7ae5bfdbf569f7cc1f9f73679f2299a46ab1d4d1
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * DOC: RC6
36  *
37  * RC6 is a special power stage which allows the GPU to enter an very
38  * low-voltage mode when idle, using down to 0V while at this stage.  This
39  * stage is entered automatically when the GPU is idle when RC6 support is
40  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
41  *
42  * There are different RC6 modes available in Intel GPU, which differentiate
43  * among each other with the latency required to enter and leave RC6 and
44  * voltage consumed by the GPU in different states.
45  *
46  * The combination of the following flags define which states GPU is allowed
47  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
48  * RC6pp is deepest RC6. Their support by hardware varies according to the
49  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
50  * which brings the most power savings; deeper states save more power, but
51  * require higher latency to switch to and wake up.
52  */
53 #define INTEL_RC6_ENABLE                        (1<<0)
54 #define INTEL_RC6p_ENABLE                       (1<<1)
55 #define INTEL_RC6pp_ENABLE                      (1<<2)
56
57 static void gen9_init_clock_gating(struct drm_device *dev)
58 {
59         struct drm_i915_private *dev_priv = dev->dev_private;
60
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         I915_WRITE(GEN8_CONFIG0,
66                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 }
68
69 static void bxt_init_clock_gating(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72
73         gen9_init_clock_gating(dev);
74
75         /* WaDisableSDEUnitClockGating:bxt */
76         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
77                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78
79         /*
80          * FIXME:
81          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
82          */
83         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
84                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
85
86         /*
87          * Wa: Backlight PWM may stop in the asserted state, causing backlight
88          * to stay fully on.
89          */
90         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
91                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
92                            PWM1_GATING_DIS | PWM2_GATING_DIS);
93 }
94
95 static void i915_pineview_get_mem_freq(struct drm_device *dev)
96 {
97         struct drm_i915_private *dev_priv = dev->dev_private;
98         u32 tmp;
99
100         tmp = I915_READ(CLKCFG);
101
102         switch (tmp & CLKCFG_FSB_MASK) {
103         case CLKCFG_FSB_533:
104                 dev_priv->fsb_freq = 533; /* 133*4 */
105                 break;
106         case CLKCFG_FSB_800:
107                 dev_priv->fsb_freq = 800; /* 200*4 */
108                 break;
109         case CLKCFG_FSB_667:
110                 dev_priv->fsb_freq =  667; /* 167*4 */
111                 break;
112         case CLKCFG_FSB_400:
113                 dev_priv->fsb_freq = 400; /* 100*4 */
114                 break;
115         }
116
117         switch (tmp & CLKCFG_MEM_MASK) {
118         case CLKCFG_MEM_533:
119                 dev_priv->mem_freq = 533;
120                 break;
121         case CLKCFG_MEM_667:
122                 dev_priv->mem_freq = 667;
123                 break;
124         case CLKCFG_MEM_800:
125                 dev_priv->mem_freq = 800;
126                 break;
127         }
128
129         /* detect pineview DDR3 setting */
130         tmp = I915_READ(CSHRDDR3CTL);
131         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
132 }
133
134 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
135 {
136         struct drm_i915_private *dev_priv = dev->dev_private;
137         u16 ddrpll, csipll;
138
139         ddrpll = I915_READ16(DDRMPLL1);
140         csipll = I915_READ16(CSIPLL0);
141
142         switch (ddrpll & 0xff) {
143         case 0xc:
144                 dev_priv->mem_freq = 800;
145                 break;
146         case 0x10:
147                 dev_priv->mem_freq = 1066;
148                 break;
149         case 0x14:
150                 dev_priv->mem_freq = 1333;
151                 break;
152         case 0x18:
153                 dev_priv->mem_freq = 1600;
154                 break;
155         default:
156                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
157                                  ddrpll & 0xff);
158                 dev_priv->mem_freq = 0;
159                 break;
160         }
161
162         dev_priv->ips.r_t = dev_priv->mem_freq;
163
164         switch (csipll & 0x3ff) {
165         case 0x00c:
166                 dev_priv->fsb_freq = 3200;
167                 break;
168         case 0x00e:
169                 dev_priv->fsb_freq = 3733;
170                 break;
171         case 0x010:
172                 dev_priv->fsb_freq = 4266;
173                 break;
174         case 0x012:
175                 dev_priv->fsb_freq = 4800;
176                 break;
177         case 0x014:
178                 dev_priv->fsb_freq = 5333;
179                 break;
180         case 0x016:
181                 dev_priv->fsb_freq = 5866;
182                 break;
183         case 0x018:
184                 dev_priv->fsb_freq = 6400;
185                 break;
186         default:
187                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
188                                  csipll & 0x3ff);
189                 dev_priv->fsb_freq = 0;
190                 break;
191         }
192
193         if (dev_priv->fsb_freq == 3200) {
194                 dev_priv->ips.c_m = 0;
195         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
196                 dev_priv->ips.c_m = 1;
197         } else {
198                 dev_priv->ips.c_m = 2;
199         }
200 }
201
202 static const struct cxsr_latency cxsr_latency_table[] = {
203         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
204         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
205         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
206         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
207         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
208
209         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
210         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
211         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
212         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
213         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
214
215         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
216         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
217         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
218         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
219         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
220
221         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
222         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
223         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
224         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
225         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
226
227         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
228         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
229         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
230         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
231         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
232
233         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
234         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
235         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
236         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
237         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
238 };
239
240 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
241                                                          int is_ddr3,
242                                                          int fsb,
243                                                          int mem)
244 {
245         const struct cxsr_latency *latency;
246         int i;
247
248         if (fsb == 0 || mem == 0)
249                 return NULL;
250
251         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
252                 latency = &cxsr_latency_table[i];
253                 if (is_desktop == latency->is_desktop &&
254                     is_ddr3 == latency->is_ddr3 &&
255                     fsb == latency->fsb_freq && mem == latency->mem_freq)
256                         return latency;
257         }
258
259         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
260
261         return NULL;
262 }
263
264 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
265 {
266         u32 val;
267
268         mutex_lock(&dev_priv->rps.hw_lock);
269
270         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
271         if (enable)
272                 val &= ~FORCE_DDR_HIGH_FREQ;
273         else
274                 val |= FORCE_DDR_HIGH_FREQ;
275         val &= ~FORCE_DDR_LOW_FREQ;
276         val |= FORCE_DDR_FREQ_REQ_ACK;
277         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
278
279         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
280                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
281                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
282
283         mutex_unlock(&dev_priv->rps.hw_lock);
284 }
285
286 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
287 {
288         u32 val;
289
290         mutex_lock(&dev_priv->rps.hw_lock);
291
292         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
293         if (enable)
294                 val |= DSP_MAXFIFO_PM5_ENABLE;
295         else
296                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
297         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
298
299         mutex_unlock(&dev_priv->rps.hw_lock);
300 }
301
302 #define FW_WM(value, plane) \
303         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
304
305 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
306 {
307         struct drm_device *dev = dev_priv->dev;
308         u32 val;
309
310         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
311                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
312                 POSTING_READ(FW_BLC_SELF_VLV);
313                 dev_priv->wm.vlv.cxsr = enable;
314         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
315                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
316                 POSTING_READ(FW_BLC_SELF);
317         } else if (IS_PINEVIEW(dev)) {
318                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
319                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
320                 I915_WRITE(DSPFW3, val);
321                 POSTING_READ(DSPFW3);
322         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
323                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
324                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
325                 I915_WRITE(FW_BLC_SELF, val);
326                 POSTING_READ(FW_BLC_SELF);
327         } else if (IS_I915GM(dev)) {
328                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
329                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
330                 I915_WRITE(INSTPM, val);
331                 POSTING_READ(INSTPM);
332         } else {
333                 return;
334         }
335
336         DRM_DEBUG_KMS("memory self-refresh is %s\n",
337                       enable ? "enabled" : "disabled");
338 }
339
340
341 /*
342  * Latency for FIFO fetches is dependent on several factors:
343  *   - memory configuration (speed, channels)
344  *   - chipset
345  *   - current MCH state
346  * It can be fairly high in some situations, so here we assume a fairly
347  * pessimal value.  It's a tradeoff between extra memory fetches (if we
348  * set this value too high, the FIFO will fetch frequently to stay full)
349  * and power consumption (set it too low to save power and we might see
350  * FIFO underruns and display "flicker").
351  *
352  * A value of 5us seems to be a good balance; safe for very low end
353  * platforms but not overly aggressive on lower latency configs.
354  */
355 static const int pessimal_latency_ns = 5000;
356
357 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
358         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
359
360 static int vlv_get_fifo_size(struct drm_device *dev,
361                               enum pipe pipe, int plane)
362 {
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         int sprite0_start, sprite1_start, size;
365
366         switch (pipe) {
367                 uint32_t dsparb, dsparb2, dsparb3;
368         case PIPE_A:
369                 dsparb = I915_READ(DSPARB);
370                 dsparb2 = I915_READ(DSPARB2);
371                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
372                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
373                 break;
374         case PIPE_B:
375                 dsparb = I915_READ(DSPARB);
376                 dsparb2 = I915_READ(DSPARB2);
377                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
378                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
379                 break;
380         case PIPE_C:
381                 dsparb2 = I915_READ(DSPARB2);
382                 dsparb3 = I915_READ(DSPARB3);
383                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
384                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
385                 break;
386         default:
387                 return 0;
388         }
389
390         switch (plane) {
391         case 0:
392                 size = sprite0_start;
393                 break;
394         case 1:
395                 size = sprite1_start - sprite0_start;
396                 break;
397         case 2:
398                 size = 512 - 1 - sprite1_start;
399                 break;
400         default:
401                 return 0;
402         }
403
404         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
405                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
406                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
407                       size);
408
409         return size;
410 }
411
412 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
413 {
414         struct drm_i915_private *dev_priv = dev->dev_private;
415         uint32_t dsparb = I915_READ(DSPARB);
416         int size;
417
418         size = dsparb & 0x7f;
419         if (plane)
420                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
421
422         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
423                       plane ? "B" : "A", size);
424
425         return size;
426 }
427
428 static int i830_get_fifo_size(struct drm_device *dev, int plane)
429 {
430         struct drm_i915_private *dev_priv = dev->dev_private;
431         uint32_t dsparb = I915_READ(DSPARB);
432         int size;
433
434         size = dsparb & 0x1ff;
435         if (plane)
436                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
437         size >>= 1; /* Convert to cachelines */
438
439         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
440                       plane ? "B" : "A", size);
441
442         return size;
443 }
444
445 static int i845_get_fifo_size(struct drm_device *dev, int plane)
446 {
447         struct drm_i915_private *dev_priv = dev->dev_private;
448         uint32_t dsparb = I915_READ(DSPARB);
449         int size;
450
451         size = dsparb & 0x7f;
452         size >>= 2; /* Convert to cachelines */
453
454         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
455                       plane ? "B" : "A",
456                       size);
457
458         return size;
459 }
460
461 /* Pineview has different values for various configs */
462 static const struct intel_watermark_params pineview_display_wm = {
463         .fifo_size = PINEVIEW_DISPLAY_FIFO,
464         .max_wm = PINEVIEW_MAX_WM,
465         .default_wm = PINEVIEW_DFT_WM,
466         .guard_size = PINEVIEW_GUARD_WM,
467         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
468 };
469 static const struct intel_watermark_params pineview_display_hplloff_wm = {
470         .fifo_size = PINEVIEW_DISPLAY_FIFO,
471         .max_wm = PINEVIEW_MAX_WM,
472         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
473         .guard_size = PINEVIEW_GUARD_WM,
474         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
475 };
476 static const struct intel_watermark_params pineview_cursor_wm = {
477         .fifo_size = PINEVIEW_CURSOR_FIFO,
478         .max_wm = PINEVIEW_CURSOR_MAX_WM,
479         .default_wm = PINEVIEW_CURSOR_DFT_WM,
480         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
481         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
482 };
483 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
484         .fifo_size = PINEVIEW_CURSOR_FIFO,
485         .max_wm = PINEVIEW_CURSOR_MAX_WM,
486         .default_wm = PINEVIEW_CURSOR_DFT_WM,
487         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
488         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 };
490 static const struct intel_watermark_params g4x_wm_info = {
491         .fifo_size = G4X_FIFO_SIZE,
492         .max_wm = G4X_MAX_WM,
493         .default_wm = G4X_MAX_WM,
494         .guard_size = 2,
495         .cacheline_size = G4X_FIFO_LINE_SIZE,
496 };
497 static const struct intel_watermark_params g4x_cursor_wm_info = {
498         .fifo_size = I965_CURSOR_FIFO,
499         .max_wm = I965_CURSOR_MAX_WM,
500         .default_wm = I965_CURSOR_DFT_WM,
501         .guard_size = 2,
502         .cacheline_size = G4X_FIFO_LINE_SIZE,
503 };
504 static const struct intel_watermark_params i965_cursor_wm_info = {
505         .fifo_size = I965_CURSOR_FIFO,
506         .max_wm = I965_CURSOR_MAX_WM,
507         .default_wm = I965_CURSOR_DFT_WM,
508         .guard_size = 2,
509         .cacheline_size = I915_FIFO_LINE_SIZE,
510 };
511 static const struct intel_watermark_params i945_wm_info = {
512         .fifo_size = I945_FIFO_SIZE,
513         .max_wm = I915_MAX_WM,
514         .default_wm = 1,
515         .guard_size = 2,
516         .cacheline_size = I915_FIFO_LINE_SIZE,
517 };
518 static const struct intel_watermark_params i915_wm_info = {
519         .fifo_size = I915_FIFO_SIZE,
520         .max_wm = I915_MAX_WM,
521         .default_wm = 1,
522         .guard_size = 2,
523         .cacheline_size = I915_FIFO_LINE_SIZE,
524 };
525 static const struct intel_watermark_params i830_a_wm_info = {
526         .fifo_size = I855GM_FIFO_SIZE,
527         .max_wm = I915_MAX_WM,
528         .default_wm = 1,
529         .guard_size = 2,
530         .cacheline_size = I830_FIFO_LINE_SIZE,
531 };
532 static const struct intel_watermark_params i830_bc_wm_info = {
533         .fifo_size = I855GM_FIFO_SIZE,
534         .max_wm = I915_MAX_WM/2,
535         .default_wm = 1,
536         .guard_size = 2,
537         .cacheline_size = I830_FIFO_LINE_SIZE,
538 };
539 static const struct intel_watermark_params i845_wm_info = {
540         .fifo_size = I830_FIFO_SIZE,
541         .max_wm = I915_MAX_WM,
542         .default_wm = 1,
543         .guard_size = 2,
544         .cacheline_size = I830_FIFO_LINE_SIZE,
545 };
546
547 /**
548  * intel_calculate_wm - calculate watermark level
549  * @clock_in_khz: pixel clock
550  * @wm: chip FIFO params
551  * @cpp: bytes per pixel
552  * @latency_ns: memory latency for the platform
553  *
554  * Calculate the watermark level (the level at which the display plane will
555  * start fetching from memory again).  Each chip has a different display
556  * FIFO size and allocation, so the caller needs to figure that out and pass
557  * in the correct intel_watermark_params structure.
558  *
559  * As the pixel clock runs, the FIFO will be drained at a rate that depends
560  * on the pixel size.  When it reaches the watermark level, it'll start
561  * fetching FIFO line sized based chunks from memory until the FIFO fills
562  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
563  * will occur, and a display engine hang could result.
564  */
565 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
566                                         const struct intel_watermark_params *wm,
567                                         int fifo_size, int cpp,
568                                         unsigned long latency_ns)
569 {
570         long entries_required, wm_size;
571
572         /*
573          * Note: we need to make sure we don't overflow for various clock &
574          * latency values.
575          * clocks go from a few thousand to several hundred thousand.
576          * latency is usually a few thousand
577          */
578         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
579                 1000;
580         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
581
582         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
583
584         wm_size = fifo_size - (entries_required + wm->guard_size);
585
586         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
587
588         /* Don't promote wm_size to unsigned... */
589         if (wm_size > (long)wm->max_wm)
590                 wm_size = wm->max_wm;
591         if (wm_size <= 0)
592                 wm_size = wm->default_wm;
593
594         /*
595          * Bspec seems to indicate that the value shouldn't be lower than
596          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
597          * Lets go for 8 which is the burst size since certain platforms
598          * already use a hardcoded 8 (which is what the spec says should be
599          * done).
600          */
601         if (wm_size <= 8)
602                 wm_size = 8;
603
604         return wm_size;
605 }
606
607 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
608 {
609         struct drm_crtc *crtc, *enabled = NULL;
610
611         for_each_crtc(dev, crtc) {
612                 if (intel_crtc_active(crtc)) {
613                         if (enabled)
614                                 return NULL;
615                         enabled = crtc;
616                 }
617         }
618
619         return enabled;
620 }
621
622 static void pineview_update_wm(struct drm_crtc *unused_crtc)
623 {
624         struct drm_device *dev = unused_crtc->dev;
625         struct drm_i915_private *dev_priv = dev->dev_private;
626         struct drm_crtc *crtc;
627         const struct cxsr_latency *latency;
628         u32 reg;
629         unsigned long wm;
630
631         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
632                                          dev_priv->fsb_freq, dev_priv->mem_freq);
633         if (!latency) {
634                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
635                 intel_set_memory_cxsr(dev_priv, false);
636                 return;
637         }
638
639         crtc = single_enabled_crtc(dev);
640         if (crtc) {
641                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
642                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
643                 int clock = adjusted_mode->crtc_clock;
644
645                 /* Display SR */
646                 wm = intel_calculate_wm(clock, &pineview_display_wm,
647                                         pineview_display_wm.fifo_size,
648                                         cpp, latency->display_sr);
649                 reg = I915_READ(DSPFW1);
650                 reg &= ~DSPFW_SR_MASK;
651                 reg |= FW_WM(wm, SR);
652                 I915_WRITE(DSPFW1, reg);
653                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
654
655                 /* cursor SR */
656                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
657                                         pineview_display_wm.fifo_size,
658                                         cpp, latency->cursor_sr);
659                 reg = I915_READ(DSPFW3);
660                 reg &= ~DSPFW_CURSOR_SR_MASK;
661                 reg |= FW_WM(wm, CURSOR_SR);
662                 I915_WRITE(DSPFW3, reg);
663
664                 /* Display HPLL off SR */
665                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
666                                         pineview_display_hplloff_wm.fifo_size,
667                                         cpp, latency->display_hpll_disable);
668                 reg = I915_READ(DSPFW3);
669                 reg &= ~DSPFW_HPLL_SR_MASK;
670                 reg |= FW_WM(wm, HPLL_SR);
671                 I915_WRITE(DSPFW3, reg);
672
673                 /* cursor HPLL off SR */
674                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
675                                         pineview_display_hplloff_wm.fifo_size,
676                                         cpp, latency->cursor_hpll_disable);
677                 reg = I915_READ(DSPFW3);
678                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
679                 reg |= FW_WM(wm, HPLL_CURSOR);
680                 I915_WRITE(DSPFW3, reg);
681                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
682
683                 intel_set_memory_cxsr(dev_priv, true);
684         } else {
685                 intel_set_memory_cxsr(dev_priv, false);
686         }
687 }
688
689 static bool g4x_compute_wm0(struct drm_device *dev,
690                             int plane,
691                             const struct intel_watermark_params *display,
692                             int display_latency_ns,
693                             const struct intel_watermark_params *cursor,
694                             int cursor_latency_ns,
695                             int *plane_wm,
696                             int *cursor_wm)
697 {
698         struct drm_crtc *crtc;
699         const struct drm_display_mode *adjusted_mode;
700         int htotal, hdisplay, clock, cpp;
701         int line_time_us, line_count;
702         int entries, tlb_miss;
703
704         crtc = intel_get_crtc_for_plane(dev, plane);
705         if (!intel_crtc_active(crtc)) {
706                 *cursor_wm = cursor->guard_size;
707                 *plane_wm = display->guard_size;
708                 return false;
709         }
710
711         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
712         clock = adjusted_mode->crtc_clock;
713         htotal = adjusted_mode->crtc_htotal;
714         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
715         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
716
717         /* Use the small buffer method to calculate plane watermark */
718         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
719         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
720         if (tlb_miss > 0)
721                 entries += tlb_miss;
722         entries = DIV_ROUND_UP(entries, display->cacheline_size);
723         *plane_wm = entries + display->guard_size;
724         if (*plane_wm > (int)display->max_wm)
725                 *plane_wm = display->max_wm;
726
727         /* Use the large buffer method to calculate cursor watermark */
728         line_time_us = max(htotal * 1000 / clock, 1);
729         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
730         entries = line_count * crtc->cursor->state->crtc_w * cpp;
731         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
732         if (tlb_miss > 0)
733                 entries += tlb_miss;
734         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
735         *cursor_wm = entries + cursor->guard_size;
736         if (*cursor_wm > (int)cursor->max_wm)
737                 *cursor_wm = (int)cursor->max_wm;
738
739         return true;
740 }
741
742 /*
743  * Check the wm result.
744  *
745  * If any calculated watermark values is larger than the maximum value that
746  * can be programmed into the associated watermark register, that watermark
747  * must be disabled.
748  */
749 static bool g4x_check_srwm(struct drm_device *dev,
750                            int display_wm, int cursor_wm,
751                            const struct intel_watermark_params *display,
752                            const struct intel_watermark_params *cursor)
753 {
754         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
755                       display_wm, cursor_wm);
756
757         if (display_wm > display->max_wm) {
758                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
759                               display_wm, display->max_wm);
760                 return false;
761         }
762
763         if (cursor_wm > cursor->max_wm) {
764                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
765                               cursor_wm, cursor->max_wm);
766                 return false;
767         }
768
769         if (!(display_wm || cursor_wm)) {
770                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
771                 return false;
772         }
773
774         return true;
775 }
776
777 static bool g4x_compute_srwm(struct drm_device *dev,
778                              int plane,
779                              int latency_ns,
780                              const struct intel_watermark_params *display,
781                              const struct intel_watermark_params *cursor,
782                              int *display_wm, int *cursor_wm)
783 {
784         struct drm_crtc *crtc;
785         const struct drm_display_mode *adjusted_mode;
786         int hdisplay, htotal, cpp, clock;
787         unsigned long line_time_us;
788         int line_count, line_size;
789         int small, large;
790         int entries;
791
792         if (!latency_ns) {
793                 *display_wm = *cursor_wm = 0;
794                 return false;
795         }
796
797         crtc = intel_get_crtc_for_plane(dev, plane);
798         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
799         clock = adjusted_mode->crtc_clock;
800         htotal = adjusted_mode->crtc_htotal;
801         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
802         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
803
804         line_time_us = max(htotal * 1000 / clock, 1);
805         line_count = (latency_ns / line_time_us + 1000) / 1000;
806         line_size = hdisplay * cpp;
807
808         /* Use the minimum of the small and large buffer method for primary */
809         small = ((clock * cpp / 1000) * latency_ns) / 1000;
810         large = line_count * line_size;
811
812         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
813         *display_wm = entries + display->guard_size;
814
815         /* calculate the self-refresh watermark for display cursor */
816         entries = line_count * cpp * crtc->cursor->state->crtc_w;
817         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
818         *cursor_wm = entries + cursor->guard_size;
819
820         return g4x_check_srwm(dev,
821                               *display_wm, *cursor_wm,
822                               display, cursor);
823 }
824
825 #define FW_WM_VLV(value, plane) \
826         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
827
828 static void vlv_write_wm_values(struct intel_crtc *crtc,
829                                 const struct vlv_wm_values *wm)
830 {
831         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
832         enum pipe pipe = crtc->pipe;
833
834         I915_WRITE(VLV_DDL(pipe),
835                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
836                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
837                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
838                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
839
840         I915_WRITE(DSPFW1,
841                    FW_WM(wm->sr.plane, SR) |
842                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
843                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
844                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
845         I915_WRITE(DSPFW2,
846                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
847                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
848                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
849         I915_WRITE(DSPFW3,
850                    FW_WM(wm->sr.cursor, CURSOR_SR));
851
852         if (IS_CHERRYVIEW(dev_priv)) {
853                 I915_WRITE(DSPFW7_CHV,
854                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
855                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
856                 I915_WRITE(DSPFW8_CHV,
857                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
858                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
859                 I915_WRITE(DSPFW9_CHV,
860                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
861                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
862                 I915_WRITE(DSPHOWM,
863                            FW_WM(wm->sr.plane >> 9, SR_HI) |
864                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
865                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
866                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
867                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
868                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
869                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
870                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
871                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
872                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
873         } else {
874                 I915_WRITE(DSPFW7,
875                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
876                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
877                 I915_WRITE(DSPHOWM,
878                            FW_WM(wm->sr.plane >> 9, SR_HI) |
879                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
880                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
881                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
882                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
883                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
884                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
885         }
886
887         /* zero (unused) WM1 watermarks */
888         I915_WRITE(DSPFW4, 0);
889         I915_WRITE(DSPFW5, 0);
890         I915_WRITE(DSPFW6, 0);
891         I915_WRITE(DSPHOWM1, 0);
892
893         POSTING_READ(DSPFW1);
894 }
895
896 #undef FW_WM_VLV
897
898 enum vlv_wm_level {
899         VLV_WM_LEVEL_PM2,
900         VLV_WM_LEVEL_PM5,
901         VLV_WM_LEVEL_DDR_DVFS,
902 };
903
904 /* latency must be in 0.1us units. */
905 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
906                                    unsigned int pipe_htotal,
907                                    unsigned int horiz_pixels,
908                                    unsigned int cpp,
909                                    unsigned int latency)
910 {
911         unsigned int ret;
912
913         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
914         ret = (ret + 1) * horiz_pixels * cpp;
915         ret = DIV_ROUND_UP(ret, 64);
916
917         return ret;
918 }
919
920 static void vlv_setup_wm_latency(struct drm_device *dev)
921 {
922         struct drm_i915_private *dev_priv = dev->dev_private;
923
924         /* all latencies in usec */
925         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
926
927         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
928
929         if (IS_CHERRYVIEW(dev_priv)) {
930                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
931                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
932
933                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
934         }
935 }
936
937 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
938                                      struct intel_crtc *crtc,
939                                      const struct intel_plane_state *state,
940                                      int level)
941 {
942         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
943         int clock, htotal, cpp, width, wm;
944
945         if (dev_priv->wm.pri_latency[level] == 0)
946                 return USHRT_MAX;
947
948         if (!state->visible)
949                 return 0;
950
951         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
952         clock = crtc->config->base.adjusted_mode.crtc_clock;
953         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
954         width = crtc->config->pipe_src_w;
955         if (WARN_ON(htotal == 0))
956                 htotal = 1;
957
958         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
959                 /*
960                  * FIXME the formula gives values that are
961                  * too big for the cursor FIFO, and hence we
962                  * would never be able to use cursors. For
963                  * now just hardcode the watermark.
