drm/i915/gen9: Add WaFbcWakeMemOn
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         I915_WRITE(GEN8_CONFIG0,
67                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69         /* WaEnableChickenDCPR:skl,bxt,kbl */
70         I915_WRITE(GEN8_CHICKEN_DCPR_1,
71                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74         /* WaFbcWakeMemOn:skl,bxt,kbl */
75         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76                    DISP_FBC_WM_DIS |
77                    DISP_FBC_MEMORY_WAKE);
78 }
79
80 static void bxt_init_clock_gating(struct drm_device *dev)
81 {
82         struct drm_i915_private *dev_priv = dev->dev_private;
83
84         gen9_init_clock_gating(dev);
85
86         /* WaDisableSDEUnitClockGating:bxt */
87         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
88                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
89
90         /*
91          * FIXME:
92          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
93          */
94         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
95                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
96
97         /*
98          * Wa: Backlight PWM may stop in the asserted state, causing backlight
99          * to stay fully on.
100          */
101         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
102                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
103                            PWM1_GATING_DIS | PWM2_GATING_DIS);
104 }
105
106 static void i915_pineview_get_mem_freq(struct drm_device *dev)
107 {
108         struct drm_i915_private *dev_priv = dev->dev_private;
109         u32 tmp;
110
111         tmp = I915_READ(CLKCFG);
112
113         switch (tmp & CLKCFG_FSB_MASK) {
114         case CLKCFG_FSB_533:
115                 dev_priv->fsb_freq = 533; /* 133*4 */
116                 break;
117         case CLKCFG_FSB_800:
118                 dev_priv->fsb_freq = 800; /* 200*4 */
119                 break;
120         case CLKCFG_FSB_667:
121                 dev_priv->fsb_freq =  667; /* 167*4 */
122                 break;
123         case CLKCFG_FSB_400:
124                 dev_priv->fsb_freq = 400; /* 100*4 */
125                 break;
126         }
127
128         switch (tmp & CLKCFG_MEM_MASK) {
129         case CLKCFG_MEM_533:
130                 dev_priv->mem_freq = 533;
131                 break;
132         case CLKCFG_MEM_667:
133                 dev_priv->mem_freq = 667;
134                 break;
135         case CLKCFG_MEM_800:
136                 dev_priv->mem_freq = 800;
137                 break;
138         }
139
140         /* detect pineview DDR3 setting */
141         tmp = I915_READ(CSHRDDR3CTL);
142         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
143 }
144
145 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         u16 ddrpll, csipll;
149
150         ddrpll = I915_READ16(DDRMPLL1);
151         csipll = I915_READ16(CSIPLL0);
152
153         switch (ddrpll & 0xff) {
154         case 0xc:
155                 dev_priv->mem_freq = 800;
156                 break;
157         case 0x10:
158                 dev_priv->mem_freq = 1066;
159                 break;
160         case 0x14:
161                 dev_priv->mem_freq = 1333;
162                 break;
163         case 0x18:
164                 dev_priv->mem_freq = 1600;
165                 break;
166         default:
167                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
168                                  ddrpll & 0xff);
169                 dev_priv->mem_freq = 0;
170                 break;
171         }
172
173         dev_priv->ips.r_t = dev_priv->mem_freq;
174
175         switch (csipll & 0x3ff) {
176         case 0x00c:
177                 dev_priv->fsb_freq = 3200;
178                 break;
179         case 0x00e:
180                 dev_priv->fsb_freq = 3733;
181                 break;
182         case 0x010:
183                 dev_priv->fsb_freq = 4266;
184                 break;
185         case 0x012:
186                 dev_priv->fsb_freq = 4800;
187                 break;
188         case 0x014:
189                 dev_priv->fsb_freq = 5333;
190                 break;
191         case 0x016:
192                 dev_priv->fsb_freq = 5866;
193                 break;
194         case 0x018:
195                 dev_priv->fsb_freq = 6400;
196                 break;
197         default:
198                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
199                                  csipll & 0x3ff);
200                 dev_priv->fsb_freq = 0;
201                 break;
202         }
203
204         if (dev_priv->fsb_freq == 3200) {
205                 dev_priv->ips.c_m = 0;
206         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
207                 dev_priv->ips.c_m = 1;
208         } else {
209                 dev_priv->ips.c_m = 2;
210         }
211 }
212
213 static const struct cxsr_latency cxsr_latency_table[] = {
214         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
215         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
216         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
217         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
218         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
219
220         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
221         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
222         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
223         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
224         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
225
226         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
227         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
228         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
229         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
230         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
231
232         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
233         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
234         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
235         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
236         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
237
238         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
239         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
240         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
241         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
242         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
243
244         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
245         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
246         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
247         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
248         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
249 };
250
251 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
252                                                          int is_ddr3,
253                                                          int fsb,
254                                                          int mem)
255 {
256         const struct cxsr_latency *latency;
257         int i;
258
259         if (fsb == 0 || mem == 0)
260                 return NULL;
261
262         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
263                 latency = &cxsr_latency_table[i];
264                 if (is_desktop == latency->is_desktop &&
265                     is_ddr3 == latency->is_ddr3 &&
266                     fsb == latency->fsb_freq && mem == latency->mem_freq)
267                         return latency;
268         }
269
270         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
271
272         return NULL;
273 }
274
275 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
276 {
277         u32 val;
278
279         mutex_lock(&dev_priv->rps.hw_lock);
280
281         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
282         if (enable)
283                 val &= ~FORCE_DDR_HIGH_FREQ;
284         else
285                 val |= FORCE_DDR_HIGH_FREQ;
286         val &= ~FORCE_DDR_LOW_FREQ;
287         val |= FORCE_DDR_FREQ_REQ_ACK;
288         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
289
290         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
291                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
292                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
293
294         mutex_unlock(&dev_priv->rps.hw_lock);
295 }
296
297 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
298 {
299         u32 val;
300
301         mutex_lock(&dev_priv->rps.hw_lock);
302
303         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
304         if (enable)
305                 val |= DSP_MAXFIFO_PM5_ENABLE;
306         else
307                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
308         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
309
310         mutex_unlock(&dev_priv->rps.hw_lock);
311 }
312
313 #define FW_WM(value, plane) \
314         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
315
316 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
317 {
318         struct drm_device *dev = dev_priv->dev;
319         u32 val;
320
321         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
322                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323                 POSTING_READ(FW_BLC_SELF_VLV);
324                 dev_priv->wm.vlv.cxsr = enable;
325         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
326                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327                 POSTING_READ(FW_BLC_SELF);
328         } else if (IS_PINEVIEW(dev)) {
329                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
330                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
331                 I915_WRITE(DSPFW3, val);
332                 POSTING_READ(DSPFW3);
333         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
334                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
335                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
336                 I915_WRITE(FW_BLC_SELF, val);
337                 POSTING_READ(FW_BLC_SELF);
338         } else if (IS_I915GM(dev)) {
339                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
340                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
341                 I915_WRITE(INSTPM, val);
342                 POSTING_READ(INSTPM);
343         } else {
344                 return;
345         }
346
347         DRM_DEBUG_KMS("memory self-refresh is %s\n",
348                       enable ? "enabled" : "disabled");
349 }
350
351
352 /*
353  * Latency for FIFO fetches is dependent on several factors:
354  *   - memory configuration (speed, channels)
355  *   - chipset
356  *   - current MCH state
357  * It can be fairly high in some situations, so here we assume a fairly
358  * pessimal value.  It's a tradeoff between extra memory fetches (if we
359  * set this value too high, the FIFO will fetch frequently to stay full)
360  * and power consumption (set it too low to save power and we might see
361  * FIFO underruns and display "flicker").
362  *
363  * A value of 5us seems to be a good balance; safe for very low end
364  * platforms but not overly aggressive on lower latency configs.
365  */
366 static const int pessimal_latency_ns = 5000;
367
368 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
369         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
370
371 static int vlv_get_fifo_size(struct drm_device *dev,
372                               enum pipe pipe, int plane)
373 {
374         struct drm_i915_private *dev_priv = dev->dev_private;
375         int sprite0_start, sprite1_start, size;
376
377         switch (pipe) {
378                 uint32_t dsparb, dsparb2, dsparb3;
379         case PIPE_A:
380                 dsparb = I915_READ(DSPARB);
381                 dsparb2 = I915_READ(DSPARB2);
382                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
383                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
384                 break;
385         case PIPE_B:
386                 dsparb = I915_READ(DSPARB);
387                 dsparb2 = I915_READ(DSPARB2);
388                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
389                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
390                 break;
391         case PIPE_C:
392                 dsparb2 = I915_READ(DSPARB2);
393                 dsparb3 = I915_READ(DSPARB3);
394                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
395                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
396                 break;
397         default:
398                 return 0;
399         }
400
401         switch (plane) {
402         case 0:
403                 size = sprite0_start;
404                 break;
405         case 1:
406                 size = sprite1_start - sprite0_start;
407                 break;
408         case 2:
409                 size = 512 - 1 - sprite1_start;
410                 break;
411         default:
412                 return 0;
413         }
414
415         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
416                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
417                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
418                       size);
419
420         return size;
421 }
422
423 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
424 {
425         struct drm_i915_private *dev_priv = dev->dev_private;
426         uint32_t dsparb = I915_READ(DSPARB);
427         int size;
428
429         size = dsparb & 0x7f;
430         if (plane)
431                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
432
433         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
434                       plane ? "B" : "A", size);
435
436         return size;
437 }
438
439 static int i830_get_fifo_size(struct drm_device *dev, int plane)
440 {
441         struct drm_i915_private *dev_priv = dev->dev_private;
442         uint32_t dsparb = I915_READ(DSPARB);
443         int size;
444
445         size = dsparb & 0x1ff;
446         if (plane)
447                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
448         size >>= 1; /* Convert to cachelines */
449
450         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
451                       plane ? "B" : "A", size);
452
453         return size;
454 }
455
456 static int i845_get_fifo_size(struct drm_device *dev, int plane)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459         uint32_t dsparb = I915_READ(DSPARB);
460         int size;
461
462         size = dsparb & 0x7f;
463         size >>= 2; /* Convert to cachelines */
464
465         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
466                       plane ? "B" : "A",
467                       size);
468
469         return size;
470 }
471
472 /* Pineview has different values for various configs */
473 static const struct intel_watermark_params pineview_display_wm = {
474         .fifo_size = PINEVIEW_DISPLAY_FIFO,
475         .max_wm = PINEVIEW_MAX_WM,
476         .default_wm = PINEVIEW_DFT_WM,
477         .guard_size = PINEVIEW_GUARD_WM,
478         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
479 };
480 static const struct intel_watermark_params pineview_display_hplloff_wm = {
481         .fifo_size = PINEVIEW_DISPLAY_FIFO,
482         .max_wm = PINEVIEW_MAX_WM,
483         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
484         .guard_size = PINEVIEW_GUARD_WM,
485         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
486 };
487 static const struct intel_watermark_params pineview_cursor_wm = {
488         .fifo_size = PINEVIEW_CURSOR_FIFO,
489         .max_wm = PINEVIEW_CURSOR_MAX_WM,
490         .default_wm = PINEVIEW_CURSOR_DFT_WM,
491         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
492         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
493 };
494 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
495         .fifo_size = PINEVIEW_CURSOR_FIFO,
496         .max_wm = PINEVIEW_CURSOR_MAX_WM,
497         .default_wm = PINEVIEW_CURSOR_DFT_WM,
498         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
499         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params g4x_wm_info = {
502         .fifo_size = G4X_FIFO_SIZE,
503         .max_wm = G4X_MAX_WM,
504         .default_wm = G4X_MAX_WM,
505         .guard_size = 2,
506         .cacheline_size = G4X_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params g4x_cursor_wm_info = {
509         .fifo_size = I965_CURSOR_FIFO,
510         .max_wm = I965_CURSOR_MAX_WM,
511         .default_wm = I965_CURSOR_DFT_WM,
512         .guard_size = 2,
513         .cacheline_size = G4X_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params i965_cursor_wm_info = {
516         .fifo_size = I965_CURSOR_FIFO,
517         .max_wm = I965_CURSOR_MAX_WM,
518         .default_wm = I965_CURSOR_DFT_WM,
519         .guard_size = 2,
520         .cacheline_size = I915_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params i945_wm_info = {
523         .fifo_size = I945_FIFO_SIZE,
524         .max_wm = I915_MAX_WM,
525         .default_wm = 1,
526         .guard_size = 2,
527         .cacheline_size = I915_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params i915_wm_info = {
530         .fifo_size = I915_FIFO_SIZE,
531         .max_wm = I915_MAX_WM,
532         .default_wm = 1,
533         .guard_size = 2,
534         .cacheline_size = I915_FIFO_LINE_SIZE,
535 };
536 static const struct intel_watermark_params i830_a_wm_info = {
537         .fifo_size = I855GM_FIFO_SIZE,
538         .max_wm = I915_MAX_WM,
539         .default_wm = 1,
540         .guard_size = 2,
541         .cacheline_size = I830_FIFO_LINE_SIZE,
542 };
543 static const struct intel_watermark_params i830_bc_wm_info = {
544         .fifo_size = I855GM_FIFO_SIZE,
545         .max_wm = I915_MAX_WM/2,
546         .default_wm = 1,
547         .guard_size = 2,
548         .cacheline_size = I830_FIFO_LINE_SIZE,
549 };
550 static const struct intel_watermark_params i845_wm_info = {
551         .fifo_size = I830_FIFO_SIZE,
552         .max_wm = I915_MAX_WM,
553         .default_wm = 1,
554         .guard_size = 2,
555         .cacheline_size = I830_FIFO_LINE_SIZE,
556 };
557
558 /**
559  * intel_calculate_wm - calculate watermark level
560  * @clock_in_khz: pixel clock
561  * @wm: chip FIFO params
562  * @cpp: bytes per pixel
563  * @latency_ns: memory latency for the platform
564  *
565  * Calculate the watermark level (the level at which the display plane will
566  * start fetching from memory again).  Each chip has a different display
567  * FIFO size and allocation, so the caller needs to figure that out and pass
568  * in the correct intel_watermark_params structure.
569  *
570  * As the pixel clock runs, the FIFO will be drained at a rate that depends
571  * on the pixel size.  When it reaches the watermark level, it'll start
572  * fetching FIFO line sized based chunks from memory until the FIFO fills
573  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
574  * will occur, and a display engine hang could result.
575  */
576 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
577                                         const struct intel_watermark_params *wm,
578                                         int fifo_size, int cpp,
579                                         unsigned long latency_ns)
580 {
581         long entries_required, wm_size;
582
583         /*
584          * Note: we need to make sure we don't overflow for various clock &
585          * latency values.
586          * clocks go from a few thousand to several hundred thousand.
587          * latency is usually a few thousand
588          */
589         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
590                 1000;
591         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
592
593         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
594
595         wm_size = fifo_size - (entries_required + wm->guard_size);
596
597         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
598
599         /* Don't promote wm_size to unsigned... */
600         if (wm_size > (long)wm->max_wm)
601                 wm_size = wm->max_wm;
602         if (wm_size <= 0)
603                 wm_size = wm->default_wm;
604
605         /*
606          * Bspec seems to indicate that the value shouldn't be lower than
607          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
608          * Lets go for 8 which is the burst size since certain platforms
609          * already use a hardcoded 8 (which is what the spec says should be
610          * done).
611          */
612         if (wm_size <= 8)
613                 wm_size = 8;
614
615         return wm_size;
616 }
617
618 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
619 {
620         struct drm_crtc *crtc, *enabled = NULL;
621
622         for_each_crtc(dev, crtc) {
623                 if (intel_crtc_active(crtc)) {
624                         if (enabled)
625                                 return NULL;
626                         enabled = crtc;
627                 }
628         }
629
630         return enabled;
631 }
632
633 static void pineview_update_wm(struct drm_crtc *unused_crtc)
634 {
635         struct drm_device *dev = unused_crtc->dev;
636         struct drm_i915_private *dev_priv = dev->dev_private;
637         struct drm_crtc *crtc;
638         const struct cxsr_latency *latency;
639         u32 reg;
640         unsigned long wm;
641
642         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
643                                          dev_priv->fsb_freq, dev_priv->mem_freq);
644         if (!latency) {
645                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
646                 intel_set_memory_cxsr(dev_priv, false);
647                 return;
648         }
649
650         crtc = single_enabled_crtc(dev);
651         if (crtc) {
652                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
653                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
654                 int clock = adjusted_mode->crtc_clock;
655
656                 /* Display SR */
657                 wm = intel_calculate_wm(clock, &pineview_display_wm,
658                                         pineview_display_wm.fifo_size,
659                                         cpp, latency->display_sr);
660                 reg = I915_READ(DSPFW1);
661                 reg &= ~DSPFW_SR_MASK;
662                 reg |= FW_WM(wm, SR);
663                 I915_WRITE(DSPFW1, reg);
664                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
665
666                 /* cursor SR */
667                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
668                                         pineview_display_wm.fifo_size,
669                                         cpp, latency->cursor_sr);
670                 reg = I915_READ(DSPFW3);
671                 reg &= ~DSPFW_CURSOR_SR_MASK;
672                 reg |= FW_WM(wm, CURSOR_SR);
673                 I915_WRITE(DSPFW3, reg);
674
675                 /* Display HPLL off SR */
676                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
677                                         pineview_display_hplloff_wm.fifo_size,
678                                         cpp, latency->display_hpll_disable);
679                 reg = I915_READ(DSPFW3);
680                 reg &= ~DSPFW_HPLL_SR_MASK;
681                 reg |= FW_WM(wm, HPLL_SR);
682                 I915_WRITE(DSPFW3, reg);
683
684                 /* cursor HPLL off SR */
685                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
686                                         pineview_display_hplloff_wm.fifo_size,
687                                         cpp, latency->cursor_hpll_disable);
688                 reg = I915_READ(DSPFW3);
689                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
690                 reg |= FW_WM(wm, HPLL_CURSOR);
691                 I915_WRITE(DSPFW3, reg);
692                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
693
694                 intel_set_memory_cxsr(dev_priv, true);
695         } else {
696                 intel_set_memory_cxsr(dev_priv, false);
697         }
698 }
699
700 static bool g4x_compute_wm0(struct drm_device *dev,
701                             int plane,
702                             const struct intel_watermark_params *display,
703                             int display_latency_ns,
704                             const struct intel_watermark_params *cursor,
705                             int cursor_latency_ns,
706                             int *plane_wm,
707                             int *cursor_wm)
708 {
709         struct drm_crtc *crtc;
710         const struct drm_display_mode *adjusted_mode;
711         int htotal, hdisplay, clock, cpp;
712         int line_time_us, line_count;
713         int entries, tlb_miss;
714
715         crtc = intel_get_crtc_for_plane(dev, plane);
716         if (!intel_crtc_active(crtc)) {
717                 *cursor_wm = cursor->guard_size;
718                 *plane_wm = display->guard_size;
719                 return false;
720         }
721
722         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
723         clock = adjusted_mode->crtc_clock;
724         htotal = adjusted_mode->crtc_htotal;
725         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
726         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
727
728         /* Use the small buffer method to calculate plane watermark */
729         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
730         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
731         if (tlb_miss > 0)
732                 entries += tlb_miss;
733         entries = DIV_ROUND_UP(entries, display->cacheline_size);
734         *plane_wm = entries + display->guard_size;
735         if (*plane_wm > (int)display->max_wm)
736                 *plane_wm = display->max_wm;
737
738         /* Use the large buffer method to calculate cursor watermark */
739         line_time_us = max(htotal * 1000 / clock, 1);
740         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
741         entries = line_count * crtc->cursor->state->crtc_w * cpp;
742         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
743         if (tlb_miss > 0)
744                 entries += tlb_miss;
745         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
746         *cursor_wm = entries + cursor->guard_size;
747         if (*cursor_wm > (int)cursor->max_wm)
748                 *cursor_wm = (int)cursor->max_wm;
749
750         return true;
751 }
752
753 /*
754  * Check the wm result.
755  *
756  * If any calculated watermark values is larger than the maximum value that
757  * can be programmed into the associated watermark register, that watermark
758  * must be disabled.
