDPM) ||
4462                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4463                                 PHM_PlatformCaps_StablePState))
4464                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4465                                         PPSMC_MSG_UVDDPM_SetEnabledMask,
4466                                         (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4467         }
4468
4469         return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
4470 }
4471
4472 int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4473 {
4474         const struct phm_set_power_state_input *states =
4475                         (const struct phm_set_power_state_input *)input;
4476         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4477         const struct fiji_power_state *fiji_nps =
4478                         cast_const_phw_fiji_power_state(states->pnew_state);
4479         const struct fiji_power_state *fiji_cps =
4480                         cast_const_phw_fiji_power_state(states->pcurrent_state);
4481
4482         uint32_t mm_boot_level_offset, mm_boot_level_value;
4483         struct phm_ppt_v1_information *table_info =
4484                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4485
4486         if (fiji_nps->vce_clks.evclk >0 &&
4487         (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4488                 data->smc_state_table.VceBootLevel =
4489                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4490
4491                 mm_boot_level_offset = data->dpm_table_start +
4492                                 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4493                 mm_boot_level_offset /= 4;
4494                 mm_boot_level_offset *= 4;
4495                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4496                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4497                 mm_boot_level_value &= 0xFF00FFFF;
4498                 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4499                 cgs_write_ind_register(hwmgr->device,
4500                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4501
4502                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4503                                 PHM_PlatformCaps_StablePState)) {
4504                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4505                                         PPSMC_MSG_VCEDPM_SetEnabledMask,
4506                                         (uint32_t)1 << data->smc_state_table.VceBootLevel);
4507
4508                         fiji_enable_disable_vce_dpm(hwmgr, true);
4509                 } else if (fiji_nps->vce_clks.evclk == 0 &&
4510                                 fiji_cps != NULL &&
4511                                 fiji_cps->vce_clks.evclk > 0)
4512                         fiji_enable_disable_vce_dpm(hwmgr, false);
4513         }
4514
4515         return 0;
4516 }
4517
4518 int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4519 {
4520         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4521         uint32_t mm_boot_level_offset, mm_boot_level_value;
4522         struct phm_ppt_v1_information *table_info =
4523                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4524
4525         if (!bgate) {
4526                 data->smc_state_table.SamuBootLevel =
4527                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4528                 mm_boot_level_offset = data->dpm_table_start +
4529                                 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
4530                 mm_boot_level_offset /= 4;
4531                 mm_boot_level_offset *= 4;
4532                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4533                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4534                 mm_boot_level_value &= 0xFFFFFF00;
4535                 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4536                 cgs_write_ind_register(hwmgr->device,
4537                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4538
4539                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4540                                 PHM_PlatformCaps_StablePState))
4541                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4542                                         PPSMC_MSG_SAMUDPM_SetEnabledMask,
4543                                         (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4544         }
4545
4546         return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
4547 }
4548
4549 int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4550 {
4551         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4552         uint32_t mm_boot_level_offset, mm_boot_level_value;
4553         struct phm_ppt_v1_information *table_info =
4554                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4555
4556         if (!bgate) {
4557                 data->smc_state_table.AcpBootLevel =
4558                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4559                 mm_boot_level_offset = data->dpm_table_start +
4560                                 offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
4561                 mm_boot_level_offset /= 4;
4562                 mm_boot_level_offset *= 4;
4563                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4564                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4565                 mm_boot_level_value &= 0xFFFF00FF;
4566                 mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