964                  */
965                 wm = 63;
966         } else {
967                 wm = vlv_wm_method2(clock, htotal, width, cpp,
968                                     dev_priv->wm.pri_latency[level] * 10);
969         }
970
971         return min_t(int, wm, USHRT_MAX);
972 }
973
974 static void vlv_compute_fifo(struct intel_crtc *crtc)
975 {
976         struct drm_device *dev = crtc->base.dev;
977         struct vlv_wm_state *wm_state = &crtc->wm_state;
978         struct intel_plane *plane;
979         unsigned int total_rate = 0;
980         const int fifo_size = 512 - 1;
981         int fifo_extra, fifo_left = fifo_size;
982
983         for_each_intel_plane_on_crtc(dev, crtc, plane) {
984                 struct intel_plane_state *state =
985                         to_intel_plane_state(plane->base.state);
986
987                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
988                         continue;
989
990                 if (state->visible) {
991                         wm_state->num_active_planes++;
992                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
993                 }
994         }
995
996         for_each_intel_plane_on_crtc(dev, crtc, plane) {
997                 struct intel_plane_state *state =
998                         to_intel_plane_state(plane->base.state);
999                 unsigned int rate;
1000
1001                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002                         plane->wm.fifo_size = 63;
1003                         continue;
1004                 }
1005
1006                 if (!state->visible) {
1007                         plane->wm.fifo_size = 0;
1008                         continue;
1009                 }
1010
1011                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1013                 fifo_left -= plane->wm.fifo_size;
1014         }
1015
1016         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1017
1018         /* spread the remainder evenly */
1019         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020                 int plane_extra;
1021
1022                 if (fifo_left == 0)
1023                         break;
1024
1025                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026                         continue;
1027
1028                 /* give it all to the first plane if none are active */
1029                 if (plane->wm.fifo_size == 0 &&
1030                     wm_state->num_active_planes)
1031                         continue;
1032
1033                 plane_extra = min(fifo_extra, fifo_left);
1034                 plane->wm.fifo_size += plane_extra;
1035                 fifo_left -= plane_extra;
1036         }
1037
1038         WARN_ON(fifo_left != 0);
1039 }
1040
1041 static void vlv_invert_wms(struct intel_crtc *crtc)
1042 {
1043         struct vlv_wm_state *wm_state = &crtc->wm_state;
1044         int level;
1045
1046         for (level = 0; level < wm_state->num_levels; level++) {
1047                 struct drm_device *dev = crtc->base.dev;
1048                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1049                 struct intel_plane *plane;
1050
1051                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055                         switch (plane->base.type) {
1056                                 int sprite;
1057                         case DRM_PLANE_TYPE_CURSOR:
1058                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1059                                         wm_state->wm[level].cursor;
1060                                 break;
1061                         case DRM_PLANE_TYPE_PRIMARY:
1062                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1063                                         wm_state->wm[level].primary;
1064                                 break;
1065                         case DRM_PLANE_TYPE_OVERLAY:
1066                                 sprite = plane->plane;
1067                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068                                         wm_state->wm[level].sprite[sprite];
1069                                 break;
1070                         }
1071                 }
1072         }
1073 }
1074
1075 static void vlv_compute_wm(struct intel_crtc *crtc)
1076 {
1077         struct drm_device *dev = crtc->base.dev;
1078         struct vlv_wm_state *wm_state = &crtc->wm_state;
1079         struct intel_plane *plane;
1080         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081         int level;
1082
1083         memset(wm_state, 0, sizeof(*wm_state));
1084
1085         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088         wm_state->num_active_planes = 0;
1089
1090         vlv_compute_fifo(crtc);
1091
1092         if (wm_state->num_active_planes != 1)
1093                 wm_state->cxsr = false;
1094
1095         if (wm_state->cxsr) {
1096                 for (level = 0; level < wm_state->num_levels; level++) {
1097                         wm_state->sr[level].plane = sr_fifo_size;
1098                         wm_state->sr[level].cursor = 63;
1099                 }
1100         }
1101
1102         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103                 struct intel_plane_state *state =
1104                         to_intel_plane_state(plane->base.state);
1105
1106                 if (!state->visible)
1107                         continue;
1108
1109                 /* normal watermarks */
1110                 for (level = 0; level < wm_state->num_levels; level++) {
1111                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114                         /* hack */
1115                         if (WARN_ON(level == 0 && wm > max_wm))
1116                                 wm = max_wm;
1117
1118                         if (wm > plane->wm.fifo_size)
1119                                 break;
1120
1121                         switch (plane->base.type) {
1122                                 int sprite;
1123                         case DRM_PLANE_TYPE_CURSOR:
1124                                 wm_state->wm[level].cursor = wm;
1125                                 break;
1126                         case DRM_PLANE_TYPE_PRIMARY:
1127                                 wm_state->wm[level].primary = wm;
1128                                 break;
1129                         case DRM_PLANE_TYPE_OVERLAY:
1130                                 sprite = plane->plane;
1131                                 wm_state->wm[level].sprite[sprite] = wm;
1132                                 break;
1133                         }
1134                 }
1135
1136                 wm_state->num_levels = level;
1137
1138                 if (!wm_state->cxsr)
1139                         continue;
1140
1141                 /* maxfifo watermarks */
1142                 switch (plane->base.type) {
1143                         int sprite, level;
1144                 case DRM_PLANE_TYPE_CURSOR:
1145                         for (level = 0; level < wm_state->num_levels; level++)
1146                                 wm_state->sr[level].cursor =
1147                                         wm_state->wm[level].cursor;
1148                         break;
1149                 case DRM_PLANE_TYPE_PRIMARY:
1150                         for (level = 0; level < wm_state->num_levels; level++)
1151                                 wm_state->sr[level].plane =
1152                                         min(wm_state->sr[level].plane,
1153                                             wm_state->wm[level].primary);
1154                         break;
1155                 case DRM_PLANE_TYPE_OVERLAY:
1156                         sprite = plane->plane;
1157                         for (level = 0; level < wm_state->num_levels; level++)
1158                                 wm_state->sr[level].plane =
1159                                         min(wm_state->sr[level].plane,
1160                                             wm_state->wm[level].sprite[sprite]);
1161                         break;
1162                 }
1163         }
1164
1165         /* clear any (partially) filled invalid levels */
1166         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1169         }
1170
1171         vlv_invert_wms(crtc);
1172 }
1173
1174 #define VLV_FIFO(plane, value) \
1175         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1176
1177 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1178 {
1179         struct drm_device *dev = crtc->base.dev;
1180         struct drm_i915_private *dev_priv = to_i915(dev);
1181         struct intel_plane *plane;
1182         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1183
1184         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186                         WARN_ON(plane->wm.fifo_size != 63);
1187                         continue;
1188                 }
1189
1190                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191                         sprite0_start = plane->wm.fifo_size;
1192                 else if (plane->plane == 0)
1193                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1194                 else
1195                         fifo_size = sprite1_start + plane->wm.fifo_size;
1196         }
1197
1198         WARN_ON(fifo_size != 512 - 1);
1199
1200         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201                       pipe_name(crtc->pipe), sprite0_start,
1202                       sprite1_start, fifo_size);
1203
1204         switch (crtc->pipe) {
1205                 uint32_t dsparb, dsparb2, dsparb3;
1206         case PIPE_A:
1207                 dsparb = I915_READ(DSPARB);
1208                 dsparb2 = I915_READ(DSPARB2);
1209
1210                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211                             VLV_FIFO(SPRITEB, 0xff));
1212                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213                            VLV_FIFO(SPRITEB, sprite1_start));
1214
1215                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216                              VLV_FIFO(SPRITEB_HI, 0x1));
1217                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220                 I915_WRITE(DSPARB, dsparb);
1221                 I915_WRITE(DSPARB2, dsparb2);
1222                 break;
1223         case PIPE_B:
1224                 dsparb = I915_READ(DSPARB);
1225                 dsparb2 = I915_READ(DSPARB2);
1226
1227                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228                             VLV_FIFO(SPRITED, 0xff));
1229                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230                            VLV_FIFO(SPRITED, sprite1_start));
1231
1232                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233                              VLV_FIFO(SPRITED_HI, 0xff));
1234                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237                 I915_WRITE(DSPARB, dsparb);
1238                 I915_WRITE(DSPARB2, dsparb2);
1239                 break;
1240         case PIPE_C:
1241                 dsparb3 = I915_READ(DSPARB3);
1242                 dsparb2 = I915_READ(DSPARB2);
1243
1244                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245                              VLV_FIFO(SPRITEF, 0xff));
1246                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247                             VLV_FIFO(SPRITEF, sprite1_start));
1248
1249                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250                              VLV_FIFO(SPRITEF_HI, 0xff));
1251                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254                 I915_WRITE(DSPARB3, dsparb3);
1255                 I915_WRITE(DSPARB2, dsparb2);
1256                 break;
1257         default:
1258                 break;
1259         }
1260 }
1261
1262 #undef VLV_FIFO
1263
1264 static void vlv_merge_wm(struct drm_device *dev,
1265                          struct vlv_wm_values *wm)
1266 {
1267         struct intel_crtc *crtc;
1268         int num_active_crtcs = 0;
1269
1270         wm->level = to_i915(dev)->wm.max_level;
1271         wm->cxsr = true;
1272
1273         for_each_intel_crtc(dev, crtc) {
1274                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276                 if (!crtc->active)
1277                         continue;
1278
1279                 if (!wm_state->cxsr)
1280                         wm->cxsr = false;
1281
1282                 num_active_crtcs++;
1283                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284         }
1285
1286         if (num_active_crtcs != 1)
1287                 wm->cxsr = false;
1288
1289         if (num_active_crtcs > 1)
1290                 wm->level = VLV_WM_LEVEL_PM2;
1291
1292         for_each_intel_crtc(dev, crtc) {
1293                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1294                 enum pipe pipe = crtc->pipe;
1295
1296                 if (!crtc->active)
1297                         continue;
1298
1299                 wm->pipe[pipe] = wm_state->wm[wm->level];
1300                 if (wm->cxsr)
1301                         wm->sr = wm_state->sr[wm->level];
1302
1303                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307         }
1308 }
1309
1310 static void vlv_update_wm(struct drm_crtc *crtc)
1311 {
1312         struct drm_device *dev = crtc->dev;
1313         struct drm_i915_private *dev_priv = dev->dev_private;
1314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315         enum pipe pipe = intel_crtc->pipe;
1316         struct vlv_wm_values wm = {};
1317
1318         vlv_compute_wm(intel_crtc);
1319         vlv_merge_wm(dev, &wm);
1320
1321         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322                 /* FIXME should be part of crtc atomic commit */
1323                 vlv_pipe_set_fifo_size(intel_crtc);
1324                 return;
1325         }
1326
1327         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329                 chv_set_memory_dvfs(dev_priv, false);
1330
1331         if (wm.level < VLV_WM_LEVEL_PM5 &&
1332             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333                 chv_set_memory_pm5(dev_priv, false);
1334
1335         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336                 intel_set_memory_cxsr(dev_priv, false);
1337
1338         /* FIXME should be part of crtc atomic commit */
1339         vlv_pipe_set_fifo_size(intel_crtc);
1340
1341         vlv_write_wm_values(intel_crtc, &wm);
1342
1343         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350                 intel_set_memory_cxsr(dev_priv, true);
1351
1352         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354                 chv_set_memory_pm5(dev_priv, true);
1355
1356         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358                 chv_set_memory_dvfs(dev_priv, true);
1359
1360         dev_priv->wm.vlv = wm;
1361 }
1362
1363 #define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365 static void g4x_update_wm(struct drm_crtc *crtc)
1366 {
1367         struct drm_device *dev = crtc->dev;
1368         static const int sr_latency_ns = 12000;
1369         struct drm_i915_private *dev_priv = dev->dev_private;
1370         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371         int plane_sr, cursor_sr;
1372         unsigned int enabled = 0;
1373         bool cxsr_enabled;
1374
1375         if (g4x_compute_wm0(dev, PIPE_A,
1376                             &g4x_wm_info, pessimal_latency_ns,
1377                             &g4x_cursor_wm_info, pessimal_latency_ns,
1378                             &planea_wm, &cursora_wm))
1379                 enabled |= 1 << PIPE_A;
1380
1381         if (g4x_compute_wm0(dev, PIPE_B,
1382                             &g4x_wm_info, pessimal_latency_ns,
1383                             &g4x_cursor_wm_info, pessimal_latency_ns,
1384                             &planeb_wm, &cursorb_wm))
1385                 enabled |= 1 << PIPE_B;
1386
1387         if (single_plane_enabled(enabled) &&
1388             g4x_compute_srwm(dev, ffs(enabled) - 1,
1389                              sr_latency_ns,
1390                              &g4x_wm_info,
1391                              &g4x_cursor_wm_info,
1392                              &plane_sr, &cursor_sr)) {
1393                 cxsr_enabled = true;
1394         } else {
1395                 cxsr_enabled = false;
1396                 intel_set_memory_cxsr(dev_priv, false);
1397                 plane_sr = cursor_sr = 0;
1398         }
1399
1400         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402                       planea_wm, cursora_wm,
1403                       planeb_wm, cursorb_wm,
1404                       plane_sr, cursor_sr);
1405
1406         I915_WRITE(DSPFW1,
1407                    FW_WM(plane_sr, SR) |
1408                    FW_WM(cursorb_wm, CURSORB) |
1409                    FW_WM(planeb_wm, PLANEB) |
1410                    FW_WM(planea_wm, PLANEA));
1411         I915_WRITE(DSPFW2,
1412                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413                    FW_WM(cursora_wm, CURSORA));
1414         /* HPLL off in SR has some issues on G4x... disable it */
1415         I915_WRITE(DSPFW3,
1416                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417                    FW_WM(cursor_sr, CURSOR_SR));
1418
1419         if (cxsr_enabled)
1420                 intel_set_memory_cxsr(dev_priv, true);
1421 }
1422
1423 static void i965_update_wm(struct drm_crtc *unused_crtc)
1424 {
1425         struct drm_device *dev = unused_crtc->dev;
1426         struct drm_i915_private *dev_priv = dev->dev_private;
1427         struct drm_crtc *crtc;
1428         int srwm = 1;
1429         int cursor_sr = 16;
1430         bool cxsr_enabled;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1438                 int clock = adjusted_mode->crtc_clock;
1439                 int htotal = adjusted_mode->crtc_htotal;
1440                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442                 unsigned long line_time_us;
1443                 int entries;
1444
1445                 line_time_us = max(htotal * 1000 / clock, 1);
1446
1447                 /* Use ns/us then divide to preserve precision */
1448                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449                         cpp * hdisplay;
1450                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451                 srwm = I965_FIFO_SIZE - entries;
1452                 if (srwm < 0)
1453                         srwm = 1;
1454                 srwm &= 0x1ff;
1455                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456                               entries, srwm);
1457
1458                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459                         cpp * crtc->cursor->state->crtc_w;
1460                 entries = DIV_ROUND_UP(entries,
1461                                           i965_cursor_wm_info.cacheline_size);
1462                 cursor_sr = i965_cursor_wm_info.fifo_size -
1463                         (entries + i965_cursor_wm_info.guard_size);
1464
1465                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1466                         cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469                               "cursor %d\n", srwm, cursor_sr);
1470
1471                 cxsr_enabled = true;
1472         } else {
1473                 cxsr_enabled = false;
1474                 /* Turn off self refresh if both pipes are enabled */
1475                 intel_set_memory_cxsr(dev_priv, false);
1476         }
1477
1478         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479                       srwm);
1480
1481         /* 965 has limitations... */
1482         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483                    FW_WM(8, CURSORB) |
1484                    FW_WM(8, PLANEB) |
1485                    FW_WM(8, PLANEA));
1486         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487                    FW_WM(8, PLANEC_OLD));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491         if (cxsr_enabled)
1492                 intel_set_memory_cxsr(dev_priv, true);
1493 }
1494
1495 #undef FW_WM
1496
1497 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498 {
1499         struct drm_device *dev = unused_crtc->dev;
1500         struct drm_i915_private *dev_priv = dev->dev_private;
1501         const struct intel_watermark_params *wm_info;
1502         uint32_t fwater_lo;
1503         uint32_t fwater_hi;
1504         int cwm, srwm = 1;
1505         int fifo_size;
1506         int planea_wm, planeb_wm;
1507         struct drm_crtc *crtc, *enabled = NULL;
1508
1509         if (IS_I945GM(dev))
1510                 wm_info = &i945_wm_info;
1511         else if (!IS_GEN2(dev))
1512                 wm_info = &i915_wm_info;
1513         else
1514                 wm_info = &i830_a_wm_info;
1515
1516         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517         crtc = intel_get_crtc_for_plane(dev, 0);
1518         if (intel_crtc_active(crtc)) {
1519                 const struct drm_display_mode *adjusted_mode;
1520                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521                 if (IS_GEN2(dev))
1522                         cpp = 4;
1523
1524                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526                                                wm_info, fifo_size, cpp,
1527                                                pessimal_latency_ns);
1528                 enabled = crtc;
1529         } else {
1530                 planea_wm = fifo_size - wm_info->guard_size;
1531                 if (planea_wm > (long)wm_info->max_wm)
1532                         planea_wm = wm_info->max_wm;
1533         }
1534
1535         if (IS_GEN2(dev))
1536                 wm_info = &i830_bc_wm_info;
1537
1538         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539         crtc = intel_get_crtc_for_plane(dev, 1);
1540         if (intel_crtc_active(crtc)) {
1541                 const struct drm_display_mode *adjusted_mode;
1542                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543                 if (IS_GEN2(dev))
1544                         cpp = 4;
1545
1546                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548                                                wm_info, fifo_size, cpp,
1549                                                pessimal_latency_ns);
1550                 if (enabled == NULL)
1551                         enabled = crtc;
1552                 else
1553                         enabled = NULL;
1554         } else {
1555                 planeb_wm = fifo_size - wm_info->guard_size;
1556                 if (planeb_wm > (long)wm_info->max_wm)
1557                         planeb_wm = wm_info->max_wm;
1558         }
1559
1560         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1561
1562         if (IS_I915GM(dev) && enabled) {
1563                 struct drm_i915_gem_object *obj;
1564
1565                 obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567                 /* self-refresh seems busted with untiled */
1568                 if (obj->tiling_mode == I915_TILING_NONE)
1569                         enabled = NULL;
1570         }
1571
1572         /*
1573          * Overlay gets an aggressive default since video jitter is bad.
1574          */
1575         cwm = 2;
1576
1577         /* Play safe and disable self-refresh before adjusting watermarks. */
1578         intel_set_memory_cxsr(dev_priv, false);
1579
1580         /* Calc sr entries for one plane configs */
1581         if (HAS_FW_BLC(dev) && enabled) {
1582                 /* self-refresh has much higher latency */
1583                 static const int sr_latency_ns = 6000;
1584                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1585                 int clock = adjusted_mode->crtc_clock;
1586                 int htotal = adjusted_mode->crtc_htotal;
1587                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589                 unsigned long line_time_us;
1590                 int entries;
1591
1592                 line_time_us = max(htotal * 1000 / clock, 1);
1593
1594                 /* Use ns/us then divide to preserve precision */
1595                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596                         cpp * hdisplay;
1597                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1599                 srwm = wm_info->fifo_size - entries;
1600                 if (srwm < 0)
1601                         srwm = 1;
1602
1603                 if (IS_I945G(dev) || IS_I945GM(dev))
1604                         I915_WRITE(FW_BLC_SELF,
1605                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606                 else if (IS_I915GM(dev))
1607                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608         }
1609
1610         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611                       planea_wm, planeb_wm, cwm, srwm);
1612
1613         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614         fwater_hi = (cwm & 0x1f);
1615
1616         /* Set request length to 8 cachelines per fetch */
1617         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618         fwater_hi = fwater_hi | (1 << 8);
1619
1620         I915_WRITE(FW_BLC, fwater_lo);
1621         I915_WRITE(FW_BLC2, fwater_hi);
1622
1623         if (enabled)
1624                 intel_set_memory_cxsr(dev_priv, true);
1625 }
1626
1627 static void i845_update_wm(struct drm_crtc *unused_crtc)
1628 {
1629         struct drm_device *dev = unused_crtc->dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         struct drm_crtc *crtc;
1632         const struct drm_display_mode *adjusted_mode;
1633         uint32_t fwater_lo;
1634         int planea_wm;
1635
1636         crtc = single_enabled_crtc(dev);
1637         if (crtc == NULL)
1638                 return;
1639
1640         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642                                        &i845_wm_info,
1643                                        dev_priv->display.get_fifo_size(dev, 0),
1644                                        4, pessimal_latency_ns);
1645         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646         fwater_lo |= (3<<8) | planea_wm;
1647
1648         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650         I915_WRITE(FW_BLC, fwater_lo);
1651 }
1652
1653 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654 {
1655         uint32_t pixel_rate;
1656
1657         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660          * adjust the pixel_rate here. */
1661
1662         if (pipe_config->pch_pfit.enabled) {
1663                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666                 pipe_w = pipe_config->pipe_src_w;
1667                 pipe_h = pipe_config->pipe_src_h;
1668
1669                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                 pfit_h = pfit_size & 0xFFFF;
1671                 if (pipe_w < pfit_w)
1672                         pipe_w = pfit_w;
1673                 if (pipe_h < pfit_h)
1674                         pipe_h = pfit_h;
1675
1676                 if (WARN_ON(!pfit_w || !pfit_h))
1677                         return pixel_rate;
1678
1679                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680                                      pfit_w * pfit_h);
1681         }
1682
1683         return pixel_rate;
1684 }
1685
1686 /* latency must be in 0.1us units. */
1687 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1688 {
1689         uint64_t ret;
1690
1691         if (WARN(latency == 0, "Latency value missing\n"))
1692                 return UINT_MAX;
1693
1694         ret = (uint64_t) pixel_rate * cpp * latency;
1695         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697         return ret;
1698 }
1699
1700 /* latency must be in 0.1us units. */
1701 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702                                uint32_t horiz_pixels, uint8_t cpp,
1703                                uint32_t latency)
1704 {
1705         uint32_t ret;
1706
1707         if (WARN(latency == 0, "Latency value missing\n"))
1708                 return UINT_MAX;
1709         if (WARN_ON(!pipe_htotal))
1710                 return UINT_MAX;
1711
1712         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713         ret = (ret + 1) * horiz_pixels * cpp;
1714         ret = DIV_ROUND_UP(ret, 64) + 2;
1715         return ret;
1716 }
1717
1718 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719                            uint8_t cpp)
1720 {
1721         /*
1722          * Neither of these should be possible since this function shouldn't be
1723          * called if the CRTC is off or the plane is invisible.  But let's be
1724          * extra paranoid to avoid a potential divide-by-zero if we screw up
1725          * elsewhere in the driver.
1726          */
1727         if (WARN_ON(!cpp))
1728                 return 0;
1729         if (WARN_ON(!horiz_pixels))
1730                 return 0;
1731
1732         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733 }
1734
1735 struct ilk_wm_maximums {
1736         uint16_t pri;
1737         uint16_t spr;
1738         uint16_t cur;
1739         uint16_t fbc;
1740 };
1741
1742 /*
1743  * For both WM_PIPE and WM_LP.
1744  * mem_value must be in 0.1us units.
1745  */
1746 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747                                    const struct intel_plane_state *pstate,
1748                                    uint32_t mem_value,
1749                                    bool is_lp)
1750 {
1751         int cpp = pstate->base.fb ?
1752                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753         uint32_t method1, method2;
1754
1755         if (!cstate->base.active || !pstate->visible)
1756                 return 0;
1757
1758         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1759
1760         if (!is_lp)
1761                 return method1;
1762
1763         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764                                  cstate->base.adjusted_mode.crtc_htotal,
1765                                  drm_rect_width(&pstate->dst),
1766                                  cpp, mem_value);
1767
1768         return min(method1, method2);
1769 }
1770
1771 /*
1772  * For both WM_PIPE and WM_LP.
1773  * mem_value must be in 0.1us units.
1774  */
1775 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776                                    const struct intel_plane_state *pstate,
1777                                    uint32_t mem_value)
1778 {
1779         int cpp = pstate->base.fb ?
1780                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781         uint32_t method1, method2;
1782
1783         if (!cstate->base.active || !pstate->visible)
1784                 return 0;
1785
1786         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788                                  cstate->base.adjusted_mode.crtc_htotal,
1789                                  drm_rect_width(&pstate->dst),
1790                                  cpp, mem_value);
1791         return min(method1, method2);
1792 }
1793
1794 /*
1795  * For both WM_PIPE and WM_LP.
1796  * mem_value must be in 0.1us units.
1797  */
1798 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799                                    const struct intel_plane_state *pstate,
1800                                    uint32_t mem_value)
1801 {
1802         /*
1803          * We treat the cursor plane as always-on for the purposes of watermark
1804          * calculation.  Until we have two-stage watermark programming merged,
1805          * this is necessary to avoid flickering.
1806          */
1807         int cpp = 4;
1808         int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810         if (!cstate->base.active)
1811                 return 0;
1812
1813         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814                               cstate->base.adjusted_mode.crtc_htotal,
1815                               width, cpp, mem_value);
1816 }
1817
1818 /* Only for WM_LP. */
1819 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820                                    const struct intel_plane_state *pstate,
1821                                    uint32_t pri_val)
1822 {
1823         int cpp = pstate->base.fb ?
1824                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826         if (!cstate->base.active || !pstate->visible)
1827                 return 0;
1828
1829         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1830 }
1831
1832 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1833 {
1834         if (INTEL_INFO(dev)->gen >= 8)
1835                 return 3072;
1836         else if (INTEL_INFO(dev)->gen >= 7)
1837                 return 768;
1838         else
1839                 return 512;
1840 }
1841
1842 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843                                          int level, bool is_sprite)
1844 {
1845         if (INTEL_INFO(dev)->gen >= 8)
1846                 /* BDW primary/sprite plane watermarks */
1847                 return level == 0 ? 255 : 2047;
1848         else if (INTEL_INFO(dev)->gen >= 7)
1849                 /* IVB/HSW primary/sprite plane watermarks */
1850                 return level == 0 ? 127 : 1023;
1851         else if (!is_sprite)
1852                 /* ILK/SNB primary plane watermarks */
1853                 return level == 0 ? 127 : 511;
1854         else
1855                 /* ILK/SNB sprite plane watermarks */
1856                 return level == 0 ? 63 : 255;
1857 }
1858
1859 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860                                           int level)
1861 {
1862         if (INTEL_INFO(dev)->gen >= 7)
1863                 return level == 0 ? 63 : 255;
1864         else
1865                 return level == 0 ? 31 : 63;
1866 }
1867
1868 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869 {
1870         if (INTEL_INFO(dev)->gen >= 8)
1871                 return 31;
1872         else
1873                 return 15;
1874 }
1875
1876 /* Calculate the maximum primary/sprite plane watermark */
1877 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878                                      int level,
1879                                      const struct intel_wm_config *config,
1880                                      enum intel_ddb_partitioning ddb_partitioning,
1881                                      bool is_sprite)
1882 {
1883         unsigned int fifo_size = ilk_display_fifo_size(dev);
1884
1885         /* if sprites aren't enabled, sprites get nothing */
1886         if (is_sprite && !config->sprites_enabled)
1887                 return 0;
1888
1889         /* HSW allows LP1+ watermarks even with multiple pipes */
1890         if (level == 0 || config->num_pipes_active > 1) {
1891                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893                 /*
1894                  * For some reason the non self refresh
1895                  * FIFO size is only half of the self
1896                  * refresh FIFO size on ILK/SNB.