759  */
760 static bool g4x_check_srwm(struct drm_device *dev,
761                            int display_wm, int cursor_wm,
762                            const struct intel_watermark_params *display,
763                            const struct intel_watermark_params *cursor)
764 {
765         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
766                       display_wm, cursor_wm);
767
768         if (display_wm > display->max_wm) {
769                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
770                               display_wm, display->max_wm);
771                 return false;
772         }
773
774         if (cursor_wm > cursor->max_wm) {
775                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
776                               cursor_wm, cursor->max_wm);
777                 return false;
778         }
779
780         if (!(display_wm || cursor_wm)) {
781                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
782                 return false;
783         }
784
785         return true;
786 }
787
788 static bool g4x_compute_srwm(struct drm_device *dev,
789                              int plane,
790                              int latency_ns,
791                              const struct intel_watermark_params *display,
792                              const struct intel_watermark_params *cursor,
793                              int *display_wm, int *cursor_wm)
794 {
795         struct drm_crtc *crtc;
796         const struct drm_display_mode *adjusted_mode;
797         int hdisplay, htotal, cpp, clock;
798         unsigned long line_time_us;
799         int line_count, line_size;
800         int small, large;
801         int entries;
802
803         if (!latency_ns) {
804                 *display_wm = *cursor_wm = 0;
805                 return false;
806         }
807
808         crtc = intel_get_crtc_for_plane(dev, plane);
809         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
810         clock = adjusted_mode->crtc_clock;
811         htotal = adjusted_mode->crtc_htotal;
812         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
813         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
814
815         line_time_us = max(htotal * 1000 / clock, 1);
816         line_count = (latency_ns / line_time_us + 1000) / 1000;
817         line_size = hdisplay * cpp;
818
819         /* Use the minimum of the small and large buffer method for primary */
820         small = ((clock * cpp / 1000) * latency_ns) / 1000;
821         large = line_count * line_size;
822
823         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
824         *display_wm = entries + display->guard_size;
825
826         /* calculate the self-refresh watermark for display cursor */
827         entries = line_count * cpp * crtc->cursor->state->crtc_w;
828         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
829         *cursor_wm = entries + cursor->guard_size;
830
831         return g4x_check_srwm(dev,
832                               *display_wm, *cursor_wm,
833                               display, cursor);
834 }
835
836 #define FW_WM_VLV(value, plane) \
837         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
838
839 static void vlv_write_wm_values(struct intel_crtc *crtc,
840                                 const struct vlv_wm_values *wm)
841 {
842         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
843         enum pipe pipe = crtc->pipe;
844
845         I915_WRITE(VLV_DDL(pipe),
846                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
847                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
848                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
849                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
850
851         I915_WRITE(DSPFW1,
852                    FW_WM(wm->sr.plane, SR) |
853                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
854                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
855                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
856         I915_WRITE(DSPFW2,
857                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
858                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
859                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
860         I915_WRITE(DSPFW3,
861                    FW_WM(wm->sr.cursor, CURSOR_SR));
862
863         if (IS_CHERRYVIEW(dev_priv)) {
864                 I915_WRITE(DSPFW7_CHV,
865                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
866                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
867                 I915_WRITE(DSPFW8_CHV,
868                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
869                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
870                 I915_WRITE(DSPFW9_CHV,
871                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
872                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
873                 I915_WRITE(DSPHOWM,
874                            FW_WM(wm->sr.plane >> 9, SR_HI) |
875                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
876                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
877                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
878                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884         } else {
885                 I915_WRITE(DSPFW7,
886                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
887                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
888                 I915_WRITE(DSPHOWM,
889                            FW_WM(wm->sr.plane >> 9, SR_HI) |
890                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
891                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
892                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
893                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
894                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
895                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
896         }
897
898         /* zero (unused) WM1 watermarks */
899         I915_WRITE(DSPFW4, 0);
900         I915_WRITE(DSPFW5, 0);
901         I915_WRITE(DSPFW6, 0);
902         I915_WRITE(DSPHOWM1, 0);
903
904         POSTING_READ(DSPFW1);
905 }
906
907 #undef FW_WM_VLV
908
909 enum vlv_wm_level {
910         VLV_WM_LEVEL_PM2,
911         VLV_WM_LEVEL_PM5,
912         VLV_WM_LEVEL_DDR_DVFS,
913 };
914
915 /* latency must be in 0.1us units. */
916 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
917                                    unsigned int pipe_htotal,
918                                    unsigned int horiz_pixels,
919                                    unsigned int cpp,
920                                    unsigned int latency)
921 {
922         unsigned int ret;
923
924         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
925         ret = (ret + 1) * horiz_pixels * cpp;
926         ret = DIV_ROUND_UP(ret, 64);
927
928         return ret;
929 }
930
931 static void vlv_setup_wm_latency(struct drm_device *dev)
932 {
933         struct drm_i915_private *dev_priv = dev->dev_private;
934
935         /* all latencies in usec */
936         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
937
938         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
939
940         if (IS_CHERRYVIEW(dev_priv)) {
941                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
942                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
943
944                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
945         }
946 }
947
948 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
949                                      struct intel_crtc *crtc,
950                                      const struct intel_plane_state *state,
951                                      int level)
952 {
953         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
954         int clock, htotal, cpp, width, wm;
955
956         if (dev_priv->wm.pri_latency[level] == 0)
957                 return USHRT_MAX;
958
959         if (!state->visible)
960                 return 0;
961
962         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
963         clock = crtc->config->base.adjusted_mode.crtc_clock;
964         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
965         width = crtc->config->pipe_src_w;
966         if (WARN_ON(htotal == 0))
967                 htotal = 1;
968
969         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
970                 /*
971                  * FIXME the formula gives values that are
972                  * too big for the cursor FIFO, and hence we
973                  * would never be able to use cursors. For
974                  * now just hardcode the watermark.
975                  */
976                 wm = 63;
977         } else {
978                 wm = vlv_wm_method2(clock, htotal, width, cpp,
979                                     dev_priv->wm.pri_latency[level] * 10);
980         }
981
982         return min_t(int, wm, USHRT_MAX);
983 }
984
985 static void vlv_compute_fifo(struct intel_crtc *crtc)
986 {
987         struct drm_device *dev = crtc->base.dev;
988         struct vlv_wm_state *wm_state = &crtc->wm_state;
989         struct intel_plane *plane;
990         unsigned int total_rate = 0;
991         const int fifo_size = 512 - 1;
992         int fifo_extra, fifo_left = fifo_size;
993
994         for_each_intel_plane_on_crtc(dev, crtc, plane) {
995                 struct intel_plane_state *state =
996                         to_intel_plane_state(plane->base.state);
997
998                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
999                         continue;
1000
1001                 if (state->visible) {
1002                         wm_state->num_active_planes++;
1003                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1004                 }
1005         }
1006
1007         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1008                 struct intel_plane_state *state =
1009                         to_intel_plane_state(plane->base.state);
1010                 unsigned int rate;
1011
1012                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1013                         plane->wm.fifo_size = 63;
1014                         continue;
1015                 }
1016
1017                 if (!state->visible) {
1018                         plane->wm.fifo_size = 0;
1019                         continue;
1020                 }
1021
1022                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1023                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1024                 fifo_left -= plane->wm.fifo_size;
1025         }
1026
1027         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1028
1029         /* spread the remainder evenly */
1030         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1031                 int plane_extra;
1032
1033                 if (fifo_left == 0)
1034                         break;
1035
1036                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1037                         continue;
1038
1039                 /* give it all to the first plane if none are active */
1040                 if (plane->wm.fifo_size == 0 &&
1041                     wm_state->num_active_planes)
1042                         continue;
1043
1044                 plane_extra = min(fifo_extra, fifo_left);
1045                 plane->wm.fifo_size += plane_extra;
1046                 fifo_left -= plane_extra;
1047         }
1048
1049         WARN_ON(fifo_left != 0);
1050 }
1051
1052 static void vlv_invert_wms(struct intel_crtc *crtc)
1053 {
1054         struct vlv_wm_state *wm_state = &crtc->wm_state;
1055         int level;
1056
1057         for (level = 0; level < wm_state->num_levels; level++) {
1058                 struct drm_device *dev = crtc->base.dev;
1059                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1060                 struct intel_plane *plane;
1061
1062                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1063                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1064
1065                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1066                         switch (plane->base.type) {
1067                                 int sprite;
1068                         case DRM_PLANE_TYPE_CURSOR:
1069                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1070                                         wm_state->wm[level].cursor;
1071                                 break;
1072                         case DRM_PLANE_TYPE_PRIMARY:
1073                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1074                                         wm_state->wm[level].primary;
1075                                 break;
1076                         case DRM_PLANE_TYPE_OVERLAY:
1077                                 sprite = plane->plane;
1078                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1079                                         wm_state->wm[level].sprite[sprite];
1080                                 break;
1081                         }
1082                 }
1083         }
1084 }
1085
1086 static void vlv_compute_wm(struct intel_crtc *crtc)
1087 {
1088         struct drm_device *dev = crtc->base.dev;
1089         struct vlv_wm_state *wm_state = &crtc->wm_state;
1090         struct intel_plane *plane;
1091         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1092         int level;
1093
1094         memset(wm_state, 0, sizeof(*wm_state));
1095
1096         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1097         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1098
1099         wm_state->num_active_planes = 0;
1100
1101         vlv_compute_fifo(crtc);
1102
1103         if (wm_state->num_active_planes != 1)
1104                 wm_state->cxsr = false;
1105
1106         if (wm_state->cxsr) {
1107                 for (level = 0; level < wm_state->num_levels; level++) {
1108                         wm_state->sr[level].plane = sr_fifo_size;
1109                         wm_state->sr[level].cursor = 63;
1110                 }
1111         }
1112
1113         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1114                 struct intel_plane_state *state =
1115                         to_intel_plane_state(plane->base.state);
1116
1117                 if (!state->visible)
1118                         continue;
1119
1120                 /* normal watermarks */
1121                 for (level = 0; level < wm_state->num_levels; level++) {
1122                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1123                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1124
1125                         /* hack */
1126                         if (WARN_ON(level == 0 && wm > max_wm))
1127                                 wm = max_wm;
1128
1129                         if (wm > plane->wm.fifo_size)
1130                                 break;
1131
1132                         switch (plane->base.type) {
1133                                 int sprite;
1134                         case DRM_PLANE_TYPE_CURSOR:
1135                                 wm_state->wm[level].cursor = wm;
1136                                 break;
1137                         case DRM_PLANE_TYPE_PRIMARY:
1138                                 wm_state->wm[level].primary = wm;
1139                                 break;
1140                         case DRM_PLANE_TYPE_OVERLAY:
1141                                 sprite = plane->plane;
1142                                 wm_state->wm[level].sprite[sprite] = wm;
1143                                 break;
1144                         }
1145                 }
1146
1147                 wm_state->num_levels = level;
1148
1149                 if (!wm_state->cxsr)
1150                         continue;
1151
1152                 /* maxfifo watermarks */
1153                 switch (plane->base.type) {
1154                         int sprite, level;
1155                 case DRM_PLANE_TYPE_CURSOR:
1156                         for (level = 0; level < wm_state->num_levels; level++)
1157                                 wm_state->sr[level].cursor =
1158                                         wm_state->wm[level].cursor;
1159                         break;
1160                 case DRM_PLANE_TYPE_PRIMARY:
1161                         for (level = 0; level < wm_state->num_levels; level++)
1162                                 wm_state->sr[level].plane =
1163                                         min(wm_state->sr[level].plane,
1164                                             wm_state->wm[level].primary);
1165                         break;
1166                 case DRM_PLANE_TYPE_OVERLAY:
1167                         sprite = plane->plane;
1168                         for (level = 0; level < wm_state->num_levels; level++)
1169                                 wm_state->sr[level].plane =
1170                                         min(wm_state->sr[level].plane,
1171                                             wm_state->wm[level].sprite[sprite]);
1172                         break;
1173                 }
1174         }
1175
1176         /* clear any (partially) filled invalid levels */
1177         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1178                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1179                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1180         }
1181
1182         vlv_invert_wms(crtc);
1183 }
1184
1185 #define VLV_FIFO(plane, value) \
1186         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1187
1188 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1189 {
1190         struct drm_device *dev = crtc->base.dev;
1191         struct drm_i915_private *dev_priv = to_i915(dev);
1192         struct intel_plane *plane;
1193         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1194
1195         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1196                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1197                         WARN_ON(plane->wm.fifo_size != 63);
1198                         continue;
1199                 }
1200
1201                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1202                         sprite0_start = plane->wm.fifo_size;
1203                 else if (plane->plane == 0)
1204                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1205                 else
1206                         fifo_size = sprite1_start + plane->wm.fifo_size;
1207         }
1208
1209         WARN_ON(fifo_size != 512 - 1);
1210
1211         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1212                       pipe_name(crtc->pipe), sprite0_start,
1213                       sprite1_start, fifo_size);
1214
1215         switch (crtc->pipe) {
1216                 uint32_t dsparb, dsparb2, dsparb3;
1217         case PIPE_A:
1218                 dsparb = I915_READ(DSPARB);
1219                 dsparb2 = I915_READ(DSPARB2);
1220
1221                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1222                             VLV_FIFO(SPRITEB, 0xff));
1223                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1224                            VLV_FIFO(SPRITEB, sprite1_start));
1225
1226                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1227                              VLV_FIFO(SPRITEB_HI, 0x1));
1228                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1229                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1230
1231                 I915_WRITE(DSPARB, dsparb);
1232                 I915_WRITE(DSPARB2, dsparb2);
1233                 break;
1234         case PIPE_B:
1235                 dsparb = I915_READ(DSPARB);
1236                 dsparb2 = I915_READ(DSPARB2);
1237
1238                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1239                             VLV_FIFO(SPRITED, 0xff));
1240                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1241                            VLV_FIFO(SPRITED, sprite1_start));
1242
1243                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1244                              VLV_FIFO(SPRITED_HI, 0xff));
1245                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1246                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1247
1248                 I915_WRITE(DSPARB, dsparb);
1249                 I915_WRITE(DSPARB2, dsparb2);
1250                 break;
1251         case PIPE_C:
1252                 dsparb3 = I915_READ(DSPARB3);
1253                 dsparb2 = I915_READ(DSPARB2);
1254
1255                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1256                              VLV_FIFO(SPRITEF, 0xff));
1257                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1258                             VLV_FIFO(SPRITEF, sprite1_start));
1259
1260                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1261                              VLV_FIFO(SPRITEF_HI, 0xff));
1262                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1263                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1264
1265                 I915_WRITE(DSPARB3, dsparb3);
1266                 I915_WRITE(DSPARB2, dsparb2);
1267                 break;
1268         default:
1269                 break;
1270         }
1271 }
1272
1273 #undef VLV_FIFO
1274
1275 static void vlv_merge_wm(struct drm_device *dev,
1276                          struct vlv_wm_values *wm)
1277 {
1278         struct intel_crtc *crtc;
1279         int num_active_crtcs = 0;
1280
1281         wm->level = to_i915(dev)->wm.max_level;
1282         wm->cxsr = true;
1283
1284         for_each_intel_crtc(dev, crtc) {
1285                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1286
1287                 if (!crtc->active)
1288                         continue;
1289
1290                 if (!wm_state->cxsr)
1291                         wm->cxsr = false;
1292
1293                 num_active_crtcs++;
1294                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1295         }
1296
1297         if (num_active_crtcs != 1)
1298                 wm->cxsr = false;
1299
1300         if (num_active_crtcs > 1)
1301                 wm->level = VLV_WM_LEVEL_PM2;
1302
1303         for_each_intel_crtc(dev, crtc) {
1304                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1305                 enum pipe pipe = crtc->pipe;
1306
1307                 if (!crtc->active)
1308                         continue;
1309
1310                 wm->pipe[pipe] = wm_state->wm[wm->level];
1311                 if (wm->cxsr)
1312                         wm->sr = wm_state->sr[wm->level];
1313
1314                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1315                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1316                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1317                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1318         }
1319 }
1320
1321 static void vlv_update_wm(struct drm_crtc *crtc)
1322 {
1323         struct drm_device *dev = crtc->dev;
1324         struct drm_i915_private *dev_priv = dev->dev_private;
1325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1326         enum pipe pipe = intel_crtc->pipe;
1327         struct vlv_wm_values wm = {};
1328
1329         vlv_compute_wm(intel_crtc);
1330         vlv_merge_wm(dev, &wm);
1331
1332         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1333                 /* FIXME should be part of crtc atomic commit */
1334                 vlv_pipe_set_fifo_size(intel_crtc);
1335                 return;
1336         }
1337
1338         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1339             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1340                 chv_set_memory_dvfs(dev_priv, false);
1341
1342         if (wm.level < VLV_WM_LEVEL_PM5 &&
1343             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1344                 chv_set_memory_pm5(dev_priv, false);
1345
1346         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1347                 intel_set_memory_cxsr(dev_priv, false);
1348
1349         /* FIXME should be part of crtc atomic commit */
1350         vlv_pipe_set_fifo_size(intel_crtc);
1351
1352         vlv_write_wm_values(intel_crtc, &wm);
1353
1354         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1355                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1356                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1357                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1358                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1359
1360         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1361                 intel_set_memory_cxsr(dev_priv, true);
1362
1363         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1364             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1365                 chv_set_memory_pm5(dev_priv, true);
1366
1367         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1368             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1369                 chv_set_memory_dvfs(dev_priv, true);
1370
1371         dev_priv->wm.vlv = wm;
1372 }
1373
1374 #define single_plane_enabled(mask) is_power_of_2(mask)
1375
1376 static void g4x_update_wm(struct drm_crtc *crtc)
1377 {
1378         struct drm_device *dev = crtc->dev;
1379         static const int sr_latency_ns = 12000;
1380         struct drm_i915_private *dev_priv = dev->dev_private;
1381         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1382         int plane_sr, cursor_sr;
1383         unsigned int enabled = 0;
1384         bool cxsr_enabled;
1385
1386         if (g4x_compute_wm0(dev, PIPE_A,
1387                             &g4x_wm_info, pessimal_latency_ns,
1388                             &g4x_cursor_wm_info, pessimal_latency_ns,
1389                             &planea_wm, &cursora_wm))
1390                 enabled |= 1 << PIPE_A;
1391
1392         if (g4x_compute_wm0(dev, PIPE_B,
1393                             &g4x_wm_info, pessimal_latency_ns,
1394                             &g4x_cursor_wm_info, pessimal_latency_ns,
1395                             &planeb_wm, &cursorb_wm))
1396                 enabled |= 1 << PIPE_B;
1397
1398         if (single_plane_enabled(enabled) &&
1399             g4x_compute_srwm(dev, ffs(enabled) - 1,
1400                              sr_latency_ns,
1401                              &g4x_wm_info,
1402                              &g4x_cursor_wm_info,
1403                              &plane_sr, &cursor_sr)) {
1404                 cxsr_enabled = true;
1405         } else {
1406                 cxsr_enabled = false;
1407                 intel_set_memory_cxsr(dev_priv, false);
1408                 plane_sr = cursor_sr = 0;
1409         }
1410
1411         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1412                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1413                       planea_wm, cursora_wm,
1414                       planeb_wm, cursorb_wm,
1415                       plane_sr, cursor_sr);
1416
1417         I915_WRITE(DSPFW1,
1418                    FW_WM(plane_sr, SR) |
1419                    FW_WM(cursorb_wm, CURSORB) |
1420                    FW_WM(planeb_wm, PLANEB) |
1421                    FW_WM(planea_wm, PLANEA));
1422         I915_WRITE(DSPFW2,
1423                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1424                    FW_WM(cursora_wm, CURSORA));
1425         /* HPLL off in SR has some issues on G4x... disable it */
1426         I915_WRITE(DSPFW3,
1427                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1428                    FW_WM(cursor_sr, CURSOR_SR));
1429
1430         if (cxsr_enabled)
1431                 intel_set_memory_cxsr(dev_priv, true);
1432 }
1433
1434 static void i965_update_wm(struct drm_crtc *unused_crtc)
1435 {
1436         struct drm_device *dev = unused_crtc->dev;
1437         struct drm_i915_private *dev_priv = dev->dev_private;
1438         struct drm_crtc *crtc;
1439         int srwm = 1;
1440         int cursor_sr = 16;
1441         bool cxsr_enabled;
1442
1443         /* Calc sr entries for one plane configs */
1444         crtc = single_enabled_crtc(dev);
1445         if (crtc) {
1446                 /* self-refresh has much higher latency */
1447                 static const int sr_latency_ns = 12000;
1448                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1449                 int clock = adjusted_mode->crtc_clock;
1450                 int htotal = adjusted_mode->crtc_htotal;
1451                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1452                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1453                 unsigned long line_time_us;
1454                 int entries;
1455
1456                 line_time_us = max(htotal * 1000 / clock, 1);
1457
1458                 /* Use ns/us then divide to preserve precision */
1459                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460                         cpp * hdisplay;
1461                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1462                 srwm = I965_FIFO_SIZE - entries;
1463                 if (srwm < 0)
1464                         srwm = 1;
1465                 srwm &= 0x1ff;
1466                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1467                               entries, srwm);
1468
1469                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1470                         cpp * crtc->cursor->state->crtc_w;
1471                 entries = DIV_ROUND_UP(entries,
1472                                           i965_cursor_wm_info.cacheline_size);
1473                 cursor_sr = i965_cursor_wm_info.fifo_size -
1474                         (entries + i965_cursor_wm_info.guard_size);
1475
1476                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1477                         cursor_sr = i965_cursor_wm_info.max_wm;
1478
1479                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1480                               "cursor %d\n", srwm, cursor_sr);
1481
1482                 cxsr_enabled = true;
1483         } else {
1484                 cxsr_enabled = false;
1485                 /* Turn off self refresh if both pipes are enabled */
1486                 intel_set_memory_cxsr(dev_priv, false);
1487         }
1488
1489         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1490                       srwm);
1491
1492         /* 965 has limitations... */
1493         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1494                    FW_WM(8, CURSORB) |
1495                    FW_WM(8, PLANEB) |
1496                    FW_WM(8, PLANEA));
1497         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1498                    FW_WM(8, PLANEC_OLD));
1499         /* update cursor SR watermark */
1500         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1501
1502         if (cxsr_enabled)
1503                 intel_set_memory_cxsr(dev_priv, true);
1504 }
1505
1506 #undef FW_WM
1507
1508 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1509 {
1510         struct drm_device *dev = unused_crtc->dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         const struct intel_watermark_params *wm_info;
1513         uint32_t fwater_lo;
1514         uint32_t fwater_hi;
1515         int cwm, srwm = 1;
1516         int fifo_size;
1517         int planea_wm, planeb_wm;
1518         struct drm_crtc *crtc, *enabled = NULL;
1519
1520         if (IS_I945GM(dev))
1521                 wm_info = &i945_wm_info;
1522         else if (!IS_GEN2(dev))
1523                 wm_info = &i915_wm_info;
1524         else
1525                 wm_info = &i830_a_wm_info;
1526
1527         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1528         crtc = intel_get_crtc_for_plane(dev, 0);
1529         if (intel_crtc_active(crtc)) {
1530                 const struct drm_display_mode *adjusted_mode;
1531                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1532                 if (IS_GEN2(dev))
1533                         cpp = 4;
1534
1535                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1536                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537                                                wm_info, fifo_size, cpp,
1538                                                pessimal_latency_ns);
1539                 enabled = crtc;
1540         } else {
1541                 planea_wm = fifo_size - wm_info->guard_size;
1542                 if (planea_wm > (long)wm_info->max_wm)
1543                         planea_wm = wm_info->max_wm;
1544         }
1545
1546         if (IS_GEN2(dev))
1547                 wm_info = &i830_bc_wm_info;
1548
1549         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1550         crtc = intel_get_crtc_for_plane(dev, 1);
1551         if (intel_crtc_active(crtc)) {
1552                 const struct drm_display_mode *adjusted_mode;
1553                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1554                 if (IS_GEN2(dev))
1555                         cpp = 4;
1556
1557                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1558                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1559                                                wm_info, fifo_size, cpp,
1560                                                pessimal_latency_ns);
1561                 if (enabled == NULL)
1562                         enabled = crtc;
1563                 else
1564                         enabled = NULL;
1565         } else {
1566                 planeb_wm = fifo_size - wm_info->guard_size;
1567                 if (planeb_wm > (long)wm_info->max_wm)
1568                         planeb_wm = wm_info->max_wm;
1569         }
1570
1571         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1572
1573         if (IS_I915GM(dev) && enabled) {
1574                 struct drm_i915_gem_object *obj;
1575
1576                 obj = intel_fb_obj(enabled->primary->state->fb);
1577
1578                 /* self-refresh seems busted with untiled */
1579                 if (obj->tiling_mode == I915_TILING_NONE)
1580                         enabled = NULL;
1581         }
1582
1583         /*
1584          * Overlay gets an aggressive default since video jitter is bad.