4567                 cgs_write_ind_register(hwmgr->device,
4568                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4569
4570                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4571                                 PHM_PlatformCaps_StablePState))
4572                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4573                                                 PPSMC_MSG_ACPDPM_SetEnabledMask,
4574                                                 (uint32_t)(1 << data->smc_state_table.AcpBootLevel));
4575         }
4576
4577         return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
4578 }
4579
4580 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4581 {
4582         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4583
4584         int result = 0;
4585         uint32_t low_sclk_interrupt_threshold = 0;
4586
4587         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4588                         PHM_PlatformCaps_SclkThrottleLowNotification)
4589                 && (hwmgr->gfx_arbiter.sclk_threshold !=
4590                                 data->low_sclk_interrupt_threshold)) {
4591                 data->low_sclk_interrupt_threshold =
4592                                 hwmgr->gfx_arbiter.sclk_threshold;
4593                 low_sclk_interrupt_threshold =
4594                                 data->low_sclk_interrupt_threshold;
4595
4596                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4597
4598                 result = fiji_copy_bytes_to_smc(
4599                                 hwmgr->smumgr,
4600                                 data->dpm_table_start +
4601                                 offsetof(SMU73_Discrete_DpmTable,
4602                                         LowSclkInterruptThreshold),
4603                                 (uint8_t *)&low_sclk_interrupt_threshold,
4604                                 sizeof(uint32_t),
4605                                 data->sram_end);
4606         }
4607
4608         return result;
4609 }
4610
4611 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4612 {
4613         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4614
4615         if (data->need_update_smu7_dpm_table &
4616                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4617                 return fiji_program_memory_timing_parameters(hwmgr);
4618
4619         return 0;
4620 }
4621
4622 static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4623 {
4624         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4625
4626         if (0 == data->need_update_smu7_dpm_table)
4627                 return 0;
4628
4629         if ((0 == data->sclk_dpm_key_disabled) &&
4630                 (data->need_update_smu7_dpm_table &
4631                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4632
4633                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4634                                 "Trying to Unfreeze SCLK DPM when DPM is disabled",);
4635                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4636                                 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4637                         "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4638                         return -1);
4639         }
4640
4641         if ((0 == data->mclk_dpm_key_disabled) &&
4642                 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4643
4644                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4645                                 "Trying to Unfreeze MCLK DPM when DPM is disabled",);
4646                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4647                                 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4648                     "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4649                     return -1);
4650         }
4651
4652         data->need_update_smu7_dpm_table = 0;
4653
4654         return 0;
4655 }
4656
4657 /* Look up the voltaged based on DAL's requested level.
4658  * and then send the requested VDDC voltage to SMC
4659  */
4660 static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4661 {
4662         return;
4663 }
4664
4665 int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4666 {
4667         int result;
4668         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4669
4670         /* Apply minimum voltage based on DAL's request level */
4671         fiji_apply_dal_minimum_voltage_request(hwmgr);
4672
4673         if (0 == data->sclk_dpm_key_disabled) {
4674                 /* Checking if DPM is running.  If we discover hang because of this,
4675                  *  we should skip this message.
4676                  */
4677                 if (!fiji_is_dpm_running(hwmgr))
4678                         printk(KERN_ERR "[ powerplay ] "
4679                                         "Trying to set Enable Mask when DPM is disabled \n");
4680
4681                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4682                         result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4683                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
4684                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4685                         PP_ASSERT_WITH_CODE((0 == result),
4686                                 "Set Sclk Dpm enable Mask failed", return -1);
4687                 }
4688         }
4689
4690         if (0 == data->mclk_dpm_key_disabled) {
4691                 /* Checking if DPM is running.  If we discover hang because of this,
4692                  *  we should skip this message.