1897                  */
1898                 if (INTEL_INFO(dev)->gen <= 6)
1899                         fifo_size /= 2;
1900         }
1901
1902         if (config->sprites_enabled) {
1903                 /* level 0 is always calculated with 1:1 split */
1904                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905                         if (is_sprite)
1906                                 fifo_size *= 5;
1907                         fifo_size /= 6;
1908                 } else {
1909                         fifo_size /= 2;
1910                 }
1911         }
1912
1913         /* clamp to max that the registers can hold */
1914         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915 }
1916
1917 /* Calculate the maximum cursor plane watermark */
1918 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919                                       int level,
1920                                       const struct intel_wm_config *config)
1921 {
1922         /* HSW LP1+ watermarks w/ multiple pipes */
1923         if (level > 0 && config->num_pipes_active > 1)
1924                 return 64;
1925
1926         /* otherwise just report max that registers can hold */
1927         return ilk_cursor_wm_reg_max(dev, level);
1928 }
1929
1930 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931                                     int level,
1932                                     const struct intel_wm_config *config,
1933                                     enum intel_ddb_partitioning ddb_partitioning,
1934                                     struct ilk_wm_maximums *max)
1935 {
1936         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938         max->cur = ilk_cursor_wm_max(dev, level, config);
1939         max->fbc = ilk_fbc_wm_reg_max(dev);
1940 }
1941
1942 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943                                         int level,
1944                                         struct ilk_wm_maximums *max)
1945 {
1946         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948         max->cur = ilk_cursor_wm_reg_max(dev, level);
1949         max->fbc = ilk_fbc_wm_reg_max(dev);
1950 }
1951
1952 static bool ilk_validate_wm_level(int level,
1953                                   const struct ilk_wm_maximums *max,
1954                                   struct intel_wm_level *result)
1955 {
1956         bool ret;
1957
1958         /* already determined to be invalid? */
1959         if (!result->enable)
1960                 return false;
1961
1962         result->enable = result->pri_val <= max->pri &&
1963                          result->spr_val <= max->spr &&
1964                          result->cur_val <= max->cur;
1965
1966         ret = result->enable;
1967
1968         /*
1969          * HACK until we can pre-compute everything,
1970          * and thus fail gracefully if LP0 watermarks
1971          * are exceeded...
1972          */
1973         if (level == 0 && !result->enable) {
1974                 if (result->pri_val > max->pri)
1975                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976                                       level, result->pri_val, max->pri);
1977                 if (result->spr_val > max->spr)
1978                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979                                       level, result->spr_val, max->spr);
1980                 if (result->cur_val > max->cur)
1981                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982                                       level, result->cur_val, max->cur);
1983
1984                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987                 result->enable = true;
1988         }
1989
1990         return ret;
1991 }
1992
1993 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994                                  const struct intel_crtc *intel_crtc,
1995                                  int level,
1996                                  struct intel_crtc_state *cstate,
1997                                  struct intel_plane_state *pristate,
1998                                  struct intel_plane_state *sprstate,
1999                                  struct intel_plane_state *curstate,
2000                                  struct intel_wm_level *result)
2001 {
2002         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006         /* WM1+ latency values stored in 0.5us units */
2007         if (level > 0) {
2008                 pri_latency *= 5;
2009                 spr_latency *= 5;
2010                 cur_latency *= 5;
2011         }
2012
2013         if (pristate) {
2014                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2015                                                      pri_latency, level);
2016                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2017         }
2018
2019         if (sprstate)
2020                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2021
2022         if (curstate)
2023                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2024
2025         result->enable = true;
2026 }
2027
2028 static uint32_t
2029 hsw_compute_linetime_wm(struct drm_device *dev,
2030                         struct intel_crtc_state *cstate)
2031 {
2032         struct drm_i915_private *dev_priv = dev->dev_private;
2033         const struct drm_display_mode *adjusted_mode =
2034                 &cstate->base.adjusted_mode;
2035         u32 linetime, ips_linetime;
2036
2037         if (!cstate->base.active)
2038                 return 0;
2039         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2040                 return 0;
2041         if (WARN_ON(dev_priv->cdclk_freq == 0))
2042                 return 0;
2043
2044         /* The WM are computed with base on how long it takes to fill a single
2045          * row at the given clock rate, multiplied by 8.
2046          * */
2047         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2048                                      adjusted_mode->crtc_clock);
2049         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2050                                          dev_priv->cdclk_freq);
2051
2052         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2053                PIPE_WM_LINETIME_TIME(linetime);
2054 }
2055
2056 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2057 {
2058         struct drm_i915_private *dev_priv = dev->dev_private;
2059
2060         if (IS_GEN9(dev)) {
2061                 uint32_t val;
2062                 int ret, i;
2063                 int level, max_level = ilk_wm_max_level(dev);
2064
2065                 /* read the first set of memory latencies[0:3] */
2066                 val = 0; /* data0 to be programmed to 0 for first set */
2067                 mutex_lock(&dev_priv->rps.hw_lock);
2068                 ret = sandybridge_pcode_read(dev_priv,
2069                                              GEN9_PCODE_READ_MEM_LATENCY,
2070                                              &val);
2071                 mutex_unlock(&dev_priv->rps.hw_lock);
2072
2073                 if (ret) {
2074                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2075                         return;
2076                 }
2077
2078                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2079                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2080                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2081                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2082                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2083                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2084                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2085
2086                 /* read the second set of memory latencies[4:7] */
2087                 val = 1; /* data0 to be programmed to 1 for second set */
2088                 mutex_lock(&dev_priv->rps.hw_lock);
2089                 ret = sandybridge_pcode_read(dev_priv,
2090                                              GEN9_PCODE_READ_MEM_LATENCY,
2091                                              &val);
2092                 mutex_unlock(&dev_priv->rps.hw_lock);
2093                 if (ret) {
2094                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2095                         return;
2096                 }
2097
2098                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2099                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2100                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2101                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2102                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2103                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2104                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2105
2106                 /*
2107                  * WaWmMemoryReadLatency:skl
2108                  *
2109                  * punit doesn't take into account the read latency so we need
2110                  * to add 2us to the various latency levels we retrieve from
2111                  * the punit.
2112                  *   - W0 is a bit special in that it's the only level that
2113                  *   can't be disabled if we want to have display working, so
2114                  *   we always add 2us there.
2115                  *   - For levels >=1, punit returns 0us latency when they are
2116                  *   disabled, so we respect that and don't add 2us then
2117                  *
2118                  * Additionally, if a level n (n > 1) has a 0us latency, all
2119                  * levels m (m >= n) need to be disabled. We make sure to
2120                  * sanitize the values out of the punit to satisfy this
2121                  * requirement.
2122                  */
2123                 wm[0] += 2;
2124                 for (level = 1; level <= max_level; level++)
2125                         if (wm[level] != 0)
2126                                 wm[level] += 2;
2127                         else {
2128                                 for (i = level + 1; i <= max_level; i++)
2129                                         wm[i] = 0;
2130
2131                                 break;
2132                         }
2133         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2134                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2135
2136                 wm[0] = (sskpd >> 56) & 0xFF;
2137                 if (wm[0] == 0)
2138                         wm[0] = sskpd & 0xF;
2139                 wm[1] = (sskpd >> 4) & 0xFF;
2140                 wm[2] = (sskpd >> 12) & 0xFF;
2141                 wm[3] = (sskpd >> 20) & 0x1FF;
2142                 wm[4] = (sskpd >> 32) & 0x1FF;
2143         } else if (INTEL_INFO(dev)->gen >= 6) {
2144                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2145
2146                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2147                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2148                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2149                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2150         } else if (INTEL_INFO(dev)->gen >= 5) {
2151                 uint32_t mltr = I915_READ(MLTR_ILK);
2152
2153                 /* ILK primary LP0 latency is 700 ns */
2154                 wm[0] = 7;
2155                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2156                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2157         }
2158 }
2159
2160 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161 {
2162         /* ILK sprite LP0 latency is 1300 ns */
2163         if (INTEL_INFO(dev)->gen == 5)
2164                 wm[0] = 13;
2165 }
2166
2167 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2168 {
2169         /* ILK cursor LP0 latency is 1300 ns */
2170         if (INTEL_INFO(dev)->gen == 5)
2171                 wm[0] = 13;
2172
2173         /* WaDoubleCursorLP3Latency:ivb */
2174         if (IS_IVYBRIDGE(dev))
2175                 wm[3] *= 2;
2176 }
2177
2178 int ilk_wm_max_level(const struct drm_device *dev)
2179 {
2180         /* how many WM levels are we expecting */
2181         if (INTEL_INFO(dev)->gen >= 9)
2182                 return 7;
2183         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2184                 return 4;
2185         else if (INTEL_INFO(dev)->gen >= 6)
2186                 return 3;
2187         else
2188                 return 2;
2189 }
2190
2191 static void intel_print_wm_latency(struct drm_device *dev,
2192                                    const char *name,
2193                                    const uint16_t wm[8])
2194 {
2195         int level, max_level = ilk_wm_max_level(dev);
2196
2197         for (level = 0; level <= max_level; level++) {
2198                 unsigned int latency = wm[level];
2199
2200                 if (latency == 0) {
2201                         DRM_ERROR("%s WM%d latency not provided\n",
2202                                   name, level);
2203                         continue;
2204                 }
2205
2206                 /*
2207                  * - latencies are in us on gen9.
2208                  * - before then, WM1+ latency values are in 0.5us units
2209                  */
2210                 if (IS_GEN9(dev))
2211                         latency *= 10;
2212                 else if (level > 0)
2213                         latency *= 5;
2214
2215                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2216                               name, level, wm[level],
2217                               latency / 10, latency % 10);
2218         }
2219 }
2220
2221 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2222                                     uint16_t wm[5], uint16_t min)
2223 {
2224         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2225
2226         if (wm[0] >= min)
2227                 return false;
2228
2229         wm[0] = max(wm[0], min);
2230         for (level = 1; level <= max_level; level++)
2231                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2232
2233         return true;
2234 }
2235
2236 static void snb_wm_latency_quirk(struct drm_device *dev)
2237 {
2238         struct drm_i915_private *dev_priv = dev->dev_private;
2239         bool changed;
2240
2241         /*
2242          * The BIOS provided WM memory latency values are often
2243          * inadequate for high resolution displays. Adjust them.
2244          */
2245         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2246                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2247                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2248
2249         if (!changed)
2250                 return;
2251
2252         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2253         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2254         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2255         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2256 }
2257
2258 static void ilk_setup_wm_latency(struct drm_device *dev)
2259 {
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261
2262         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2263
2264         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2265                sizeof(dev_priv->wm.pri_latency));
2266         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2267                sizeof(dev_priv->wm.pri_latency));
2268
2269         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2270         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2271
2272         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2273         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2274         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2275
2276         if (IS_GEN6(dev))
2277                 snb_wm_latency_quirk(dev);
2278 }
2279
2280 static void skl_setup_wm_latency(struct drm_device *dev)
2281 {
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283
2284         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2285         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2286 }
2287
2288 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2289                                  struct intel_pipe_wm *pipe_wm)
2290 {
2291         /* LP0 watermark maximums depend on this pipe alone */
2292         const struct intel_wm_config config = {
2293                 .num_pipes_active = 1,
2294                 .sprites_enabled = pipe_wm->sprites_enabled,
2295                 .sprites_scaled = pipe_wm->sprites_scaled,
2296         };
2297         struct ilk_wm_maximums max;
2298
2299         /* LP0 watermarks always use 1/2 DDB partitioning */
2300         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2301
2302         /* At least LP0 must be valid */
2303         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2304                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2305                 return false;
2306         }
2307
2308         return true;
2309 }
2310
2311 /* Compute new watermarks for the pipe */
2312 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2313 {
2314         struct drm_atomic_state *state = cstate->base.state;
2315         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2316         struct intel_pipe_wm *pipe_wm;
2317         struct drm_device *dev = state->dev;
2318         const struct drm_i915_private *dev_priv = dev->dev_private;
2319         struct intel_plane *intel_plane;
2320         struct intel_plane_state *pristate = NULL;
2321         struct intel_plane_state *sprstate = NULL;
2322         struct intel_plane_state *curstate = NULL;
2323         int level, max_level = ilk_wm_max_level(dev), usable_level;
2324         struct ilk_wm_maximums max;
2325
2326         pipe_wm = &cstate->wm.optimal.ilk;
2327
2328         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2329                 struct intel_plane_state *ps;
2330
2331                 ps = intel_atomic_get_existing_plane_state(state,
2332                                                            intel_plane);
2333                 if (!ps)
2334                         continue;
2335
2336                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2337                         pristate = ps;
2338                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2339                         sprstate = ps;
2340                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2341                         curstate = ps;
2342         }
2343
2344         pipe_wm->pipe_enabled = cstate->base.active;
2345         if (sprstate) {
2346                 pipe_wm->sprites_enabled = sprstate->visible;
2347                 pipe_wm->sprites_scaled = sprstate->visible &&
2348                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2349                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2350         }
2351
2352         usable_level = max_level;
2353
2354         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2355         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2356                 usable_level = 1;
2357
2358         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2359         if (pipe_wm->sprites_scaled)
2360                 usable_level = 0;
2361
2362         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2363                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2364
2365         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2366         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2367
2368         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2369                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2370
2371         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2372                 return -EINVAL;
2373
2374         ilk_compute_wm_reg_maximums(dev, 1, &max);
2375
2376         for (level = 1; level <= max_level; level++) {
2377                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2378
2379                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2380                                      pristate, sprstate, curstate, wm);
2381
2382                 /*
2383                  * Disable any watermark level that exceeds the
2384                  * register maximums since such watermarks are
2385                  * always invalid.
2386                  */
2387                 if (level > usable_level)
2388                         continue;
2389
2390                 if (ilk_validate_wm_level(level, &max, wm))
2391                         pipe_wm->wm[level] = *wm;
2392                 else
2393                         usable_level = level;
2394         }
2395
2396         return 0;
2397 }
2398
2399 /*
2400  * Build a set of 'intermediate' watermark values that satisfy both the old
2401  * state and the new state.  These can be programmed to the hardware
2402  * immediately.
2403  */
2404 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2405                                        struct intel_crtc *intel_crtc,
2406                                        struct intel_crtc_state *newstate)
2407 {
2408         struct intel_pipe_wm *a = &newstate->wm.intermediate;
2409         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2410         int level, max_level = ilk_wm_max_level(dev);
2411
2412         /*
2413          * Start with the final, target watermarks, then combine with the
2414          * currently active watermarks to get values that are safe both before
2415          * and after the vblank.
2416          */
2417         *a = newstate->wm.optimal.ilk;
2418         a->pipe_enabled |= b->pipe_enabled;
2419         a->sprites_enabled |= b->sprites_enabled;
2420         a->sprites_scaled |= b->sprites_scaled;
2421
2422         for (level = 0; level <= max_level; level++) {
2423                 struct intel_wm_level *a_wm = &a->wm[level];
2424                 const struct intel_wm_level *b_wm = &b->wm[level];
2425
2426                 a_wm->enable &= b_wm->enable;
2427                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2428                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2429                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2430                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2431         }
2432
2433         /*
2434          * We need to make sure that these merged watermark values are
2435          * actually a valid configuration themselves.  If they're not,
2436          * there's no safe way to transition from the old state to
2437          * the new state, so we need to fail the atomic transaction.
2438          */
2439         if (!ilk_validate_pipe_wm(dev, a))
2440                 return -EINVAL;
2441
2442         /*
2443          * If our intermediate WM are identical to the final WM, then we can
2444          * omit the post-vblank programming; only update if it's different.
2445          */
2446         if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
2447                 newstate->wm.need_postvbl_update = false;
2448
2449         return 0;
2450 }
2451
2452 /*
2453  * Merge the watermarks from all active pipes for a specific level.
2454  */
2455 static void ilk_merge_wm_level(struct drm_device *dev,
2456                                int level,
2457                                struct intel_wm_level *ret_wm)
2458 {
2459         const struct intel_crtc *intel_crtc;
2460
2461         ret_wm->enable = true;
2462
2463         for_each_intel_crtc(dev, intel_crtc) {
2464                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2465                 const struct intel_wm_level *wm = &active->wm[level];
2466
2467                 if (!active->pipe_enabled)
2468                         continue;
2469
2470                 /*
2471                  * The watermark values may have been used in the past,
2472                  * so we must maintain them in the registers for some
2473                  * time even if the level is now disabled.
2474                  */
2475                 if (!wm->enable)
2476                         ret_wm->enable = false;
2477
2478                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2479                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2480                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2481                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2482         }
2483 }
2484
2485 /*
2486  * Merge all low power watermarks for all active pipes.
2487  */
2488 static void ilk_wm_merge(struct drm_device *dev,
2489                          const struct intel_wm_config *config,
2490                          const struct ilk_wm_maximums *max,
2491                          struct intel_pipe_wm *merged)
2492 {
2493         struct drm_i915_private *dev_priv = dev->dev_private;
2494         int level, max_level = ilk_wm_max_level(dev);
2495         int last_enabled_level = max_level;
2496
2497         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2498         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2499             config->num_pipes_active > 1)
2500                 last_enabled_level = 0;
2501
2502         /* ILK: FBC WM must be disabled always */
2503         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2504
2505         /* merge each WM1+ level */
2506         for (level = 1; level <= max_level; level++) {
2507                 struct intel_wm_level *wm = &merged->wm[level];
2508
2509                 ilk_merge_wm_level(dev, level, wm);
2510
2511                 if (level > last_enabled_level)
2512                         wm->enable = false;
2513                 else if (!ilk_validate_wm_level(level, max, wm))
2514                         /* make sure all following levels get disabled */
2515                         last_enabled_level = level - 1;
2516
2517                 /*
2518                  * The spec says it is preferred to disable
2519                  * FBC WMs instead of disabling a WM level.
2520                  */
2521                 if (wm->fbc_val > max->fbc) {
2522                         if (wm->enable)
2523                                 merged->fbc_wm_enabled = false;
2524                         wm->fbc_val = 0;
2525                 }
2526         }
2527
2528         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2529         /*
2530          * FIXME this is racy. FBC might get enabled later.
2531          * What we should check here is whether FBC can be
2532          * enabled sometime later.
2533          */
2534         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2535             intel_fbc_is_active(dev_priv)) {
2536                 for (level = 2; level <= max_level; level++) {
2537                         struct intel_wm_level *wm = &merged->wm[level];
2538
2539                         wm->enable = false;
2540                 }
2541         }
2542 }
2543
2544 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2545 {
2546         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2547         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2548 }
2549
2550 /* The value we need to program into the WM_LPx latency field */
2551 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2552 {
2553         struct drm_i915_private *dev_priv = dev->dev_private;
2554
2555         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2556                 return 2 * level;
2557         else
2558                 return dev_priv->wm.pri_latency[level];
2559 }
2560
2561 static void ilk_compute_wm_results(struct drm_device *dev,
2562                                    const struct intel_pipe_wm *merged,
2563                                    enum intel_ddb_partitioning partitioning,
2564                                    struct ilk_wm_values *results)
2565 {
2566         struct intel_crtc *intel_crtc;
2567         int level, wm_lp;
2568
2569         results->enable_fbc_wm = merged->fbc_wm_enabled;
2570         results->partitioning = partitioning;
2571
2572         /* LP1+ register values */
2573         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2574                 const struct intel_wm_level *r;
2575
2576                 level = ilk_wm_lp_to_level(wm_lp, merged);
2577
2578                 r = &merged->wm[level];
2579
2580                 /*
2581                  * Maintain the watermark values even if the level is
2582                  * disabled. Doing otherwise could cause underruns.
2583                  */
2584                 results->wm_lp[wm_lp - 1] =
2585                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2586                         (r->pri_val << WM1_LP_SR_SHIFT) |
2587                         r->cur_val;
2588
2589                 if (r->enable)
2590                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2591
2592                 if (INTEL_INFO(dev)->gen >= 8)
2593                         results->wm_lp[wm_lp - 1] |=
2594                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2595                 else
2596                         results->wm_lp[wm_lp - 1] |=
2597                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2598
2599                 /*
2600                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2601                  * level is disabled. Doing otherwise could cause underruns.
2602                  */
2603                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2604                         WARN_ON(wm_lp != 1);
2605                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2606                 } else
2607                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2608         }
2609
2610         /* LP0 register values */
2611         for_each_intel_crtc(dev, intel_crtc) {
2612                 enum pipe pipe = intel_crtc->pipe;
2613                 const struct intel_wm_level *r =
2614                         &intel_crtc->wm.active.ilk.wm[0];
2615
2616                 if (WARN_ON(!r->enable))
2617                         continue;
2618
2619                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2620
2621                 results->wm_pipe[pipe] =
2622                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2623                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2624                         r->cur_val;
2625         }
2626 }
2627
2628 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2629  * case both are at the same level. Prefer r1 in case they're the same. */
2630 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2631                                                   struct intel_pipe_wm *r1,
2632                                                   struct intel_pipe_wm *r2)
2633 {
2634         int level, max_level = ilk_wm_max_level(dev);
2635         int level1 = 0, level2 = 0;
2636
2637         for (level = 1; level <= max_level; level++) {
2638                 if (r1->wm[level].enable)
2639                         level1 = level;
2640                 if (r2->wm[level].enable)
2641                         level2 = level;
2642         }
2643
2644         if (level1 == level2) {
2645                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2646                         return r2;
2647                 else
2648                         return r1;
2649         } else if (level1 > level2) {
2650                 return r1;
2651         } else {
2652                 return r2;
2653         }
2654 }
2655
2656 /* dirty bits used to track which watermarks need changes */
2657 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2658 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2659 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2660 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2661 #define WM_DIRTY_FBC (1 << 24)
2662 #define WM_DIRTY_DDB (1 << 25)
2663
2664 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2665                                          const struct ilk_wm_values *old,
2666                                          const struct ilk_wm_values *new)
2667 {
2668         unsigned int dirty = 0;
2669         enum pipe pipe;
2670         int wm_lp;
2671
2672         for_each_pipe(dev_priv, pipe) {
2673                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2674                         dirty |= WM_DIRTY_LINETIME(pipe);
2675                         /* Must disable LP1+ watermarks too */
2676                         dirty |= WM_DIRTY_LP_ALL;
2677                 }
2678
2679                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2680                         dirty |= WM_DIRTY_PIPE(pipe);
2681                         /* Must disable LP1+ watermarks too */
2682                         dirty |= WM_DIRTY_LP_ALL;
2683                 }
2684         }
2685
2686         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2687                 dirty |= WM_DIRTY_FBC;
2688                 /* Must disable LP1+ watermarks too */
2689                 dirty |= WM_DIRTY_LP_ALL;
2690         }
2691
2692         if (old->partitioning != new->partitioning) {
2693                 dirty |= WM_DIRTY_DDB;
2694                 /* Must disable LP1+ watermarks too */
2695                 dirty |= WM_DIRTY_LP_ALL;
2696         }
2697
2698         /* LP1+ watermarks already deemed dirty, no need to continue */
2699         if (dirty & WM_DIRTY_LP_ALL)
2700                 return dirty;
2701
2702         /* Find the lowest numbered LP1+ watermark in need of an update... */
2703         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2704                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2705                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2706                         break;
2707         }
2708
2709         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2710         for (; wm_lp <= 3; wm_lp++)
2711                 dirty |= WM_DIRTY_LP(wm_lp);
2712
2713         return dirty;
2714 }
2715
2716 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2717                                unsigned int dirty)
2718 {
2719         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2720         bool changed = false;
2721
2722         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2723                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2724                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2725                 changed = true;
2726         }
2727         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2728                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2729                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2730                 changed = true;
2731         }
2732         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2733                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2734                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2735                 changed = true;
2736         }
2737
2738         /*
2739          * Don't touch WM1S_LP_EN here.
2740          * Doing so could cause underruns.
2741          */
2742
2743         return changed;
2744 }
2745
2746 /*
2747  * The spec says we shouldn't write when we don't need, because every write
2748  * causes WMs to be re-evaluated, expending some power.
2749  */
2750 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2751                                 struct ilk_wm_values *results)
2752 {
2753         struct drm_device *dev = dev_priv->dev;
2754         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2755         unsigned int dirty;
2756         uint32_t val;
2757
2758         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2759         if (!dirty)
2760                 return;
2761
2762         _ilk_disable_lp_wm(dev_priv, dirty);
2763
2764         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2765                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2766         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2767                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2768         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2769                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2770
2771         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2772                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2773         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2774                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2775         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2776                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2777
2778         if (dirty & WM_DIRTY_DDB) {
2779                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2780                         val = I915_READ(WM_MISC);
2781                         if (results->partitioning == INTEL_DDB_PART_1_2)
2782                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2783                         else
2784                                 val |= WM_MISC_DATA_PARTITION_5_6;
2785                         I915_WRITE(WM_MISC, val);
2786                 } else {
2787                         val = I915_READ(DISP_ARB_CTL2);
2788                         if (results->partitioning == INTEL_DDB_PART_1_2)
2789                                 val &= ~DISP_DATA_PARTITION_5_6;
2790                         else
2791                                 val |= DISP_DATA_PARTITION_5_6;
2792                         I915_WRITE(DISP_ARB_CTL2, val);
2793                 }
2794         }
2795
2796         if (dirty & WM_DIRTY_FBC) {
2797                 val = I915_READ(DISP_ARB_CTL);
2798                 if (results->enable_fbc_wm)
2799                         val &= ~DISP_FBC_WM_DIS;
2800                 else
2801                         val |= DISP_FBC_WM_DIS;
2802                 I915_WRITE(DISP_ARB_CTL, val);
2803         }
2804
2805         if (dirty & WM_DIRTY_LP(1) &&
2806             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2807                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2808
2809         if (INTEL_INFO(dev)->gen >= 7) {
2810                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2811                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2812                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2813                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2814         }
2815
2816         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2817                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2818         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2819                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2820         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2821                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2822
2823         dev_priv->wm.hw = *results;
2824 }
2825
2826 bool ilk_disable_lp_wm(struct drm_device *dev)
2827 {
2828         struct drm_i915_private *dev_priv = dev->dev_private;
2829
2830         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2831 }
2832
2833 /*
2834  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2835  * different active planes.