1585          */
1586         cwm = 2;
1587
1588         /* Play safe and disable self-refresh before adjusting watermarks. */
1589         intel_set_memory_cxsr(dev_priv, false);
1590
1591         /* Calc sr entries for one plane configs */
1592         if (HAS_FW_BLC(dev) && enabled) {
1593                 /* self-refresh has much higher latency */
1594                 static const int sr_latency_ns = 6000;
1595                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1596                 int clock = adjusted_mode->crtc_clock;
1597                 int htotal = adjusted_mode->crtc_htotal;
1598                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1599                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1600                 unsigned long line_time_us;
1601                 int entries;
1602
1603                 line_time_us = max(htotal * 1000 / clock, 1);
1604
1605                 /* Use ns/us then divide to preserve precision */
1606                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1607                         cpp * hdisplay;
1608                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1609                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1610                 srwm = wm_info->fifo_size - entries;
1611                 if (srwm < 0)
1612                         srwm = 1;
1613
1614                 if (IS_I945G(dev) || IS_I945GM(dev))
1615                         I915_WRITE(FW_BLC_SELF,
1616                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1617                 else if (IS_I915GM(dev))
1618                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1619         }
1620
1621         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1622                       planea_wm, planeb_wm, cwm, srwm);
1623
1624         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1625         fwater_hi = (cwm & 0x1f);
1626
1627         /* Set request length to 8 cachelines per fetch */
1628         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1629         fwater_hi = fwater_hi | (1 << 8);
1630
1631         I915_WRITE(FW_BLC, fwater_lo);
1632         I915_WRITE(FW_BLC2, fwater_hi);
1633
1634         if (enabled)
1635                 intel_set_memory_cxsr(dev_priv, true);
1636 }
1637
1638 static void i845_update_wm(struct drm_crtc *unused_crtc)
1639 {
1640         struct drm_device *dev = unused_crtc->dev;
1641         struct drm_i915_private *dev_priv = dev->dev_private;
1642         struct drm_crtc *crtc;
1643         const struct drm_display_mode *adjusted_mode;
1644         uint32_t fwater_lo;
1645         int planea_wm;
1646
1647         crtc = single_enabled_crtc(dev);
1648         if (crtc == NULL)
1649                 return;
1650
1651         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1652         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1653                                        &i845_wm_info,
1654                                        dev_priv->display.get_fifo_size(dev, 0),
1655                                        4, pessimal_latency_ns);
1656         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1657         fwater_lo |= (3<<8) | planea_wm;
1658
1659         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1660
1661         I915_WRITE(FW_BLC, fwater_lo);
1662 }
1663
1664 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1665 {
1666         uint32_t pixel_rate;
1667
1668         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1669
1670         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1671          * adjust the pixel_rate here. */
1672
1673         if (pipe_config->pch_pfit.enabled) {
1674                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1675                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1676
1677                 pipe_w = pipe_config->pipe_src_w;
1678                 pipe_h = pipe_config->pipe_src_h;
1679
1680                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1681                 pfit_h = pfit_size & 0xFFFF;
1682                 if (pipe_w < pfit_w)
1683                         pipe_w = pfit_w;
1684                 if (pipe_h < pfit_h)
1685                         pipe_h = pfit_h;
1686
1687                 if (WARN_ON(!pfit_w || !pfit_h))
1688                         return pixel_rate;
1689
1690                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1691                                      pfit_w * pfit_h);
1692         }
1693
1694         return pixel_rate;
1695 }
1696
1697 /* latency must be in 0.1us units. */
1698 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1699 {
1700         uint64_t ret;
1701
1702         if (WARN(latency == 0, "Latency value missing\n"))
1703                 return UINT_MAX;
1704
1705         ret = (uint64_t) pixel_rate * cpp * latency;
1706         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1707
1708         return ret;
1709 }
1710
1711 /* latency must be in 0.1us units. */
1712 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1713                                uint32_t horiz_pixels, uint8_t cpp,
1714                                uint32_t latency)
1715 {
1716         uint32_t ret;
1717
1718         if (WARN(latency == 0, "Latency value missing\n"))
1719                 return UINT_MAX;
1720         if (WARN_ON(!pipe_htotal))
1721                 return UINT_MAX;
1722
1723         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1724         ret = (ret + 1) * horiz_pixels * cpp;
1725         ret = DIV_ROUND_UP(ret, 64) + 2;
1726         return ret;
1727 }
1728
1729 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1730                            uint8_t cpp)
1731 {
1732         /*
1733          * Neither of these should be possible since this function shouldn't be
1734          * called if the CRTC is off or the plane is invisible.  But let's be
1735          * extra paranoid to avoid a potential divide-by-zero if we screw up
1736          * elsewhere in the driver.
1737          */
1738         if (WARN_ON(!cpp))
1739                 return 0;
1740         if (WARN_ON(!horiz_pixels))
1741                 return 0;
1742
1743         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1744 }
1745
1746 struct ilk_wm_maximums {
1747         uint16_t pri;
1748         uint16_t spr;
1749         uint16_t cur;
1750         uint16_t fbc;
1751 };
1752
1753 /*
1754  * For both WM_PIPE and WM_LP.
1755  * mem_value must be in 0.1us units.
1756  */
1757 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1758                                    const struct intel_plane_state *pstate,
1759                                    uint32_t mem_value,
1760                                    bool is_lp)
1761 {
1762         int cpp = pstate->base.fb ?
1763                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1764         uint32_t method1, method2;
1765
1766         if (!cstate->base.active || !pstate->visible)
1767                 return 0;
1768
1769         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1770
1771         if (!is_lp)
1772                 return method1;
1773
1774         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1775                                  cstate->base.adjusted_mode.crtc_htotal,
1776                                  drm_rect_width(&pstate->dst),
1777                                  cpp, mem_value);
1778
1779         return min(method1, method2);
1780 }
1781
1782 /*
1783  * For both WM_PIPE and WM_LP.
1784  * mem_value must be in 0.1us units.
1785  */
1786 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1787                                    const struct intel_plane_state *pstate,
1788                                    uint32_t mem_value)
1789 {
1790         int cpp = pstate->base.fb ?
1791                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1792         uint32_t method1, method2;
1793
1794         if (!cstate->base.active || !pstate->visible)
1795                 return 0;
1796
1797         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1798         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1799                                  cstate->base.adjusted_mode.crtc_htotal,
1800                                  drm_rect_width(&pstate->dst),
1801                                  cpp, mem_value);
1802         return min(method1, method2);
1803 }
1804
1805 /*
1806  * For both WM_PIPE and WM_LP.
1807  * mem_value must be in 0.1us units.
1808  */
1809 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1810                                    const struct intel_plane_state *pstate,
1811                                    uint32_t mem_value)
1812 {
1813         /*
1814          * We treat the cursor plane as always-on for the purposes of watermark
1815          * calculation.  Until we have two-stage watermark programming merged,
1816          * this is necessary to avoid flickering.
1817          */
1818         int cpp = 4;
1819         int width = pstate->visible ? pstate->base.crtc_w : 64;
1820
1821         if (!cstate->base.active)
1822                 return 0;
1823
1824         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1825                               cstate->base.adjusted_mode.crtc_htotal,
1826                               width, cpp, mem_value);
1827 }
1828
1829 /* Only for WM_LP. */
1830 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1831                                    const struct intel_plane_state *pstate,
1832                                    uint32_t pri_val)
1833 {
1834         int cpp = pstate->base.fb ?
1835                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1836
1837         if (!cstate->base.active || !pstate->visible)
1838                 return 0;
1839
1840         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1841 }
1842
1843 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1844 {
1845         if (INTEL_INFO(dev)->gen >= 8)
1846                 return 3072;
1847         else if (INTEL_INFO(dev)->gen >= 7)
1848                 return 768;
1849         else
1850                 return 512;
1851 }
1852
1853 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1854                                          int level, bool is_sprite)
1855 {
1856         if (INTEL_INFO(dev)->gen >= 8)
1857                 /* BDW primary/sprite plane watermarks */
1858                 return level == 0 ? 255 : 2047;
1859         else if (INTEL_INFO(dev)->gen >= 7)
1860                 /* IVB/HSW primary/sprite plane watermarks */
1861                 return level == 0 ? 127 : 1023;
1862         else if (!is_sprite)
1863                 /* ILK/SNB primary plane watermarks */
1864                 return level == 0 ? 127 : 511;
1865         else
1866                 /* ILK/SNB sprite plane watermarks */
1867                 return level == 0 ? 63 : 255;
1868 }
1869
1870 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1871                                           int level)
1872 {
1873         if (INTEL_INFO(dev)->gen >= 7)
1874                 return level == 0 ? 63 : 255;
1875         else
1876                 return level == 0 ? 31 : 63;
1877 }
1878
1879 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1880 {
1881         if (INTEL_INFO(dev)->gen >= 8)
1882                 return 31;
1883         else
1884                 return 15;
1885 }
1886
1887 /* Calculate the maximum primary/sprite plane watermark */
1888 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1889                                      int level,
1890                                      const struct intel_wm_config *config,
1891                                      enum intel_ddb_partitioning ddb_partitioning,
1892                                      bool is_sprite)
1893 {
1894         unsigned int fifo_size = ilk_display_fifo_size(dev);
1895
1896         /* if sprites aren't enabled, sprites get nothing */
1897         if (is_sprite && !config->sprites_enabled)
1898                 return 0;
1899
1900         /* HSW allows LP1+ watermarks even with multiple pipes */
1901         if (level == 0 || config->num_pipes_active > 1) {
1902                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1903
1904                 /*
1905                  * For some reason the non self refresh
1906                  * FIFO size is only half of the self
1907                  * refresh FIFO size on ILK/SNB.
1908                  */
1909                 if (INTEL_INFO(dev)->gen <= 6)
1910                         fifo_size /= 2;
1911         }
1912
1913         if (config->sprites_enabled) {
1914                 /* level 0 is always calculated with 1:1 split */
1915                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1916                         if (is_sprite)
1917                                 fifo_size *= 5;
1918                         fifo_size /= 6;
1919                 } else {
1920                         fifo_size /= 2;
1921                 }
1922         }
1923
1924         /* clamp to max that the registers can hold */
1925         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1926 }
1927
1928 /* Calculate the maximum cursor plane watermark */
1929 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1930                                       int level,
1931                                       const struct intel_wm_config *config)
1932 {
1933         /* HSW LP1+ watermarks w/ multiple pipes */
1934         if (level > 0 && config->num_pipes_active > 1)
1935                 return 64;
1936
1937         /* otherwise just report max that registers can hold */
1938         return ilk_cursor_wm_reg_max(dev, level);
1939 }
1940
1941 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1942                                     int level,
1943                                     const struct intel_wm_config *config,
1944                                     enum intel_ddb_partitioning ddb_partitioning,
1945                                     struct ilk_wm_maximums *max)
1946 {
1947         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1948         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1949         max->cur = ilk_cursor_wm_max(dev, level, config);
1950         max->fbc = ilk_fbc_wm_reg_max(dev);
1951 }
1952
1953 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1954                                         int level,
1955                                         struct ilk_wm_maximums *max)
1956 {
1957         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1958         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1959         max->cur = ilk_cursor_wm_reg_max(dev, level);
1960         max->fbc = ilk_fbc_wm_reg_max(dev);
1961 }
1962
1963 static bool ilk_validate_wm_level(int level,
1964                                   const struct ilk_wm_maximums *max,
1965                                   struct intel_wm_level *result)
1966 {
1967         bool ret;
1968
1969         /* already determined to be invalid? */
1970         if (!result->enable)
1971                 return false;
1972
1973         result->enable = result->pri_val <= max->pri &&
1974                          result->spr_val <= max->spr &&
1975                          result->cur_val <= max->cur;
1976
1977         ret = result->enable;
1978
1979         /*
1980          * HACK until we can pre-compute everything,
1981          * and thus fail gracefully if LP0 watermarks
1982          * are exceeded...
1983          */
1984         if (level == 0 && !result->enable) {
1985                 if (result->pri_val > max->pri)
1986                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1987                                       level, result->pri_val, max->pri);
1988                 if (result->spr_val > max->spr)
1989                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1990                                       level, result->spr_val, max->spr);
1991                 if (result->cur_val > max->cur)
1992                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1993                                       level, result->cur_val, max->cur);
1994
1995                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1996                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1997                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1998                 result->enable = true;
1999         }
2000
2001         return ret;
2002 }
2003
2004 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2005                                  const struct intel_crtc *intel_crtc,
2006                                  int level,
2007                                  struct intel_crtc_state *cstate,
2008                                  struct intel_plane_state *pristate,
2009                                  struct intel_plane_state *sprstate,
2010                                  struct intel_plane_state *curstate,
2011                                  struct intel_wm_level *result)
2012 {
2013         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2014         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2015         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2016
2017         /* WM1+ latency values stored in 0.5us units */
2018         if (level > 0) {
2019                 pri_latency *= 5;
2020                 spr_latency *= 5;
2021                 cur_latency *= 5;
2022         }
2023
2024         if (pristate) {
2025                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2026                                                      pri_latency, level);
2027                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2028         }
2029
2030         if (sprstate)
2031                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2032
2033         if (curstate)
2034                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2035
2036         result->enable = true;
2037 }
2038
2039 static uint32_t
2040 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2041 {
2042         const struct intel_atomic_state *intel_state =
2043                 to_intel_atomic_state(cstate->base.state);
2044         const struct drm_display_mode *adjusted_mode =
2045                 &cstate->base.adjusted_mode;
2046         u32 linetime, ips_linetime;
2047
2048         if (!cstate->base.active)
2049                 return 0;
2050         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2051                 return 0;
2052         if (WARN_ON(intel_state->cdclk == 0))
2053                 return 0;
2054
2055         /* The WM are computed with base on how long it takes to fill a single
2056          * row at the given clock rate, multiplied by 8.
2057          * */
2058         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2059                                      adjusted_mode->crtc_clock);
2060         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2061                                          intel_state->cdclk);
2062
2063         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2064                PIPE_WM_LINETIME_TIME(linetime);
2065 }
2066
2067 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2068 {
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070
2071         if (IS_GEN9(dev)) {
2072                 uint32_t val;
2073                 int ret, i;
2074                 int level, max_level = ilk_wm_max_level(dev);
2075
2076                 /* read the first set of memory latencies[0:3] */
2077                 val = 0; /* data0 to be programmed to 0 for first set */
2078                 mutex_lock(&dev_priv->rps.hw_lock);
2079                 ret = sandybridge_pcode_read(dev_priv,
2080                                              GEN9_PCODE_READ_MEM_LATENCY,
2081                                              &val);
2082                 mutex_unlock(&dev_priv->rps.hw_lock);
2083
2084                 if (ret) {
2085                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2086                         return;
2087                 }
2088
2089                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2090                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2091                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2092                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2093                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096
2097                 /* read the second set of memory latencies[4:7] */
2098                 val = 1; /* data0 to be programmed to 1 for second set */
2099                 mutex_lock(&dev_priv->rps.hw_lock);
2100                 ret = sandybridge_pcode_read(dev_priv,
2101                                              GEN9_PCODE_READ_MEM_LATENCY,
2102                                              &val);
2103                 mutex_unlock(&dev_priv->rps.hw_lock);
2104                 if (ret) {
2105                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2106                         return;
2107                 }
2108
2109                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2110                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2111                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2112                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2113                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2114                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2115                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2116
2117                 /*
2118                  * WaWmMemoryReadLatency:skl
2119                  *
2120                  * punit doesn't take into account the read latency so we need
2121                  * to add 2us to the various latency levels we retrieve from
2122                  * the punit.
2123                  *   - W0 is a bit special in that it's the only level that
2124                  *   can't be disabled if we want to have display working, so
2125                  *   we always add 2us there.
2126                  *   - For levels >=1, punit returns 0us latency when they are
2127                  *   disabled, so we respect that and don't add 2us then
2128                  *
2129                  * Additionally, if a level n (n > 1) has a 0us latency, all
2130                  * levels m (m >= n) need to be disabled. We make sure to
2131                  * sanitize the values out of the punit to satisfy this
2132                  * requirement.
2133                  */
2134                 wm[0] += 2;
2135                 for (level = 1; level <= max_level; level++)
2136                         if (wm[level] != 0)
2137                                 wm[level] += 2;
2138                         else {
2139                                 for (i = level + 1; i <= max_level; i++)
2140                                         wm[i] = 0;
2141
2142                                 break;
2143                         }
2144         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2145                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2146
2147                 wm[0] = (sskpd >> 56) & 0xFF;
2148                 if (wm[0] == 0)
2149                         wm[0] = sskpd & 0xF;
2150                 wm[1] = (sskpd >> 4) & 0xFF;
2151                 wm[2] = (sskpd >> 12) & 0xFF;
2152                 wm[3] = (sskpd >> 20) & 0x1FF;
2153                 wm[4] = (sskpd >> 32) & 0x1FF;
2154         } else if (INTEL_INFO(dev)->gen >= 6) {
2155                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2156
2157                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2158                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2159                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2160                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2161         } else if (INTEL_INFO(dev)->gen >= 5) {
2162                 uint32_t mltr = I915_READ(MLTR_ILK);
2163
2164                 /* ILK primary LP0 latency is 700 ns */
2165                 wm[0] = 7;
2166                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2167                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2168         }
2169 }
2170
2171 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2172 {
2173         /* ILK sprite LP0 latency is 1300 ns */
2174         if (IS_GEN5(dev))
2175                 wm[0] = 13;
2176 }
2177
2178 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2179 {
2180         /* ILK cursor LP0 latency is 1300 ns */
2181         if (IS_GEN5(dev))
2182                 wm[0] = 13;
2183
2184         /* WaDoubleCursorLP3Latency:ivb */
2185         if (IS_IVYBRIDGE(dev))
2186                 wm[3] *= 2;
2187 }
2188
2189 int ilk_wm_max_level(const struct drm_device *dev)
2190 {
2191         /* how many WM levels are we expecting */
2192         if (INTEL_INFO(dev)->gen >= 9)
2193                 return 7;
2194         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2195                 return 4;
2196         else if (INTEL_INFO(dev)->gen >= 6)
2197                 return 3;
2198         else
2199                 return 2;
2200 }
2201
2202 static void intel_print_wm_latency(struct drm_device *dev,
2203                                    const char *name,
2204                                    const uint16_t wm[8])
2205 {
2206         int level, max_level = ilk_wm_max_level(dev);
2207
2208         for (level = 0; level <= max_level; level++) {
2209                 unsigned int latency = wm[level];
2210
2211                 if (latency == 0) {
2212                         DRM_ERROR("%s WM%d latency not provided\n",
2213                                   name, level);
2214                         continue;
2215                 }
2216
2217                 /*
2218                  * - latencies are in us on gen9.