4693                  */
4694                 if (!fiji_is_dpm_running(hwmgr))
4695                         printk(KERN_ERR "[ powerplay ]"
4696                                         " Trying to set Enable Mask when DPM is disabled \n");
4697
4698                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4699                         result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4700                                         PPSMC_MSG_MCLKDPM_SetEnabledMask,
4701                                         data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4702                         PP_ASSERT_WITH_CODE((0 == result),
4703                                 "Set Mclk Dpm enable Mask failed", return -1);
4704                 }
4705         }
4706
4707         return 0;
4708 }
4709
4710 static int fiji_notify_link_speed_change_after_state_change(
4711                 struct pp_hwmgr *hwmgr, const void *input)
4712 {
4713         const struct phm_set_power_state_input *states =
4714                         (const struct phm_set_power_state_input *)input;
4715         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4716         const struct fiji_power_state *fiji_ps =
4717                         cast_const_phw_fiji_power_state(states->pnew_state);
4718         uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4719         uint8_t  request;
4720
4721         if (data->pspp_notify_required) {
4722                 if (target_link_speed == PP_PCIEGen3)
4723                         request = PCIE_PERF_REQ_GEN3;
4724                 else if (target_link_speed == PP_PCIEGen2)
4725                         request = PCIE_PERF_REQ_GEN2;
4726                 else
4727                         request = PCIE_PERF_REQ_GEN1;
4728
4729                 if(request == PCIE_PERF_REQ_GEN1 &&
4730                                 fiji_get_current_pcie_speed(hwmgr) > 0)
4731                         return 0;
4732
4733                 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4734                         if (PP_PCIEGen2 == target_link_speed)
4735                                 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4736                         else
4737                                 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4738                 }
4739         }
4740
4741         return 0;
4742 }
4743
4744 static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4745                 const void *input)
4746 {
4747         int tmp_result, result = 0;
4748
4749         tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4750         PP_ASSERT_WITH_CODE((0 == tmp_result),
4751                         "Failed to find DPM states clocks in DPM table!",
4752                         result = tmp_result);
4753
4754         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4755                         PHM_PlatformCaps_PCIEPerformanceRequest)) {
4756                 tmp_result =
4757                         fiji_request_link_speed_change_before_state_change(hwmgr, input);
4758                 PP_ASSERT_WITH_CODE((0 == tmp_result),
4759                                 "Failed to request link speed change before state change!",
4760                                 result = tmp_result);
4761         }
4762
4763         tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4764         PP_ASSERT_WITH_CODE((0 == tmp_result),
4765                         "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4766
4767         tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4768         PP_ASSERT_WITH_CODE((0 == tmp_result),
4769                         "Failed to populate and upload SCLK MCLK DPM levels!",
4770                         result = tmp_result);
4771
4772         tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4773         PP_ASSERT_WITH_CODE((0 == tmp_result),
4774                         "Failed to generate DPM level enabled mask!",
4775                         result = tmp_result);
4776
4777         tmp_result = fiji_update_vce_dpm(hwmgr, input);
4778         PP_ASSERT_WITH_CODE((0 == tmp_result),
4779                         "Failed to update VCE DPM!",
4780                         result = tmp_result);
4781
4782         tmp_result = fiji_update_sclk_threshold(hwmgr);
4783         PP_ASSERT_WITH_CODE((0 == tmp_result),
4784                         "Failed to update SCLK threshold!",
4785                         result = tmp_result);
4786
4787         tmp_result = fiji_program_mem_timing_parameters(hwmgr);
4788         PP_ASSERT_WITH_CODE((0 == tmp_result),
4789                         "Failed to program memory timing parameters!",
4790                         result = tmp_result);
4791
4792         tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
4793         PP_ASSERT_WITH_CODE((0 == tmp_result),
4794                         "Failed to unfreeze SCLK MCLK DPM!",
4795                         result = tmp_result);
4796
4797         tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
4798         PP_ASSERT_WITH_CODE((0 == tmp_result),
4799                         "Failed to upload DPM level enabled mask!",
4800                         result = tmp_result);
4801
4802         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4803                         PHM_PlatformCaps_PCIEPerformanceRequest)) {
4804                 tmp_result =
4805                         fiji_notify_link_speed_change_after_state_change(hwmgr, input);