2836  */
2837
2838 #define SKL_DDB_SIZE            896     /* in blocks */
2839 #define BXT_DDB_SIZE            512
2840
2841 /*
2842  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2843  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2844  * other universal planes are in indices 1..n.  Note that this may leave unused
2845  * indices between the top "sprite" plane and the cursor.
2846  */
2847 static int
2848 skl_wm_plane_id(const struct intel_plane *plane)
2849 {
2850         switch (plane->base.type) {
2851         case DRM_PLANE_TYPE_PRIMARY:
2852                 return 0;
2853         case DRM_PLANE_TYPE_CURSOR:
2854                 return PLANE_CURSOR;
2855         case DRM_PLANE_TYPE_OVERLAY:
2856                 return plane->plane + 1;
2857         default:
2858                 MISSING_CASE(plane->base.type);
2859                 return plane->plane;
2860         }
2861 }
2862
2863 static void
2864 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2865                                    const struct intel_crtc_state *cstate,
2866                                    const struct intel_wm_config *config,
2867                                    struct skl_ddb_entry *alloc /* out */)
2868 {
2869         struct drm_crtc *for_crtc = cstate->base.crtc;
2870         struct drm_crtc *crtc;
2871         unsigned int pipe_size, ddb_size;
2872         int nth_active_pipe;
2873
2874         if (!cstate->base.active) {
2875                 alloc->start = 0;
2876                 alloc->end = 0;
2877                 return;
2878         }
2879
2880         if (IS_BROXTON(dev))
2881                 ddb_size = BXT_DDB_SIZE;
2882         else
2883                 ddb_size = SKL_DDB_SIZE;
2884
2885         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2886
2887         nth_active_pipe = 0;
2888         for_each_crtc(dev, crtc) {
2889                 if (!to_intel_crtc(crtc)->active)
2890                         continue;
2891
2892                 if (crtc == for_crtc)
2893                         break;
2894
2895                 nth_active_pipe++;
2896         }
2897
2898         pipe_size = ddb_size / config->num_pipes_active;
2899         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2900         alloc->end = alloc->start + pipe_size;
2901 }
2902
2903 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2904 {
2905         if (config->num_pipes_active == 1)
2906                 return 32;
2907
2908         return 8;
2909 }
2910
2911 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2912 {
2913         entry->start = reg & 0x3ff;
2914         entry->end = (reg >> 16) & 0x3ff;
2915         if (entry->end)
2916                 entry->end += 1;
2917 }
2918
2919 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2920                           struct skl_ddb_allocation *ddb /* out */)
2921 {
2922         enum pipe pipe;
2923         int plane;
2924         u32 val;
2925
2926         memset(ddb, 0, sizeof(*ddb));
2927
2928         for_each_pipe(dev_priv, pipe) {
2929                 enum intel_display_power_domain power_domain;
2930
2931                 power_domain = POWER_DOMAIN_PIPE(pipe);
2932                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2933                         continue;
2934
2935                 for_each_plane(dev_priv, pipe, plane) {
2936                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2937                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2938                                                    val);
2939                 }
2940
2941                 val = I915_READ(CUR_BUF_CFG(pipe));
2942                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2943                                            val);
2944
2945                 intel_display_power_put(dev_priv, power_domain);
2946         }
2947 }
2948
2949 static unsigned int
2950 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2951                              const struct drm_plane_state *pstate,
2952                              int y)
2953 {
2954         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2955         struct drm_framebuffer *fb = pstate->fb;
2956         uint32_t width = 0, height = 0;
2957
2958         width = drm_rect_width(&intel_pstate->src) >> 16;
2959         height = drm_rect_height(&intel_pstate->src) >> 16;
2960
2961         if (intel_rotation_90_or_270(pstate->rotation))
2962                 swap(width, height);
2963
2964         /* for planar format */
2965         if (fb->pixel_format == DRM_FORMAT_NV12) {
2966                 if (y)  /* y-plane data rate */
2967                         return width * height *
2968                                 drm_format_plane_cpp(fb->pixel_format, 0);
2969                 else    /* uv-plane data rate */
2970                         return (width / 2) * (height / 2) *
2971                                 drm_format_plane_cpp(fb->pixel_format, 1);
2972         }
2973
2974         /* for packed formats */
2975         return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2976 }
2977
2978 /*
2979  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2980  * a 8192x4096@32bpp framebuffer:
2981  *   3 * 4096 * 8192  * 4 < 2^32
2982  */
2983 static unsigned int
2984 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2985 {
2986         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2987         struct drm_device *dev = intel_crtc->base.dev;
2988         const struct intel_plane *intel_plane;
2989         unsigned int total_data_rate = 0;
2990
2991         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2992                 const struct drm_plane_state *pstate = intel_plane->base.state;
2993
2994                 if (pstate->fb == NULL)
2995                         continue;
2996
2997                 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2998                         continue;
2999
3000                 /* packed/uv */
3001                 total_data_rate += skl_plane_relative_data_rate(cstate,
3002                                                                 pstate,
3003                                                                 0);
3004
3005                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
3006                         /* y-plane */
3007                         total_data_rate += skl_plane_relative_data_rate(cstate,
3008                                                                         pstate,
3009                                                                         1);
3010         }
3011
3012         return total_data_rate;
3013 }
3014
3015 static void
3016 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3017                       struct skl_ddb_allocation *ddb /* out */)
3018 {
3019         struct drm_crtc *crtc = cstate->base.crtc;
3020         struct drm_device *dev = crtc->dev;
3021         struct drm_i915_private *dev_priv = to_i915(dev);
3022         struct intel_wm_config *config = &dev_priv->wm.config;
3023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3024         struct intel_plane *intel_plane;
3025         enum pipe pipe = intel_crtc->pipe;
3026         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3027         uint16_t alloc_size, start, cursor_blocks;
3028         uint16_t minimum[I915_MAX_PLANES];
3029         uint16_t y_minimum[I915_MAX_PLANES];
3030         unsigned int total_data_rate;
3031
3032         skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
3033         alloc_size = skl_ddb_entry_size(alloc);
3034         if (alloc_size == 0) {
3035                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3036                 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
3037                        sizeof(ddb->plane[pipe][PLANE_CURSOR]));
3038                 return;
3039         }
3040
3041         cursor_blocks = skl_cursor_allocation(config);
3042         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3043         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3044
3045         alloc_size -= cursor_blocks;
3046         alloc->end -= cursor_blocks;
3047
3048         /* 1. Allocate the mininum required blocks for each active plane */
3049         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3050                 struct drm_plane *plane = &intel_plane->base;
3051                 struct drm_framebuffer *fb = plane->state->fb;
3052                 int id = skl_wm_plane_id(intel_plane);
3053
3054                 if (!to_intel_plane_state(plane->state)->visible)
3055                         continue;
3056
3057                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
3058                         continue;
3059
3060                 minimum[id] = 8;
3061                 alloc_size -= minimum[id];
3062                 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
3063                 alloc_size -= y_minimum[id];
3064         }
3065
3066         /*
3067          * 2. Distribute the remaining space in proportion to the amount of
3068          * data each plane needs to fetch from memory.
3069          *
3070          * FIXME: we may not allocate every single block here.
3071          */
3072         total_data_rate = skl_get_total_relative_data_rate(cstate);
3073
3074         start = alloc->start;
3075         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3076                 struct drm_plane *plane = &intel_plane->base;
3077                 struct drm_plane_state *pstate = intel_plane->base.state;
3078                 unsigned int data_rate, y_data_rate;
3079                 uint16_t plane_blocks, y_plane_blocks = 0;
3080                 int id = skl_wm_plane_id(intel_plane);
3081
3082                 if (!to_intel_plane_state(pstate)->visible)
3083                         continue;
3084                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
3085                         continue;
3086
3087                 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3088
3089                 /*
3090                  * allocation for (packed formats) or (uv-plane part of planar format):
3091                  * promote the expression to 64 bits to avoid overflowing, the
3092                  * result is < available as data_rate / total_data_rate < 1
3093                  */
3094                 plane_blocks = minimum[id];
3095                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3096                                         total_data_rate);
3097
3098                 ddb->plane[pipe][id].start = start;
3099                 ddb->plane[pipe][id].end = start + plane_blocks;
3100
3101                 start += plane_blocks;
3102
3103                 /*
3104                  * allocation for y_plane part of planar format:
3105                  */
3106                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3107                         y_data_rate = skl_plane_relative_data_rate(cstate,
3108                                                                    pstate,
3109                                                                    1);
3110                         y_plane_blocks = y_minimum[id];
3111                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3112                                                 total_data_rate);
3113
3114                         ddb->y_plane[pipe][id].start = start;
3115                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3116
3117                         start += y_plane_blocks;
3118                 }
3119
3120         }
3121
3122 }
3123
3124 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3125 {
3126         /* TODO: Take into account the scalers once we support them */
3127         return config->base.adjusted_mode.crtc_clock;
3128 }
3129
3130 /*
3131  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3132  * for the read latency) and cpp should always be <= 8, so that
3133  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3134  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3135 */
3136 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3137 {
3138         uint32_t wm_intermediate_val, ret;
3139
3140         if (latency == 0)
3141                 return UINT_MAX;
3142
3143         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3144         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3145
3146         return ret;
3147 }
3148
3149 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3150                                uint32_t horiz_pixels, uint8_t cpp,
3151                                uint64_t tiling, uint32_t latency)
3152 {
3153         uint32_t ret;
3154         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3155         uint32_t wm_intermediate_val;
3156
3157         if (latency == 0)
3158                 return UINT_MAX;
3159
3160         plane_bytes_per_line = horiz_pixels * cpp;
3161
3162         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3163             tiling == I915_FORMAT_MOD_Yf_TILED) {
3164                 plane_bytes_per_line *= 4;
3165                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3166                 plane_blocks_per_line /= 4;
3167         } else {
3168                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3169         }
3170
3171         wm_intermediate_val = latency * pixel_rate;
3172         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3173                                 plane_blocks_per_line;
3174
3175         return ret;
3176 }
3177
3178 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3179                                        const struct intel_crtc *intel_crtc)
3180 {
3181         struct drm_device *dev = intel_crtc->base.dev;
3182         struct drm_i915_private *dev_priv = dev->dev_private;
3183         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3184
3185         /*
3186          * If ddb allocation of pipes changed, it may require recalculation of
3187          * watermarks
3188          */
3189         if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3190                 return true;
3191
3192         return false;
3193 }
3194
3195 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3196                                  struct intel_crtc_state *cstate,
3197                                  struct intel_plane *intel_plane,
3198                                  uint16_t ddb_allocation,
3199                                  int level,
3200                                  uint16_t *out_blocks, /* out */
3201                                  uint8_t *out_lines /* out */)
3202 {
3203         struct drm_plane *plane = &intel_plane->base;
3204         struct drm_framebuffer *fb = plane->state->fb;
3205         struct intel_plane_state *intel_pstate =
3206                                         to_intel_plane_state(plane->state);
3207         uint32_t latency = dev_priv->wm.skl_latency[level];
3208         uint32_t method1, method2;
3209         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3210         uint32_t res_blocks, res_lines;
3211         uint32_t selected_result;
3212         uint8_t cpp;
3213         uint32_t width = 0, height = 0;
3214
3215         if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3216                 return false;
3217
3218         width = drm_rect_width(&intel_pstate->src) >> 16;
3219         height = drm_rect_height(&intel_pstate->src) >> 16;
3220
3221         if (intel_rotation_90_or_270(plane->state->rotation))
3222                 swap(width, height);
3223
3224         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3225         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3226                                  cpp, latency);
3227         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3228                                  cstate->base.adjusted_mode.crtc_htotal,
3229                                  width,
3230                                  cpp,
3231                                  fb->modifier[0],
3232                                  latency);
3233
3234         plane_bytes_per_line = width * cpp;
3235         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3236
3237         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3238             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3239                 uint32_t min_scanlines = 4;
3240                 uint32_t y_tile_minimum;
3241                 if (intel_rotation_90_or_270(plane->state->rotation)) {
3242                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3243                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3244                                 drm_format_plane_cpp(fb->pixel_format, 0);
3245
3246                         switch (cpp) {
3247                         case 1:
3248                                 min_scanlines = 16;
3249                                 break;
3250                         case 2:
3251                                 min_scanlines = 8;
3252                                 break;
3253                         case 8:
3254                                 WARN(1, "Unsupported pixel depth for rotation");
3255                         }
3256                 }
3257                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3258                 selected_result = max(method2, y_tile_minimum);
3259         } else {
3260                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3261                         selected_result = min(method1, method2);
3262                 else
3263                         selected_result = method1;
3264         }
3265
3266         res_blocks = selected_result + 1;
3267         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3268
3269         if (level >= 1 && level <= 7) {
3270                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3271                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3272                         res_lines += 4;
3273                 else
3274                         res_blocks++;
3275         }
3276
3277         if (res_blocks >= ddb_allocation || res_lines > 31)
3278                 return false;
3279
3280         *out_blocks = res_blocks;
3281         *out_lines = res_lines;
3282
3283         return true;
3284 }
3285
3286 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3287                                  struct skl_ddb_allocation *ddb,
3288                                  struct intel_crtc_state *cstate,
3289                                  int level,
3290                                  struct skl_wm_level *result)
3291 {
3292         struct drm_device *dev = dev_priv->dev;
3293         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3294         struct intel_plane *intel_plane;
3295         uint16_t ddb_blocks;
3296         enum pipe pipe = intel_crtc->pipe;
3297
3298         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3299                 int i = skl_wm_plane_id(intel_plane);
3300
3301                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3302
3303                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3304                                                 cstate,
3305                                                 intel_plane,
3306                                                 ddb_blocks,
3307                                                 level,
3308                                                 &result->plane_res_b[i],
3309                                                 &result->plane_res_l[i]);
3310         }
3311 }
3312
3313 static uint32_t
3314 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3315 {
3316         if (!cstate->base.active)
3317                 return 0;
3318
3319         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3320                 return 0;
3321
3322         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3323                             skl_pipe_pixel_rate(cstate));
3324 }
3325
3326 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3327                                       struct skl_wm_level *trans_wm /* out */)
3328 {
3329         struct drm_crtc *crtc = cstate->base.crtc;
3330         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3331         struct intel_plane *intel_plane;
3332
3333         if (!cstate->base.active)
3334                 return;
3335
3336         /* Until we know more, just disable transition WMs */
3337         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3338                 int i = skl_wm_plane_id(intel_plane);
3339
3340                 trans_wm->plane_en[i] = false;
3341         }
3342 }
3343
3344 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3345                                 struct skl_ddb_allocation *ddb,
3346                                 struct skl_pipe_wm *pipe_wm)
3347 {
3348         struct drm_device *dev = cstate->base.crtc->dev;
3349         const struct drm_i915_private *dev_priv = dev->dev_private;
3350         int level, max_level = ilk_wm_max_level(dev);
3351
3352         for (level = 0; level <= max_level; level++) {
3353                 skl_compute_wm_level(dev_priv, ddb, cstate,
3354                                      level, &pipe_wm->wm[level]);
3355         }
3356         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3357
3358         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3359 }
3360
3361 static void skl_compute_wm_results(struct drm_device *dev,
3362                                    struct skl_pipe_wm *p_wm,
3363                                    struct skl_wm_values *r,
3364                                    struct intel_crtc *intel_crtc)
3365 {
3366         int level, max_level = ilk_wm_max_level(dev);
3367         enum pipe pipe = intel_crtc->pipe;
3368         uint32_t temp;
3369         int i;
3370
3371         for (level = 0; level <= max_level; level++) {
3372                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3373                         temp = 0;
3374
3375                         temp |= p_wm->wm[level].plane_res_l[i] <<
3376                                         PLANE_WM_LINES_SHIFT;
3377                         temp |= p_wm->wm[level].plane_res_b[i];
3378                         if (p_wm->wm[level].plane_en[i])
3379                                 temp |= PLANE_WM_EN;
3380
3381                         r->plane[pipe][i][level] = temp;
3382                 }
3383
3384                 temp = 0;
3385
3386                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3387                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3388
3389                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3390                         temp |= PLANE_WM_EN;
3391
3392                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3393
3394         }
3395
3396         /* transition WMs */
3397         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3398                 temp = 0;
3399                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3400                 temp |= p_wm->trans_wm.plane_res_b[i];
3401                 if (p_wm->trans_wm.plane_en[i])
3402                         temp |= PLANE_WM_EN;
3403
3404                 r->plane_trans[pipe][i] = temp;
3405         }
3406
3407         temp = 0;
3408         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3409         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3410         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3411                 temp |= PLANE_WM_EN;
3412
3413         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3414
3415         r->wm_linetime[pipe] = p_wm->linetime;
3416 }
3417
3418 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3419                                 i915_reg_t reg,
3420                                 const struct skl_ddb_entry *entry)
3421 {
3422         if (entry->end)
3423                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3424         else
3425                 I915_WRITE(reg, 0);
3426 }
3427
3428 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3429                                 const struct skl_wm_values *new)
3430 {
3431         struct drm_device *dev = dev_priv->dev;
3432         struct intel_crtc *crtc;
3433
3434         for_each_intel_crtc(dev, crtc) {
3435                 int i, level, max_level = ilk_wm_max_level(dev);
3436                 enum pipe pipe = crtc->pipe;
3437
3438                 if (!new->dirty[pipe])
3439                         continue;
3440
3441                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3442
3443                 for (level = 0; level <= max_level; level++) {
3444                         for (i = 0; i < intel_num_planes(crtc); i++)
3445                                 I915_WRITE(PLANE_WM(pipe, i, level),
3446                                            new->plane[pipe][i][level]);
3447                         I915_WRITE(CUR_WM(pipe, level),
3448                                    new->plane[pipe][PLANE_CURSOR][level]);
3449                 }
3450                 for (i = 0; i < intel_num_planes(crtc); i++)
3451                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3452                                    new->plane_trans[pipe][i]);
3453                 I915_WRITE(CUR_WM_TRANS(pipe),
3454                            new->plane_trans[pipe][PLANE_CURSOR]);
3455
3456                 for (i = 0; i < intel_num_planes(crtc); i++) {
3457                         skl_ddb_entry_write(dev_priv,
3458                                             PLANE_BUF_CFG(pipe, i),
3459                                             &new->ddb.plane[pipe][i]);
3460                         skl_ddb_entry_write(dev_priv,
3461                                             PLANE_NV12_BUF_CFG(pipe, i),
3462                                             &new->ddb.y_plane[pipe][i]);
3463                 }
3464
3465                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3466                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3467         }
3468 }
3469
3470 /*
3471  * When setting up a new DDB allocation arrangement, we need to correctly
3472  * sequence the times at which the new allocations for the pipes are taken into
3473  * account or we'll have pipes fetching from space previously allocated to
3474  * another pipe.
3475  *
3476  * Roughly the sequence looks like:
3477  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3478  *     overlapping with a previous light-up pipe (another way to put it is:
3479  *     pipes with their new allocation strickly included into their old ones).
3480  *  2. re-allocate the other pipes that get their allocation reduced
3481  *  3. allocate the pipes having their allocation increased
3482  *
3483  * Steps 1. and 2. are here to take care of the following case:
3484  * - Initially DDB looks like this:
3485  *     |   B    |   C    |
3486  * - enable pipe A.
3487  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3488  *   allocation
3489  *     |  A  |  B  |  C  |
3490  *
3491  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3492  */
3493
3494 static void
3495 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3496 {
3497         int plane;
3498
3499         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3500
3501         for_each_plane(dev_priv, pipe, plane) {
3502                 I915_WRITE(PLANE_SURF(pipe, plane),
3503                            I915_READ(PLANE_SURF(pipe, plane)));
3504         }
3505         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3506 }
3507
3508 static bool
3509 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3510                             const struct skl_ddb_allocation *new,
3511                             enum pipe pipe)
3512 {
3513         uint16_t old_size, new_size;
3514
3515         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3516         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3517
3518         return old_size != new_size &&
3519                new->pipe[pipe].start >= old->pipe[pipe].start &&
3520                new->pipe[pipe].end <= old->pipe[pipe].end;
3521 }
3522
3523 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3524                                 struct skl_wm_values *new_values)
3525 {
3526         struct drm_device *dev = dev_priv->dev;
3527         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3528         bool reallocated[I915_MAX_PIPES] = {};
3529         struct intel_crtc *crtc;
3530         enum pipe pipe;
3531
3532         new_ddb = &new_values->ddb;
3533         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3534
3535         /*
3536          * First pass: flush the pipes with the new allocation contained into
3537          * the old space.
3538          *
3539          * We'll wait for the vblank on those pipes to ensure we can safely
3540          * re-allocate the freed space without this pipe fetching from it.
3541          */
3542         for_each_intel_crtc(dev, crtc) {
3543                 if (!crtc->active)
3544                         continue;
3545
3546                 pipe = crtc->pipe;
3547
3548                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3549                         continue;
3550
3551                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3552                 intel_wait_for_vblank(dev, pipe);
3553
3554                 reallocated[pipe] = true;
3555         }
3556
3557
3558         /*
3559          * Second pass: flush the pipes that are having their allocation
3560          * reduced, but overlapping with a previous allocation.
3561          *
3562          * Here as well we need to wait for the vblank to make sure the freed
3563          * space is not used anymore.
3564          */
3565         for_each_intel_crtc(dev, crtc) {
3566                 if (!crtc->active)
3567                         continue;
3568
3569                 pipe = crtc->pipe;
3570
3571                 if (reallocated[pipe])
3572                         continue;
3573
3574                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3575                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3576                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3577                         intel_wait_for_vblank(dev, pipe);
3578                         reallocated[pipe] = true;
3579                 }
3580         }
3581
3582         /*
3583          * Third pass: flush the pipes that got more space allocated.
3584          *
3585          * We don't need to actively wait for the update here, next vblank
3586          * will just get more DDB space with the correct WM values.
3587          */
3588         for_each_intel_crtc(dev, crtc) {
3589                 if (!crtc->active)
3590                         continue;
3591
3592                 pipe = crtc->pipe;
3593
3594                 /*
3595                  * At this point, only the pipes more space than before are
3596                  * left to re-allocate.
3597                  */
3598                 if (reallocated[pipe])
3599                         continue;
3600
3601                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3602         }
3603 }
3604
3605 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3606                                struct skl_ddb_allocation *ddb, /* out */
3607                                struct skl_pipe_wm *pipe_wm /* out */)
3608 {
3609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3610         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3611
3612         skl_allocate_pipe_ddb(cstate, ddb);
3613         skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3614
3615         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3616                 return false;
3617
3618         intel_crtc->wm.active.skl = *pipe_wm;
3619
3620         return true;
3621 }
3622
3623 static void skl_update_other_pipe_wm(struct drm_device *dev,
3624                                      struct drm_crtc *crtc,
3625                                      struct skl_wm_values *r)
3626 {
3627         struct intel_crtc *intel_crtc;
3628         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3629
3630         /*
3631          * If the WM update hasn't changed the allocation for this_crtc (the
3632          * crtc we are currently computing the new WM values for), other
3633          * enabled crtcs will keep the same allocation and we don't need to
3634          * recompute anything for them.
3635          */
3636         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3637                 return;
3638
3639         /*
3640          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3641          * other active pipes need new DDB allocation and WM values.
3642          */
3643         for_each_intel_crtc(dev, intel_crtc) {
3644                 struct skl_pipe_wm pipe_wm = {};
3645                 bool wm_changed;
3646
3647                 if (this_crtc->pipe == intel_crtc->pipe)
3648                         continue;
3649
3650                 if (!intel_crtc->active)
3651                         continue;
3652
3653                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3654                                                 &r->ddb, &pipe_wm);
3655
3656                 /*
3657                  * If we end up re-computing the other pipe WM values, it's
3658                  * because it was really needed, so we expect the WM values to
3659                  * be different.