2219                  * - before then, WM1+ latency values are in 0.5us units
2220                  */
2221                 if (IS_GEN9(dev))
2222                         latency *= 10;
2223                 else if (level > 0)
2224                         latency *= 5;
2225
2226                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2227                               name, level, wm[level],
2228                               latency / 10, latency % 10);
2229         }
2230 }
2231
2232 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2233                                     uint16_t wm[5], uint16_t min)
2234 {
2235         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2236
2237         if (wm[0] >= min)
2238                 return false;
2239
2240         wm[0] = max(wm[0], min);
2241         for (level = 1; level <= max_level; level++)
2242                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2243
2244         return true;
2245 }
2246
2247 static void snb_wm_latency_quirk(struct drm_device *dev)
2248 {
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         bool changed;
2251
2252         /*
2253          * The BIOS provided WM memory latency values are often
2254          * inadequate for high resolution displays. Adjust them.
2255          */
2256         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2257                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2258                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2259
2260         if (!changed)
2261                 return;
2262
2263         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2264         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2265         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2266         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2267 }
2268
2269 static void ilk_setup_wm_latency(struct drm_device *dev)
2270 {
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272
2273         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2274
2275         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2276                sizeof(dev_priv->wm.pri_latency));
2277         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2278                sizeof(dev_priv->wm.pri_latency));
2279
2280         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2281         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2282
2283         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2284         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2285         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2286
2287         if (IS_GEN6(dev))
2288                 snb_wm_latency_quirk(dev);
2289 }
2290
2291 static void skl_setup_wm_latency(struct drm_device *dev)
2292 {
2293         struct drm_i915_private *dev_priv = dev->dev_private;
2294
2295         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2296         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2297 }
2298
2299 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2300                                  struct intel_pipe_wm *pipe_wm)
2301 {
2302         /* LP0 watermark maximums depend on this pipe alone */
2303         const struct intel_wm_config config = {
2304                 .num_pipes_active = 1,
2305                 .sprites_enabled = pipe_wm->sprites_enabled,
2306                 .sprites_scaled = pipe_wm->sprites_scaled,
2307         };
2308         struct ilk_wm_maximums max;
2309
2310         /* LP0 watermarks always use 1/2 DDB partitioning */
2311         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2312
2313         /* At least LP0 must be valid */
2314         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2315                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2316                 return false;
2317         }
2318
2319         return true;
2320 }
2321
2322 /* Compute new watermarks for the pipe */
2323 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2324 {
2325         struct drm_atomic_state *state = cstate->base.state;
2326         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2327         struct intel_pipe_wm *pipe_wm;
2328         struct drm_device *dev = state->dev;
2329         const struct drm_i915_private *dev_priv = dev->dev_private;
2330         struct intel_plane *intel_plane;
2331         struct intel_plane_state *pristate = NULL;
2332         struct intel_plane_state *sprstate = NULL;
2333         struct intel_plane_state *curstate = NULL;
2334         int level, max_level = ilk_wm_max_level(dev), usable_level;
2335         struct ilk_wm_maximums max;
2336
2337         pipe_wm = &cstate->wm.ilk.optimal;
2338
2339         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2340                 struct intel_plane_state *ps;
2341
2342                 ps = intel_atomic_get_existing_plane_state(state,
2343                                                            intel_plane);
2344                 if (!ps)
2345                         continue;
2346
2347                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2348                         pristate = ps;
2349                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2350                         sprstate = ps;
2351                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2352                         curstate = ps;
2353         }
2354
2355         pipe_wm->pipe_enabled = cstate->base.active;
2356         if (sprstate) {
2357                 pipe_wm->sprites_enabled = sprstate->visible;
2358                 pipe_wm->sprites_scaled = sprstate->visible &&
2359                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2360                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2361         }
2362
2363         usable_level = max_level;
2364
2365         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2366         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2367                 usable_level = 1;
2368
2369         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2370         if (pipe_wm->sprites_scaled)
2371                 usable_level = 0;
2372
2373         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2374                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2375
2376         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2377         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2378
2379         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2380                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2381
2382         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2383                 return -EINVAL;
2384
2385         ilk_compute_wm_reg_maximums(dev, 1, &max);
2386
2387         for (level = 1; level <= max_level; level++) {
2388                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2389
2390                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2391                                      pristate, sprstate, curstate, wm);
2392
2393                 /*
2394                  * Disable any watermark level that exceeds the
2395                  * register maximums since such watermarks are
2396                  * always invalid.
2397                  */
2398                 if (level > usable_level)
2399                         continue;
2400
2401                 if (ilk_validate_wm_level(level, &max, wm))
2402                         pipe_wm->wm[level] = *wm;
2403                 else
2404                         usable_level = level;
2405         }
2406
2407         return 0;
2408 }
2409
2410 /*
2411  * Build a set of 'intermediate' watermark values that satisfy both the old
2412  * state and the new state.  These can be programmed to the hardware
2413  * immediately.
2414  */
2415 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2416                                        struct intel_crtc *intel_crtc,
2417                                        struct intel_crtc_state *newstate)
2418 {
2419         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2420         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2421         int level, max_level = ilk_wm_max_level(dev);
2422
2423         /*
2424          * Start with the final, target watermarks, then combine with the
2425          * currently active watermarks to get values that are safe both before
2426          * and after the vblank.
2427          */
2428         *a = newstate->wm.ilk.optimal;
2429         a->pipe_enabled |= b->pipe_enabled;
2430         a->sprites_enabled |= b->sprites_enabled;
2431         a->sprites_scaled |= b->sprites_scaled;
2432
2433         for (level = 0; level <= max_level; level++) {
2434                 struct intel_wm_level *a_wm = &a->wm[level];
2435                 const struct intel_wm_level *b_wm = &b->wm[level];
2436
2437                 a_wm->enable &= b_wm->enable;
2438                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2439                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2440                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2441                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2442         }
2443
2444         /*
2445          * We need to make sure that these merged watermark values are
2446          * actually a valid configuration themselves.  If they're not,
2447          * there's no safe way to transition from the old state to
2448          * the new state, so we need to fail the atomic transaction.
2449          */
2450         if (!ilk_validate_pipe_wm(dev, a))
2451                 return -EINVAL;
2452
2453         /*
2454          * If our intermediate WM are identical to the final WM, then we can
2455          * omit the post-vblank programming; only update if it's different.
2456          */
2457         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2458                 newstate->wm.need_postvbl_update = false;
2459
2460         return 0;
2461 }
2462
2463 /*
2464  * Merge the watermarks from all active pipes for a specific level.
2465  */
2466 static void ilk_merge_wm_level(struct drm_device *dev,
2467                                int level,
2468                                struct intel_wm_level *ret_wm)
2469 {
2470         const struct intel_crtc *intel_crtc;
2471
2472         ret_wm->enable = true;
2473
2474         for_each_intel_crtc(dev, intel_crtc) {
2475                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2476                 const struct intel_wm_level *wm = &active->wm[level];
2477
2478                 if (!active->pipe_enabled)
2479                         continue;
2480
2481                 /*
2482                  * The watermark values may have been used in the past,
2483                  * so we must maintain them in the registers for some
2484                  * time even if the level is now disabled.
2485                  */
2486                 if (!wm->enable)
2487                         ret_wm->enable = false;
2488
2489                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2490                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2491                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2492                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2493         }
2494 }
2495
2496 /*
2497  * Merge all low power watermarks for all active pipes.
2498  */
2499 static void ilk_wm_merge(struct drm_device *dev,
2500                          const struct intel_wm_config *config,
2501                          const struct ilk_wm_maximums *max,
2502                          struct intel_pipe_wm *merged)
2503 {
2504         struct drm_i915_private *dev_priv = dev->dev_private;
2505         int level, max_level = ilk_wm_max_level(dev);
2506         int last_enabled_level = max_level;
2507
2508         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2509         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2510             config->num_pipes_active > 1)
2511                 last_enabled_level = 0;
2512
2513         /* ILK: FBC WM must be disabled always */
2514         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2515
2516         /* merge each WM1+ level */
2517         for (level = 1; level <= max_level; level++) {
2518                 struct intel_wm_level *wm = &merged->wm[level];
2519
2520                 ilk_merge_wm_level(dev, level, wm);
2521
2522                 if (level > last_enabled_level)
2523                         wm->enable = false;
2524                 else if (!ilk_validate_wm_level(level, max, wm))
2525                         /* make sure all following levels get disabled */
2526                         last_enabled_level = level - 1;
2527
2528                 /*
2529                  * The spec says it is preferred to disable
2530                  * FBC WMs instead of disabling a WM level.
2531                  */
2532                 if (wm->fbc_val > max->fbc) {
2533                         if (wm->enable)
2534                                 merged->fbc_wm_enabled = false;
2535                         wm->fbc_val = 0;
2536                 }
2537         }
2538
2539         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2540         /*
2541          * FIXME this is racy. FBC might get enabled later.
2542          * What we should check here is whether FBC can be
2543          * enabled sometime later.
2544          */
2545         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2546             intel_fbc_is_active(dev_priv)) {
2547                 for (level = 2; level <= max_level; level++) {
2548                         struct intel_wm_level *wm = &merged->wm[level];
2549
2550                         wm->enable = false;
2551                 }
2552         }
2553 }
2554
2555 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2556 {
2557         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2558         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2559 }
2560
2561 /* The value we need to program into the WM_LPx latency field */
2562 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2563 {
2564         struct drm_i915_private *dev_priv = dev->dev_private;
2565
2566         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2567                 return 2 * level;
2568         else
2569                 return dev_priv->wm.pri_latency[level];
2570 }
2571
2572 static void ilk_compute_wm_results(struct drm_device *dev,
2573                                    const struct intel_pipe_wm *merged,
2574                                    enum intel_ddb_partitioning partitioning,
2575                                    struct ilk_wm_values *results)
2576 {
2577         struct intel_crtc *intel_crtc;
2578         int level, wm_lp;
2579
2580         results->enable_fbc_wm = merged->fbc_wm_enabled;
2581         results->partitioning = partitioning;
2582
2583         /* LP1+ register values */
2584         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2585                 const struct intel_wm_level *r;
2586
2587                 level = ilk_wm_lp_to_level(wm_lp, merged);
2588
2589                 r = &merged->wm[level];
2590
2591                 /*
2592                  * Maintain the watermark values even if the level is
2593                  * disabled. Doing otherwise could cause underruns.
2594                  */
2595                 results->wm_lp[wm_lp - 1] =
2596                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2597                         (r->pri_val << WM1_LP_SR_SHIFT) |
2598                         r->cur_val;
2599
2600                 if (r->enable)
2601                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2602
2603                 if (INTEL_INFO(dev)->gen >= 8)
2604                         results->wm_lp[wm_lp - 1] |=
2605                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2606                 else
2607                         results->wm_lp[wm_lp - 1] |=
2608                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2609
2610                 /*
2611                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2612                  * level is disabled. Doing otherwise could cause underruns.
2613                  */
2614                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2615                         WARN_ON(wm_lp != 1);
2616                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2617                 } else
2618                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2619         }
2620
2621         /* LP0 register values */
2622         for_each_intel_crtc(dev, intel_crtc) {
2623                 enum pipe pipe = intel_crtc->pipe;
2624                 const struct intel_wm_level *r =
2625                         &intel_crtc->wm.active.ilk.wm[0];
2626
2627                 if (WARN_ON(!r->enable))
2628                         continue;
2629
2630                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2631
2632                 results->wm_pipe[pipe] =
2633                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2634                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2635                         r->cur_val;
2636         }
2637 }
2638
2639 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2640  * case both are at the same level. Prefer r1 in case they're the same. */
2641 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2642                                                   struct intel_pipe_wm *r1,
2643                                                   struct intel_pipe_wm *r2)
2644 {
2645         int level, max_level = ilk_wm_max_level(dev);
2646         int level1 = 0, level2 = 0;
2647
2648         for (level = 1; level <= max_level; level++) {
2649                 if (r1->wm[level].enable)
2650                         level1 = level;
2651                 if (r2->wm[level].enable)
2652                         level2 = level;
2653         }
2654
2655         if (level1 == level2) {
2656                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2657                         return r2;
2658                 else
2659                         return r1;
2660         } else if (level1 > level2) {
2661                 return r1;
2662         } else {
2663                 return r2;
2664         }
2665 }
2666
2667 /* dirty bits used to track which watermarks need changes */
2668 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2669 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2670 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2671 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2672 #define WM_DIRTY_FBC (1 << 24)
2673 #define WM_DIRTY_DDB (1 << 25)
2674
2675 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2676                                          const struct ilk_wm_values *old,
2677                                          const struct ilk_wm_values *new)
2678 {
2679         unsigned int dirty = 0;
2680         enum pipe pipe;
2681         int wm_lp;
2682
2683         for_each_pipe(dev_priv, pipe) {
2684                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2685                         dirty |= WM_DIRTY_LINETIME(pipe);
2686                         /* Must disable LP1+ watermarks too */
2687                         dirty |= WM_DIRTY_LP_ALL;
2688                 }
2689
2690                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2691                         dirty |= WM_DIRTY_PIPE(pipe);
2692                         /* Must disable LP1+ watermarks too */
2693                         dirty |= WM_DIRTY_LP_ALL;
2694                 }
2695         }
2696
2697         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2698                 dirty |= WM_DIRTY_FBC;
2699                 /* Must disable LP1+ watermarks too */
2700                 dirty |= WM_DIRTY_LP_ALL;
2701         }
2702
2703         if (old->partitioning != new->partitioning) {
2704                 dirty |= WM_DIRTY_DDB;
2705                 /* Must disable LP1+ watermarks too */
2706                 dirty |= WM_DIRTY_LP_ALL;
2707         }
2708
2709         /* LP1+ watermarks already deemed dirty, no need to continue */
2710         if (dirty & WM_DIRTY_LP_ALL)
2711                 return dirty;
2712
2713         /* Find the lowest numbered LP1+ watermark in need of an update... */
2714         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2715                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2716                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2717                         break;
2718         }
2719
2720         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2721         for (; wm_lp <= 3; wm_lp++)
2722                 dirty |= WM_DIRTY_LP(wm_lp);
2723
2724         return dirty;
2725 }
2726
2727 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2728                                unsigned int dirty)
2729 {
2730         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2731         bool changed = false;
2732
2733         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2734                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2735                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2736                 changed = true;
2737         }
2738         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2739                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2740                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2741                 changed = true;
2742         }
2743         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2744                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2745                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2746                 changed = true;
2747         }
2748
2749         /*
2750          * Don't touch WM1S_LP_EN here.
2751          * Doing so could cause underruns.
2752          */
2753
2754         return changed;
2755 }
2756
2757 /*
2758  * The spec says we shouldn't write when we don't need, because every write
2759  * causes WMs to be re-evaluated, expending some power.
2760  */
2761 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2762                                 struct ilk_wm_values *results)
2763 {
2764         struct drm_device *dev = dev_priv->dev;
2765         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2766         unsigned int dirty;
2767         uint32_t val;
2768
2769         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2770         if (!dirty)
2771                 return;
2772
2773         _ilk_disable_lp_wm(dev_priv, dirty);
2774
2775         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2776                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2777         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2778                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2779         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2780                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2781
2782         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2783                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2784         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2785                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2786         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2787                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2788
2789         if (dirty & WM_DIRTY_DDB) {
2790                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2791                         val = I915_READ(WM_MISC);
2792                         if (results->partitioning == INTEL_DDB_PART_1_2)
2793                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2794                         else
2795                                 val |= WM_MISC_DATA_PARTITION_5_6;
2796                         I915_WRITE(WM_MISC, val);
2797                 } else {
2798                         val = I915_READ(DISP_ARB_CTL2);
2799                         if (results->partitioning == INTEL_DDB_PART_1_2)
2800                                 val &= ~DISP_DATA_PARTITION_5_6;
2801                         else
2802                                 val |= DISP_DATA_PARTITION_5_6;
2803                         I915_WRITE(DISP_ARB_CTL2, val);
2804                 }
2805         }
2806
2807         if (dirty & WM_DIRTY_FBC) {
2808                 val = I915_READ(DISP_ARB_CTL);
2809                 if (results->enable_fbc_wm)
2810                         val &= ~DISP_FBC_WM_DIS;
2811                 else
2812                         val |= DISP_FBC_WM_DIS;
2813                 I915_WRITE(DISP_ARB_CTL, val);
2814         }
2815
2816         if (dirty & WM_DIRTY_LP(1) &&
2817             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2818                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2819
2820         if (INTEL_INFO(dev)->gen >= 7) {
2821                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2822                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2823                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2824                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2825         }
2826
2827         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2828                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2829         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2830                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2831         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2832                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2833
2834         dev_priv->wm.hw = *results;
2835 }
2836
2837 bool ilk_disable_lp_wm(struct drm_device *dev)
2838 {
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840
2841         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2842 }
2843
2844 /*
2845  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2846  * different active planes.
2847  */
2848
2849 #define SKL_DDB_SIZE            896     /* in blocks */
2850 #define BXT_DDB_SIZE            512
2851
2852 /*
2853  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2854  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2855  * other universal planes are in indices 1..n.  Note that this may leave unused
2856  * indices between the top "sprite" plane and the cursor.
2857  */
2858 static int
2859 skl_wm_plane_id(const struct intel_plane *plane)
2860 {
2861         switch (plane->base.type) {
2862         case DRM_PLANE_TYPE_PRIMARY:
2863                 return 0;
2864         case DRM_PLANE_TYPE_CURSOR:
2865                 return PLANE_CURSOR;
2866         case DRM_PLANE_TYPE_OVERLAY:
2867                 return plane->plane + 1;
2868         default:
2869                 MISSING_CASE(plane->base.type);
2870                 return plane->plane;
2871         }
2872 }
2873
2874 static void
2875 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2876                                    const struct intel_crtc_state *cstate,
2877                                    struct skl_ddb_entry *alloc, /* out */
2878                                    int *num_active /* out */)
2879 {
2880         struct drm_atomic_state *state = cstate->base.state;
2881         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2882         struct drm_i915_private *dev_priv = to_i915(dev);
2883         struct drm_crtc *for_crtc = cstate->base.crtc;
2884         unsigned int pipe_size, ddb_size;
2885         int nth_active_pipe;
2886         int pipe = to_intel_crtc(for_crtc)->pipe;
2887
2888         if (WARN_ON(!state) || !cstate->base.active) {
2889                 alloc->start = 0;
2890                 alloc->end = 0;
2891                 *num_active = hweight32(dev_priv->active_crtcs);
2892                 return;
2893         }
2894
2895         if (intel_state->active_pipe_changes)
2896                 *num_active = hweight32(intel_state->active_crtcs);
2897         else
2898                 *num_active = hweight32(dev_priv->active_crtcs);
2899
2900         if (IS_BROXTON(dev))
2901                 ddb_size = BXT_DDB_SIZE;
2902         else
2903                 ddb_size = SKL_DDB_SIZE;
2904
2905         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2906
2907         /*
2908          * If the state doesn't change the active CRTC's, then there's
2909          * no need to recalculate; the existing pipe allocation limits
2910          * should remain unchanged.  Note that we're safe from racing
2911          * commits since any racing commit that changes the active CRTC
2912          * list would need to grab _all_ crtc locks, including the one
2913          * we currently hold.