4806                 PP_ASSERT_WITH_CODE((0 == tmp_result),
4807                                 "Failed to notify link speed change after state change!",
4808                                 result = tmp_result);
4809         }
4810
4811         return result;
4812 }
4813
4814 static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4815 {
4816         struct pp_power_state  *ps;
4817         struct fiji_power_state  *fiji_ps;
4818
4819         if (hwmgr == NULL)
4820                 return -EINVAL;
4821
4822         ps = hwmgr->request_ps;
4823
4824         if (ps == NULL)
4825                 return -EINVAL;
4826
4827         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4828
4829         if (low)
4830                 return fiji_ps->performance_levels[0].engine_clock;
4831         else
4832                 return fiji_ps->performance_levels
4833                                 [fiji_ps->performance_level_count-1].engine_clock;
4834 }
4835
4836 static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4837 {
4838         struct pp_power_state  *ps;
4839         struct fiji_power_state  *fiji_ps;
4840
4841         if (hwmgr == NULL)
4842                 return -EINVAL;
4843
4844         ps = hwmgr->request_ps;
4845
4846         if (ps == NULL)
4847                 return -EINVAL;
4848
4849         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4850
4851         if (low)
4852                 return fiji_ps->performance_levels[0].memory_clock;
4853         else
4854                 return fiji_ps->performance_levels
4855                                 [fiji_ps->performance_level_count-1].memory_clock;
4856 }
4857
4858 static void fiji_print_current_perforce_level(
4859                 struct pp_hwmgr *hwmgr, struct seq_file *m)
4860 {
4861         uint32_t sclk, mclk, activity_percent = 0;
4862         uint32_t offset;
4863         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4864
4865         smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4866
4867         sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4868
4869         smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4870
4871         mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4872         seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n",
4873                         mclk / 100, sclk / 100);
4874
4875         offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
4876         activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4877         activity_percent += 0x80;
4878         activity_percent >>= 8;
4879
4880         seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
4881
4882         seq_printf(m, "uvd    %sabled\n", data->uvd_power_gated ? "dis" : "en");
4883
4884         seq_printf(m, "vce    %sabled\n", data->vce_power_gated ? "dis" : "en");
4885 }
4886
4887 static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
4888 {
4889         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4890         uint32_t num_active_displays = 0;
4891         uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4892                         CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4893         uint32_t display_gap2;
4894         uint32_t pre_vbi_time_in_us;
4895         uint32_t frame_time_in_us;
4896         uint32_t ref_clock;
4897         uint32_t refresh_rate = 0;
4898         struct cgs_display_info info = {0};
4899         struct cgs_mode_info mode_info;
4900
4901         info.mode_info = &mode_info;
4902
4903         cgs_get_active_displays_info(hwmgr->device, &info);
4904         num_active_displays = info.display_count;
4905
4906         display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
4907                         DISP_GAP, (num_active_displays > 0)?
4908                         DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4909         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4910                         ixCG_DISPLAY_GAP_CNTL, display_gap);
4911
4912         ref_clock = mode_info.ref_clock;
4913         refresh_rate = mode_info.refresh_rate;
4914
4915         if (refresh_rate == 0)
4916                 refresh_rate = 60;
4917
4918         frame_time_in_us = 1000000 / refresh_rate;
4919
4920         pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
4921         display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4922
4923         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4924                         ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4925
4926         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4927                         data->soft_regs_start +
4928                         offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
4929
4930         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4931                         data->soft_regs_start +
4932                         offsetof(SMU73_SoftRegisters, VBlankTimeout),
4933                         (frame_time_in_us - pre_vbi_time_in_us));
4934
4935         if (num_active_displays == 1)
4936                 tonga_notify_smc_display_change(hwmgr, true);
4937
4938         return 0;
4939 }
4940
4941 int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4942 {
4943         return fiji_program_display_gap(hwmgr);
4944 }
4945
4946 static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
4947                 uint16_t us_max_fan_pwm)
4948 {
4949         hwmgr->thermal_controller.