3660                  */
3661                 WARN_ON(!wm_changed);
3662
3663                 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3664                 r->dirty[intel_crtc->pipe] = true;
3665         }
3666 }
3667
3668 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3669 {
3670         watermarks->wm_linetime[pipe] = 0;
3671         memset(watermarks->plane[pipe], 0,
3672                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3673         memset(watermarks->plane_trans[pipe],
3674                0, sizeof(uint32_t) * I915_MAX_PLANES);
3675         watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3676
3677         /* Clear ddb entries for pipe */
3678         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3679         memset(&watermarks->ddb.plane[pipe], 0,
3680                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3681         memset(&watermarks->ddb.y_plane[pipe], 0,
3682                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3683         memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3684                sizeof(struct skl_ddb_entry));
3685
3686 }
3687
3688 static void skl_update_wm(struct drm_crtc *crtc)
3689 {
3690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3691         struct drm_device *dev = crtc->dev;
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3694         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3695         struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3696
3697
3698         /* Clear all dirty flags */
3699         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3700
3701         skl_clear_wm(results, intel_crtc->pipe);
3702
3703         if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3704                 return;
3705
3706         skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3707         results->dirty[intel_crtc->pipe] = true;
3708
3709         skl_update_other_pipe_wm(dev, crtc, results);
3710         skl_write_wm_values(dev_priv, results);
3711         skl_flush_wm_values(dev_priv, results);
3712
3713         /* store the new configuration */
3714         dev_priv->wm.skl_hw = *results;
3715 }
3716
3717 static void ilk_compute_wm_config(struct drm_device *dev,
3718                                   struct intel_wm_config *config)
3719 {
3720         struct intel_crtc *crtc;
3721
3722         /* Compute the currently _active_ config */
3723         for_each_intel_crtc(dev, crtc) {
3724                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3725
3726                 if (!wm->pipe_enabled)
3727                         continue;
3728
3729                 config->sprites_enabled |= wm->sprites_enabled;
3730                 config->sprites_scaled |= wm->sprites_scaled;
3731                 config->num_pipes_active++;
3732         }
3733 }
3734
3735 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3736 {
3737         struct drm_device *dev = dev_priv->dev;
3738         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3739         struct ilk_wm_maximums max;
3740         struct intel_wm_config config = {};
3741         struct ilk_wm_values results = {};
3742         enum intel_ddb_partitioning partitioning;
3743
3744         ilk_compute_wm_config(dev, &config);
3745
3746         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3747         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3748
3749         /* 5/6 split only in single pipe config on IVB+ */
3750         if (INTEL_INFO(dev)->gen >= 7 &&
3751             config.num_pipes_active == 1 && config.sprites_enabled) {
3752                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3753                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3754
3755                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3756         } else {
3757                 best_lp_wm = &lp_wm_1_2;
3758         }
3759
3760         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3761                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3762
3763         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3764
3765         ilk_write_wm_values(dev_priv, &results);
3766 }
3767
3768 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3769 {
3770         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3771         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3772
3773         mutex_lock(&dev_priv->wm.wm_mutex);
3774         intel_crtc->wm.active.ilk = cstate->wm.intermediate;
3775         ilk_program_watermarks(dev_priv);
3776         mutex_unlock(&dev_priv->wm.wm_mutex);
3777 }
3778
3779 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
3780 {
3781         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3782         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3783
3784         mutex_lock(&dev_priv->wm.wm_mutex);
3785         if (cstate->wm.need_postvbl_update) {
3786                 intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3787                 ilk_program_watermarks(dev_priv);
3788         }
3789         mutex_unlock(&dev_priv->wm.wm_mutex);
3790 }
3791
3792 static void skl_pipe_wm_active_state(uint32_t val,
3793                                      struct skl_pipe_wm *active,
3794                                      bool is_transwm,
3795                                      bool is_cursor,
3796                                      int i,
3797                                      int level)
3798 {
3799         bool is_enabled = (val & PLANE_WM_EN) != 0;
3800
3801         if (!is_transwm) {
3802                 if (!is_cursor) {
3803                         active->wm[level].plane_en[i] = is_enabled;
3804                         active->wm[level].plane_res_b[i] =
3805                                         val & PLANE_WM_BLOCKS_MASK;
3806                         active->wm[level].plane_res_l[i] =
3807                                         (val >> PLANE_WM_LINES_SHIFT) &
3808                                                 PLANE_WM_LINES_MASK;
3809                 } else {
3810                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3811                         active->wm[level].plane_res_b[PLANE_CURSOR] =
3812                                         val & PLANE_WM_BLOCKS_MASK;
3813                         active->wm[level].plane_res_l[PLANE_CURSOR] =
3814                                         (val >> PLANE_WM_LINES_SHIFT) &
3815                                                 PLANE_WM_LINES_MASK;
3816                 }
3817         } else {
3818                 if (!is_cursor) {
3819                         active->trans_wm.plane_en[i] = is_enabled;
3820                         active->trans_wm.plane_res_b[i] =
3821                                         val & PLANE_WM_BLOCKS_MASK;
3822                         active->trans_wm.plane_res_l[i] =
3823                                         (val >> PLANE_WM_LINES_SHIFT) &
3824                                                 PLANE_WM_LINES_MASK;
3825                 } else {
3826                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3827                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
3828                                         val & PLANE_WM_BLOCKS_MASK;
3829                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
3830                                         (val >> PLANE_WM_LINES_SHIFT) &
3831                                                 PLANE_WM_LINES_MASK;
3832                 }
3833         }
3834 }
3835
3836 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3837 {
3838         struct drm_device *dev = crtc->dev;
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3842         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3843         struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3844         enum pipe pipe = intel_crtc->pipe;
3845         int level, i, max_level;
3846         uint32_t temp;
3847
3848         max_level = ilk_wm_max_level(dev);
3849
3850         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3851
3852         for (level = 0; level <= max_level; level++) {
3853                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3854                         hw->plane[pipe][i][level] =
3855                                         I915_READ(PLANE_WM(pipe, i, level));
3856                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3857         }
3858
3859         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3860                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3861         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3862
3863         if (!intel_crtc->active)
3864                 return;
3865
3866         hw->dirty[pipe] = true;
3867
3868         active->linetime = hw->wm_linetime[pipe];
3869
3870         for (level = 0; level <= max_level; level++) {
3871                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3872                         temp = hw->plane[pipe][i][level];
3873                         skl_pipe_wm_active_state(temp, active, false,
3874                                                 false, i, level);
3875                 }
3876                 temp = hw->plane[pipe][PLANE_CURSOR][level];
3877                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3878         }
3879
3880         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3881                 temp = hw->plane_trans[pipe][i];
3882                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3883         }
3884
3885         temp = hw->plane_trans[pipe][PLANE_CURSOR];
3886         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3887
3888         intel_crtc->wm.active.skl = *active;
3889 }
3890
3891 void skl_wm_get_hw_state(struct drm_device *dev)
3892 {
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3895         struct drm_crtc *crtc;
3896
3897         skl_ddb_get_hw_state(dev_priv, ddb);
3898         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3899                 skl_pipe_wm_get_hw_state(crtc);
3900 }
3901
3902 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3903 {
3904         struct drm_device *dev = crtc->dev;
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3908         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3909         struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3910         enum pipe pipe = intel_crtc->pipe;
3911         static const i915_reg_t wm0_pipe_reg[] = {
3912                 [PIPE_A] = WM0_PIPEA_ILK,
3913                 [PIPE_B] = WM0_PIPEB_ILK,
3914                 [PIPE_C] = WM0_PIPEC_IVB,
3915         };
3916
3917         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3918         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3919                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3920
3921         memset(active, 0, sizeof(*active));
3922
3923         active->pipe_enabled = intel_crtc->active;
3924
3925         if (active->pipe_enabled) {
3926                 u32 tmp = hw->wm_pipe[pipe];
3927
3928                 /*
3929                  * For active pipes LP0 watermark is marked as
3930                  * enabled, and LP1+ watermaks as disabled since
3931                  * we can't really reverse compute them in case
3932                  * multiple pipes are active.
3933                  */
3934                 active->wm[0].enable = true;
3935                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3936                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3937                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3938                 active->linetime = hw->wm_linetime[pipe];
3939         } else {
3940                 int level, max_level = ilk_wm_max_level(dev);
3941
3942                 /*
3943                  * For inactive pipes, all watermark levels
3944                  * should be marked as enabled but zeroed,
3945                  * which is what we'd compute them to.
3946                  */
3947                 for (level = 0; level <= max_level; level++)
3948                         active->wm[level].enable = true;
3949         }
3950
3951         intel_crtc->wm.active.ilk = *active;
3952 }
3953
3954 #define _FW_WM(value, plane) \
3955         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3956 #define _FW_WM_VLV(value, plane) \
3957         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3958
3959 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3960                                struct vlv_wm_values *wm)
3961 {
3962         enum pipe pipe;
3963         uint32_t tmp;
3964
3965         for_each_pipe(dev_priv, pipe) {
3966                 tmp = I915_READ(VLV_DDL(pipe));
3967
3968                 wm->ddl[pipe].primary =
3969                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3970                 wm->ddl[pipe].cursor =
3971                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3972                 wm->ddl[pipe].sprite[0] =
3973                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3974                 wm->ddl[pipe].sprite[1] =
3975                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3976         }
3977
3978         tmp = I915_READ(DSPFW1);
3979         wm->sr.plane = _FW_WM(tmp, SR);
3980         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3981         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3982         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3983
3984         tmp = I915_READ(DSPFW2);
3985         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3986         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3987         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3988
3989         tmp = I915_READ(DSPFW3);
3990         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3991
3992         if (IS_CHERRYVIEW(dev_priv)) {
3993                 tmp = I915_READ(DSPFW7_CHV);
3994                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3995                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3996
3997                 tmp = I915_READ(DSPFW8_CHV);
3998                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3999                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4000
4001                 tmp = I915_READ(DSPFW9_CHV);
4002                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4003                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4004
4005                 tmp = I915_READ(DSPHOWM);
4006                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4007                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4008                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4009                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4010                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4011                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4012                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4013                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4014                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4015                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4016         } else {
4017                 tmp = I915_READ(DSPFW7);
4018                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4019                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4020
4021                 tmp = I915_READ(DSPHOWM);
4022                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4023                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4024                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4025                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4026                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4027                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4028                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4029         }
4030 }
4031
4032 #undef _FW_WM
4033 #undef _FW_WM_VLV
4034
4035 void vlv_wm_get_hw_state(struct drm_device *dev)
4036 {
4037         struct drm_i915_private *dev_priv = to_i915(dev);
4038         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4039         struct intel_plane *plane;
4040         enum pipe pipe;
4041         u32 val;
4042
4043         vlv_read_wm_values(dev_priv, wm);
4044
4045         for_each_intel_plane(dev, plane) {
4046                 switch (plane->base.type) {
4047                         int sprite;
4048                 case DRM_PLANE_TYPE_CURSOR:
4049                         plane->wm.fifo_size = 63;
4050                         break;
4051                 case DRM_PLANE_TYPE_PRIMARY:
4052                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4053                         break;
4054                 case DRM_PLANE_TYPE_OVERLAY:
4055                         sprite = plane->plane;
4056                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4057                         break;
4058                 }
4059         }
4060
4061         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4062         wm->level = VLV_WM_LEVEL_PM2;
4063
4064         if (IS_CHERRYVIEW(dev_priv)) {
4065                 mutex_lock(&dev_priv->rps.hw_lock);
4066
4067                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4068                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4069                         wm->level = VLV_WM_LEVEL_PM5;
4070
4071                 /*
4072                  * If DDR DVFS is disabled in the BIOS, Punit
4073                  * will never ack the request. So if that happens
4074                  * assume we don't have to enable/disable DDR DVFS
4075                  * dynamically. To test that just set the REQ_ACK
4076                  * bit to poke the Punit, but don't change the
4077                  * HIGH/LOW bits so that we don't actually change
4078                  * the current state.
4079                  */
4080                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4081                 val |= FORCE_DDR_FREQ_REQ_ACK;
4082                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4083
4084                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4085                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4086                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4087                                       "assuming DDR DVFS is disabled\n");
4088                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4089                 } else {
4090                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4091                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4092                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4093                 }
4094
4095                 mutex_unlock(&dev_priv->rps.hw_lock);
4096         }
4097
4098         for_each_pipe(dev_priv, pipe)
4099                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4100                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4101                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4102
4103         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4104                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4105 }
4106
4107 void ilk_wm_get_hw_state(struct drm_device *dev)
4108 {
4109         struct drm_i915_private *dev_priv = dev->dev_private;
4110         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4111         struct drm_crtc *crtc;
4112
4113         for_each_crtc(dev, crtc)
4114                 ilk_pipe_wm_get_hw_state(crtc);
4115
4116         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4117         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4118         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4119
4120         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4121         if (INTEL_INFO(dev)->gen >= 7) {
4122                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4123                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4124         }
4125
4126         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4127                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4128                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4129         else if (IS_IVYBRIDGE(dev))
4130                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4131                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4132
4133         hw->enable_fbc_wm =
4134                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4135 }
4136
4137 /**
4138  * intel_update_watermarks - update FIFO watermark values based on current modes
4139  *
4140  * Calculate watermark values for the various WM regs based on current mode
4141  * and plane configuration.
4142  *
4143  * There are several cases to deal with here:
4144  *   - normal (i.e. non-self-refresh)
4145  *   - self-refresh (SR) mode
4146  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4147  *   - lines are small relative to FIFO size (buffer can hold more than 2
4148  *     lines), so need to account for TLB latency
4149  *
4150  *   The normal calculation is:
4151  *     watermark = dotclock * bytes per pixel * latency
4152  *   where latency is platform & configuration dependent (we assume pessimal
4153  *   values here).
4154  *
4155  *   The SR calculation is:
4156  *     watermark = (trunc(latency/line time)+1) * surface width *
4157  *       bytes per pixel
4158  *   where
4159  *     line time = htotal / dotclock
4160  *     surface width = hdisplay for normal plane and 64 for cursor
4161  *   and latency is assumed to be high, as above.
4162  *
4163  * The final value programmed to the register should always be rounded up,
4164  * and include an extra 2 entries to account for clock crossings.
4165  *
4166  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4167  * to set the non-SR watermarks to 8.
4168  */
4169 void intel_update_watermarks(struct drm_crtc *crtc)
4170 {
4171         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4172
4173         if (dev_priv->display.update_wm)
4174                 dev_priv->display.update_wm(crtc);
4175 }
4176
4177 /*
4178  * Lock protecting IPS related data structures
4179  */
4180 DEFINE_SPINLOCK(mchdev_lock);
4181
4182 /* Global for IPS driver to get at the current i915 device. Protected by
4183  * mchdev_lock. */
4184 static struct drm_i915_private *i915_mch_dev;
4185
4186 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4187 {
4188         struct drm_i915_private *dev_priv = dev->dev_private;
4189         u16 rgvswctl;
4190
4191         assert_spin_locked(&mchdev_lock);
4192
4193         rgvswctl = I915_READ16(MEMSWCTL);
4194         if (rgvswctl & MEMCTL_CMD_STS) {
4195                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4196                 return false; /* still busy with another command */
4197         }
4198
4199         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4200                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4201         I915_WRITE16(MEMSWCTL, rgvswctl);
4202         POSTING_READ16(MEMSWCTL);
4203
4204         rgvswctl |= MEMCTL_CMD_STS;
4205         I915_WRITE16(MEMSWCTL, rgvswctl);
4206
4207         return true;
4208 }
4209
4210 static void ironlake_enable_drps(struct drm_device *dev)
4211 {
4212         struct drm_i915_private *dev_priv = dev->dev_private;
4213         u32 rgvmodectl;
4214         u8 fmax, fmin, fstart, vstart;
4215
4216         spin_lock_irq(&mchdev_lock);
4217
4218         rgvmodectl = I915_READ(MEMMODECTL);
4219
4220         /* Enable temp reporting */
4221         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4222         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4223
4224         /* 100ms RC evaluation intervals */
4225         I915_WRITE(RCUPEI, 100000);
4226         I915_WRITE(RCDNEI, 100000);
4227
4228         /* Set max/min thresholds to 90ms and 80ms respectively */
4229         I915_WRITE(RCBMAXAVG, 90000);
4230         I915_WRITE(RCBMINAVG, 80000);
4231
4232         I915_WRITE(MEMIHYST, 1);
4233
4234         /* Set up min, max, and cur for interrupt handling */
4235         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4236         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4237         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4238                 MEMMODE_FSTART_SHIFT;
4239
4240         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4241                 PXVFREQ_PX_SHIFT;
4242
4243         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4244         dev_priv->ips.fstart = fstart;
4245
4246         dev_priv->ips.max_delay = fstart;
4247         dev_priv->ips.min_delay = fmin;
4248         dev_priv->ips.cur_delay = fstart;
4249
4250         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4251                          fmax, fmin, fstart);
4252
4253         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4254
4255         /*
4256          * Interrupts will be enabled in ironlake_irq_postinstall
4257          */
4258
4259         I915_WRITE(VIDSTART, vstart);
4260         POSTING_READ(VIDSTART);
4261
4262         rgvmodectl |= MEMMODE_SWMODE_EN;
4263         I915_WRITE(MEMMODECTL, rgvmodectl);
4264
4265         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4266                 DRM_ERROR("stuck trying to change perf mode\n");
4267         mdelay(1);
4268
4269         ironlake_set_drps(dev, fstart);
4270
4271         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4272                 I915_READ(DDREC) + I915_READ(CSIEC);
4273         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4274         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4275         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4276
4277         spin_unlock_irq(&mchdev_lock);
4278 }
4279
4280 static void ironlake_disable_drps(struct drm_device *dev)
4281 {
4282         struct drm_i915_private *dev_priv = dev->dev_private;
4283         u16 rgvswctl;
4284
4285         spin_lock_irq(&mchdev_lock);
4286
4287         rgvswctl = I915_READ16(MEMSWCTL);
4288
4289         /* Ack interrupts, disable EFC interrupt */
4290         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4291         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4292         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4293         I915_WRITE(DEIIR, DE_PCU_EVENT);
4294         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4295
4296         /* Go back to the starting frequency */
4297         ironlake_set_drps(dev, dev_priv->ips.fstart);
4298         mdelay(1);
4299         rgvswctl |= MEMCTL_CMD_STS;
4300         I915_WRITE(MEMSWCTL, rgvswctl);
4301         mdelay(1);
4302
4303         spin_unlock_irq(&mchdev_lock);
4304 }
4305
4306 /* There's a funny hw issue where the hw returns all 0 when reading from
4307  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4308  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4309  * all limits and the gpu stuck at whatever frequency it is at atm).
4310  */
4311 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4312 {
4313         u32 limits;
4314
4315         /* Only set the down limit when we've reached the lowest level to avoid
4316          * getting more interrupts, otherwise leave this clear. This prevents a
4317          * race in the hw when coming out of rc6: There's a tiny window where
4318          * the hw runs at the minimal clock before selecting the desired
4319          * frequency, if the down threshold expires in that window we will not
4320          * receive a down interrupt. */
4321         if (IS_GEN9(dev_priv)) {
4322                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4323                 if (val <= dev_priv->rps.min_freq_softlimit)
4324                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4325         } else {
4326                 limits = dev_priv->rps.max_freq_softlimit << 24;
4327                 if (val <= dev_priv->rps.min_freq_softlimit)
4328                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4329         }
4330
4331         return limits;
4332 }
4333
4334 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4335 {
4336         int new_power;
4337         u32 threshold_up = 0, threshold_down = 0; /* in % */
4338         u32 ei_up = 0, ei_down = 0;
4339
4340         new_power = dev_priv->rps.power;
4341         switch (dev_priv->rps.power) {
4342         case LOW_POWER:
4343                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4344                         new_power = BETWEEN;
4345                 break;
4346
4347         case BETWEEN:
4348                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4349                         new_power = LOW_POWER;
4350                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4351                         new_power = HIGH_POWER;
4352                 break;
4353
4354         case HIGH_POWER:
4355                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4356                         new_power = BETWEEN;
4357                 break;
4358         }
4359         /* Max/min bins are special */
4360         if (val <= dev_priv->rps.min_freq_softlimit)
4361                 new_power = LOW_POWER;
4362         if (val >= dev_priv->rps.max_freq_softlimit)
4363                 new_power = HIGH_POWER;
4364         if (new_power == dev_priv->rps.power)
4365                 return;
4366
4367         /* Note the units here are not exactly 1us, but 1280ns. */
4368         switch (new_power) {
4369         case LOW_POWER:
4370                 /* Upclock if more than 95% busy over 16ms */
4371                 ei_up = 16000;
4372                 threshold_up = 95;
4373
4374                 /* Downclock if less than 85% busy over 32ms */
4375                 ei_down = 32000;
4376                 threshold_down = 85;
4377                 break;
4378
4379         case BETWEEN:
4380                 /* Upclock if more than 90% busy over 13ms */
4381                 ei_up = 13000;
4382                 threshold_up = 90;
4383
4384                 /* Downclock if less than 75% busy over 32ms */
4385                 ei_down = 32000;
4386                 threshold_down = 75;
4387                 break;
4388
4389         case HIGH_POWER:
4390                 /* Upclock if more than 85% busy over 10ms */
4391                 ei_up = 10000;
4392                 threshold_up = 85;
4393
4394                 /* Downclock if less than 60% busy over 32ms */
4395                 ei_down = 32000;
4396                 threshold_down = 60;
4397                 break;
4398         }
4399
4400         I915_WRITE(GEN6_RP_UP_EI,
4401                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4402         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4403                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4404
4405         I915_WRITE(GEN6_RP_DOWN_EI,
4406                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4407         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4408                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4409
4410          I915_WRITE(GEN6_RP_CONTROL,
4411                     GEN6_RP_MEDIA_TURBO |
4412                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4413                     GEN6_RP_MEDIA_IS_GFX |
4414                     GEN6_RP_ENABLE |
4415                     GEN6_RP_UP_BUSY_AVG |
4416                     GEN6_RP_DOWN_IDLE_AVG);
4417
4418         dev_priv->rps.power = new_power;
4419         dev_priv->rps.up_threshold = threshold_up;
4420         dev_priv->rps.down_threshold = threshold_down;
4421         dev_priv->rps.last_adj = 0;
4422 }
4423
4424 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4425 {
4426         u32 mask = 0;
4427
4428         if (val > dev_priv->rps.min_freq_softlimit)
4429                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4430         if (val < dev_priv->rps.max_freq_softlimit)
4431                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4432
4433         mask &= dev_priv->pm_rps_events;
4434
4435         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4436 }
4437
4438 /* gen6_set_rps is called to update the frequency request, but should also be
4439  * called when the range (min_delay and max_delay) is modified so that we can
4440  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4441 static void gen6_set_rps(struct drm_device *dev, u8 val)
4442 {
4443         struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4446         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4447                 return;
4448
4449         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4450         WARN_ON(val > dev_priv->rps.max_freq);
4451         WARN_ON(val < dev_priv->rps.min_freq);
4452
4453         /* min/max delay may still have been modified so be sure to
4454          * write the limits value.
4455          */
4456         if (val != dev_priv->rps.cur_freq) {
4457                 gen6_set_rps_thresholds(dev_priv, val);
4458
4459                 if (IS_GEN9(dev))
4460                         I915_WRITE(GEN6_RPNSWREQ,
4461                                    GEN9_FREQUENCY(val));
4462                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4463                         I915_WRITE(GEN6_RPNSWREQ,
4464                                    HSW_FREQUENCY(val));
4465                 else
4466                         I915_WRITE(GEN6_RPNSWREQ,
4467                                    GEN6_FREQUENCY(val) |
4468                                    GEN6_OFFSET(0) |
4469                                    GEN6_AGGRESSIVE_TURBO);
4470         }
4471
4472         /* Make sure we continue to get interrupts
4473          * until we hit the minimum or maximum frequencies.
4474          */
4475         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4476         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4477
4478         POSTING_READ(GEN6_RPNSWREQ);
4479
4480         dev_priv->rps.cur_freq = val;
4481         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4482 }
4483
4484 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4485 {
4486         struct drm_i915_private *dev_priv = dev->dev_private;
4487
4488         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4489         WARN_ON(val > dev_priv->rps.max_freq);
4490         WARN_ON(val < dev_priv->rps.min_freq);
4491
4492         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4493                       "Odd GPU freq value\n"))
4494                 val &= ~1;
4495
4496         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4497
4498         if (val != dev_priv->rps.cur_freq) {
4499                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4500                 if (!IS_CHERRYVIEW(dev_priv))
4501                         gen6_set_rps_thresholds(dev_priv, val);
4502         }
4503
4504         dev_priv->rps.cur_freq = val;
4505         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4506 }
4507
4508 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4509  *
4510  * * If Gfx is Idle, then
4511  * 1. Forcewake Media well.
4512  * 2. Request idle freq.
4513  * 3. Release Forcewake of Media well.
4514 */
4515 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4516 {
4517         u32 val = dev_priv->rps.idle_freq;
4518
4519         if (dev_priv->rps.cur_freq <= val)
4520                 return;
4521
4522         /* Wake up the media well, as that takes a lot less
4523          * power than the Render well. */
4524         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4525         valleyview_set_rps(dev_priv->dev, val);
4526         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4527 }
4528
4529 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4530 {
4531         mutex_lock(&dev_priv->rps.hw_lock);
4532         if (dev_priv->rps.enabled) {
4533                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4534                         gen6_rps_reset_ei(dev_priv);
4535                 I915_WRITE(GEN6_PMINTRMSK,
4536                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4537         }
4538         mutex_unlock(&dev_priv->rps.hw_lock);
4539 }
4540
4541 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4542 {
4543         struct drm_device *dev = dev_priv->dev;
4544
4545         mutex_lock(&dev_priv->rps.hw_lock);
4546         if (dev_priv->rps.enabled) {
4547                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4548                         vlv_set_rps_idle(dev_priv);
4549                 else
4550                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4551                 dev_priv->rps.last_adj = 0;
4552                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4553         }
4554         mutex_unlock(&dev_priv->rps.hw_lock);
4555
4556         spin_lock(&dev_priv->rps.client_lock);
4557         while (!list_empty(&dev_priv->rps.clients))
4558                 list_del_init(dev_priv->rps.clients.next);
4559         spin_unlock(&dev_priv->rps.client_lock);
4560 }
4561
4562 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4563                     struct intel_rps_client *rps,
4564                     unsigned long submitted)
4565 {
4566         /* This is intentionally racy! We peek at the state here, then
4567          * validate inside the RPS worker.
4568          */
4569         if (!(dev_priv->mm.busy &&
4570               dev_priv->rps.enabled &&
4571               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4572                 return;
4573
4574         /* Force a RPS boost (and don't count it against the client) if
4575          * the GPU is severely congested.
4576          */
4577         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4578                 rps = NULL;
4579
4580         spin_lock(&dev_priv->rps.client_lock);
4581         if (rps == NULL || list_empty(&rps->link)) {
4582                 spin_lock_irq(&dev_priv->irq_lock);
4583                 if (dev_priv->rps.interrupts_enabled) {
4584                         dev_priv->rps.client_boost = true;
4585                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4586                 }
4587                 spin_unlock_irq(&dev_priv->irq_lock);
4588
4589                 if (rps != NULL) {
4590                         list_add(&rps->link, &dev_priv->rps.clients);
4591                         rps->boosts++;
4592                 } else
4593                         dev_priv->rps.boosts++;
4594         }
4595         spin_unlock(&dev_priv->rps.client_lock);
4596 }
4597
4598 void intel_set_rps(struct drm_device *dev, u8 val)
4599 {
4600         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4601                 valleyview_set_rps(dev, val);
4602         else
4603                 gen6_set_rps(dev, val);
4604 }
4605
4606 static void gen9_disable_rc6(struct drm_device *dev)
4607 {
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609
4610         I915_WRITE(GEN6_RC_CONTROL, 0);
4611         I915_WRITE(GEN9_PG_ENABLE, 0);
4612 }
4613
4614 static void gen9_disable_rps(struct drm_device *dev)
4615 {
4616         struct drm_i915_private *dev_priv = dev->dev_private;
4617
4618         I915_WRITE(GEN6_RP_CONTROL, 0);
4619 }
4620
4621 static void gen6_disable_rps(struct drm_device *dev)
4622 {
4623         struct drm_i915_private *dev_priv = dev->dev_private;
4624
4625         I915_WRITE(GEN6_RC_CONTROL, 0);
4626         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4627         I915_WRITE(GEN6_RP_CONTROL, 0);
4628 }
4629
4630 static void cherryview_disable_rps(struct drm_device *dev)
4631 {
4632         struct drm_i915_private *dev_priv = dev->dev_private;
4633
4634         I915_WRITE(GEN6_RC_CONTROL, 0);
4635 }
4636
4637 static void valleyview_disable_rps(struct drm_device *dev)
4638 {
4639         struct drm_i915_private *dev_priv = dev->dev_private;
4640
4641         /* we're doing forcewake before Disabling RC6,
4642          * This what the BIOS expects when going into suspend */
4643         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4644
4645         I915_WRITE(GEN6_RC_CONTROL, 0);
4646
4647         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4648 }
4649
4650 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4651 {
4652         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4653                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4654                         mode = GEN6_RC_CTL_RC6_ENABLE;
4655                 else
4656                         mode = 0;
4657         }
4658         if (HAS_RC6p(dev))
4659                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4660                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4661                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4662                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4663
4664         else
4665                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4666                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4667 }
4668
4669 static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4670 {
4671         struct drm_i915_private *dev_priv = to_i915(dev);
4672         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4673         bool enable_rc6 = true;
4674         unsigned long rc6_ctx_base;
4675
4676         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4677                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4678                 enable_rc6 = false;
4679         }
4680
4681         /*
4682          * The exact context size is not known for BXT, so assume a page size
4683          * for this check.