2914          */
2915         if (!intel_state->active_pipe_changes) {
2916                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2917                 return;
2918         }
2919
2920         nth_active_pipe = hweight32(intel_state->active_crtcs &
2921                                     (drm_crtc_mask(for_crtc) - 1));
2922         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2923         alloc->start = nth_active_pipe * ddb_size / *num_active;
2924         alloc->end = alloc->start + pipe_size;
2925 }
2926
2927 static unsigned int skl_cursor_allocation(int num_active)
2928 {
2929         if (num_active == 1)
2930                 return 32;
2931
2932         return 8;
2933 }
2934
2935 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2936 {
2937         entry->start = reg & 0x3ff;
2938         entry->end = (reg >> 16) & 0x3ff;
2939         if (entry->end)
2940                 entry->end += 1;
2941 }
2942
2943 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2944                           struct skl_ddb_allocation *ddb /* out */)
2945 {
2946         enum pipe pipe;
2947         int plane;
2948         u32 val;
2949
2950         memset(ddb, 0, sizeof(*ddb));
2951
2952         for_each_pipe(dev_priv, pipe) {
2953                 enum intel_display_power_domain power_domain;
2954
2955                 power_domain = POWER_DOMAIN_PIPE(pipe);
2956                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2957                         continue;
2958
2959                 for_each_plane(dev_priv, pipe, plane) {
2960                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2961                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2962                                                    val);
2963                 }
2964
2965                 val = I915_READ(CUR_BUF_CFG(pipe));
2966                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2967                                            val);
2968
2969                 intel_display_power_put(dev_priv, power_domain);
2970         }
2971 }
2972
2973 /*
2974  * Determines the downscale amount of a plane for the purposes of watermark calculations.
2975  * The bspec defines downscale amount as:
2976  *
2977  * """
2978  * Horizontal down scale amount = maximum[1, Horizontal source size /
2979  *                                           Horizontal destination size]
2980  * Vertical down scale amount = maximum[1, Vertical source size /
2981  *                                         Vertical destination size]
2982  * Total down scale amount = Horizontal down scale amount *
2983  *                           Vertical down scale amount
2984  * """
2985  *
2986  * Return value is provided in 16.16 fixed point form to retain fractional part.
2987  * Caller should take care of dividing & rounding off the value.
2988  */
2989 static uint32_t
2990 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
2991 {
2992         uint32_t downscale_h, downscale_w;
2993         uint32_t src_w, src_h, dst_w, dst_h;
2994
2995         if (WARN_ON(!pstate->visible))
2996                 return DRM_PLANE_HELPER_NO_SCALING;
2997
2998         /* n.b., src is 16.16 fixed point, dst is whole integer */
2999         src_w = drm_rect_width(&pstate->src);
3000         src_h = drm_rect_height(&pstate->src);
3001         dst_w = drm_rect_width(&pstate->dst);
3002         dst_h = drm_rect_height(&pstate->dst);
3003         if (intel_rotation_90_or_270(pstate->base.rotation))
3004                 swap(dst_w, dst_h);
3005
3006         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3007         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3008
3009         /* Provide result in 16.16 fixed point */
3010         return (uint64_t)downscale_w * downscale_h >> 16;
3011 }
3012
3013 static unsigned int
3014 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3015                              const struct drm_plane_state *pstate,
3016                              int y)
3017 {
3018         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3019         struct drm_framebuffer *fb = pstate->fb;
3020         uint32_t down_scale_amount, data_rate;
3021         uint32_t width = 0, height = 0;
3022         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3023
3024         if (!intel_pstate->visible)
3025                 return 0;
3026         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3027                 return 0;
3028         if (y && format != DRM_FORMAT_NV12)
3029                 return 0;
3030
3031         width = drm_rect_width(&intel_pstate->src) >> 16;
3032         height = drm_rect_height(&intel_pstate->src) >> 16;
3033
3034         if (intel_rotation_90_or_270(pstate->rotation))
3035                 swap(width, height);
3036
3037         /* for planar format */
3038         if (format == DRM_FORMAT_NV12) {
3039                 if (y)  /* y-plane data rate */
3040                         data_rate = width * height *
3041                                 drm_format_plane_cpp(format, 0);
3042                 else    /* uv-plane data rate */
3043                         data_rate = (width / 2) * (height / 2) *
3044                                 drm_format_plane_cpp(format, 1);
3045         } else {
3046                 /* for packed formats */
3047                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3048         }
3049
3050         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3051
3052         return (uint64_t)data_rate * down_scale_amount >> 16;
3053 }
3054
3055 /*
3056  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3057  * a 8192x4096@32bpp framebuffer:
3058  *   3 * 4096 * 8192  * 4 < 2^32
3059  */
3060 static unsigned int
3061 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3062 {
3063         struct drm_crtc_state *cstate = &intel_cstate->base;
3064         struct drm_atomic_state *state = cstate->state;
3065         struct drm_crtc *crtc = cstate->crtc;
3066         struct drm_device *dev = crtc->dev;
3067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068         const struct drm_plane *plane;
3069         const struct intel_plane *intel_plane;
3070         struct drm_plane_state *pstate;
3071         unsigned int rate, total_data_rate = 0;
3072         int id;
3073         int i;
3074
3075         if (WARN_ON(!state))
3076                 return 0;
3077
3078         /* Calculate and cache data rate for each plane */
3079         for_each_plane_in_state(state, plane, pstate, i) {
3080                 id = skl_wm_plane_id(to_intel_plane(plane));
3081                 intel_plane = to_intel_plane(plane);
3082
3083                 if (intel_plane->pipe != intel_crtc->pipe)
3084                         continue;
3085
3086                 /* packed/uv */
3087                 rate = skl_plane_relative_data_rate(intel_cstate,
3088                                                     pstate, 0);
3089                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3090
3091                 /* y-plane */
3092                 rate = skl_plane_relative_data_rate(intel_cstate,
3093                                                     pstate, 1);
3094                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3095         }
3096
3097         /* Calculate CRTC's total data rate from cached values */
3098         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3099                 int id = skl_wm_plane_id(intel_plane);
3100
3101                 /* packed/uv */
3102                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3103                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3104         }
3105
3106         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3107
3108         return total_data_rate;
3109 }
3110
3111 static uint16_t
3112 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3113                   const int y)
3114 {
3115         struct drm_framebuffer *fb = pstate->fb;
3116         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3117         uint32_t src_w, src_h;
3118         uint32_t min_scanlines = 8;
3119         uint8_t plane_bpp;
3120
3121         if (WARN_ON(!fb))
3122                 return 0;
3123
3124         /* For packed formats, no y-plane, return 0 */
3125         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3126                 return 0;
3127
3128         /* For Non Y-tile return 8-blocks */
3129         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3130             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3131                 return 8;
3132
3133         src_w = drm_rect_width(&intel_pstate->src) >> 16;
3134         src_h = drm_rect_height(&intel_pstate->src) >> 16;
3135
3136         if (intel_rotation_90_or_270(pstate->rotation))
3137                 swap(src_w, src_h);
3138
3139         /* Halve UV plane width and height for NV12 */
3140         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3141                 src_w /= 2;
3142                 src_h /= 2;
3143         }
3144
3145         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3146                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3147         else
3148                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3149
3150         if (intel_rotation_90_or_270(pstate->rotation)) {
3151                 switch (plane_bpp) {
3152                 case 1:
3153                         min_scanlines = 32;
3154                         break;
3155                 case 2:
3156                         min_scanlines = 16;
3157                         break;
3158                 case 4:
3159                         min_scanlines = 8;
3160                         break;
3161                 case 8:
3162                         min_scanlines = 4;
3163                         break;
3164                 default:
3165                         WARN(1, "Unsupported pixel depth %u for rotation",
3166                              plane_bpp);
3167                         min_scanlines = 32;
3168                 }
3169         }
3170
3171         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3172 }
3173
3174 static int
3175 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3176                       struct skl_ddb_allocation *ddb /* out */)
3177 {
3178         struct drm_atomic_state *state = cstate->base.state;
3179         struct drm_crtc *crtc = cstate->base.crtc;
3180         struct drm_device *dev = crtc->dev;
3181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3182         struct intel_plane *intel_plane;
3183         struct drm_plane *plane;
3184         struct drm_plane_state *pstate;
3185         enum pipe pipe = intel_crtc->pipe;
3186         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3187         uint16_t alloc_size, start, cursor_blocks;
3188         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3189         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3190         unsigned int total_data_rate;
3191         int num_active;
3192         int id, i;
3193
3194         if (WARN_ON(!state))
3195                 return 0;
3196
3197         if (!cstate->base.active) {
3198                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3199                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3200                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3201                 return 0;
3202         }
3203
3204         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3205         alloc_size = skl_ddb_entry_size(alloc);
3206         if (alloc_size == 0) {
3207                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3208                 return 0;
3209         }
3210
3211         cursor_blocks = skl_cursor_allocation(num_active);
3212         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3213         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3214
3215         alloc_size -= cursor_blocks;
3216
3217         /* 1. Allocate the mininum required blocks for each active plane */
3218         for_each_plane_in_state(state, plane, pstate, i) {
3219                 intel_plane = to_intel_plane(plane);
3220                 id = skl_wm_plane_id(intel_plane);
3221
3222                 if (intel_plane->pipe != pipe)
3223                         continue;
3224
3225                 if (!to_intel_plane_state(pstate)->visible) {
3226                         minimum[id] = 0;
3227                         y_minimum[id] = 0;
3228                         continue;
3229                 }
3230                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3231                         minimum[id] = 0;
3232                         y_minimum[id] = 0;
3233                         continue;
3234                 }
3235
3236                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3237                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3238         }
3239
3240         for (i = 0; i < PLANE_CURSOR; i++) {
3241                 alloc_size -= minimum[i];
3242                 alloc_size -= y_minimum[i];
3243         }
3244
3245         /*
3246          * 2. Distribute the remaining space in proportion to the amount of
3247          * data each plane needs to fetch from memory.
3248          *
3249          * FIXME: we may not allocate every single block here.
3250          */
3251         total_data_rate = skl_get_total_relative_data_rate(cstate);
3252         if (total_data_rate == 0)
3253                 return 0;
3254
3255         start = alloc->start;
3256         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3257                 unsigned int data_rate, y_data_rate;
3258                 uint16_t plane_blocks, y_plane_blocks = 0;
3259                 int id = skl_wm_plane_id(intel_plane);
3260
3261                 data_rate = cstate->wm.skl.plane_data_rate[id];
3262
3263                 /*
3264                  * allocation for (packed formats) or (uv-plane part of planar format):
3265                  * promote the expression to 64 bits to avoid overflowing, the
3266                  * result is < available as data_rate / total_data_rate < 1
3267                  */
3268                 plane_blocks = minimum[id];
3269                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3270                                         total_data_rate);
3271
3272                 /* Leave disabled planes at (0,0) */
3273                 if (data_rate) {
3274                         ddb->plane[pipe][id].start = start;
3275                         ddb->plane[pipe][id].end = start + plane_blocks;
3276                 }
3277
3278                 start += plane_blocks;
3279
3280                 /*
3281                  * allocation for y_plane part of planar format:
3282                  */
3283                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3284
3285                 y_plane_blocks = y_minimum[id];
3286                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3287                                         total_data_rate);
3288
3289                 if (y_data_rate) {
3290                         ddb->y_plane[pipe][id].start = start;
3291                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3292                 }
3293
3294                 start += y_plane_blocks;
3295         }
3296
3297         return 0;
3298 }
3299
3300 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3301 {
3302         /* TODO: Take into account the scalers once we support them */
3303         return config->base.adjusted_mode.crtc_clock;
3304 }
3305
3306 /*
3307  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3308  * for the read latency) and cpp should always be <= 8, so that
3309  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3310  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3311 */
3312 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3313 {
3314         uint32_t wm_intermediate_val, ret;
3315
3316         if (latency == 0)
3317                 return UINT_MAX;
3318
3319         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3320         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3321
3322         return ret;
3323 }
3324
3325 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3326                                uint32_t horiz_pixels, uint8_t cpp,
3327                                uint64_t tiling, uint32_t latency)
3328 {
3329         uint32_t ret;
3330         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3331         uint32_t wm_intermediate_val;
3332
3333         if (latency == 0)
3334                 return UINT_MAX;
3335
3336         plane_bytes_per_line = horiz_pixels * cpp;
3337
3338         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3339             tiling == I915_FORMAT_MOD_Yf_TILED) {
3340                 plane_bytes_per_line *= 4;
3341                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3342                 plane_blocks_per_line /= 4;
3343         } else {
3344                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3345         }
3346
3347         wm_intermediate_val = latency * pixel_rate;
3348         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3349                                 plane_blocks_per_line;
3350
3351         return ret;
3352 }
3353
3354 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3355                                               struct intel_plane_state *pstate)
3356 {
3357         uint64_t adjusted_pixel_rate;
3358         uint64_t downscale_amount;
3359         uint64_t pixel_rate;
3360
3361         /* Shouldn't reach here on disabled planes... */
3362         if (WARN_ON(!pstate->visible))
3363                 return 0;
3364
3365         /*
3366          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3367          * with additional adjustments for plane-specific scaling.
3368          */
3369         adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3370         downscale_amount = skl_plane_downscale_amount(pstate);
3371
3372         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3373         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3374
3375         return pixel_rate;
3376 }
3377
3378 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3379                                 struct intel_crtc_state *cstate,
3380                                 struct intel_plane_state *intel_pstate,
3381                                 uint16_t ddb_allocation,
3382                                 int level,
3383                                 uint16_t *out_blocks, /* out */
3384                                 uint8_t *out_lines, /* out */
3385                                 bool *enabled /* out */)
3386 {
3387         struct drm_plane_state *pstate = &intel_pstate->base;
3388         struct drm_framebuffer *fb = pstate->fb;
3389         uint32_t latency = dev_priv->wm.skl_latency[level];
3390         uint32_t method1, method2;
3391         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3392         uint32_t res_blocks, res_lines;
3393         uint32_t selected_result;
3394         uint8_t cpp;
3395         uint32_t width = 0, height = 0;
3396         uint32_t plane_pixel_rate;
3397
3398         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3399                 *enabled = false;
3400                 return 0;
3401         }
3402
3403         width = drm_rect_width(&intel_pstate->src) >> 16;
3404         height = drm_rect_height(&intel_pstate->src) >> 16;
3405
3406         if (intel_rotation_90_or_270(pstate->rotation))
3407                 swap(width, height);
3408
3409         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3410         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3411
3412         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3413         method2 = skl_wm_method2(plane_pixel_rate,
3414                                  cstate->base.adjusted_mode.crtc_htotal,
3415                                  width,
3416                                  cpp,
3417                                  fb->modifier[0],
3418                                  latency);
3419
3420         plane_bytes_per_line = width * cpp;
3421         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3422
3423         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3424             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3425                 uint32_t min_scanlines = 4;
3426                 uint32_t y_tile_minimum;
3427                 if (intel_rotation_90_or_270(pstate->rotation)) {
3428                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3429                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3430                                 drm_format_plane_cpp(fb->pixel_format, 0);
3431
3432                         switch (cpp) {
3433                         case 1:
3434                                 min_scanlines = 16;
3435                                 break;
3436                         case 2:
3437                                 min_scanlines = 8;
3438                                 break;
3439                         case 8:
3440                                 WARN(1, "Unsupported pixel depth for rotation");
3441                         }
3442                 }
3443                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3444                 selected_result = max(method2, y_tile_minimum);
3445         } else {
3446                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3447                         selected_result = min(method1, method2);
3448                 else
3449                         selected_result = method1;
3450         }
3451
3452         res_blocks = selected_result + 1;
3453         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3454
3455         if (level >= 1 && level <= 7) {
3456                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3457                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3458                         res_lines += 4;
3459                 else
3460                         res_blocks++;
3461         }
3462
3463         if (res_blocks >= ddb_allocation || res_lines > 31) {
3464                 *enabled = false;
3465
3466                 /*
3467                  * If there are no valid level 0 watermarks, then we can't
3468                  * support this display configuration.
3469                  */
3470                 if (level) {
3471                         return 0;
3472                 } else {
3473                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3474                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3475                                       to_intel_crtc(cstate->base.crtc)->pipe,
3476                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3477                                       res_blocks, ddb_allocation, res_lines);
3478
3479                         return -EINVAL;
3480                 }
3481         }
3482
3483         *out_blocks = res_blocks;
3484         *out_lines = res_lines;
3485         *enabled = true;
3486
3487         return 0;
3488 }
3489
3490 static int
3491 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3492                      struct skl_ddb_allocation *ddb,
3493                      struct intel_crtc_state *cstate,
3494                      int level,
3495                      struct skl_wm_level *result)
3496 {
3497         struct drm_device *dev = dev_priv->dev;
3498         struct drm_atomic_state *state = cstate->base.state;
3499         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3500         struct drm_plane *plane;
3501         struct intel_plane *intel_plane;
3502         struct intel_plane_state *intel_pstate;
3503         uint16_t ddb_blocks;
3504         enum pipe pipe = intel_crtc->pipe;
3505         int ret;
3506
3507         /*
3508          * We'll only calculate watermarks for planes that are actually
3509          * enabled, so make sure all other planes are set as disabled.
3510          */
3511         memset(result, 0, sizeof(*result));
3512
3513         for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3514                 int i = skl_wm_plane_id(intel_plane);
3515
3516                 plane = &intel_plane->base;
3517                 intel_pstate = NULL;
3518                 if (state)
3519                         intel_pstate =
3520                                 intel_atomic_get_existing_plane_state(state,
3521                                                                       intel_plane);
3522
3523                 /*
3524                  * Note: If we start supporting multiple pending atomic commits
3525                  * against the same planes/CRTC's in the future, plane->state
3526                  * will no longer be the correct pre-state to use for the
3527                  * calculations here and we'll need to change where we get the
3528                  * 'unchanged' plane data from.
3529                  *
3530                  * For now this is fine because we only allow one queued commit
3531                  * against a CRTC.  Even if the plane isn't modified by this
3532                  * transaction and we don't have a plane lock, we still have
3533                  * the CRTC's lock, so we know that no other transactions are
3534                  * racing with us to update it.
3535                  */
3536                 if (!intel_pstate)
3537                         intel_pstate = to_intel_plane_state(plane->state);
3538
3539                 WARN_ON(!intel_pstate->base.fb);
3540
3541                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3542
3543                 ret = skl_compute_plane_wm(dev_priv,
3544                                            cstate,
3545                                            intel_pstate,
3546                                            ddb_blocks,
3547                                            level,
3548                                            &result->plane_res_b[i],
3549                                            &result->plane_res_l[i],
3550                                            &result->plane_en[i]);
3551                 if (ret)
3552                         return ret;
3553         }
3554
3555         return 0;
3556 }
3557
3558 static uint32_t
3559 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3560 {
3561         if (!cstate->base.active)
3562                 return 0;
3563
3564         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3565                 return 0;
3566
3567         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3568                             skl_pipe_pixel_rate(cstate));
3569 }
3570
3571 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3572                                       struct skl_wm_level *trans_wm /* out */)
3573 {
3574         struct drm_crtc *crtc = cstate->base.crtc;
3575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3576         struct intel_plane *intel_plane;
3577
3578         if (!cstate->base.active)
3579                 return;
3580
3581         /* Until we know more, just disable transition WMs */
3582         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3583                 int i = skl_wm_plane_id(intel_plane);
3584
3585                 trans_wm->plane_en[i] = false;
3586         }
3587 }
3588
3589 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3590                              struct skl_ddb_allocation *ddb,
3591                              struct skl_pipe_wm *pipe_wm)
3592 {
3593         struct drm_device *dev = cstate->base.crtc->dev;
3594         const struct drm_i915_private *dev_priv = dev->dev_private;
3595         int level, max_level = ilk_wm_max_level(dev);
3596         int ret;
3597
3598         for (level = 0; level <= max_level; level++) {
3599                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3600                                            level, &pipe_wm->wm[level]);
3601                 if (ret)
3602                         return ret;
3603         }
3604         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3605
3606         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3607
3608         return 0;
3609 }
3610
3611 static void skl_compute_wm_results(struct drm_device *dev,
3612                                    struct skl_pipe_wm *p_wm,
3613                                    struct skl_wm_values *r,
3614                                    struct intel_crtc *intel_crtc)
3615 {
3616         int level, max_level = ilk_wm_max_level(dev);
3617         enum pipe pipe = intel_crtc->pipe;
3618         uint32_t temp;
3619         int i;
3620
3621         for (level = 0; level <= max_level; level++) {
3622                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3623                         temp = 0;
3624
3625                         temp |= p_wm->wm[level].plane_res_l[i] <<
3626                                         PLANE_WM_LINES_SHIFT;
3627                         temp |= p_wm->wm[level].plane_res_b[i];
3628                         if (p_wm->wm[level].plane_en[i])
3629                                 temp |= PLANE_WM_EN;
3630
3631                         r->plane[pipe][i][level] = temp;
3632                 }
3633
3634                 temp = 0;
3635
3636                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3637                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3638
3639                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3640                         temp |= PLANE_WM_EN;
3641
3642                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3643
3644         }
3645
3646         /* transition WMs */
3647         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3648                 temp = 0;
3649                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3650                 temp |= p_wm->trans_wm.plane_res_b[i];
3651                 if (p_wm->trans_wm.plane_en[i])
3652                         temp |= PLANE_WM_EN;
3653
3654                 r->plane_trans[pipe][i] = temp;
3655         }
3656
3657         temp = 0;
3658         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3659         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3660         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3661                 temp |= PLANE_WM_EN;
3662
3663         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3664
3665         r->wm_linetime[pipe] = p_wm->linetime;
3666 }
3667
3668 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3669                                 i915_reg_t reg,
3670                                 const struct skl_ddb_entry *entry)
3671 {
3672         if (entry->end)
3673                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3674         else
3675                 I915_WRITE(reg, 0);
3676 }
3677
3678 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3679                                 const struct skl_wm_values *new)
3680 {
3681         struct drm_device *dev = dev_priv->dev;
3682         struct intel_crtc *crtc;
3683
3684         for_each_intel_crtc(dev, crtc) {
3685                 int i, level, max_level = ilk_wm_max_level(dev);
3686                 enum pipe pipe = crtc->pipe;
3687
3688                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3689                         continue;
3690                 if (!crtc->active)
3691                         continue;
3692
3693                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3694
3695                 for (level = 0; level <= max_level; level++) {
3696                         for (i = 0; i < intel_num_planes(crtc); i++)
3697                                 I915_WRITE(PLANE_WM(pipe, i, level),
3698                                            new->plane[pipe][i][level]);
3699                         I915_WRITE(CUR_WM(pipe, level),
3700                                    new->plane[pipe][PLANE_CURSOR][level]);
3701                 }
3702                 for (i = 0; i < intel_num_planes(crtc); i++)
3703                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3704                                    new->plane_trans[pipe][i]);
3705                 I915_WRITE(CUR_WM_TRANS(pipe),
3706                            new->plane_trans[pipe][PLANE_CURSOR]);
3707
3708                 for (i = 0; i < intel_num_planes(crtc); i++) {
3709                         skl_ddb_entry_write(dev_priv,
3710                                             PLANE_BUF_CFG(pipe, i),
3711                                             &new->ddb.plane[pipe][i]);
3712                         skl_ddb_entry_write(dev_priv,
3713                                             PLANE_NV12_BUF_CFG(pipe, i),
3714                                             &new->ddb.y_plane[pipe][i]);
3715                 }
3716
3717                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3718                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3719         }
3720 }
3721
3722 /*
3723  * When setting up a new DDB allocation arrangement, we need to correctly
3724  * sequence the times at which the new allocations for the pipes are taken into
3725  * account or we'll have pipes fetching from space previously allocated to
3726  * another pipe.