4950         advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4951
4952         if (phm_is_hw_access_blocked(hwmgr))
4953                 return 0;
4954
4955         return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4956                         PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4957 }
4958
4959 static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
4960                 uint16_t us_max_fan_rpm)
4961 {
4962         hwmgr->thermal_controller.
4963         advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4964
4965         if (phm_is_hw_access_blocked(hwmgr))
4966                 return 0;
4967
4968         return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4969                         PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4970 }
4971
4972 int fiji_dpm_set_interrupt_state(void *private_data,
4973                                          unsigned src_id, unsigned type,
4974                                          int enabled)
4975 {
4976         uint32_t cg_thermal_int;
4977         struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
4978
4979         if (hwmgr == NULL)
4980                 return -EINVAL;
4981
4982         switch (type) {
4983         case AMD_THERMAL_IRQ_LOW_TO_HIGH:
4984                 if (enabled) {
4985                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4986                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
4987                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
4988                         cgs_write_ind_register(hwmgr->device,
4989                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
4990                 } else {
4991                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4992                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
4993                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
4994                         cgs_write_ind_register(hwmgr->device,
4995                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
4996                 }
4997                 break;
4998
4999         case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5000                 if (enabled) {
5001                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5002                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5003                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5004                         cgs_write_ind_register(hwmgr->device,
5005                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5006                 } else {
5007                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5008                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5009                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5010                         cgs_write_ind_register(hwmgr->device,
5011                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5012                 }
5013                 break;
5014         default:
5015                 break;
5016         }
5017         return 0;
5018 }
5019
5020 int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5021                                         const void *thermal_interrupt_info)
5022 {
5023         int result;
5024         const struct pp_interrupt_registration_info *info =
5025                         (const struct pp_interrupt_registration_info *)
5026                         thermal_interrupt_info;
5027
5028         if (info == NULL)
5029                 return -EINVAL;
5030
5031         result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5032                                 fiji_dpm_set_interrupt_state,
5033                                 info->call_back, info->context);
5034
5035         if (result)
5036                 return -EINVAL;
5037
5038         result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5039                                 fiji_dpm_set_interrupt_state,
5040                                 info->call_back, info->context);
5041
5042         if (result)
5043                 return -EINVAL;
5044
5045         return 0;
5046 }
5047
5048 static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5049 {
5050         if (mode) {
5051                 /* stop auto-manage */
5052                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5053                                 PHM_PlatformCaps_MicrocodeFanControl))
5054                         fiji_fan_ctrl_stop_smc_fan_control(hwmgr);
5055                 fiji_fan_ctrl_set_static_mode(hwmgr, mode);
5056         } else
5057                 /* restart auto-manage */
5058                 fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr);
5059
5060         return 0;
5061 }
5062
5063 static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5064 {
5065         if (hwmgr->fan_ctrl_is_in_default_mode)
5066                 return hwmgr->fan_ctrl_default_mode;
5067         else
5068                 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5069                                 CG_FDO_CTRL2, FDO_PWM_MODE);
5070 }
5071
5072 static int fiji_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
5073 {
5074         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5075
5076         if (!data->soft_pp_table) {
5077                 data->soft_pp_table = kmemdup(hwmgr->soft_pp_table,
5078                                               hwmgr->soft_pp_table_size,
5079                                               GFP_KERNEL);
5080                 if (!data->soft_pp_table)
5081                         return -ENOMEM;
5082         }
5083