4684          */
4685         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4686         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4687               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4688                                         ggtt->stolen_reserved_size))) {
4689                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4690                 enable_rc6 = false;
4691         }
4692
4693         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4694               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4695               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4696               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4697                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4698                 enable_rc6 = false;
4699         }
4700
4701         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4702                                             GEN6_RC_CTL_HW_ENABLE)) &&
4703             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4704              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4705                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4706                 enable_rc6 = false;
4707         }
4708
4709         return enable_rc6;
4710 }
4711
4712 int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4713 {
4714         /* No RC6 before Ironlake and code is gone for ilk. */
4715         if (INTEL_INFO(dev)->gen < 6)
4716                 return 0;
4717
4718         if (!enable_rc6)
4719                 return 0;
4720
4721         if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4722                 DRM_INFO("RC6 disabled by BIOS\n");
4723                 return 0;
4724         }
4725
4726         /* Respect the kernel parameter if it is set */
4727         if (enable_rc6 >= 0) {
4728                 int mask;
4729
4730                 if (HAS_RC6p(dev))
4731                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4732                                INTEL_RC6pp_ENABLE;
4733                 else
4734                         mask = INTEL_RC6_ENABLE;
4735
4736                 if ((enable_rc6 & mask) != enable_rc6)
4737                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4738                                       enable_rc6 & mask, enable_rc6, mask);
4739
4740                 return enable_rc6 & mask;
4741         }
4742
4743         if (IS_IVYBRIDGE(dev))
4744                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4745
4746         return INTEL_RC6_ENABLE;
4747 }
4748
4749 int intel_enable_rc6(const struct drm_device *dev)
4750 {
4751         return i915.enable_rc6;
4752 }
4753
4754 static void gen6_init_rps_frequencies(struct drm_device *dev)
4755 {
4756         struct drm_i915_private *dev_priv = dev->dev_private;
4757         uint32_t rp_state_cap;
4758         u32 ddcc_status = 0;
4759         int ret;
4760
4761         /* All of these values are in units of 50MHz */
4762         dev_priv->rps.cur_freq          = 0;
4763         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4764         if (IS_BROXTON(dev)) {
4765                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4766                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4767                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4768                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4769         } else {
4770                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4771                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4772                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4773                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4774         }
4775
4776         /* hw_max = RP0 until we check for overclocking */
4777         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4778
4779         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4780         if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4781             IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4782                 ret = sandybridge_pcode_read(dev_priv,
4783                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4784                                         &ddcc_status);
4785                 if (0 == ret)
4786                         dev_priv->rps.efficient_freq =
4787                                 clamp_t(u8,
4788                                         ((ddcc_status >> 8) & 0xff),
4789                                         dev_priv->rps.min_freq,
4790                                         dev_priv->rps.max_freq);
4791         }
4792
4793         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4794                 /* Store the frequency values in 16.66 MHZ units, which is
4795                    the natural hardware unit for SKL */
4796                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4797                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4798                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4799                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4800                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4801         }
4802
4803         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4804
4805         /* Preserve min/max settings in case of re-init */
4806         if (dev_priv->rps.max_freq_softlimit == 0)
4807                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4808
4809         if (dev_priv->rps.min_freq_softlimit == 0) {
4810                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4811                         dev_priv->rps.min_freq_softlimit =
4812                                 max_t(int, dev_priv->rps.efficient_freq,
4813                                       intel_freq_opcode(dev_priv, 450));
4814                 else
4815                         dev_priv->rps.min_freq_softlimit =
4816                                 dev_priv->rps.min_freq;
4817         }
4818 }
4819
4820 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4821 static void gen9_enable_rps(struct drm_device *dev)
4822 {
4823         struct drm_i915_private *dev_priv = dev->dev_private;
4824
4825         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4826
4827         gen6_init_rps_frequencies(dev);
4828
4829         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4830         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4831                 /*
4832                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
4833                  * clear out the Control register just to avoid inconsitency
4834                  * with debugfs interface, which will show  Turbo as enabled
4835                  * only and that is not expected by the User after adding the
4836                  * WaGsvDisableTurbo. Apart from this there is no problem even
4837                  * if the Turbo is left enabled in the Control register, as the
4838                  * Up/Down interrupts would remain masked.
4839                  */
4840                 gen9_disable_rps(dev);
4841                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4842                 return;
4843         }
4844
4845         /* Program defaults and thresholds for RPS*/
4846         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4847                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4848
4849         /* 1 second timeout*/
4850         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4851                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4852
4853         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4854
4855         /* Leaning on the below call to gen6_set_rps to program/setup the
4856          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4857          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4858         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4859         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4860
4861         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4862 }
4863
4864 static void gen9_enable_rc6(struct drm_device *dev)
4865 {
4866         struct drm_i915_private *dev_priv = dev->dev_private;
4867         struct intel_engine_cs *engine;
4868         uint32_t rc6_mask = 0;
4869
4870         /* 1a: Software RC state - RC0 */
4871         I915_WRITE(GEN6_RC_STATE, 0);
4872
4873         /* 1b: Get forcewake during program sequence. Although the driver
4874          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4875         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4876
4877         /* 2a: Disable RC states. */
4878         I915_WRITE(GEN6_RC_CONTROL, 0);
4879
4880         /* 2b: Program RC6 thresholds.*/
4881
4882         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4883         if (IS_SKYLAKE(dev))
4884                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4885         else
4886                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4887         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4888         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4889         for_each_engine(engine, dev_priv)
4890                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4891
4892         if (HAS_GUC_UCODE(dev))
4893                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4894
4895         I915_WRITE(GEN6_RC_SLEEP, 0);
4896
4897         /* 2c: Program Coarse Power Gating Policies. */
4898         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4899         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4900
4901         /* 3a: Enable RC6 */
4902         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4903                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4904         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4905         /* WaRsUseTimeoutMode */
4906         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4907             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4908                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4909                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4910                            GEN7_RC_CTL_TO_MODE |
4911                            rc6_mask);
4912         } else {
4913                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4914                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4915                            GEN6_RC_CTL_EI_MODE(1) |
4916                            rc6_mask);
4917         }
4918
4919         /*
4920          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4921          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4922          */
4923         if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4924                 I915_WRITE(GEN9_PG_ENABLE, 0);
4925         else
4926                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4927                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4928
4929         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4930
4931 }
4932
4933 static void gen8_enable_rps(struct drm_device *dev)
4934 {
4935         struct drm_i915_private *dev_priv = dev->dev_private;
4936         struct intel_engine_cs *engine;
4937         uint32_t rc6_mask = 0;
4938
4939         /* 1a: Software RC state - RC0 */
4940         I915_WRITE(GEN6_RC_STATE, 0);
4941
4942         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4943          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4944         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4945
4946         /* 2a: Disable RC states. */
4947         I915_WRITE(GEN6_RC_CONTROL, 0);
4948
4949         /* Initialize rps frequencies */
4950         gen6_init_rps_frequencies(dev);
4951
4952         /* 2b: Program RC6 thresholds.*/
4953         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4954         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4955         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4956         for_each_engine(engine, dev_priv)
4957                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4958         I915_WRITE(GEN6_RC_SLEEP, 0);
4959         if (IS_BROADWELL(dev))
4960                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4961         else
4962                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4963
4964         /* 3: Enable RC6 */
4965         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4966                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4967         intel_print_rc6_info(dev, rc6_mask);
4968         if (IS_BROADWELL(dev))
4969                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4970                                 GEN7_RC_CTL_TO_MODE |
4971                                 rc6_mask);
4972         else
4973                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4974                                 GEN6_RC_CTL_EI_MODE(1) |
4975                                 rc6_mask);
4976
4977         /* 4 Program defaults and thresholds for RPS*/
4978         I915_WRITE(GEN6_RPNSWREQ,
4979                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4980         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4981                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4982         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4983         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4984
4985         /* Docs recommend 900MHz, and 300 MHz respectively */
4986         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4987                    dev_priv->rps.max_freq_softlimit << 24 |
4988                    dev_priv->rps.min_freq_softlimit << 16);
4989
4990         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4991         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4992         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4993         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4994
4995         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4996
4997         /* 5: Enable RPS */
4998         I915_WRITE(GEN6_RP_CONTROL,
4999                    GEN6_RP_MEDIA_TURBO |
5000                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5001                    GEN6_RP_MEDIA_IS_GFX |
5002                    GEN6_RP_ENABLE |
5003                    GEN6_RP_UP_BUSY_AVG |
5004                    GEN6_RP_DOWN_IDLE_AVG);
5005
5006         /* 6: Ring frequency + overclocking (our driver does this later */
5007
5008         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5009         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5010
5011         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5012 }
5013
5014 static void gen6_enable_rps(struct drm_device *dev)
5015 {
5016         struct drm_i915_private *dev_priv = dev->dev_private;
5017         struct intel_engine_cs *engine;
5018         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5019         u32 gtfifodbg;
5020         int rc6_mode;
5021         int ret;
5022
5023         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5024
5025         /* Here begins a magic sequence of register writes to enable
5026          * auto-downclocking.
5027          *
5028          * Perhaps there might be some value in exposing these to
5029          * userspace...
5030          */
5031         I915_WRITE(GEN6_RC_STATE, 0);
5032
5033         /* Clear the DBG now so we don't confuse earlier errors */
5034         gtfifodbg = I915_READ(GTFIFODBG);
5035         if (gtfifodbg) {
5036                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5037                 I915_WRITE(GTFIFODBG, gtfifodbg);
5038         }
5039
5040         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5041
5042         /* Initialize rps frequencies */
5043         gen6_init_rps_frequencies(dev);
5044
5045         /* disable the counters and set deterministic thresholds */
5046         I915_WRITE(GEN6_RC_CONTROL, 0);
5047
5048         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5049         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5050         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5051         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5052         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5053
5054         for_each_engine(engine, dev_priv)
5055                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5056
5057         I915_WRITE(GEN6_RC_SLEEP, 0);
5058         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5059         if (IS_IVYBRIDGE(dev))
5060                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5061         else
5062                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5063         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5064         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5065
5066         /* Check if we are enabling RC6 */
5067         rc6_mode = intel_enable_rc6(dev_priv->dev);
5068         if (rc6_mode & INTEL_RC6_ENABLE)
5069                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5070
5071         /* We don't use those on Haswell */
5072         if (!IS_HASWELL(dev)) {
5073                 if (rc6_mode & INTEL_RC6p_ENABLE)
5074                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5075
5076                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5077                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5078         }
5079
5080         intel_print_rc6_info(dev, rc6_mask);
5081
5082         I915_WRITE(GEN6_RC_CONTROL,
5083                    rc6_mask |
5084                    GEN6_RC_CTL_EI_MODE(1) |
5085                    GEN6_RC_CTL_HW_ENABLE);
5086
5087         /* Power down if completely idle for over 50ms */
5088         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5089         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5090
5091         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5092         if (ret)
5093                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5094
5095         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5096         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5097                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5098                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5099                                  (pcu_mbox & 0xff) * 50);
5100                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5101         }
5102
5103         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5104         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5105
5106         rc6vids = 0;
5107         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5108         if (IS_GEN6(dev) && ret) {
5109                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5110         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5111                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5112                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5113                 rc6vids &= 0xffff00;
5114                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5115                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5116                 if (ret)
5117                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5118         }
5119
5120         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5121 }
5122
5123 static void __gen6_update_ring_freq(struct drm_device *dev)
5124 {
5125         struct drm_i915_private *dev_priv = dev->dev_private;
5126         int min_freq = 15;
5127         unsigned int gpu_freq;
5128         unsigned int max_ia_freq, min_ring_freq;
5129         unsigned int max_gpu_freq, min_gpu_freq;
5130         int scaling_factor = 180;
5131         struct cpufreq_policy *policy;
5132
5133         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5134
5135         policy = cpufreq_cpu_get(0);
5136         if (policy) {
5137                 max_ia_freq = policy->cpuinfo.max_freq;
5138                 cpufreq_cpu_put(policy);
5139         } else {
5140                 /*
5141                  * Default to measured freq if none found, PCU will ensure we
5142                  * don't go over
5143                  */
5144                 max_ia_freq = tsc_khz;
5145         }
5146
5147         /* Convert from kHz to MHz */
5148         max_ia_freq /= 1000;
5149
5150         min_ring_freq = I915_READ(DCLK) & 0xf;
5151         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5152         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5153
5154         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5155                 /* Convert GT frequency to 50 HZ units */
5156                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5157                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5158         } else {
5159                 min_gpu_freq = dev_priv->rps.min_freq;
5160                 max_gpu_freq = dev_priv->rps.max_freq;
5161         }
5162
5163         /*
5164          * For each potential GPU frequency, load a ring frequency we'd like
5165          * to use for memory access.  We do this by specifying the IA frequency
5166          * the PCU should use as a reference to determine the ring frequency.
5167          */
5168         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5169                 int diff = max_gpu_freq - gpu_freq;
5170                 unsigned int ia_freq = 0, ring_freq = 0;
5171
5172                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5173                         /*
5174                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5175                          * No floor required for ring frequency on SKL.
5176                          */
5177                         ring_freq = gpu_freq;
5178                 } else if (INTEL_INFO(dev)->gen >= 8) {
5179                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5180                         ring_freq = max(min_ring_freq, gpu_freq);
5181                 } else if (IS_HASWELL(dev)) {
5182                         ring_freq = mult_frac(gpu_freq, 5, 4);
5183                         ring_freq = max(min_ring_freq, ring_freq);
5184                         /* leave ia_freq as the default, chosen by cpufreq */
5185                 } else {
5186                         /* On older processors, there is no separate ring
5187                          * clock domain, so in order to boost the bandwidth
5188                          * of the ring, we need to upclock the CPU (ia_freq).
5189                          *
5190                          * For GPU frequencies less than 750MHz,
5191                          * just use the lowest ring freq.
5192                          */
5193                         if (gpu_freq < min_freq)
5194                                 ia_freq = 800;
5195                         else
5196                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5197                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5198                 }
5199
5200                 sandybridge_pcode_write(dev_priv,
5201                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5202                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5203                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5204                                         gpu_freq);
5205         }
5206 }
5207
5208 void gen6_update_ring_freq(struct drm_device *dev)
5209 {
5210         struct drm_i915_private *dev_priv = dev->dev_private;
5211
5212         if (!HAS_CORE_RING_FREQ(dev))
5213                 return;
5214
5215         mutex_lock(&dev_priv->rps.hw_lock);
5216         __gen6_update_ring_freq(dev);
5217         mutex_unlock(&dev_priv->rps.hw_lock);
5218 }
5219
5220 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5221 {
5222         struct drm_device *dev = dev_priv->dev;
5223         u32 val, rp0;
5224
5225         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5226
5227         switch (INTEL_INFO(dev)->eu_total) {
5228         case 8:
5229                 /* (2 * 4) config */
5230                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5231                 break;
5232         case 12:
5233                 /* (2 * 6) config */
5234                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5235                 break;
5236         case 16:
5237                 /* (2 * 8) config */
5238         default:
5239                 /* Setting (2 * 8) Min RP0 for any other combination */
5240                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5241                 break;
5242         }
5243
5244         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5245
5246         return rp0;
5247 }
5248
5249 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5250 {
5251         u32 val, rpe;
5252
5253         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5254         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5255
5256         return rpe;
5257 }
5258
5259 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5260 {
5261         u32 val, rp1;
5262
5263         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5264         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5265
5266         return rp1;
5267 }
5268
5269 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5270 {
5271         u32 val, rp1;
5272
5273         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5274
5275         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5276
5277         return rp1;
5278 }
5279
5280 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5281 {
5282         u32 val, rp0;
5283
5284         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5285
5286         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5287         /* Clamp to max */
5288         rp0 = min_t(u32, rp0, 0xea);
5289
5290         return rp0;
5291 }
5292
5293 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5294 {
5295         u32 val, rpe;
5296
5297         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5298         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5299         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5300         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5301
5302         return rpe;
5303 }
5304
5305 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5306 {
5307         u32 val;
5308
5309         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5310         /*
5311          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5312          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5313          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5314          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5315          * to make sure it matches what Punit accepts.
5316          */
5317         return max_t(u32, val, 0xc0);
5318 }
5319
5320 /* Check that the pctx buffer wasn't move under us. */
5321 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5322 {
5323         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5324
5325         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5326                              dev_priv->vlv_pctx->stolen->start);
5327 }
5328
5329
5330 /* Check that the pcbr address is not empty. */
5331 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5332 {
5333         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5334
5335         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5336 }
5337
5338 static void cherryview_setup_pctx(struct drm_device *dev)
5339 {
5340         struct drm_i915_private *dev_priv = to_i915(dev);
5341         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5342         unsigned long pctx_paddr, paddr;
5343         u32 pcbr;
5344         int pctx_size = 32*1024;
5345
5346         pcbr = I915_READ(VLV_PCBR);
5347         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5348                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5349                 paddr = (dev_priv->mm.stolen_base +
5350                          (ggtt->stolen_size - pctx_size));
5351
5352                 pctx_paddr = (paddr & (~4095));
5353                 I915_WRITE(VLV_PCBR, pctx_paddr);
5354         }
5355
5356         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5357 }
5358
5359 static void valleyview_setup_pctx(struct drm_device *dev)
5360 {
5361         struct drm_i915_private *dev_priv = dev->dev_private;
5362         struct drm_i915_gem_object *pctx;
5363         unsigned long pctx_paddr;
5364         u32 pcbr;
5365         int pctx_size = 24*1024;
5366
5367         mutex_lock(&dev->struct_mutex);
5368
5369         pcbr = I915_READ(VLV_PCBR);
5370         if (pcbr) {
5371                 /* BIOS set it up already, grab the pre-alloc'd space */
5372                 int pcbr_offset;
5373
5374                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5375                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5376                                                                       pcbr_offset,
5377                                                                       I915_GTT_OFFSET_NONE,
5378                                                                       pctx_size);
5379                 goto out;
5380         }
5381
5382         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5383
5384         /*
5385          * From the Gunit register HAS:
5386          * The Gfx driver is expected to program this register and ensure
5387          * proper allocation within Gfx stolen memory.  For example, this
5388          * register should be programmed such than the PCBR range does not
5389          * overlap with other ranges, such as the frame buffer, protected
5390          * memory, or any other relevant ranges.
5391          */
5392         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5393         if (!pctx) {
5394                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5395                 goto out;
5396         }
5397
5398         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5399         I915_WRITE(VLV_PCBR, pctx_paddr);
5400
5401 out:
5402         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5403         dev_priv->vlv_pctx = pctx;
5404         mutex_unlock(&dev->struct_mutex);
5405 }
5406
5407 static void valleyview_cleanup_pctx(struct drm_device *dev)
5408 {
5409         struct drm_i915_private *dev_priv = dev->dev_private;
5410
5411         if (WARN_ON(!dev_priv->vlv_pctx))
5412                 return;
5413
5414         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5415         dev_priv->vlv_pctx = NULL;
5416 }
5417
5418 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5419 {
5420         dev_priv->rps.gpll_ref_freq =
5421                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5422                                   CCK_GPLL_CLOCK_CONTROL,
5423                                   dev_priv->czclk_freq);
5424
5425         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5426                          dev_priv->rps.gpll_ref_freq);
5427 }
5428
5429 static void valleyview_init_gt_powersave(struct drm_device *dev)
5430 {
5431         struct drm_i915_private *dev_priv = dev->dev_private;
5432         u32 val;
5433
5434         valleyview_setup_pctx(dev);
5435
5436         vlv_init_gpll_ref_freq(dev_priv);
5437
5438         mutex_lock(&dev_priv->rps.hw_lock);
5439
5440         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5441         switch ((val >> 6) & 3) {
5442         case 0:
5443         case 1:
5444                 dev_priv->mem_freq = 800;
5445                 break;
5446         case 2:
5447                 dev_priv->mem_freq = 1066;
5448                 break;
5449         case 3:
5450                 dev_priv->mem_freq = 1333;
5451                 break;
5452         }
5453         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5454
5455         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5456         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5457         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5458                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5459                          dev_priv->rps.max_freq);
5460
5461         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5462         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5463                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5464                          dev_priv->rps.efficient_freq);
5465
5466         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5467         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5468                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5469                          dev_priv->rps.rp1_freq);
5470
5471         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5472         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5473                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5474                          dev_priv->rps.min_freq);
5475
5476         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5477
5478         /* Preserve min/max settings in case of re-init */
5479         if (dev_priv->rps.max_freq_softlimit == 0)
5480                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5481
5482         if (dev_priv->rps.min_freq_softlimit == 0)
5483                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5484
5485         mutex_unlock(&dev_priv->rps.hw_lock);
5486 }
5487
5488 static void cherryview_init_gt_powersave(struct drm_device *dev)
5489 {
5490         struct drm_i915_private *dev_priv = dev->dev_private;
5491         u32 val;
5492
5493         cherryview_setup_pctx(dev);
5494
5495         vlv_init_gpll_ref_freq(dev_priv);
5496
5497         mutex_lock(&dev_priv->rps.hw_lock);
5498
5499         mutex_lock(&dev_priv->sb_lock);
5500         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5501         mutex_unlock(&dev_priv->sb_lock);
5502
5503         switch ((val >> 2) & 0x7) {
5504         case 3:
5505                 dev_priv->mem_freq = 2000;
5506                 break;
5507         default:
5508                 dev_priv->mem_freq = 1600;
5509                 break;
5510         }
5511         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5512
5513         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5514         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5515         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5516                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5517                          dev_priv->rps.max_freq);
5518
5519         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5520         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5521                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5522                          dev_priv->rps.efficient_freq);
5523
5524         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5525         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5526                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5527                          dev_priv->rps.rp1_freq);
5528
5529         /* PUnit validated range is only [RPe, RP0] */
5530         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5531         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5532                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5533                          dev_priv->rps.min_freq);
5534
5535         WARN_ONCE((dev_priv->rps.max_freq |
5536                    dev_priv->rps.efficient_freq |
5537                    dev_priv->rps.rp1_freq |
5538                    dev_priv->rps.min_freq) & 1,
5539                   "Odd GPU freq values\n");
5540
5541         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5542
5543         /* Preserve min/max settings in case of re-init */
5544         if (dev_priv->rps.max_freq_softlimit == 0)
5545                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5546
5547         if (dev_priv->rps.min_freq_softlimit == 0)
5548                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5549
5550         mutex_unlock(&dev_priv->rps.hw_lock);
5551 }
5552
5553 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5554 {
5555         valleyview_cleanup_pctx(dev);
5556 }
5557
5558 static void cherryview_enable_rps(struct drm_device *dev)
5559 {
5560         struct drm_i915_private *dev_priv = dev->dev_private;
5561         struct intel_engine_cs *engine;
5562         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5563
5564         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5565
5566         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5567                                              GT_FIFO_FREE_ENTRIES_CHV);
5568         if (gtfifodbg) {
5569                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5570                                  gtfifodbg);
5571                 I915_WRITE(GTFIFODBG, gtfifodbg);
5572         }
5573
5574         cherryview_check_pctx(dev_priv);
5575
5576         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5577          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5578         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5579
5580         /*  Disable RC states. */
5581         I915_WRITE(GEN6_RC_CONTROL, 0);
5582
5583         /* 2a: Program RC6 thresholds.*/
5584         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5585         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5586         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5587
5588         for_each_engine(engine, dev_priv)
5589                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5590         I915_WRITE(GEN6_RC_SLEEP, 0);
5591
5592         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5593         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5594
5595         /* allows RC6 residency counter to work */
5596         I915_WRITE(VLV_COUNTER_CONTROL,
5597                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5598                                       VLV_MEDIA_RC6_COUNT_EN |
5599                                       VLV_RENDER_RC6_COUNT_EN));
5600
5601         /* For now we assume BIOS is allocating and populating the PCBR  */
5602         pcbr = I915_READ(VLV_PCBR);
5603
5604         /* 3: Enable RC6 */
5605         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5606                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5607                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5608
5609         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5610
5611         /* 4 Program defaults and thresholds for RPS*/
5612         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5613         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5614         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5615         I915_WRITE(GEN6_RP_UP_EI, 66000);
5616         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5617
5618         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5619
5620         /* 5: Enable RPS */
5621         I915_WRITE(GEN6_RP_CONTROL,
5622                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5623                    GEN6_RP_MEDIA_IS_GFX |
5624                    GEN6_RP_ENABLE |
5625                    GEN6_RP_UP_BUSY_AVG |
5626                    GEN6_RP_DOWN_IDLE_AVG);
5627
5628         /* Setting Fixed Bias */
5629         val = VLV_OVERRIDE_EN |
5630                   VLV_SOC_TDP_EN |
5631                   CHV_BIAS_CPU_50_SOC_50;
5632         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5633
5634         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5635
5636         /* RPS code assumes GPLL is used */
5637         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5638
5639         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5640         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5641
5642         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5643         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5644                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5645                          dev_priv->rps.cur_freq);
5646
5647         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5648                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5649                          dev_priv->rps.idle_freq);
5650
5651         valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5652
5653         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5654 }
5655
5656 static void valleyview_enable_rps(struct drm_device *dev)
5657 {
5658         struct drm_i915_private *dev_priv = dev->dev_private;
5659         struct intel_engine_cs *engine;
5660         u32 gtfifodbg, val, rc6_mode = 0;
5661
5662         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5663
5664         valleyview_check_pctx(dev_priv);
5665
5666         gtfifodbg = I915_READ(GTFIFODBG);
5667         if (gtfifodbg) {
5668                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5669                                  gtfifodbg);
5670                 I915_WRITE(GTFIFODBG, gtfifodbg);
5671         }
5672
5673         /* If VLV, Forcewake all wells, else re-direct to regular path */
5674         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5675
5676         /*  Disable RC states. */
5677         I915_WRITE(GEN6_RC_CONTROL, 0);
5678
5679         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5680         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5681         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5682         I915_WRITE(GEN6_RP_UP_EI, 66000);
5683         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5684
5685         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5686
5687         I915_WRITE(GEN6_RP_CONTROL,
5688                    GEN6_RP_MEDIA_TURBO |
5689                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5690                    GEN6_RP_MEDIA_IS_GFX |
5691                    GEN6_RP_ENABLE |
5692                    GEN6_RP_UP_BUSY_AVG |
5693                    GEN6_RP_DOWN_IDLE_CONT);
5694
5695         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5696         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5697         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5698
5699         for_each_engine(engine, dev_priv)
5700                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5701
5702         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5703
5704         /* allows RC6 residency counter to work */
5705         I915_WRITE(VLV_COUNTER_CONTROL,
5706                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5707                                       VLV_RENDER_RC0_COUNT_EN |
5708                                       VLV_MEDIA_RC6_COUNT_EN |
5709                                       VLV_RENDER_RC6_COUNT_EN));
5710
5711         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5712                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5713
5714         intel_print_rc6_info(dev, rc6_mode);
5715
5716         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5717
5718         /* Setting Fixed Bias */
5719         val = VLV_OVERRIDE_EN |
5720                   VLV_SOC_TDP_EN |
5721                   VLV_BIAS_CPU_125_SOC_875;
5722         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5723
5724         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5725
5726         /* RPS code assumes GPLL is used */
5727         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5728
5729         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5730         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5731
5732         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5733         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5734                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5735                          dev_priv->rps.cur_freq);
5736
5737         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5738                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5739                          dev_priv->rps.idle_freq);
5740
5741         valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5742
5743         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5744 }
5745
5746 static unsigned long intel_pxfreq(u32 vidfreq)
5747 {
5748         unsigned long freq;
5749         int div = (vidfreq & 0x3f0000) >> 16;
5750         int post = (vidfreq & 0x3000) >> 12;
5751         int pre = (vidfreq & 0x7);
5752
5753         if (!pre)
5754                 return 0;
5755
5756         freq = ((div * 133333) / ((1<<post) * pre));
5757
5758         return freq;
5759 }
5760
5761 static const struct cparams {
5762         u16 i;
5763         u16 t;
5764         u16 m;
5765         u16 c;
5766 } cparams[] = {
5767         { 1, 1333, 301, 28664 },
5768         { 1, 1066, 294, 24460 },
5769         { 1, 800, 294, 25192 },
5770         { 0, 1333, 276, 27605 },
5771         { 0, 1066, 276, 27605 },
5772         { 0, 800, 231, 23784 },
5773 };
5774
5775 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5776 {
5777         u64 total_count, diff, ret;
5778         u32 count1, count2, count3, m = 0, c = 0;
5779         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5780         int i;
5781
5782         assert_spin_locked(&mchdev_lock);
5783
5784         diff1 = now - dev_priv->ips.last_time1;
5785
5786         /* Prevent division-by-zero if we are asking too fast.