3727  *
3728  * Roughly the sequence looks like:
3729  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3730  *     overlapping with a previous light-up pipe (another way to put it is:
3731  *     pipes with their new allocation strickly included into their old ones).
3732  *  2. re-allocate the other pipes that get their allocation reduced
3733  *  3. allocate the pipes having their allocation increased
3734  *
3735  * Steps 1. and 2. are here to take care of the following case:
3736  * - Initially DDB looks like this:
3737  *     |   B    |   C    |
3738  * - enable pipe A.
3739  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3740  *   allocation
3741  *     |  A  |  B  |  C  |
3742  *
3743  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3744  */
3745
3746 static void
3747 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3748 {
3749         int plane;
3750
3751         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3752
3753         for_each_plane(dev_priv, pipe, plane) {
3754                 I915_WRITE(PLANE_SURF(pipe, plane),
3755                            I915_READ(PLANE_SURF(pipe, plane)));
3756         }
3757         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3758 }
3759
3760 static bool
3761 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3762                             const struct skl_ddb_allocation *new,
3763                             enum pipe pipe)
3764 {
3765         uint16_t old_size, new_size;
3766
3767         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3768         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3769
3770         return old_size != new_size &&
3771                new->pipe[pipe].start >= old->pipe[pipe].start &&
3772                new->pipe[pipe].end <= old->pipe[pipe].end;
3773 }
3774
3775 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3776                                 struct skl_wm_values *new_values)
3777 {
3778         struct drm_device *dev = dev_priv->dev;
3779         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3780         bool reallocated[I915_MAX_PIPES] = {};
3781         struct intel_crtc *crtc;
3782         enum pipe pipe;
3783
3784         new_ddb = &new_values->ddb;
3785         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3786
3787         /*
3788          * First pass: flush the pipes with the new allocation contained into
3789          * the old space.
3790          *
3791          * We'll wait for the vblank on those pipes to ensure we can safely
3792          * re-allocate the freed space without this pipe fetching from it.
3793          */
3794         for_each_intel_crtc(dev, crtc) {
3795                 if (!crtc->active)
3796                         continue;
3797
3798                 pipe = crtc->pipe;
3799
3800                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3801                         continue;
3802
3803                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3804                 intel_wait_for_vblank(dev, pipe);
3805
3806                 reallocated[pipe] = true;
3807         }
3808
3809
3810         /*
3811          * Second pass: flush the pipes that are having their allocation
3812          * reduced, but overlapping with a previous allocation.
3813          *
3814          * Here as well we need to wait for the vblank to make sure the freed
3815          * space is not used anymore.
3816          */
3817         for_each_intel_crtc(dev, crtc) {
3818                 if (!crtc->active)
3819                         continue;
3820
3821                 pipe = crtc->pipe;
3822
3823                 if (reallocated[pipe])
3824                         continue;
3825
3826                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3827                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3828                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3829                         intel_wait_for_vblank(dev, pipe);
3830                         reallocated[pipe] = true;
3831                 }
3832         }
3833
3834         /*
3835          * Third pass: flush the pipes that got more space allocated.
3836          *
3837          * We don't need to actively wait for the update here, next vblank
3838          * will just get more DDB space with the correct WM values.
3839          */
3840         for_each_intel_crtc(dev, crtc) {
3841                 if (!crtc->active)
3842                         continue;
3843
3844                 pipe = crtc->pipe;
3845
3846                 /*
3847                  * At this point, only the pipes more space than before are
3848                  * left to re-allocate.
3849                  */
3850                 if (reallocated[pipe])
3851                         continue;
3852
3853                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3854         }
3855 }
3856
3857 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3858                               struct skl_ddb_allocation *ddb, /* out */
3859                               struct skl_pipe_wm *pipe_wm, /* out */
3860                               bool *changed /* out */)
3861 {
3862         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3863         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3864         int ret;
3865
3866         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3867         if (ret)
3868                 return ret;
3869
3870         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3871                 *changed = false;
3872         else
3873                 *changed = true;
3874
3875         return 0;
3876 }
3877
3878 static int
3879 skl_compute_ddb(struct drm_atomic_state *state)
3880 {
3881         struct drm_device *dev = state->dev;
3882         struct drm_i915_private *dev_priv = to_i915(dev);
3883         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3884         struct intel_crtc *intel_crtc;
3885         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3886         unsigned realloc_pipes = dev_priv->active_crtcs;
3887         int ret;
3888
3889         /*
3890          * If this is our first atomic update following hardware readout,
3891          * we can't trust the DDB that the BIOS programmed for us.  Let's
3892          * pretend that all pipes switched active status so that we'll
3893          * ensure a full DDB recompute.
3894          */
3895         if (dev_priv->wm.distrust_bios_wm)
3896                 intel_state->active_pipe_changes = ~0;
3897
3898         /*
3899          * If the modeset changes which CRTC's are active, we need to
3900          * recompute the DDB allocation for *all* active pipes, even
3901          * those that weren't otherwise being modified in any way by this
3902          * atomic commit.  Due to the shrinking of the per-pipe allocations
3903          * when new active CRTC's are added, it's possible for a pipe that
3904          * we were already using and aren't changing at all here to suddenly
3905          * become invalid if its DDB needs exceeds its new allocation.
3906          *
3907          * Note that if we wind up doing a full DDB recompute, we can't let
3908          * any other display updates race with this transaction, so we need
3909          * to grab the lock on *all* CRTC's.
3910          */
3911         if (intel_state->active_pipe_changes) {
3912                 realloc_pipes = ~0;
3913                 intel_state->wm_results.dirty_pipes = ~0;
3914         }
3915
3916         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3917                 struct intel_crtc_state *cstate;
3918
3919                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3920                 if (IS_ERR(cstate))
3921                         return PTR_ERR(cstate);
3922
3923                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3924                 if (ret)
3925                         return ret;
3926         }
3927
3928         return 0;
3929 }
3930
3931 static int
3932 skl_compute_wm(struct drm_atomic_state *state)
3933 {
3934         struct drm_crtc *crtc;
3935         struct drm_crtc_state *cstate;
3936         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3937         struct skl_wm_values *results = &intel_state->wm_results;
3938         struct skl_pipe_wm *pipe_wm;
3939         bool changed = false;
3940         int ret, i;
3941
3942         /*
3943          * If this transaction isn't actually touching any CRTC's, don't
3944          * bother with watermark calculation.  Note that if we pass this
3945          * test, we're guaranteed to hold at least one CRTC state mutex,
3946          * which means we can safely use values like dev_priv->active_crtcs
3947          * since any racing commits that want to update them would need to
3948          * hold _all_ CRTC state mutexes.
3949          */
3950         for_each_crtc_in_state(state, crtc, cstate, i)
3951                 changed = true;
3952         if (!changed)
3953                 return 0;
3954
3955         /* Clear all dirty flags */
3956         results->dirty_pipes = 0;
3957
3958         ret = skl_compute_ddb(state);
3959         if (ret)
3960                 return ret;
3961
3962         /*
3963          * Calculate WM's for all pipes that are part of this transaction.
3964          * Note that the DDB allocation above may have added more CRTC's that
3965          * weren't otherwise being modified (and set bits in dirty_pipes) if
3966          * pipe allocations had to change.
3967          *
3968          * FIXME:  Now that we're doing this in the atomic check phase, we
3969          * should allow skl_update_pipe_wm() to return failure in cases where
3970          * no suitable watermark values can be found.
3971          */
3972         for_each_crtc_in_state(state, crtc, cstate, i) {
3973                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3974                 struct intel_crtc_state *intel_cstate =
3975                         to_intel_crtc_state(cstate);
3976
3977                 pipe_wm = &intel_cstate->wm.skl.optimal;
3978                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3979                                          &changed);
3980                 if (ret)
3981                         return ret;
3982
3983                 if (changed)
3984                         results->dirty_pipes |= drm_crtc_mask(crtc);
3985
3986                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3987                         /* This pipe's WM's did not change */
3988                         continue;
3989
3990                 intel_cstate->update_wm_pre = true;
3991                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
3992         }
3993
3994         return 0;
3995 }
3996
3997 static void skl_update_wm(struct drm_crtc *crtc)
3998 {
3999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4000         struct drm_device *dev = crtc->dev;
4001         struct drm_i915_private *dev_priv = dev->dev_private;
4002         struct skl_wm_values *results = &dev_priv->wm.skl_results;
4003         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4004         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4005
4006         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4007                 return;
4008
4009         intel_crtc->wm.active.skl = *pipe_wm;
4010
4011         mutex_lock(&dev_priv->wm.wm_mutex);
4012
4013         skl_write_wm_values(dev_priv, results);
4014         skl_flush_wm_values(dev_priv, results);
4015
4016         /* store the new configuration */
4017         dev_priv->wm.skl_hw = *results;
4018
4019         mutex_unlock(&dev_priv->wm.wm_mutex);
4020 }
4021
4022 static void ilk_compute_wm_config(struct drm_device *dev,
4023                                   struct intel_wm_config *config)
4024 {
4025         struct intel_crtc *crtc;
4026
4027         /* Compute the currently _active_ config */
4028         for_each_intel_crtc(dev, crtc) {
4029                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4030
4031                 if (!wm->pipe_enabled)
4032                         continue;
4033
4034                 config->sprites_enabled |= wm->sprites_enabled;
4035                 config->sprites_scaled |= wm->sprites_scaled;
4036                 config->num_pipes_active++;
4037         }
4038 }
4039
4040 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4041 {
4042         struct drm_device *dev = dev_priv->dev;
4043         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4044         struct ilk_wm_maximums max;
4045         struct intel_wm_config config = {};
4046         struct ilk_wm_values results = {};
4047         enum intel_ddb_partitioning partitioning;
4048
4049         ilk_compute_wm_config(dev, &config);
4050
4051         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4052         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4053
4054         /* 5/6 split only in single pipe config on IVB+ */
4055         if (INTEL_INFO(dev)->gen >= 7 &&
4056             config.num_pipes_active == 1 && config.sprites_enabled) {
4057                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4058                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4059
4060                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4061         } else {
4062                 best_lp_wm = &lp_wm_1_2;
4063         }
4064
4065         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4066                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4067
4068         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4069
4070         ilk_write_wm_values(dev_priv, &results);
4071 }
4072
4073 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4074 {
4075         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4076         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4077
4078         mutex_lock(&dev_priv->wm.wm_mutex);
4079         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4080         ilk_program_watermarks(dev_priv);
4081         mutex_unlock(&dev_priv->wm.wm_mutex);
4082 }
4083
4084 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4085 {
4086         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4087         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4088
4089         mutex_lock(&dev_priv->wm.wm_mutex);
4090         if (cstate->wm.need_postvbl_update) {
4091                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4092                 ilk_program_watermarks(dev_priv);
4093         }
4094         mutex_unlock(&dev_priv->wm.wm_mutex);
4095 }
4096
4097 static void skl_pipe_wm_active_state(uint32_t val,
4098                                      struct skl_pipe_wm *active,
4099                                      bool is_transwm,
4100                                      bool is_cursor,
4101                                      int i,
4102                                      int level)
4103 {
4104         bool is_enabled = (val & PLANE_WM_EN) != 0;
4105
4106         if (!is_transwm) {
4107                 if (!is_cursor) {
4108                         active->wm[level].plane_en[i] = is_enabled;
4109                         active->wm[level].plane_res_b[i] =
4110                                         val & PLANE_WM_BLOCKS_MASK;
4111                         active->wm[level].plane_res_l[i] =
4112                                         (val >> PLANE_WM_LINES_SHIFT) &
4113                                                 PLANE_WM_LINES_MASK;
4114                 } else {
4115                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4116                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4117                                         val & PLANE_WM_BLOCKS_MASK;
4118                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4119                                         (val >> PLANE_WM_LINES_SHIFT) &
4120                                                 PLANE_WM_LINES_MASK;
4121                 }
4122         } else {
4123                 if (!is_cursor) {
4124                         active->trans_wm.plane_en[i] = is_enabled;
4125                         active->trans_wm.plane_res_b[i] =
4126                                         val & PLANE_WM_BLOCKS_MASK;
4127                         active->trans_wm.plane_res_l[i] =
4128                                         (val >> PLANE_WM_LINES_SHIFT) &
4129                                                 PLANE_WM_LINES_MASK;
4130                 } else {
4131                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4132                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4133                                         val & PLANE_WM_BLOCKS_MASK;
4134                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4135                                         (val >> PLANE_WM_LINES_SHIFT) &
4136                                                 PLANE_WM_LINES_MASK;
4137                 }
4138         }
4139 }
4140
4141 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4142 {
4143         struct drm_device *dev = crtc->dev;
4144         struct drm_i915_private *dev_priv = dev->dev_private;
4145         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4147         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4148         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4149         enum pipe pipe = intel_crtc->pipe;
4150         int level, i, max_level;
4151         uint32_t temp;
4152
4153         max_level = ilk_wm_max_level(dev);
4154
4155         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4156
4157         for (level = 0; level <= max_level; level++) {
4158                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4159                         hw->plane[pipe][i][level] =
4160                                         I915_READ(PLANE_WM(pipe, i, level));
4161                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4162         }
4163
4164         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4165                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4166         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4167
4168         if (!intel_crtc->active)
4169                 return;
4170
4171         hw->dirty_pipes |= drm_crtc_mask(crtc);
4172
4173         active->linetime = hw->wm_linetime[pipe];
4174
4175         for (level = 0; level <= max_level; level++) {
4176                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4177                         temp = hw->plane[pipe][i][level];
4178                         skl_pipe_wm_active_state(temp, active, false,
4179                                                 false, i, level);
4180                 }
4181                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4182                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4183         }
4184
4185         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4186                 temp = hw->plane_trans[pipe][i];
4187                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4188         }
4189
4190         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4191         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4192
4193         intel_crtc->wm.active.skl = *active;
4194 }
4195
4196 void skl_wm_get_hw_state(struct drm_device *dev)
4197 {
4198         struct drm_i915_private *dev_priv = dev->dev_private;
4199         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4200         struct drm_crtc *crtc;
4201
4202         skl_ddb_get_hw_state(dev_priv, ddb);
4203         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4204                 skl_pipe_wm_get_hw_state(crtc);
4205
4206         if (dev_priv->active_crtcs) {
4207                 /* Fully recompute DDB on first atomic commit */
4208                 dev_priv->wm.distrust_bios_wm = true;
4209         } else {
4210                 /* Easy/common case; just sanitize DDB now if everything off */
4211                 memset(ddb, 0, sizeof(*ddb));
4212         }
4213 }
4214
4215 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4216 {
4217         struct drm_device *dev = crtc->dev;
4218         struct drm_i915_private *dev_priv = dev->dev_private;
4219         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4221         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4222         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4223         enum pipe pipe = intel_crtc->pipe;
4224         static const i915_reg_t wm0_pipe_reg[] = {
4225                 [PIPE_A] = WM0_PIPEA_ILK,
4226                 [PIPE_B] = WM0_PIPEB_ILK,
4227                 [PIPE_C] = WM0_PIPEC_IVB,
4228         };
4229
4230         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4231         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4232                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4233
4234         memset(active, 0, sizeof(*active));
4235
4236         active->pipe_enabled = intel_crtc->active;
4237
4238         if (active->pipe_enabled) {
4239                 u32 tmp = hw->wm_pipe[pipe];
4240
4241                 /*
4242                  * For active pipes LP0 watermark is marked as
4243                  * enabled, and LP1+ watermaks as disabled since
4244                  * we can't really reverse compute them in case
4245                  * multiple pipes are active.
4246                  */
4247                 active->wm[0].enable = true;
4248                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4249                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4250                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4251                 active->linetime = hw->wm_linetime[pipe];
4252         } else {
4253                 int level, max_level = ilk_wm_max_level(dev);
4254
4255                 /*
4256                  * For inactive pipes, all watermark levels
4257                  * should be marked as enabled but zeroed,
4258                  * which is what we'd compute them to.
4259                  */
4260                 for (level = 0; level <= max_level; level++)
4261                         active->wm[level].enable = true;
4262         }
4263
4264         intel_crtc->wm.active.ilk = *active;
4265 }
4266
4267 #define _FW_WM(value, plane) \
4268         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4269 #define _FW_WM_VLV(value, plane) \
4270         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4271
4272 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4273                                struct vlv_wm_values *wm)
4274 {
4275         enum pipe pipe;
4276         uint32_t tmp;
4277
4278         for_each_pipe(dev_priv, pipe) {
4279                 tmp = I915_READ(VLV_DDL(pipe));
4280
4281                 wm->ddl[pipe].primary =
4282                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4283                 wm->ddl[pipe].cursor =
4284                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4285                 wm->ddl[pipe].sprite[0] =
4286                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4287                 wm->ddl[pipe].sprite[1] =
4288                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4289         }
4290
4291         tmp = I915_READ(DSPFW1);
4292         wm->sr.plane = _FW_WM(tmp, SR);
4293         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4294         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4295         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4296
4297         tmp = I915_READ(DSPFW2);
4298         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4299         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4300         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4301
4302         tmp = I915_READ(DSPFW3);
4303         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4304
4305         if (IS_CHERRYVIEW(dev_priv)) {
4306                 tmp = I915_READ(DSPFW7_CHV);
4307                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4308                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4309
4310                 tmp = I915_READ(DSPFW8_CHV);
4311                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4312                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4313
4314                 tmp = I915_READ(DSPFW9_CHV);
4315                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4316                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4317
4318                 tmp = I915_READ(DSPHOWM);
4319                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4320                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4321                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4322                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4323                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4324                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4325                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4326                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4327                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4328                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4329         } else {
4330                 tmp = I915_READ(DSPFW7);
4331                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4332                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4333
4334                 tmp = I915_READ(DSPHOWM);
4335                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4336                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4337                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4338                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4339                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4340                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4341                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4342         }
4343 }
4344
4345 #undef _FW_WM
4346 #undef _FW_WM_VLV
4347
4348 void vlv_wm_get_hw_state(struct drm_device *dev)
4349 {
4350         struct drm_i915_private *dev_priv = to_i915(dev);
4351         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4352         struct intel_plane *plane;
4353         enum pipe pipe;
4354         u32 val;
4355
4356         vlv_read_wm_values(dev_priv, wm);
4357
4358         for_each_intel_plane(dev, plane) {
4359                 switch (plane->base.type) {
4360                         int sprite;
4361                 case DRM_PLANE_TYPE_CURSOR:
4362                         plane->wm.fifo_size = 63;
4363                         break;
4364                 case DRM_PLANE_TYPE_PRIMARY:
4365                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4366                         break;
4367                 case DRM_PLANE_TYPE_OVERLAY:
4368                         sprite = plane->plane;
4369                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4370                         break;
4371                 }
4372         }
4373
4374         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4375         wm->level = VLV_WM_LEVEL_PM2;
4376
4377         if (IS_CHERRYVIEW(dev_priv)) {
4378                 mutex_lock(&dev_priv->rps.hw_lock);
4379
4380                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4381                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4382                         wm->level = VLV_WM_LEVEL_PM5;
4383
4384                 /*
4385                  * If DDR DVFS is disabled in the BIOS, Punit
4386                  * will never ack the request. So if that happens
4387                  * assume we don't have to enable/disable DDR DVFS
4388                  * dynamically. To test that just set the REQ_ACK
4389                  * bit to poke the Punit, but don't change the
4390                  * HIGH/LOW bits so that we don't actually change
4391                  * the current state.