5084         *table = (char *)&data->soft_pp_table;
5085
5086         return hwmgr->soft_pp_table_size;
5087 }
5088
5089 static int fiji_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
5090 {
5091         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5092
5093         if (!data->soft_pp_table) {
5094                 data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL);
5095                 if (!data->soft_pp_table)
5096                         return -ENOMEM;
5097         }
5098
5099         memcpy(data->soft_pp_table, buf, size);
5100
5101         hwmgr->soft_pp_table = data->soft_pp_table;
5102
5103         /* TODO: re-init powerplay to implement modified pptable */
5104
5105         return 0;
5106 }
5107
5108 static int fiji_force_clock_level(struct pp_hwmgr *hwmgr,
5109                 enum pp_clock_type type, uint32_t mask)
5110 {
5111         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5112
5113         if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
5114                 return -EINVAL;
5115
5116         switch (type) {
5117         case PP_SCLK:
5118                 if (!data->sclk_dpm_key_disabled)
5119                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5120                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
5121                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
5122                 break;
5123
5124         case PP_MCLK:
5125                 if (!data->mclk_dpm_key_disabled)
5126                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5127                                         PPSMC_MSG_MCLKDPM_SetEnabledMask,
5128                                         data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
5129                 break;
5130
5131         case PP_PCIE:
5132         {
5133                 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
5134                 uint32_t level = 0;
5135
5136                 while (tmp >>= 1)
5137                         level++;
5138
5139                 if (!data->pcie_dpm_key_disabled)
5140                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5141                                         PPSMC_MSG_PCIeDPM_ForceLevel,
5142                                         level);
5143                 break;
5144         }
5145         default:
5146                 break;
5147         }
5148
5149         return 0;
5150 }
5151
5152 static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr,
5153                 enum pp_clock_type type, char *buf)
5154 {
5155         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5156         struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5157         struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5158         struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
5159         int i, now, size = 0;
5160         uint32_t clock, pcie_speed;
5161
5162         switch (type) {
5163         case PP_SCLK:
5164                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5165                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5166
5167                 for (i = 0; i < sclk_table->count; i++) {
5168                         if (clock > sclk_table->dpm_levels[i].value)
5169                                 continue;
5170                         break;
5171                 }
5172                 now = i;
5173
5174                 for (i = 0; i < sclk_table->count; i++)
5175                         size += sprintf(buf + size, "%d: %uMhz %s\n",
5176                                         i, sclk_table->dpm_levels[i].value / 100,
5177                                         (i == now) ? "*" : "");
5178                 break;
5179         case PP_MCLK:
5180                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5181                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5182
5183                 for (i = 0; i < mclk_table->count; i++) {
5184                         if (clock > mclk_table->dpm_levels[i].value)
5185                                 continue;
5186                         break;
5187                 }
5188                 now = i;
5189
5190                 for (i = 0; i < mclk_table->count; i++)
5191                         size += sprintf(buf + size, "%d: %uMhz %s\n",
5192                                         i, mclk_table->dpm_levels[i].value / 100,
5193                                         (i == now) ? "*" : "");
5194                 break;
5195         case PP_PCIE:
5196                 pcie_speed = fiji_get_current_pcie_speed(hwmgr);
5197                 for (i = 0; i < pcie_table->count; i++) {
5198                         if (pcie_speed != pcie_table->dpm_levels[i].value)
5199                                 continue;
5200                         break;
5201                 }
5202                 now = i;
5203
5204                 for (i = 0; i < pcie_table->count; i++)
5205                         size += sprintf(buf + size, "%d: %s %s\n", i,
5206                                         (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" :
5207                                         (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
5208                                         (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
5209                                         (i == now) ? "*" : "");
5210                 break;
5211         default:
5212                 break;
5213         }
5214         return size;
5215 }
5216
5217 static inline bool fiji_are_power_levels_equal(const struct fiji_performance_level *pl1,
5218                                                            const struct fiji_performance_level *pl2)