5787          * Also, we don't get interesting results if we are polling
5788          * faster than once in 10ms, so just return the saved value
5789          * in such cases.
5790          */
5791         if (diff1 <= 10)
5792                 return dev_priv->ips.chipset_power;
5793
5794         count1 = I915_READ(DMIEC);
5795         count2 = I915_READ(DDREC);
5796         count3 = I915_READ(CSIEC);
5797
5798         total_count = count1 + count2 + count3;
5799
5800         /* FIXME: handle per-counter overflow */
5801         if (total_count < dev_priv->ips.last_count1) {
5802                 diff = ~0UL - dev_priv->ips.last_count1;
5803                 diff += total_count;
5804         } else {
5805                 diff = total_count - dev_priv->ips.last_count1;
5806         }
5807
5808         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5809                 if (cparams[i].i == dev_priv->ips.c_m &&
5810                     cparams[i].t == dev_priv->ips.r_t) {
5811                         m = cparams[i].m;
5812                         c = cparams[i].c;
5813                         break;
5814                 }
5815         }
5816
5817         diff = div_u64(diff, diff1);
5818         ret = ((m * diff) + c);
5819         ret = div_u64(ret, 10);
5820
5821         dev_priv->ips.last_count1 = total_count;
5822         dev_priv->ips.last_time1 = now;
5823
5824         dev_priv->ips.chipset_power = ret;
5825
5826         return ret;
5827 }
5828
5829 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5830 {
5831         struct drm_device *dev = dev_priv->dev;
5832         unsigned long val;
5833
5834         if (INTEL_INFO(dev)->gen != 5)
5835                 return 0;
5836
5837         spin_lock_irq(&mchdev_lock);
5838
5839         val = __i915_chipset_val(dev_priv);
5840
5841         spin_unlock_irq(&mchdev_lock);
5842
5843         return val;
5844 }
5845
5846 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5847 {
5848         unsigned long m, x, b;
5849         u32 tsfs;
5850
5851         tsfs = I915_READ(TSFS);
5852
5853         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5854         x = I915_READ8(TR1);
5855
5856         b = tsfs & TSFS_INTR_MASK;
5857
5858         return ((m * x) / 127) - b;
5859 }
5860
5861 static int _pxvid_to_vd(u8 pxvid)
5862 {
5863         if (pxvid == 0)
5864                 return 0;
5865
5866         if (pxvid >= 8 && pxvid < 31)
5867                 pxvid = 31;
5868
5869         return (pxvid + 2) * 125;
5870 }
5871
5872 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5873 {
5874         struct drm_device *dev = dev_priv->dev;
5875         const int vd = _pxvid_to_vd(pxvid);
5876         const int vm = vd - 1125;
5877
5878         if (INTEL_INFO(dev)->is_mobile)
5879                 return vm > 0 ? vm : 0;
5880
5881         return vd;
5882 }
5883
5884 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5885 {
5886         u64 now, diff, diffms;
5887         u32 count;
5888
5889         assert_spin_locked(&mchdev_lock);
5890
5891         now = ktime_get_raw_ns();
5892         diffms = now - dev_priv->ips.last_time2;
5893         do_div(diffms, NSEC_PER_MSEC);
5894
5895         /* Don't divide by 0 */
5896         if (!diffms)
5897                 return;
5898
5899         count = I915_READ(GFXEC);
5900
5901         if (count < dev_priv->ips.last_count2) {
5902                 diff = ~0UL - dev_priv->ips.last_count2;
5903                 diff += count;
5904         } else {
5905                 diff = count - dev_priv->ips.last_count2;
5906         }
5907
5908         dev_priv->ips.last_count2 = count;
5909         dev_priv->ips.last_time2 = now;
5910
5911         /* More magic constants... */
5912         diff = diff * 1181;
5913         diff = div_u64(diff, diffms * 10);
5914         dev_priv->ips.gfx_power = diff;
5915 }
5916
5917 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5918 {
5919         struct drm_device *dev = dev_priv->dev;
5920
5921         if (INTEL_INFO(dev)->gen != 5)
5922                 return;
5923
5924         spin_lock_irq(&mchdev_lock);
5925
5926         __i915_update_gfx_val(dev_priv);
5927
5928         spin_unlock_irq(&mchdev_lock);
5929 }
5930
5931 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5932 {
5933         unsigned long t, corr, state1, corr2, state2;
5934         u32 pxvid, ext_v;
5935
5936         assert_spin_locked(&mchdev_lock);
5937
5938         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5939         pxvid = (pxvid >> 24) & 0x7f;
5940         ext_v = pvid_to_extvid(dev_priv, pxvid);
5941
5942         state1 = ext_v;
5943
5944         t = i915_mch_val(dev_priv);
5945
5946         /* Revel in the empirically derived constants */
5947
5948         /* Correction factor in 1/100000 units */
5949         if (t > 80)
5950                 corr = ((t * 2349) + 135940);
5951         else if (t >= 50)
5952                 corr = ((t * 964) + 29317);
5953         else /* < 50 */
5954                 corr = ((t * 301) + 1004);
5955
5956         corr = corr * ((150142 * state1) / 10000 - 78642);
5957         corr /= 100000;
5958         corr2 = (corr * dev_priv->ips.corr);
5959
5960         state2 = (corr2 * state1) / 10000;
5961         state2 /= 100; /* convert to mW */
5962
5963         __i915_update_gfx_val(dev_priv);
5964
5965         return dev_priv->ips.gfx_power + state2;
5966 }
5967
5968 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5969 {
5970         struct drm_device *dev = dev_priv->dev;
5971         unsigned long val;
5972
5973         if (INTEL_INFO(dev)->gen != 5)
5974                 return 0;
5975
5976         spin_lock_irq(&mchdev_lock);
5977
5978         val = __i915_gfx_val(dev_priv);
5979
5980         spin_unlock_irq(&mchdev_lock);
5981
5982         return val;
5983 }
5984
5985 /**
5986  * i915_read_mch_val - return value for IPS use
5987  *
5988  * Calculate and return a value for the IPS driver to use when deciding whether
5989  * we have thermal and power headroom to increase CPU or GPU power budget.
5990  */
5991 unsigned long i915_read_mch_val(void)
5992 {
5993         struct drm_i915_private *dev_priv;
5994         unsigned long chipset_val, graphics_val, ret = 0;
5995
5996         spin_lock_irq(&mchdev_lock);
5997         if (!i915_mch_dev)
5998                 goto out_unlock;
5999         dev_priv = i915_mch_dev;
6000
6001         chipset_val = __i915_chipset_val(dev_priv);
6002         graphics_val = __i915_gfx_val(dev_priv);
6003
6004         ret = chipset_val + graphics_val;
6005
6006 out_unlock:
6007         spin_unlock_irq(&mchdev_lock);
6008
6009         return ret;
6010 }
6011 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6012
6013 /**
6014  * i915_gpu_raise - raise GPU frequency limit
6015  *
6016  * Raise the limit; IPS indicates we have thermal headroom.
6017  */
6018 bool i915_gpu_raise(void)
6019 {
6020         struct drm_i915_private *dev_priv;
6021         bool ret = true;
6022
6023         spin_lock_irq(&mchdev_lock);
6024         if (!i915_mch_dev) {
6025                 ret = false;
6026                 goto out_unlock;
6027         }
6028         dev_priv = i915_mch_dev;
6029
6030         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6031                 dev_priv->ips.max_delay--;
6032
6033 out_unlock:
6034         spin_unlock_irq(&mchdev_lock);
6035
6036         return ret;
6037 }
6038 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6039
6040 /**
6041  * i915_gpu_lower - lower GPU frequency limit
6042  *
6043  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6044  * frequency maximum.
6045  */
6046 bool i915_gpu_lower(void)
6047 {
6048         struct drm_i915_private *dev_priv;
6049         bool ret = true;
6050
6051         spin_lock_irq(&mchdev_lock);
6052         if (!i915_mch_dev) {
6053                 ret = false;
6054                 goto out_unlock;
6055         }
6056         dev_priv = i915_mch_dev;
6057
6058         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6059                 dev_priv->ips.max_delay++;
6060
6061 out_unlock:
6062         spin_unlock_irq(&mchdev_lock);
6063
6064         return ret;
6065 }
6066 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6067
6068 /**
6069  * i915_gpu_busy - indicate GPU business to IPS
6070  *
6071  * Tell the IPS driver whether or not the GPU is busy.
6072  */
6073 bool i915_gpu_busy(void)
6074 {
6075         struct drm_i915_private *dev_priv;
6076         struct intel_engine_cs *engine;
6077         bool ret = false;
6078
6079         spin_lock_irq(&mchdev_lock);
6080         if (!i915_mch_dev)
6081                 goto out_unlock;
6082         dev_priv = i915_mch_dev;
6083
6084         for_each_engine(engine, dev_priv)
6085                 ret |= !list_empty(&engine->request_list);
6086
6087 out_unlock:
6088         spin_unlock_irq(&mchdev_lock);
6089
6090         return ret;
6091 }
6092 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6093
6094 /**
6095  * i915_gpu_turbo_disable - disable graphics turbo
6096  *
6097  * Disable graphics turbo by resetting the max frequency and setting the
6098  * current frequency to the default.
6099  */
6100 bool i915_gpu_turbo_disable(void)
6101 {
6102         struct drm_i915_private *dev_priv;
6103         bool ret = true;
6104
6105         spin_lock_irq(&mchdev_lock);
6106         if (!i915_mch_dev) {
6107                 ret = false;
6108                 goto out_unlock;
6109         }
6110         dev_priv = i915_mch_dev;
6111
6112         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6113
6114         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6115                 ret = false;
6116
6117 out_unlock:
6118         spin_unlock_irq(&mchdev_lock);
6119
6120         return ret;
6121 }
6122 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6123
6124 /**
6125  * Tells the intel_ips driver that the i915 driver is now loaded, if
6126  * IPS got loaded first.
6127  *
6128  * This awkward dance is so that neither module has to depend on the
6129  * other in order for IPS to do the appropriate communication of
6130  * GPU turbo limits to i915.
6131  */
6132 static void
6133 ips_ping_for_i915_load(void)
6134 {
6135         void (*link)(void);
6136
6137         link = symbol_get(ips_link_to_i915_driver);
6138         if (link) {
6139                 link();
6140                 symbol_put(ips_link_to_i915_driver);
6141         }
6142 }
6143
6144 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6145 {
6146         /* We only register the i915 ips part with intel-ips once everything is
6147          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6148         spin_lock_irq(&mchdev_lock);
6149         i915_mch_dev = dev_priv;
6150         spin_unlock_irq(&mchdev_lock);
6151
6152         ips_ping_for_i915_load();
6153 }
6154
6155 void intel_gpu_ips_teardown(void)
6156 {
6157         spin_lock_irq(&mchdev_lock);
6158         i915_mch_dev = NULL;
6159         spin_unlock_irq(&mchdev_lock);
6160 }
6161
6162 static void intel_init_emon(struct drm_device *dev)
6163 {
6164         struct drm_i915_private *dev_priv = dev->dev_private;
6165         u32 lcfuse;
6166         u8 pxw[16];
6167         int i;
6168
6169         /* Disable to program */
6170         I915_WRITE(ECR, 0);
6171         POSTING_READ(ECR);
6172
6173         /* Program energy weights for various events */
6174         I915_WRITE(SDEW, 0x15040d00);
6175         I915_WRITE(CSIEW0, 0x007f0000);
6176         I915_WRITE(CSIEW1, 0x1e220004);
6177         I915_WRITE(CSIEW2, 0x04000004);
6178
6179         for (i = 0; i < 5; i++)
6180                 I915_WRITE(PEW(i), 0);
6181         for (i = 0; i < 3; i++)
6182                 I915_WRITE(DEW(i), 0);
6183
6184         /* Program P-state weights to account for frequency power adjustment */
6185         for (i = 0; i < 16; i++) {
6186                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6187                 unsigned long freq = intel_pxfreq(pxvidfreq);
6188                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6189                         PXVFREQ_PX_SHIFT;
6190                 unsigned long val;
6191
6192                 val = vid * vid;
6193                 val *= (freq / 1000);
6194                 val *= 255;
6195                 val /= (127*127*900);
6196                 if (val > 0xff)
6197                         DRM_ERROR("bad pxval: %ld\n", val);
6198                 pxw[i] = val;
6199         }
6200         /* Render standby states get 0 weight */
6201         pxw[14] = 0;
6202         pxw[15] = 0;
6203
6204         for (i = 0; i < 4; i++) {
6205                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6206                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6207                 I915_WRITE(PXW(i), val);
6208         }
6209
6210         /* Adjust magic regs to magic values (more experimental results) */
6211         I915_WRITE(OGW0, 0);
6212         I915_WRITE(OGW1, 0);
6213         I915_WRITE(EG0, 0x00007f00);
6214         I915_WRITE(EG1, 0x0000000e);
6215         I915_WRITE(EG2, 0x000e0000);
6216         I915_WRITE(EG3, 0x68000300);
6217         I915_WRITE(EG4, 0x42000000);
6218         I915_WRITE(EG5, 0x00140031);
6219         I915_WRITE(EG6, 0);
6220         I915_WRITE(EG7, 0);
6221
6222         for (i = 0; i < 8; i++)
6223                 I915_WRITE(PXWL(i), 0);
6224
6225         /* Enable PMON + select events */
6226         I915_WRITE(ECR, 0x80000019);
6227
6228         lcfuse = I915_READ(LCFUSE02);
6229
6230         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6231 }
6232
6233 void intel_init_gt_powersave(struct drm_device *dev)
6234 {
6235         struct drm_i915_private *dev_priv = dev->dev_private;
6236
6237         /*
6238          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6239          * requirement.
6240          */
6241         if (!i915.enable_rc6) {
6242                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6243                 intel_runtime_pm_get(dev_priv);
6244         }
6245
6246         if (IS_CHERRYVIEW(dev))
6247                 cherryview_init_gt_powersave(dev);
6248         else if (IS_VALLEYVIEW(dev))
6249                 valleyview_init_gt_powersave(dev);
6250 }
6251
6252 void intel_cleanup_gt_powersave(struct drm_device *dev)
6253 {
6254         struct drm_i915_private *dev_priv = dev->dev_private;
6255
6256         if (IS_CHERRYVIEW(dev))
6257                 return;
6258         else if (IS_VALLEYVIEW(dev))
6259                 valleyview_cleanup_gt_powersave(dev);
6260
6261         if (!i915.enable_rc6)
6262                 intel_runtime_pm_put(dev_priv);
6263 }
6264
6265 static void gen6_suspend_rps(struct drm_device *dev)
6266 {
6267         struct drm_i915_private *dev_priv = dev->dev_private;
6268
6269         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6270
6271         gen6_disable_rps_interrupts(dev);
6272 }
6273
6274 /**
6275  * intel_suspend_gt_powersave - suspend PM work and helper threads
6276  * @dev: drm device
6277  *
6278  * We don't want to disable RC6 or other features here, we just want
6279  * to make sure any work we've queued has finished and won't bother
6280  * us while we're suspended.
6281  */
6282 void intel_suspend_gt_powersave(struct drm_device *dev)
6283 {
6284         struct drm_i915_private *dev_priv = dev->dev_private;
6285
6286         if (INTEL_INFO(dev)->gen < 6)
6287                 return;
6288
6289         gen6_suspend_rps(dev);
6290
6291         /* Force GPU to min freq during suspend */
6292         gen6_rps_idle(dev_priv);
6293 }
6294
6295 void intel_disable_gt_powersave(struct drm_device *dev)
6296 {
6297         struct drm_i915_private *dev_priv = dev->dev_private;
6298
6299         if (IS_IRONLAKE_M(dev)) {
6300                 ironlake_disable_drps(dev);
6301         } else if (INTEL_INFO(dev)->gen >= 6) {
6302                 intel_suspend_gt_powersave(dev);
6303
6304                 mutex_lock(&dev_priv->rps.hw_lock);
6305                 if (INTEL_INFO(dev)->gen >= 9) {
6306                         gen9_disable_rc6(dev);
6307                         gen9_disable_rps(dev);
6308                 } else if (IS_CHERRYVIEW(dev))
6309                         cherryview_disable_rps(dev);
6310                 else if (IS_VALLEYVIEW(dev))
6311                         valleyview_disable_rps(dev);
6312                 else
6313                         gen6_disable_rps(dev);
6314
6315                 dev_priv->rps.enabled = false;
6316                 mutex_unlock(&dev_priv->rps.hw_lock);
6317         }
6318 }
6319
6320 static void intel_gen6_powersave_work(struct work_struct *work)
6321 {
6322         struct drm_i915_private *dev_priv =
6323                 container_of(work, struct drm_i915_private,
6324                              rps.delayed_resume_work.work);
6325         struct drm_device *dev = dev_priv->dev;
6326
6327         mutex_lock(&dev_priv->rps.hw_lock);
6328
6329         gen6_reset_rps_interrupts(dev);
6330
6331         if (IS_CHERRYVIEW(dev)) {
6332                 cherryview_enable_rps(dev);
6333         } else if (IS_VALLEYVIEW(dev)) {
6334                 valleyview_enable_rps(dev);
6335         } else if (INTEL_INFO(dev)->gen >= 9) {
6336                 gen9_enable_rc6(dev);
6337                 gen9_enable_rps(dev);
6338                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6339                         __gen6_update_ring_freq(dev);
6340         } else if (IS_BROADWELL(dev)) {
6341                 gen8_enable_rps(dev);
6342                 __gen6_update_ring_freq(dev);
6343         } else {
6344                 gen6_enable_rps(dev);
6345                 __gen6_update_ring_freq(dev);
6346         }
6347
6348         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6349         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6350
6351         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6352         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6353
6354         dev_priv->rps.enabled = true;
6355
6356         gen6_enable_rps_interrupts(dev);
6357
6358         mutex_unlock(&dev_priv->rps.hw_lock);
6359
6360         intel_runtime_pm_put(dev_priv);
6361 }
6362
6363 void intel_enable_gt_powersave(struct drm_device *dev)
6364 {
6365         struct drm_i915_private *dev_priv = dev->dev_private;
6366
6367         /* Powersaving is controlled by the host when inside a VM */
6368         if (intel_vgpu_active(dev))
6369                 return;
6370
6371         if (IS_IRONLAKE_M(dev)) {
6372                 ironlake_enable_drps(dev);
6373                 mutex_lock(&dev->struct_mutex);
6374                 intel_init_emon(dev);
6375                 mutex_unlock(&dev->struct_mutex);
6376         } else if (INTEL_INFO(dev)->gen >= 6) {
6377                 /*
6378                  * PCU communication is slow and this doesn't need to be
6379                  * done at any specific time, so do this out of our fast path
6380                  * to make resume and init faster.
6381                  *
6382                  * We depend on the HW RC6 power context save/restore
6383                  * mechanism when entering D3 through runtime PM suspend. So
6384                  * disable RPM until RPS/RC6 is properly setup. We can only
6385                  * get here via the driver load/system resume/runtime resume
6386                  * paths, so the _noresume version is enough (and in case of
6387                  * runtime resume it's necessary).
6388                  */
6389                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6390                                            round_jiffies_up_relative(HZ)))
6391                         intel_runtime_pm_get_noresume(dev_priv);
6392         }
6393 }
6394
6395 void intel_reset_gt_powersave(struct drm_device *dev)
6396 {
6397         struct drm_i915_private *dev_priv = dev->dev_private;
6398
6399         if (INTEL_INFO(dev)->gen < 6)
6400                 return;
6401
6402         gen6_suspend_rps(dev);
6403         dev_priv->rps.enabled = false;
6404 }
6405
6406 static void ibx_init_clock_gating(struct drm_device *dev)
6407 {
6408         struct drm_i915_private *dev_priv = dev->dev_private;
6409
6410         /*
6411          * On Ibex Peak and Cougar Point, we need to disable clock
6412          * gating for the panel power sequencer or it will fail to
6413          * start up when no ports are active.
6414          */
6415         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6416 }
6417
6418 static void g4x_disable_trickle_feed(struct drm_device *dev)
6419 {
6420         struct drm_i915_private *dev_priv = dev->dev_private;
6421         enum pipe pipe;
6422
6423         for_each_pipe(dev_priv, pipe) {
6424                 I915_WRITE(DSPCNTR(pipe),
6425                            I915_READ(DSPCNTR(pipe)) |
6426                            DISPPLANE_TRICKLE_FEED_DISABLE);
6427
6428                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6429                 POSTING_READ(DSPSURF(pipe));
6430         }
6431 }
6432
6433 static void ilk_init_lp_watermarks(struct drm_device *dev)
6434 {
6435         struct drm_i915_private *dev_priv = dev->dev_private;
6436
6437         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6438         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6439         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6440
6441         /*
6442          * Don't touch WM1S_LP_EN here.
6443          * Doing so could cause underruns.
6444          */
6445 }
6446
6447 static void ironlake_init_clock_gating(struct drm_device *dev)
6448 {
6449         struct drm_i915_private *dev_priv = dev->dev_private;
6450         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6451
6452         /*
6453          * Required for FBC
6454          * WaFbcDisableDpfcClockGating:ilk
6455          */
6456         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6457                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6458                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6459
6460         I915_WRITE(PCH_3DCGDIS0,
6461                    MARIUNIT_CLOCK_GATE_DISABLE |
6462                    SVSMUNIT_CLOCK_GATE_DISABLE);
6463         I915_WRITE(PCH_3DCGDIS1,
6464                    VFMUNIT_CLOCK_GATE_DISABLE);
6465
6466         /*
6467          * According to the spec the following bits should be set in
6468          * order to enable memory self-refresh
6469          * The bit 22/21 of 0x42004
6470          * The bit 5 of 0x42020
6471          * The bit 15 of 0x45000
6472          */
6473         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6474                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6475                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6476         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6477         I915_WRITE(DISP_ARB_CTL,
6478                    (I915_READ(DISP_ARB_CTL) |
6479                     DISP_FBC_WM_DIS));
6480
6481         ilk_init_lp_watermarks(dev);
6482
6483         /*
6484          * Based on the document from hardware guys the following bits
6485          * should be set unconditionally in order to enable FBC.
6486          * The bit 22 of 0x42000
6487          * The bit 22 of 0x42004
6488          * The bit 7,8,9 of 0x42020.
6489          */
6490         if (IS_IRONLAKE_M(dev)) {
6491                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6492                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6493                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6494                            ILK_FBCQ_DIS);
6495                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6496                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6497                            ILK_DPARB_GATE);
6498         }
6499
6500         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6501
6502         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6503                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6504                    ILK_ELPIN_409_SELECT);
6505         I915_WRITE(_3D_CHICKEN2,
6506                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6507                    _3D_CHICKEN2_WM_READ_PIPELINED);
6508
6509         /* WaDisableRenderCachePipelinedFlush:ilk */
6510         I915_WRITE(CACHE_MODE_0,
6511                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6512
6513         /* WaDisable_RenderCache_OperationalFlush:ilk */
6514         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6515
6516         g4x_disable_trickle_feed(dev);
6517
6518         ibx_init_clock_gating(dev);
6519 }
6520
6521 static void cpt_init_clock_gating(struct drm_device *dev)
6522 {
6523         struct drm_i915_private *dev_priv = dev->dev_private;
6524         int pipe;
6525         uint32_t val;
6526
6527         /*
6528          * On Ibex Peak and Cougar Point, we need to disable clock
6529          * gating for the panel power sequencer or it will fail to
6530          * start up when no ports are active.
6531          */
6532         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6533                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6534                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6535         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6536                    DPLS_EDP_PPS_FIX_DIS);
6537         /* The below fixes the weird display corruption, a few pixels shifted
6538          * downward, on (only) LVDS of some HP laptops with IVY.
6539          */
6540         for_each_pipe(dev_priv, pipe) {
6541                 val = I915_READ(TRANS_CHICKEN2(pipe));
6542                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6543                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6544                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6545                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6546                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6547                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6548                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6549                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6550         }
6551         /* WADP0ClockGatingDisable */
6552         for_each_pipe(dev_priv, pipe) {
6553                 I915_WRITE(TRANS_CHICKEN1(pipe),
6554                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6555         }
6556 }
6557
6558 static void gen6_check_mch_setup(struct drm_device *dev)
6559 {
6560         struct drm_i915_private *dev_priv = dev->dev_private;
6561         uint32_t tmp;
6562
6563         tmp = I915_READ(MCH_SSKPD);
6564         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6565                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6566                               tmp);
6567 }
6568
6569 static void gen6_init_clock_gating(struct drm_device *dev)
6570 {
6571         struct drm_i915_private *dev_priv = dev->dev_private;
6572         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6573
6574         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6575
6576         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6577                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6578                    ILK_ELPIN_409_SELECT);
6579
6580         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6581         I915_WRITE(_3D_CHICKEN,
6582                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6583
6584         /* WaDisable_RenderCache_OperationalFlush:snb */
6585         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6586
6587         /*
6588          * BSpec recoomends 8x4 when MSAA is used,
6589          * however in practice 16x4 seems fastest.