4392                  */
4393                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4394                 val |= FORCE_DDR_FREQ_REQ_ACK;
4395                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4396
4397                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4398                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4399                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4400                                       "assuming DDR DVFS is disabled\n");
4401                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4402                 } else {
4403                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4404                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4405                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4406                 }
4407
4408                 mutex_unlock(&dev_priv->rps.hw_lock);
4409         }
4410
4411         for_each_pipe(dev_priv, pipe)
4412                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4413                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4414                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4415
4416         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4417                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4418 }
4419
4420 void ilk_wm_get_hw_state(struct drm_device *dev)
4421 {
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4424         struct drm_crtc *crtc;
4425
4426         for_each_crtc(dev, crtc)
4427                 ilk_pipe_wm_get_hw_state(crtc);
4428
4429         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4430         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4431         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4432
4433         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4434         if (INTEL_INFO(dev)->gen >= 7) {
4435                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4436                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4437         }
4438
4439         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4440                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4441                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4442         else if (IS_IVYBRIDGE(dev))
4443                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4444                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4445
4446         hw->enable_fbc_wm =
4447                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4448 }
4449
4450 /**
4451  * intel_update_watermarks - update FIFO watermark values based on current modes
4452  *
4453  * Calculate watermark values for the various WM regs based on current mode
4454  * and plane configuration.
4455  *
4456  * There are several cases to deal with here:
4457  *   - normal (i.e. non-self-refresh)
4458  *   - self-refresh (SR) mode
4459  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4460  *   - lines are small relative to FIFO size (buffer can hold more than 2
4461  *     lines), so need to account for TLB latency
4462  *
4463  *   The normal calculation is:
4464  *     watermark = dotclock * bytes per pixel * latency
4465  *   where latency is platform & configuration dependent (we assume pessimal
4466  *   values here).
4467  *
4468  *   The SR calculation is:
4469  *     watermark = (trunc(latency/line time)+1) * surface width *
4470  *       bytes per pixel
4471  *   where
4472  *     line time = htotal / dotclock
4473  *     surface width = hdisplay for normal plane and 64 for cursor
4474  *   and latency is assumed to be high, as above.
4475  *
4476  * The final value programmed to the register should always be rounded up,
4477  * and include an extra 2 entries to account for clock crossings.
4478  *
4479  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4480  * to set the non-SR watermarks to 8.
4481  */
4482 void intel_update_watermarks(struct drm_crtc *crtc)
4483 {
4484         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4485
4486         if (dev_priv->display.update_wm)
4487                 dev_priv->display.update_wm(crtc);
4488 }
4489
4490 /*
4491  * Lock protecting IPS related data structures
4492  */
4493 DEFINE_SPINLOCK(mchdev_lock);
4494
4495 /* Global for IPS driver to get at the current i915 device. Protected by
4496  * mchdev_lock. */
4497 static struct drm_i915_private *i915_mch_dev;
4498
4499 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4500 {
4501         u16 rgvswctl;
4502
4503         assert_spin_locked(&mchdev_lock);
4504
4505         rgvswctl = I915_READ16(MEMSWCTL);
4506         if (rgvswctl & MEMCTL_CMD_STS) {
4507                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4508                 return false; /* still busy with another command */
4509         }
4510
4511         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4512                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4513         I915_WRITE16(MEMSWCTL, rgvswctl);
4514         POSTING_READ16(MEMSWCTL);
4515
4516         rgvswctl |= MEMCTL_CMD_STS;
4517         I915_WRITE16(MEMSWCTL, rgvswctl);
4518
4519         return true;
4520 }
4521
4522 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4523 {
4524         u32 rgvmodectl;
4525         u8 fmax, fmin, fstart, vstart;
4526
4527         spin_lock_irq(&mchdev_lock);
4528
4529         rgvmodectl = I915_READ(MEMMODECTL);
4530
4531         /* Enable temp reporting */
4532         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4533         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4534
4535         /* 100ms RC evaluation intervals */
4536         I915_WRITE(RCUPEI, 100000);
4537         I915_WRITE(RCDNEI, 100000);
4538
4539         /* Set max/min thresholds to 90ms and 80ms respectively */
4540         I915_WRITE(RCBMAXAVG, 90000);
4541         I915_WRITE(RCBMINAVG, 80000);
4542
4543         I915_WRITE(MEMIHYST, 1);
4544
4545         /* Set up min, max, and cur for interrupt handling */
4546         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4547         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4548         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4549                 MEMMODE_FSTART_SHIFT;
4550
4551         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4552                 PXVFREQ_PX_SHIFT;
4553
4554         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4555         dev_priv->ips.fstart = fstart;
4556
4557         dev_priv->ips.max_delay = fstart;
4558         dev_priv->ips.min_delay = fmin;
4559         dev_priv->ips.cur_delay = fstart;
4560
4561         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4562                          fmax, fmin, fstart);
4563
4564         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4565
4566         /*
4567          * Interrupts will be enabled in ironlake_irq_postinstall
4568          */
4569
4570         I915_WRITE(VIDSTART, vstart);
4571         POSTING_READ(VIDSTART);
4572
4573         rgvmodectl |= MEMMODE_SWMODE_EN;
4574         I915_WRITE(MEMMODECTL, rgvmodectl);
4575
4576         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4577                 DRM_ERROR("stuck trying to change perf mode\n");
4578         mdelay(1);
4579
4580         ironlake_set_drps(dev_priv, fstart);
4581
4582         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4583                 I915_READ(DDREC) + I915_READ(CSIEC);
4584         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4585         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4586         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4587
4588         spin_unlock_irq(&mchdev_lock);
4589 }
4590
4591 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4592 {
4593         u16 rgvswctl;
4594
4595         spin_lock_irq(&mchdev_lock);
4596
4597         rgvswctl = I915_READ16(MEMSWCTL);
4598
4599         /* Ack interrupts, disable EFC interrupt */
4600         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4601         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4602         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4603         I915_WRITE(DEIIR, DE_PCU_EVENT);
4604         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4605
4606         /* Go back to the starting frequency */
4607         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4608         mdelay(1);
4609         rgvswctl |= MEMCTL_CMD_STS;
4610         I915_WRITE(MEMSWCTL, rgvswctl);
4611         mdelay(1);
4612
4613         spin_unlock_irq(&mchdev_lock);
4614 }
4615
4616 /* There's a funny hw issue where the hw returns all 0 when reading from
4617  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4618  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4619  * all limits and the gpu stuck at whatever frequency it is at atm).
4620  */
4621 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4622 {
4623         u32 limits;
4624
4625         /* Only set the down limit when we've reached the lowest level to avoid
4626          * getting more interrupts, otherwise leave this clear. This prevents a
4627          * race in the hw when coming out of rc6: There's a tiny window where
4628          * the hw runs at the minimal clock before selecting the desired
4629          * frequency, if the down threshold expires in that window we will not
4630          * receive a down interrupt. */
4631         if (IS_GEN9(dev_priv)) {
4632                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4633                 if (val <= dev_priv->rps.min_freq_softlimit)
4634                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4635         } else {
4636                 limits = dev_priv->rps.max_freq_softlimit << 24;
4637                 if (val <= dev_priv->rps.min_freq_softlimit)
4638                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4639         }
4640
4641         return limits;
4642 }
4643
4644 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4645 {
4646         int new_power;
4647         u32 threshold_up = 0, threshold_down = 0; /* in % */
4648         u32 ei_up = 0, ei_down = 0;
4649
4650         new_power = dev_priv->rps.power;
4651         switch (dev_priv->rps.power) {
4652         case LOW_POWER:
4653                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4654                         new_power = BETWEEN;
4655                 break;
4656
4657         case BETWEEN:
4658                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4659                         new_power = LOW_POWER;
4660                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4661                         new_power = HIGH_POWER;
4662                 break;
4663
4664         case HIGH_POWER:
4665                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4666                         new_power = BETWEEN;
4667                 break;
4668         }
4669         /* Max/min bins are special */
4670         if (val <= dev_priv->rps.min_freq_softlimit)
4671                 new_power = LOW_POWER;
4672         if (val >= dev_priv->rps.max_freq_softlimit)
4673                 new_power = HIGH_POWER;
4674         if (new_power == dev_priv->rps.power)
4675                 return;
4676
4677         /* Note the units here are not exactly 1us, but 1280ns. */
4678         switch (new_power) {
4679         case LOW_POWER:
4680                 /* Upclock if more than 95% busy over 16ms */
4681                 ei_up = 16000;
4682                 threshold_up = 95;
4683
4684                 /* Downclock if less than 85% busy over 32ms */
4685                 ei_down = 32000;
4686                 threshold_down = 85;
4687                 break;
4688
4689         case BETWEEN:
4690                 /* Upclock if more than 90% busy over 13ms */
4691                 ei_up = 13000;
4692                 threshold_up = 90;
4693
4694                 /* Downclock if less than 75% busy over 32ms */
4695                 ei_down = 32000;
4696                 threshold_down = 75;
4697                 break;
4698
4699         case HIGH_POWER:
4700                 /* Upclock if more than 85% busy over 10ms */
4701                 ei_up = 10000;
4702                 threshold_up = 85;
4703
4704                 /* Downclock if less than 60% busy over 32ms */
4705                 ei_down = 32000;
4706                 threshold_down = 60;
4707                 break;
4708         }
4709
4710         I915_WRITE(GEN6_RP_UP_EI,
4711                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4712         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4713                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4714
4715         I915_WRITE(GEN6_RP_DOWN_EI,
4716                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4717         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4718                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4719
4720          I915_WRITE(GEN6_RP_CONTROL,
4721                     GEN6_RP_MEDIA_TURBO |
4722                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4723                     GEN6_RP_MEDIA_IS_GFX |
4724                     GEN6_RP_ENABLE |
4725                     GEN6_RP_UP_BUSY_AVG |
4726                     GEN6_RP_DOWN_IDLE_AVG);
4727
4728         dev_priv->rps.power = new_power;
4729         dev_priv->rps.up_threshold = threshold_up;
4730         dev_priv->rps.down_threshold = threshold_down;
4731         dev_priv->rps.last_adj = 0;
4732 }
4733
4734 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4735 {
4736         u32 mask = 0;
4737
4738         if (val > dev_priv->rps.min_freq_softlimit)
4739                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4740         if (val < dev_priv->rps.max_freq_softlimit)
4741                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4742
4743         mask &= dev_priv->pm_rps_events;
4744
4745         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4746 }
4747
4748 /* gen6_set_rps is called to update the frequency request, but should also be
4749  * called when the range (min_delay and max_delay) is modified so that we can
4750  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4751 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4752 {
4753         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4754         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4755                 return;
4756
4757         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4758         WARN_ON(val > dev_priv->rps.max_freq);
4759         WARN_ON(val < dev_priv->rps.min_freq);
4760
4761         /* min/max delay may still have been modified so be sure to
4762          * write the limits value.
4763          */
4764         if (val != dev_priv->rps.cur_freq) {
4765                 gen6_set_rps_thresholds(dev_priv, val);
4766
4767                 if (IS_GEN9(dev_priv))
4768                         I915_WRITE(GEN6_RPNSWREQ,
4769                                    GEN9_FREQUENCY(val));
4770                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4771                         I915_WRITE(GEN6_RPNSWREQ,
4772                                    HSW_FREQUENCY(val));
4773                 else
4774                         I915_WRITE(GEN6_RPNSWREQ,
4775                                    GEN6_FREQUENCY(val) |
4776                                    GEN6_OFFSET(0) |
4777                                    GEN6_AGGRESSIVE_TURBO);
4778         }
4779
4780         /* Make sure we continue to get interrupts
4781          * until we hit the minimum or maximum frequencies.
4782          */
4783         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4784         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4785
4786         POSTING_READ(GEN6_RPNSWREQ);
4787
4788         dev_priv->rps.cur_freq = val;
4789         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4790 }
4791
4792 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4793 {
4794         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4795         WARN_ON(val > dev_priv->rps.max_freq);
4796         WARN_ON(val < dev_priv->rps.min_freq);
4797
4798         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4799                       "Odd GPU freq value\n"))
4800                 val &= ~1;
4801
4802         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4803
4804         if (val != dev_priv->rps.cur_freq) {
4805                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4806                 if (!IS_CHERRYVIEW(dev_priv))
4807                         gen6_set_rps_thresholds(dev_priv, val);
4808         }
4809
4810         dev_priv->rps.cur_freq = val;
4811         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4812 }
4813
4814 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4815  *
4816  * * If Gfx is Idle, then
4817  * 1. Forcewake Media well.
4818  * 2. Request idle freq.
4819  * 3. Release Forcewake of Media well.
4820 */
4821 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4822 {
4823         u32 val = dev_priv->rps.idle_freq;
4824
4825         if (dev_priv->rps.cur_freq <= val)
4826                 return;
4827
4828         /* Wake up the media well, as that takes a lot less
4829          * power than the Render well. */
4830         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4831         valleyview_set_rps(dev_priv, val);
4832         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4833 }
4834
4835 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4836 {
4837         mutex_lock(&dev_priv->rps.hw_lock);
4838         if (dev_priv->rps.enabled) {
4839                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4840                         gen6_rps_reset_ei(dev_priv);
4841                 I915_WRITE(GEN6_PMINTRMSK,
4842                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4843         }
4844         mutex_unlock(&dev_priv->rps.hw_lock);
4845 }
4846
4847 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4848 {
4849         mutex_lock(&dev_priv->rps.hw_lock);
4850         if (dev_priv->rps.enabled) {
4851                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4852                         vlv_set_rps_idle(dev_priv);
4853                 else
4854                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4855                 dev_priv->rps.last_adj = 0;
4856                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4857         }
4858         mutex_unlock(&dev_priv->rps.hw_lock);
4859
4860         spin_lock(&dev_priv->rps.client_lock);
4861         while (!list_empty(&dev_priv->rps.clients))
4862                 list_del_init(dev_priv->rps.clients.next);
4863         spin_unlock(&dev_priv->rps.client_lock);
4864 }
4865
4866 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4867                     struct intel_rps_client *rps,
4868                     unsigned long submitted)
4869 {
4870         /* This is intentionally racy! We peek at the state here, then
4871          * validate inside the RPS worker.
4872          */
4873         if (!(dev_priv->mm.busy &&
4874               dev_priv->rps.enabled &&
4875               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4876                 return;
4877
4878         /* Force a RPS boost (and don't count it against the client) if
4879          * the GPU is severely congested.
4880          */
4881         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4882                 rps = NULL;
4883
4884         spin_lock(&dev_priv->rps.client_lock);
4885         if (rps == NULL || list_empty(&rps->link)) {
4886                 spin_lock_irq(&dev_priv->irq_lock);
4887                 if (dev_priv->rps.interrupts_enabled) {
4888                         dev_priv->rps.client_boost = true;
4889                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4890                 }
4891                 spin_unlock_irq(&dev_priv->irq_lock);
4892
4893                 if (rps != NULL) {
4894                         list_add(&rps->link, &dev_priv->rps.clients);
4895                         rps->boosts++;
4896                 } else
4897                         dev_priv->rps.boosts++;
4898         }
4899         spin_unlock(&dev_priv->rps.client_lock);
4900 }
4901
4902 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4903 {
4904         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4905                 valleyview_set_rps(dev_priv, val);
4906         else
4907                 gen6_set_rps(dev_priv, val);
4908 }
4909
4910 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4911 {
4912         I915_WRITE(GEN6_RC_CONTROL, 0);
4913         I915_WRITE(GEN9_PG_ENABLE, 0);
4914 }
4915
4916 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4917 {
4918         I915_WRITE(GEN6_RP_CONTROL, 0);
4919 }
4920
4921 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4922 {
4923         I915_WRITE(GEN6_RC_CONTROL, 0);
4924         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4925         I915_WRITE(GEN6_RP_CONTROL, 0);
4926 }
4927
4928 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4929 {
4930         I915_WRITE(GEN6_RC_CONTROL, 0);
4931 }
4932
4933 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4934 {
4935         /* we're doing forcewake before Disabling RC6,
4936          * This what the BIOS expects when going into suspend */
4937         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4938
4939         I915_WRITE(GEN6_RC_CONTROL, 0);
4940
4941         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4942 }
4943
4944 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4945 {
4946         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4947                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4948                         mode = GEN6_RC_CTL_RC6_ENABLE;
4949                 else
4950                         mode = 0;
4951         }
4952         if (HAS_RC6p(dev_priv))
4953                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4954                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4955                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4956                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4957
4958         else
4959                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4960                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4961 }
4962
4963 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4964 {
4965         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4966         bool enable_rc6 = true;
4967         unsigned long rc6_ctx_base;
4968
4969         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4970                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4971                 enable_rc6 = false;
4972         }
4973
4974         /*
4975          * The exact context size is not known for BXT, so assume a page size
4976          * for this check.
4977          */
4978         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4979         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4980               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4981                                         ggtt->stolen_reserved_size))) {
4982                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4983                 enable_rc6 = false;
4984         }
4985
4986         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4987               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4988               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4989               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4990                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4991                 enable_rc6 = false;
4992         }
4993
4994         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4995                                             GEN6_RC_CTL_HW_ENABLE)) &&
4996             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4997              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4998                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4999                 enable_rc6 = false;
5000         }
5001
5002         return enable_rc6;
5003 }
5004
5005 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5006 {
5007         /* No RC6 before Ironlake and code is gone for ilk. */
5008         if (INTEL_INFO(dev_priv)->gen < 6)
5009                 return 0;
5010
5011         if (!enable_rc6)
5012                 return 0;
5013
5014         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5015                 DRM_INFO("RC6 disabled by BIOS\n");
5016                 return 0;
5017         }
5018
5019         /* Respect the kernel parameter if it is set */
5020         if (enable_rc6 >= 0) {
5021                 int mask;
5022
5023                 if (HAS_RC6p(dev_priv))
5024                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5025                                INTEL_RC6pp_ENABLE;
5026                 else
5027                         mask = INTEL_RC6_ENABLE;
5028
5029                 if ((enable_rc6 & mask) != enable_rc6)
5030                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
5031                                       enable_rc6 & mask, enable_rc6, mask);
5032
5033                 return enable_rc6 & mask;
5034         }
5035
5036         if (IS_IVYBRIDGE(dev_priv))
5037                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5038
5039         return INTEL_RC6_ENABLE;
5040 }
5041
5042 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5043 {
5044         uint32_t rp_state_cap;
5045         u32 ddcc_status = 0;
5046         int ret;
5047
5048         /* All of these values are in units of 50MHz */
5049         dev_priv->rps.cur_freq          = 0;
5050         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5051         if (IS_BROXTON(dev_priv)) {
5052                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5053                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5054                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5055                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5056         } else {
5057                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5058                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5059                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5060                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5061         }
5062
5063         /* hw_max = RP0 until we check for overclocking */
5064         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
5065
5066         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5067         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5068             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5069                 ret = sandybridge_pcode_read(dev_priv,
5070                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5071                                         &ddcc_status);
5072                 if (0 == ret)
5073                         dev_priv->rps.efficient_freq =
5074                                 clamp_t(u8,
5075                                         ((ddcc_status >> 8) & 0xff),
5076                                         dev_priv->rps.min_freq,
5077                                         dev_priv->rps.max_freq);
5078         }
5079
5080         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5081                 /* Store the frequency values in 16.66 MHZ units, which is
5082                    the natural hardware unit for SKL */
5083                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5084                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5085                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5086                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5087                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5088         }
5089
5090         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5091
5092         /* Preserve min/max settings in case of re-init */
5093         if (dev_priv->rps.max_freq_softlimit == 0)
5094                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5095
5096         if (dev_priv->rps.min_freq_softlimit == 0) {
5097                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5098                         dev_priv->rps.min_freq_softlimit =
5099                                 max_t(int, dev_priv->rps.efficient_freq,
5100                                       intel_freq_opcode(dev_priv, 450));
5101                 else
5102                         dev_priv->rps.min_freq_softlimit =
5103                                 dev_priv->rps.min_freq;
5104         }
5105 }
5106
5107 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5108 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5109 {
5110         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5111
5112         gen6_init_rps_frequencies(dev_priv);
5113
5114         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5115         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5116                 /*
5117                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5118                  * clear out the Control register just to avoid inconsitency
5119                  * with debugfs interface, which will show  Turbo as enabled
5120                  * only and that is not expected by the User after adding the
5121                  * WaGsvDisableTurbo. Apart from this there is no problem even
5122                  * if the Turbo is left enabled in the Control register, as the
5123                  * Up/Down interrupts would remain masked.