5219 {
5220         return ((pl1->memory_clock == pl2->memory_clock) &&
5221                   (pl1->engine_clock == pl2->engine_clock) &&
5222                   (pl1->pcie_gen == pl2->pcie_gen) &&
5223                   (pl1->pcie_lane == pl2->pcie_lane));
5224 }
5225
5226 int fiji_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5227 {
5228         const struct fiji_power_state *psa = cast_const_phw_fiji_power_state(pstate1);
5229         const struct fiji_power_state *psb = cast_const_phw_fiji_power_state(pstate2);
5230         int i;
5231
5232         if (equal == NULL || psa == NULL || psb == NULL)
5233                 return -EINVAL;
5234
5235         /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5236         if (psa->performance_level_count != psb->performance_level_count) {
5237                 *equal = false;
5238                 return 0;
5239         }
5240
5241         for (i = 0; i < psa->performance_level_count; i++) {
5242                 if (!fiji_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5243                         /* If we have found even one performance level pair that is different the states are different. */
5244                         *equal = false;
5245                         return 0;
5246                 }
5247         }
5248
5249         /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5250         *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
5251         *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
5252         *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5253         *equal &= (psa->acp_clk == psb->acp_clk);
5254
5255         return 0;
5256 }
5257
5258 bool fiji_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5259 {
5260         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5261         bool is_update_required = false;
5262         struct cgs_display_info info = {0,0,NULL};
5263
5264         cgs_get_active_displays_info(hwmgr->device, &info);
5265
5266         if (data->display_timing.num_existing_displays != info.display_count)
5267                 is_update_required = true;
5268
5269         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5270                 if(hwmgr->display_config.min_core_set_clock_in_sr != data->display_timing.min_clock_in_sr)
5271                         is_update_required = true;
5272         }
5273
5274         return is_update_required;
5275 }
5276
5277
5278 static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
5279         .backend_init = &fiji_hwmgr_backend_init,
5280         .backend_fini = &fiji_hwmgr_backend_fini,
5281         .asic_setup = &fiji_setup_asic_task,
5282         .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
5283         .force_dpm_level = &fiji_dpm_force_dpm_level,
5284         .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
5285         .get_power_state_size = &fiji_get_power_state_size,
5286         .get_pp_table_entry = &fiji_get_pp_table_entry,
5287         .patch_boot_state = &fiji_patch_boot_state,
5288         .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
5289         .power_state_set = &fiji_set_power_state_tasks,
5290         .get_sclk = &fiji_dpm_get_sclk,
5291         .get_mclk = &fiji_dpm_get_mclk,
5292         .print_current_perforce_level = &fiji_print_current_perforce_level,
5293         .powergate_uvd = &fiji_phm_powergate_uvd,
5294         .powergate_vce = &fiji_phm_powergate_vce,
5295         .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
5296         .notify_smc_display_config_after_ps_adjustment =
5297                         &tonga_notify_smc_display_config_after_ps_adjustment,
5298         .display_config_changed = &fiji_display_configuration_changed_task,
5299         .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
5300         .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
5301         .get_temperature = fiji_thermal_get_temperature,
5302         .stop_thermal_controller = fiji_thermal_stop_thermal_controller,
5303         .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
5304         .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
5305         .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
5306         .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
5307         .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
5308         .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
5309         .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
5310         .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
5311         .set_fan_control_mode = fiji_set_fan_control_mode,
5312         .get_fan_control_mode = fiji_get_fan_control_mode,
5313         .check_states_equal = fiji_check_states_equal,
5314         .check_smc_update_required_for_display_configuration = fiji_check_smc_update_required_for_display_configuration,
5315         .get_pp_table = fiji_get_pp_table,
5316         .set_pp_table = fiji_set_pp_table,
5317         .force_clock_level = fiji_force_clock_level,
5318         .print_clock_levels = fiji_print_clock_levels,
5319 };
5320
5321 int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
5322 {
5323         struct fiji_hwmgr  *data;
5324         int ret = 0;
5325
5326         data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
5327         if (data == NULL)
5328                 return -ENOMEM;
5329
5330         hwmgr->backend = data;
5331         hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
5332         hwmgr->pptable_func = &tonga_pptable_funcs;
5333         pp_fiji_thermal_initialize(hwmgr);
5334         return ret;
5335 }