6590          *
6591          * Note that PS/WM thread counts depend on the WIZ hashing
6592          * disable bit, which we don't touch here, but it's good
6593          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6594          */
6595         I915_WRITE(GEN6_GT_MODE,
6596                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6597
6598         ilk_init_lp_watermarks(dev);
6599
6600         I915_WRITE(CACHE_MODE_0,
6601                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6602
6603         I915_WRITE(GEN6_UCGCTL1,
6604                    I915_READ(GEN6_UCGCTL1) |
6605                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6606                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6607
6608         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6609          * gating disable must be set.  Failure to set it results in
6610          * flickering pixels due to Z write ordering failures after
6611          * some amount of runtime in the Mesa "fire" demo, and Unigine
6612          * Sanctuary and Tropics, and apparently anything else with
6613          * alpha test or pixel discard.
6614          *
6615          * According to the spec, bit 11 (RCCUNIT) must also be set,
6616          * but we didn't debug actual testcases to find it out.
6617          *
6618          * WaDisableRCCUnitClockGating:snb
6619          * WaDisableRCPBUnitClockGating:snb
6620          */
6621         I915_WRITE(GEN6_UCGCTL2,
6622                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6623                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6624
6625         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6626         I915_WRITE(_3D_CHICKEN3,
6627                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6628
6629         /*
6630          * Bspec says:
6631          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6632          * 3DSTATE_SF number of SF output attributes is more than 16."
6633          */
6634         I915_WRITE(_3D_CHICKEN3,
6635                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6636
6637         /*
6638          * According to the spec the following bits should be
6639          * set in order to enable memory self-refresh and fbc:
6640          * The bit21 and bit22 of 0x42000
6641          * The bit21 and bit22 of 0x42004
6642          * The bit5 and bit7 of 0x42020
6643          * The bit14 of 0x70180
6644          * The bit14 of 0x71180
6645          *
6646          * WaFbcAsynchFlipDisableFbcQueue:snb
6647          */
6648         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6649                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6650                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6651         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6652                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6653                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6654         I915_WRITE(ILK_DSPCLK_GATE_D,
6655                    I915_READ(ILK_DSPCLK_GATE_D) |
6656                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6657                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6658
6659         g4x_disable_trickle_feed(dev);
6660
6661         cpt_init_clock_gating(dev);
6662
6663         gen6_check_mch_setup(dev);
6664 }
6665
6666 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6667 {
6668         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6669
6670         /*
6671          * WaVSThreadDispatchOverride:ivb,vlv
6672          *
6673          * This actually overrides the dispatch
6674          * mode for all thread types.
6675          */
6676         reg &= ~GEN7_FF_SCHED_MASK;
6677         reg |= GEN7_FF_TS_SCHED_HW;
6678         reg |= GEN7_FF_VS_SCHED_HW;
6679         reg |= GEN7_FF_DS_SCHED_HW;
6680
6681         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6682 }
6683
6684 static void lpt_init_clock_gating(struct drm_device *dev)
6685 {
6686         struct drm_i915_private *dev_priv = dev->dev_private;
6687
6688         /*
6689          * TODO: this bit should only be enabled when really needed, then
6690          * disabled when not needed anymore in order to save power.
6691          */
6692         if (HAS_PCH_LPT_LP(dev))
6693                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6694                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6695                            PCH_LP_PARTITION_LEVEL_DISABLE);
6696
6697         /* WADPOClockGatingDisable:hsw */
6698         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6699                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6700                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6701 }
6702
6703 static void lpt_suspend_hw(struct drm_device *dev)
6704 {
6705         struct drm_i915_private *dev_priv = dev->dev_private;
6706
6707         if (HAS_PCH_LPT_LP(dev)) {
6708                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6709
6710                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6711                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6712         }
6713 }
6714
6715 static void kabylake_init_clock_gating(struct drm_device *dev)
6716 {
6717         struct drm_i915_private *dev_priv = dev->dev_private;
6718
6719         gen9_init_clock_gating(dev);
6720
6721         /* WaDisableSDEUnitClockGating:kbl */
6722         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6723                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6724                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6725 }
6726
6727 static void skylake_init_clock_gating(struct drm_device *dev)
6728 {
6729         gen9_init_clock_gating(dev);
6730 }
6731
6732 static void broadwell_init_clock_gating(struct drm_device *dev)
6733 {
6734         struct drm_i915_private *dev_priv = dev->dev_private;
6735         enum pipe pipe;
6736         uint32_t misccpctl;
6737
6738         ilk_init_lp_watermarks(dev);
6739
6740         /* WaSwitchSolVfFArbitrationPriority:bdw */
6741         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6742
6743         /* WaPsrDPAMaskVBlankInSRD:bdw */
6744         I915_WRITE(CHICKEN_PAR1_1,
6745                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6746
6747         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6748         for_each_pipe(dev_priv, pipe) {
6749                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6750                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6751                            BDW_DPRS_MASK_VBLANK_SRD);
6752         }
6753
6754         /* WaVSRefCountFullforceMissDisable:bdw */
6755         /* WaDSRefCountFullforceMissDisable:bdw */
6756         I915_WRITE(GEN7_FF_THREAD_MODE,
6757                    I915_READ(GEN7_FF_THREAD_MODE) &
6758                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6759
6760         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6761                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6762
6763         /* WaDisableSDEUnitClockGating:bdw */
6764         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6765                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6766
6767         /*
6768          * WaProgramL3SqcReg1Default:bdw
6769          * WaTempDisableDOPClkGating:bdw
6770          */
6771         misccpctl = I915_READ(GEN7_MISCCPCTL);
6772         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6773         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6774         /*
6775          * Wait at least 100 clocks before re-enabling clock gating. See
6776          * the definition of L3SQCREG1 in BSpec.
6777          */
6778         POSTING_READ(GEN8_L3SQCREG1);
6779         udelay(1);
6780         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6781
6782         /*
6783          * WaGttCachingOffByDefault:bdw
6784          * GTT cache may not work with big pages, so if those
6785          * are ever enabled GTT cache may need to be disabled.
6786          */
6787         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6788
6789         lpt_init_clock_gating(dev);
6790 }
6791
6792 static void haswell_init_clock_gating(struct drm_device *dev)
6793 {
6794         struct drm_i915_private *dev_priv = dev->dev_private;
6795
6796         ilk_init_lp_watermarks(dev);
6797
6798         /* L3 caching of data atomics doesn't work -- disable it. */
6799         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6800         I915_WRITE(HSW_ROW_CHICKEN3,
6801                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6802
6803         /* This is required by WaCatErrorRejectionIssue:hsw */
6804         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6805                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6806                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6807
6808         /* WaVSRefCountFullforceMissDisable:hsw */
6809         I915_WRITE(GEN7_FF_THREAD_MODE,
6810                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6811
6812         /* WaDisable_RenderCache_OperationalFlush:hsw */
6813         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6814
6815         /* enable HiZ Raw Stall Optimization */
6816         I915_WRITE(CACHE_MODE_0_GEN7,
6817                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6818
6819         /* WaDisable4x2SubspanOptimization:hsw */
6820         I915_WRITE(CACHE_MODE_1,
6821                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6822
6823         /*
6824          * BSpec recommends 8x4 when MSAA is used,
6825          * however in practice 16x4 seems fastest.
6826          *
6827          * Note that PS/WM thread counts depend on the WIZ hashing
6828          * disable bit, which we don't touch here, but it's good
6829          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6830          */
6831         I915_WRITE(GEN7_GT_MODE,
6832                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6833
6834         /* WaSampleCChickenBitEnable:hsw */
6835         I915_WRITE(HALF_SLICE_CHICKEN3,
6836                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6837
6838         /* WaSwitchSolVfFArbitrationPriority:hsw */
6839         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6840
6841         /* WaRsPkgCStateDisplayPMReq:hsw */
6842         I915_WRITE(CHICKEN_PAR1_1,
6843                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6844
6845         lpt_init_clock_gating(dev);
6846 }
6847
6848 static void ivybridge_init_clock_gating(struct drm_device *dev)
6849 {
6850         struct drm_i915_private *dev_priv = dev->dev_private;
6851         uint32_t snpcr;
6852
6853         ilk_init_lp_watermarks(dev);
6854
6855         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6856
6857         /* WaDisableEarlyCull:ivb */
6858         I915_WRITE(_3D_CHICKEN3,
6859                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6860
6861         /* WaDisableBackToBackFlipFix:ivb */
6862         I915_WRITE(IVB_CHICKEN3,
6863                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6864                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6865
6866         /* WaDisablePSDDualDispatchEnable:ivb */
6867         if (IS_IVB_GT1(dev))
6868                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6869                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6870
6871         /* WaDisable_RenderCache_OperationalFlush:ivb */
6872         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6873
6874         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6875         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6876                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6877
6878         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6879         I915_WRITE(GEN7_L3CNTLREG1,
6880                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6881         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6882                    GEN7_WA_L3_CHICKEN_MODE);
6883         if (IS_IVB_GT1(dev))
6884                 I915_WRITE(GEN7_ROW_CHICKEN2,
6885                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6886         else {
6887                 /* must write both registers */
6888                 I915_WRITE(GEN7_ROW_CHICKEN2,
6889                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6890                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6891                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6892         }
6893
6894         /* WaForceL3Serialization:ivb */
6895         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6896                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6897
6898         /*
6899          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6900          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6901          */
6902         I915_WRITE(GEN6_UCGCTL2,
6903                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6904
6905         /* This is required by WaCatErrorRejectionIssue:ivb */
6906         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6907                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6908                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6909
6910         g4x_disable_trickle_feed(dev);
6911
6912         gen7_setup_fixed_func_scheduler(dev_priv);
6913
6914         if (0) { /* causes HiZ corruption on ivb:gt1 */
6915                 /* enable HiZ Raw Stall Optimization */
6916                 I915_WRITE(CACHE_MODE_0_GEN7,
6917                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6918         }
6919
6920         /* WaDisable4x2SubspanOptimization:ivb */
6921         I915_WRITE(CACHE_MODE_1,
6922                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6923
6924         /*
6925          * BSpec recommends 8x4 when MSAA is used,
6926          * however in practice 16x4 seems fastest.
6927          *
6928          * Note that PS/WM thread counts depend on the WIZ hashing
6929          * disable bit, which we don't touch here, but it's good
6930          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6931          */
6932         I915_WRITE(GEN7_GT_MODE,
6933                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6934
6935         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6936         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6937         snpcr |= GEN6_MBC_SNPCR_MED;
6938         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6939
6940         if (!HAS_PCH_NOP(dev))
6941                 cpt_init_clock_gating(dev);
6942
6943         gen6_check_mch_setup(dev);
6944 }
6945
6946 static void valleyview_init_clock_gating(struct drm_device *dev)
6947 {
6948         struct drm_i915_private *dev_priv = dev->dev_private;
6949
6950         /* WaDisableEarlyCull:vlv */
6951         I915_WRITE(_3D_CHICKEN3,
6952                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6953
6954         /* WaDisableBackToBackFlipFix:vlv */
6955         I915_WRITE(IVB_CHICKEN3,
6956                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6957                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6958
6959         /* WaPsdDispatchEnable:vlv */
6960         /* WaDisablePSDDualDispatchEnable:vlv */
6961         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6962                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6963                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6964
6965         /* WaDisable_RenderCache_OperationalFlush:vlv */
6966         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6967
6968         /* WaForceL3Serialization:vlv */
6969         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6970                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6971
6972         /* WaDisableDopClockGating:vlv */
6973         I915_WRITE(GEN7_ROW_CHICKEN2,
6974                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6975
6976         /* This is required by WaCatErrorRejectionIssue:vlv */
6977         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6978                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6979                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6980
6981         gen7_setup_fixed_func_scheduler(dev_priv);
6982
6983         /*
6984          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6985          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6986          */
6987         I915_WRITE(GEN6_UCGCTL2,
6988                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6989
6990         /* WaDisableL3Bank2xClockGate:vlv
6991          * Disabling L3 clock gating- MMIO 940c[25] = 1
6992          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6993         I915_WRITE(GEN7_UCGCTL4,
6994                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6995
6996         /*
6997          * BSpec says this must be set, even though
6998          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6999          */
7000         I915_WRITE(CACHE_MODE_1,
7001                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7002
7003         /*
7004          * BSpec recommends 8x4 when MSAA is used,
7005          * however in practice 16x4 seems fastest.
7006          *
7007          * Note that PS/WM thread counts depend on the WIZ hashing
7008          * disable bit, which we don't touch here, but it's good
7009          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7010          */
7011         I915_WRITE(GEN7_GT_MODE,
7012                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7013
7014         /*
7015          * WaIncreaseL3CreditsForVLVB0:vlv
7016          * This is the hardware default actually.
7017          */
7018         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7019
7020         /*
7021          * WaDisableVLVClockGating_VBIIssue:vlv
7022          * Disable clock gating on th GCFG unit to prevent a delay
7023          * in the reporting of vblank events.
7024          */
7025         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7026 }
7027
7028 static void cherryview_init_clock_gating(struct drm_device *dev)
7029 {
7030         struct drm_i915_private *dev_priv = dev->dev_private;
7031
7032         /* WaVSRefCountFullforceMissDisable:chv */
7033         /* WaDSRefCountFullforceMissDisable:chv */
7034         I915_WRITE(GEN7_FF_THREAD_MODE,
7035                    I915_READ(GEN7_FF_THREAD_MODE) &
7036                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7037
7038         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7039         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7040                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7041
7042         /* WaDisableCSUnitClockGating:chv */
7043         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7044                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7045
7046         /* WaDisableSDEUnitClockGating:chv */
7047         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7048                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7049
7050         /*
7051          * GTT cache may not work with big pages, so if those
7052          * are ever enabled GTT cache may need to be disabled.
7053          */
7054         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7055 }
7056
7057 static void g4x_init_clock_gating(struct drm_device *dev)
7058 {
7059         struct drm_i915_private *dev_priv = dev->dev_private;
7060         uint32_t dspclk_gate;
7061
7062         I915_WRITE(RENCLK_GATE_D1, 0);
7063         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7064                    GS_UNIT_CLOCK_GATE_DISABLE |
7065                    CL_UNIT_CLOCK_GATE_DISABLE);
7066         I915_WRITE(RAMCLK_GATE_D, 0);
7067         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7068                 OVRUNIT_CLOCK_GATE_DISABLE |
7069                 OVCUNIT_CLOCK_GATE_DISABLE;
7070         if (IS_GM45(dev))
7071                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7072         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7073
7074         /* WaDisableRenderCachePipelinedFlush */
7075         I915_WRITE(CACHE_MODE_0,
7076                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7077
7078         /* WaDisable_RenderCache_OperationalFlush:g4x */
7079         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7080
7081         g4x_disable_trickle_feed(dev);
7082 }
7083
7084 static void crestline_init_clock_gating(struct drm_device *dev)
7085 {
7086         struct drm_i915_private *dev_priv = dev->dev_private;
7087
7088         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7089         I915_WRITE(RENCLK_GATE_D2, 0);
7090         I915_WRITE(DSPCLK_GATE_D, 0);
7091         I915_WRITE(RAMCLK_GATE_D, 0);
7092         I915_WRITE16(DEUC, 0);
7093         I915_WRITE(MI_ARB_STATE,
7094                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7095
7096         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7097         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7098 }
7099
7100 static void broadwater_init_clock_gating(struct drm_device *dev)
7101 {
7102         struct drm_i915_private *dev_priv = dev->dev_private;
7103
7104         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7105                    I965_RCC_CLOCK_GATE_DISABLE |
7106                    I965_RCPB_CLOCK_GATE_DISABLE |
7107                    I965_ISC_CLOCK_GATE_DISABLE |
7108                    I965_FBC_CLOCK_GATE_DISABLE);
7109         I915_WRITE(RENCLK_GATE_D2, 0);
7110         I915_WRITE(MI_ARB_STATE,
7111                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7112
7113         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7114         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7115 }
7116
7117 static void gen3_init_clock_gating(struct drm_device *dev)
7118 {
7119         struct drm_i915_private *dev_priv = dev->dev_private;
7120         u32 dstate = I915_READ(D_STATE);
7121
7122         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7123                 DSTATE_DOT_CLOCK_GATING;
7124         I915_WRITE(D_STATE, dstate);
7125
7126         if (IS_PINEVIEW(dev))
7127                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7128
7129         /* IIR "flip pending" means done if this bit is set */
7130         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7131
7132         /* interrupts should cause a wake up from C3 */
7133         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7134
7135         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7136         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7137
7138         I915_WRITE(MI_ARB_STATE,
7139                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7140 }
7141
7142 static void i85x_init_clock_gating(struct drm_device *dev)
7143 {
7144         struct drm_i915_private *dev_priv = dev->dev_private;
7145
7146         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7147
7148         /* interrupts should cause a wake up from C3 */
7149         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7150                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7151
7152         I915_WRITE(MEM_MODE,
7153                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7154 }
7155
7156 static void i830_init_clock_gating(struct drm_device *dev)
7157 {
7158         struct drm_i915_private *dev_priv = dev->dev_private;
7159
7160         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7161
7162         I915_WRITE(MEM_MODE,
7163                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7164                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7165 }
7166
7167 void intel_init_clock_gating(struct drm_device *dev)
7168 {
7169         struct drm_i915_private *dev_priv = dev->dev_private;
7170
7171         dev_priv->display.init_clock_gating(dev);
7172 }
7173
7174 void intel_suspend_hw(struct drm_device *dev)
7175 {
7176         if (HAS_PCH_LPT(dev))
7177                 lpt_suspend_hw(dev);
7178 }
7179
7180 static void nop_init_clock_gating(struct drm_device *dev)
7181 {
7182         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7183 }
7184
7185 /**
7186  * intel_init_clock_gating_hooks - setup the clock gating hooks
7187  * @dev_priv: device private
7188  *
7189  * Setup the hooks that configure which clocks of a given platform can be
7190  * gated and also apply various GT and display specific workarounds for these
7191  * platforms. Note that some GT specific workarounds are applied separately
7192  * when GPU contexts or batchbuffers start their execution.
7193  */
7194 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7195 {
7196         if (IS_SKYLAKE(dev_priv))
7197                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7198         else if (IS_KABYLAKE(dev_priv))
7199                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7200         else if (IS_BROXTON(dev_priv))
7201                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7202         else if (IS_BROADWELL(dev_priv))
7203                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7204         else if (IS_CHERRYVIEW(dev_priv))
7205                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7206         else if (IS_HASWELL(dev_priv))
7207                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7208         else if (IS_IVYBRIDGE(dev_priv))
7209                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7210         else if (IS_VALLEYVIEW(dev_priv))
7211                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7212         else if (IS_GEN6(dev_priv))
7213                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7214         else if (IS_GEN5(dev_priv))
7215                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7216         else if (IS_G4X(dev_priv))
7217                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7218         else if (IS_CRESTLINE(dev_priv))
7219                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7220         else if (IS_BROADWATER(dev_priv))
7221                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7222         else if (IS_GEN3(dev_priv))
7223                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7224         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7225                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7226         else if (IS_GEN2(dev_priv))
7227                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7228         else {
7229                 MISSING_CASE(INTEL_DEVID(dev_priv));
7230                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7231         }
7232 }
7233
7234 /* Set up chip specific power management-related functions */
7235 void intel_init_pm(struct drm_device *dev)
7236 {
7237         struct drm_i915_private *dev_priv = dev->dev_private;
7238
7239         intel_fbc_init(dev_priv);
7240
7241         /* For cxsr */
7242         if (IS_PINEVIEW(dev))
7243                 i915_pineview_get_mem_freq(dev);
7244         else if (IS_GEN5(dev))
7245                 i915_ironlake_get_mem_freq(dev);
7246
7247         /* For FIFO watermark updates */
7248         if (INTEL_INFO(dev)->gen >= 9) {
7249                 skl_setup_wm_latency(dev);
7250                 dev_priv->display.update_wm = skl_update_wm;
7251         } else if (HAS_PCH_SPLIT(dev)) {
7252                 ilk_setup_wm_latency(dev);
7253
7254                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7255                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7256                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7257                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7258                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7259                         dev_priv->display.compute_intermediate_wm =
7260                                 ilk_compute_intermediate_wm;
7261                         dev_priv->display.initial_watermarks =
7262                                 ilk_initial_watermarks;
7263                         dev_priv->display.optimize_watermarks =
7264                                 ilk_optimize_watermarks;
7265                 } else {
7266                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7267                                       "Disable CxSR\n");
7268                 }
7269         } else if (IS_CHERRYVIEW(dev)) {
7270                 vlv_setup_wm_latency(dev);
7271                 dev_priv->display.update_wm = vlv_update_wm;
7272         } else if (IS_VALLEYVIEW(dev)) {
7273                 vlv_setup_wm_latency(dev);
7274                 dev_priv->display.update_wm = vlv_update_wm;
7275         } else if (IS_PINEVIEW(dev)) {
7276                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7277                                             dev_priv->is_ddr3,
7278                                             dev_priv->fsb_freq,
7279                                             dev_priv->mem_freq)) {
7280                         DRM_INFO("failed to find known CxSR latency "
7281                                  "(found ddr%s fsb freq %d, mem freq %d), "
7282                                  "disabling CxSR\n",
7283                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7284                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7285                         /* Disable CxSR and never update its watermark again */
7286                         intel_set_memory_cxsr(dev_priv, false);
7287                         dev_priv->display.update_wm = NULL;
7288                 } else
7289                         dev_priv->display.update_wm = pineview_update_wm;
7290         } else if (IS_G4X(dev)) {
7291                 dev_priv->display.update_wm = g4x_update_wm;
7292         } else if (IS_GEN4(dev)) {
7293                 dev_priv->display.update_wm = i965_update_wm;
7294         } else if (IS_GEN3(dev)) {
7295                 dev_priv->display.update_wm = i9xx_update_wm;
7296                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7297         } else if (IS_GEN2(dev)) {
7298                 if (INTEL_INFO(dev)->num_pipes == 1) {
7299                         dev_priv->display.update_wm = i845_update_wm;
7300                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7301                 } else {
7302                         dev_priv->display.update_wm = i9xx_update_wm;
7303                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7304                 }
7305         } else {
7306                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7307         }
7308 }
7309
7310 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7311 {
7312         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7313
7314         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7315                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7316                 return -EAGAIN;
7317         }
7318
7319         I915_WRITE(GEN6_PCODE_DATA, *val);
7320         I915_WRITE(GEN6_PCODE_DATA1, 0);
7321         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7322
7323         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7324                      500)) {
7325                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7326                 return -ETIMEDOUT;
7327         }
7328
7329         *val = I915_READ(GEN6_PCODE_DATA);
7330         I915_WRITE(GEN6_PCODE_DATA, 0);
7331
7332         return 0;
7333 }
7334
7335 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7336 {
7337         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7338
7339         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7340                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7341                 return -EAGAIN;
7342         }
7343
7344         I915_WRITE(GEN6_PCODE_DATA, val);
7345         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7346
7347         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7348                      500)) {
7349                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7350                 return -ETIMEDOUT;
7351         }
7352
7353         I915_WRITE(GEN6_PCODE_DATA, 0);
7354
7355         return 0;
7356 }
7357
7358 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7359 {
7360         /*
7361          * N = val - 0xb7
7362          * Slow = Fast = GPLL ref * N
7363          */
7364         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7365 }
7366
7367 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7368 {
7369         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7370 }
7371
7372 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7373 {
7374         /*
7375          * N = val / 2
7376          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7377          */
7378         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7379 }
7380
7381 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7382 {
7383         /* CHV needs even values */
7384         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7385 }
7386
7387 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7388 {
7389         if (IS_GEN9(dev_priv))
7390                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7391                                          GEN9_FREQ_SCALER);
7392         else if (IS_CHERRYVIEW(dev_priv))
7393                 return chv_gpu_freq(dev_priv, val);
7394         else if (IS_VALLEYVIEW(dev_priv))
7395                 return byt_gpu_freq(dev_priv, val);
7396         else
7397                 return val * GT_FREQUENCY_MULTIPLIER;
7398 }
7399
7400 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7401 {
7402         if (IS_GEN9(dev_priv))
7403                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7404                                          GT_FREQUENCY_MULTIPLIER);
7405         else if (IS_CHERRYVIEW(dev_priv))
7406                 return chv_freq_opcode(dev_priv, val);
7407         else if (IS_VALLEYVIEW(dev_priv))
7408                 return byt_freq_opcode(dev_priv, val);
7409         else
7410                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7411 }
7412
7413 struct request_boost {
7414         struct work_struct work;
7415         struct drm_i915_gem_request *req;
7416 };
7417
7418 static void __intel_rps_boost_work(struct work_struct *work)
7419 {
7420         struct request_boost *boost = container_of(work, struct request_boost, work);
7421         struct drm_i915_gem_request *req = boost->req;
7422
7423         if (!i915_gem_request_completed(req, true))
7424                 gen6_rps_boost(to_i915(req->engine->dev), NULL,
7425                                req->emitted_jiffies);
7426
7427         i915_gem_request_unreference__unlocked(req);
7428         kfree(boost);
7429 }
7430
7431 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7432                                        struct drm_i915_gem_request *req)
7433 {
7434         struct request_boost *boost;
7435
7436         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7437                 return;
7438
7439         if (i915_gem_request_completed(req, true))
7440                 return;
7441
7442         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7443         if (boost == NULL)
7444                 return;
7445
7446         i915_gem_request_reference(req);
7447         boost->req = req;
7448
7449         INIT_WORK(&boost->work, __intel_rps_boost_work);
7450         queue_work(to_i915(dev)->wq, &boost->work);
7451 }
7452
7453 void intel_pm_setup(struct drm_device *dev)
7454 {
7455         struct drm_i915_private *dev_priv = dev->dev_private;
7456
7457         mutex_init(&dev_priv->rps.hw_lock);
7458         spin_lock_init(&dev_priv->rps.client_lock);
7459
7460         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7461                           intel_gen6_powersave_work);
7462         INIT_LIST_HEAD(&dev_priv->rps.clients);
7463         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7464         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7465
7466         dev_priv->pm.suspended = false;
7467         atomic_set(&dev_priv->pm.wakeref_count, 0);
7468         atomic_set(&dev_priv->pm.atomic_seq, 0);
7469 }