5124                  */
5125                 gen9_disable_rps(dev_priv);
5126                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5127                 return;
5128         }
5129
5130         /* Program defaults and thresholds for RPS*/
5131         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5132                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5133
5134         /* 1 second timeout*/
5135         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5136                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5137
5138         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5139
5140         /* Leaning on the below call to gen6_set_rps to program/setup the
5141          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5142          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5143         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5144         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5145
5146         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5147 }
5148
5149 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5150 {
5151         struct intel_engine_cs *engine;
5152         uint32_t rc6_mask = 0;
5153
5154         /* 1a: Software RC state - RC0 */
5155         I915_WRITE(GEN6_RC_STATE, 0);
5156
5157         /* 1b: Get forcewake during program sequence. Although the driver
5158          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5159         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5160
5161         /* 2a: Disable RC states. */
5162         I915_WRITE(GEN6_RC_CONTROL, 0);
5163
5164         /* 2b: Program RC6 thresholds.*/
5165
5166         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5167         if (IS_SKYLAKE(dev_priv))
5168                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5169         else
5170                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5171         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5172         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5173         for_each_engine(engine, dev_priv)
5174                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5175
5176         if (HAS_GUC(dev_priv))
5177                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5178
5179         I915_WRITE(GEN6_RC_SLEEP, 0);
5180
5181         /* 2c: Program Coarse Power Gating Policies. */
5182         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5183         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5184
5185         /* 3a: Enable RC6 */
5186         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5187                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5188         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5189         /* WaRsUseTimeoutMode */
5190         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5191             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5192                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5193                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5194                            GEN7_RC_CTL_TO_MODE |
5195                            rc6_mask);
5196         } else {
5197                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5198                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5199                            GEN6_RC_CTL_EI_MODE(1) |
5200                            rc6_mask);
5201         }
5202
5203         /*
5204          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5205          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5206          */
5207         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5208                 I915_WRITE(GEN9_PG_ENABLE, 0);
5209         else
5210                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5211                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5212
5213         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5214 }
5215
5216 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5217 {
5218         struct intel_engine_cs *engine;
5219         uint32_t rc6_mask = 0;
5220
5221         /* 1a: Software RC state - RC0 */
5222         I915_WRITE(GEN6_RC_STATE, 0);
5223
5224         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5225          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5226         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5227
5228         /* 2a: Disable RC states. */
5229         I915_WRITE(GEN6_RC_CONTROL, 0);
5230
5231         /* Initialize rps frequencies */
5232         gen6_init_rps_frequencies(dev_priv);
5233
5234         /* 2b: Program RC6 thresholds.*/
5235         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5236         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5237         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5238         for_each_engine(engine, dev_priv)
5239                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5240         I915_WRITE(GEN6_RC_SLEEP, 0);
5241         if (IS_BROADWELL(dev_priv))
5242                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5243         else
5244                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5245
5246         /* 3: Enable RC6 */
5247         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5248                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5249         intel_print_rc6_info(dev_priv, rc6_mask);
5250         if (IS_BROADWELL(dev_priv))
5251                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5252                                 GEN7_RC_CTL_TO_MODE |
5253                                 rc6_mask);
5254         else
5255                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5256                                 GEN6_RC_CTL_EI_MODE(1) |
5257                                 rc6_mask);
5258
5259         /* 4 Program defaults and thresholds for RPS*/
5260         I915_WRITE(GEN6_RPNSWREQ,
5261                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5262         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5263                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5264         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5265         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5266
5267         /* Docs recommend 900MHz, and 300 MHz respectively */
5268         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5269                    dev_priv->rps.max_freq_softlimit << 24 |
5270                    dev_priv->rps.min_freq_softlimit << 16);
5271
5272         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5273         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5274         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5275         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5276
5277         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5278
5279         /* 5: Enable RPS */
5280         I915_WRITE(GEN6_RP_CONTROL,
5281                    GEN6_RP_MEDIA_TURBO |
5282                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5283                    GEN6_RP_MEDIA_IS_GFX |
5284                    GEN6_RP_ENABLE |
5285                    GEN6_RP_UP_BUSY_AVG |
5286                    GEN6_RP_DOWN_IDLE_AVG);
5287
5288         /* 6: Ring frequency + overclocking (our driver does this later */
5289
5290         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5291         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5292
5293         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5294 }
5295
5296 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5297 {
5298         struct intel_engine_cs *engine;
5299         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5300         u32 gtfifodbg;
5301         int rc6_mode;
5302         int ret;
5303
5304         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5305
5306         /* Here begins a magic sequence of register writes to enable
5307          * auto-downclocking.
5308          *
5309          * Perhaps there might be some value in exposing these to
5310          * userspace...
5311          */
5312         I915_WRITE(GEN6_RC_STATE, 0);
5313
5314         /* Clear the DBG now so we don't confuse earlier errors */
5315         gtfifodbg = I915_READ(GTFIFODBG);
5316         if (gtfifodbg) {
5317                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5318                 I915_WRITE(GTFIFODBG, gtfifodbg);
5319         }
5320
5321         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5322
5323         /* Initialize rps frequencies */
5324         gen6_init_rps_frequencies(dev_priv);
5325
5326         /* disable the counters and set deterministic thresholds */
5327         I915_WRITE(GEN6_RC_CONTROL, 0);
5328
5329         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5330         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5331         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5332         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5333         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5334
5335         for_each_engine(engine, dev_priv)
5336                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5337
5338         I915_WRITE(GEN6_RC_SLEEP, 0);
5339         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5340         if (IS_IVYBRIDGE(dev_priv))
5341                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5342         else
5343                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5344         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5345         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5346
5347         /* Check if we are enabling RC6 */
5348         rc6_mode = intel_enable_rc6();
5349         if (rc6_mode & INTEL_RC6_ENABLE)
5350                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5351
5352         /* We don't use those on Haswell */
5353         if (!IS_HASWELL(dev_priv)) {
5354                 if (rc6_mode & INTEL_RC6p_ENABLE)
5355                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5356
5357                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5358                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5359         }
5360
5361         intel_print_rc6_info(dev_priv, rc6_mask);
5362
5363         I915_WRITE(GEN6_RC_CONTROL,
5364                    rc6_mask |
5365                    GEN6_RC_CTL_EI_MODE(1) |
5366                    GEN6_RC_CTL_HW_ENABLE);
5367
5368         /* Power down if completely idle for over 50ms */
5369         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5370         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5371
5372         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5373         if (ret)
5374                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5375
5376         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5377         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5378                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5379                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5380                                  (pcu_mbox & 0xff) * 50);
5381                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5382         }
5383
5384         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5385         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5386
5387         rc6vids = 0;
5388         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5389         if (IS_GEN6(dev_priv) && ret) {
5390                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5391         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5392                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5393                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5394                 rc6vids &= 0xffff00;
5395                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5396                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5397                 if (ret)
5398                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5399         }
5400
5401         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5402 }
5403
5404 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5405 {
5406         int min_freq = 15;
5407         unsigned int gpu_freq;
5408         unsigned int max_ia_freq, min_ring_freq;
5409         unsigned int max_gpu_freq, min_gpu_freq;
5410         int scaling_factor = 180;
5411         struct cpufreq_policy *policy;
5412
5413         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5414
5415         policy = cpufreq_cpu_get(0);
5416         if (policy) {
5417                 max_ia_freq = policy->cpuinfo.max_freq;
5418                 cpufreq_cpu_put(policy);
5419         } else {
5420                 /*
5421                  * Default to measured freq if none found, PCU will ensure we
5422                  * don't go over
5423                  */
5424                 max_ia_freq = tsc_khz;
5425         }
5426
5427         /* Convert from kHz to MHz */
5428         max_ia_freq /= 1000;
5429
5430         min_ring_freq = I915_READ(DCLK) & 0xf;
5431         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5432         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5433
5434         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5435                 /* Convert GT frequency to 50 HZ units */
5436                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5437                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5438         } else {
5439                 min_gpu_freq = dev_priv->rps.min_freq;
5440                 max_gpu_freq = dev_priv->rps.max_freq;
5441         }
5442
5443         /*
5444          * For each potential GPU frequency, load a ring frequency we'd like
5445          * to use for memory access.  We do this by specifying the IA frequency
5446          * the PCU should use as a reference to determine the ring frequency.
5447          */
5448         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5449                 int diff = max_gpu_freq - gpu_freq;
5450                 unsigned int ia_freq = 0, ring_freq = 0;
5451
5452                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5453                         /*
5454                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5455                          * No floor required for ring frequency on SKL.
5456                          */
5457                         ring_freq = gpu_freq;
5458                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5459                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5460                         ring_freq = max(min_ring_freq, gpu_freq);
5461                 } else if (IS_HASWELL(dev_priv)) {
5462                         ring_freq = mult_frac(gpu_freq, 5, 4);
5463                         ring_freq = max(min_ring_freq, ring_freq);
5464                         /* leave ia_freq as the default, chosen by cpufreq */
5465                 } else {
5466                         /* On older processors, there is no separate ring
5467                          * clock domain, so in order to boost the bandwidth
5468                          * of the ring, we need to upclock the CPU (ia_freq).
5469                          *
5470                          * For GPU frequencies less than 750MHz,
5471                          * just use the lowest ring freq.
5472                          */
5473                         if (gpu_freq < min_freq)
5474                                 ia_freq = 800;
5475                         else
5476                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5477                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5478                 }
5479
5480                 sandybridge_pcode_write(dev_priv,
5481                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5482                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5483                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5484                                         gpu_freq);
5485         }
5486 }
5487
5488 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5489 {
5490         if (!HAS_CORE_RING_FREQ(dev_priv))
5491                 return;
5492
5493         mutex_lock(&dev_priv->rps.hw_lock);
5494         __gen6_update_ring_freq(dev_priv);
5495         mutex_unlock(&dev_priv->rps.hw_lock);
5496 }
5497
5498 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5499 {
5500         u32 val, rp0;
5501
5502         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5503
5504         switch (INTEL_INFO(dev_priv)->eu_total) {
5505         case 8:
5506                 /* (2 * 4) config */
5507                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5508                 break;
5509         case 12:
5510                 /* (2 * 6) config */
5511                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5512                 break;
5513         case 16:
5514                 /* (2 * 8) config */
5515         default:
5516                 /* Setting (2 * 8) Min RP0 for any other combination */
5517                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5518                 break;
5519         }
5520
5521         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5522
5523         return rp0;
5524 }
5525
5526 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5527 {
5528         u32 val, rpe;
5529
5530         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5531         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5532
5533         return rpe;
5534 }
5535
5536 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5537 {
5538         u32 val, rp1;
5539
5540         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5541         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5542
5543         return rp1;
5544 }
5545
5546 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5547 {
5548         u32 val, rp1;
5549
5550         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5551
5552         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5553
5554         return rp1;
5555 }
5556
5557 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5558 {
5559         u32 val, rp0;
5560
5561         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5562
5563         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5564         /* Clamp to max */
5565         rp0 = min_t(u32, rp0, 0xea);
5566
5567         return rp0;
5568 }
5569
5570 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5571 {
5572         u32 val, rpe;
5573
5574         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5575         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5576         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5577         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5578
5579         return rpe;
5580 }
5581
5582 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5583 {
5584         u32 val;
5585
5586         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5587         /*
5588          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5589          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5590          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5591          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5592          * to make sure it matches what Punit accepts.
5593          */
5594         return max_t(u32, val, 0xc0);
5595 }
5596
5597 /* Check that the pctx buffer wasn't move under us. */
5598 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5599 {
5600         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5601
5602         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5603                              dev_priv->vlv_pctx->stolen->start);
5604 }
5605
5606
5607 /* Check that the pcbr address is not empty. */
5608 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5609 {
5610         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5611
5612         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5613 }
5614
5615 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5616 {
5617         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5618         unsigned long pctx_paddr, paddr;
5619         u32 pcbr;
5620         int pctx_size = 32*1024;
5621
5622         pcbr = I915_READ(VLV_PCBR);
5623         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5624                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5625                 paddr = (dev_priv->mm.stolen_base +
5626                          (ggtt->stolen_size - pctx_size));
5627
5628                 pctx_paddr = (paddr & (~4095));
5629                 I915_WRITE(VLV_PCBR, pctx_paddr);
5630         }
5631
5632         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5633 }
5634
5635 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5636 {
5637         struct drm_i915_gem_object *pctx;
5638         unsigned long pctx_paddr;
5639         u32 pcbr;
5640         int pctx_size = 24*1024;
5641
5642         mutex_lock(&dev_priv->dev->struct_mutex);
5643
5644         pcbr = I915_READ(VLV_PCBR);
5645         if (pcbr) {
5646                 /* BIOS set it up already, grab the pre-alloc'd space */
5647                 int pcbr_offset;
5648
5649                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5650                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5651                                                                       pcbr_offset,
5652                                                                       I915_GTT_OFFSET_NONE,
5653                                                                       pctx_size);
5654                 goto out;
5655         }
5656
5657         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5658
5659         /*
5660          * From the Gunit register HAS:
5661          * The Gfx driver is expected to program this register and ensure
5662          * proper allocation within Gfx stolen memory.  For example, this
5663          * register should be programmed such than the PCBR range does not
5664          * overlap with other ranges, such as the frame buffer, protected
5665          * memory, or any other relevant ranges.
5666          */
5667         pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5668         if (!pctx) {
5669                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5670                 goto out;
5671         }
5672
5673         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5674         I915_WRITE(VLV_PCBR, pctx_paddr);
5675
5676 out:
5677         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5678         dev_priv->vlv_pctx = pctx;
5679         mutex_unlock(&dev_priv->dev->struct_mutex);
5680 }
5681
5682 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5683 {
5684         if (WARN_ON(!dev_priv->vlv_pctx))
5685                 return;
5686
5687         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5688         dev_priv->vlv_pctx = NULL;
5689 }
5690
5691 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5692 {
5693         dev_priv->rps.gpll_ref_freq =
5694                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5695                                   CCK_GPLL_CLOCK_CONTROL,
5696                                   dev_priv->czclk_freq);
5697
5698         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5699                          dev_priv->rps.gpll_ref_freq);
5700 }
5701
5702 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5703 {
5704         u32 val;
5705
5706         valleyview_setup_pctx(dev_priv);
5707
5708         vlv_init_gpll_ref_freq(dev_priv);
5709
5710         mutex_lock(&dev_priv->rps.hw_lock);
5711
5712         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5713         switch ((val >> 6) & 3) {
5714         case 0:
5715         case 1:
5716                 dev_priv->mem_freq = 800;
5717                 break;
5718         case 2:
5719                 dev_priv->mem_freq = 1066;
5720                 break;
5721         case 3:
5722                 dev_priv->mem_freq = 1333;
5723                 break;
5724         }
5725         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5726
5727         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5728         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5729         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5730                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5731                          dev_priv->rps.max_freq);
5732
5733         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5734         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5735                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5736                          dev_priv->rps.efficient_freq);
5737
5738         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5739         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5740                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5741                          dev_priv->rps.rp1_freq);
5742
5743         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5744         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5745                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5746                          dev_priv->rps.min_freq);
5747
5748         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5749
5750         /* Preserve min/max settings in case of re-init */
5751         if (dev_priv->rps.max_freq_softlimit == 0)
5752                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5753
5754         if (dev_priv->rps.min_freq_softlimit == 0)
5755                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5756
5757         mutex_unlock(&dev_priv->rps.hw_lock);
5758 }
5759
5760 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5761 {
5762         u32 val;
5763
5764         cherryview_setup_pctx(dev_priv);
5765
5766         vlv_init_gpll_ref_freq(dev_priv);
5767
5768         mutex_lock(&dev_priv->rps.hw_lock);
5769
5770         mutex_lock(&dev_priv->sb_lock);
5771         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5772         mutex_unlock(&dev_priv->sb_lock);
5773
5774         switch ((val >> 2) & 0x7) {
5775         case 3:
5776                 dev_priv->mem_freq = 2000;
5777                 break;
5778         default:
5779                 dev_priv->mem_freq = 1600;
5780                 break;
5781         }
5782         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5783
5784         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5785         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5786         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5787                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5788                          dev_priv->rps.max_freq);
5789
5790         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5791         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5792                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5793                          dev_priv->rps.efficient_freq);
5794
5795         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5796         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5797                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5798                          dev_priv->rps.rp1_freq);
5799
5800         /* PUnit validated range is only [RPe, RP0] */
5801         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5802         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5803                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5804                          dev_priv->rps.min_freq);
5805
5806         WARN_ONCE((dev_priv->rps.max_freq |
5807                    dev_priv->rps.efficient_freq |
5808                    dev_priv->rps.rp1_freq |
5809                    dev_priv->rps.min_freq) & 1,
5810                   "Odd GPU freq values\n");
5811
5812         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5813
5814         /* Preserve min/max settings in case of re-init */
5815         if (dev_priv->rps.max_freq_softlimit == 0)
5816                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5817
5818         if (dev_priv->rps.min_freq_softlimit == 0)
5819                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5820
5821         mutex_unlock(&dev_priv->rps.hw_lock);
5822 }
5823
5824 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5825 {
5826         valleyview_cleanup_pctx(dev_priv);
5827 }
5828
5829 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5830 {
5831         struct intel_engine_cs *engine;
5832         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5833
5834         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5835
5836         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5837                                              GT_FIFO_FREE_ENTRIES_CHV);
5838         if (gtfifodbg) {
5839                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5840                                  gtfifodbg);
5841                 I915_WRITE(GTFIFODBG, gtfifodbg);
5842         }
5843
5844         cherryview_check_pctx(dev_priv);
5845
5846         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5847          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5848         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5849
5850         /*  Disable RC states. */
5851         I915_WRITE(GEN6_RC_CONTROL, 0);
5852
5853         /* 2a: Program RC6 thresholds.*/
5854         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5855         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5856         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5857
5858         for_each_engine(engine, dev_priv)
5859                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5860         I915_WRITE(GEN6_RC_SLEEP, 0);
5861
5862         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5863         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5864
5865         /* allows RC6 residency counter to work */
5866         I915_WRITE(VLV_COUNTER_CONTROL,
5867                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5868                                       VLV_MEDIA_RC6_COUNT_EN |
5869                                       VLV_RENDER_RC6_COUNT_EN));
5870
5871         /* For now we assume BIOS is allocating and populating the PCBR  */
5872         pcbr = I915_READ(VLV_PCBR);
5873
5874         /* 3: Enable RC6 */
5875         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5876             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5877                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5878
5879         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5880
5881         /* 4 Program defaults and thresholds for RPS*/
5882         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5883         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5884         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5885         I915_WRITE(GEN6_RP_UP_EI, 66000);
5886         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5887
5888         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5889
5890         /* 5: Enable RPS */
5891         I915_WRITE(GEN6_RP_CONTROL,
5892                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5893                    GEN6_RP_MEDIA_IS_GFX |
5894                    GEN6_RP_ENABLE |
5895                    GEN6_RP_UP_BUSY_AVG |
5896                    GEN6_RP_DOWN_IDLE_AVG);
5897
5898         /* Setting Fixed Bias */
5899         val = VLV_OVERRIDE_EN |
5900                   VLV_SOC_TDP_EN |
5901                   CHV_BIAS_CPU_50_SOC_50;
5902         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5903
5904         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5905
5906         /* RPS code assumes GPLL is used */
5907         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5908
5909         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5910         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5911
5912         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5913         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5914                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5915                          dev_priv->rps.cur_freq);
5916
5917         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5918                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5919                          dev_priv->rps.idle_freq);
5920
5921         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5922
5923         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5924 }
5925
5926 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5927 {
5928         struct intel_engine_cs *engine;
5929         u32 gtfifodbg, val, rc6_mode = 0;
5930
5931         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5932
5933         valleyview_check_pctx(dev_priv);
5934
5935         gtfifodbg = I915_READ(GTFIFODBG);
5936         if (gtfifodbg) {
5937                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5938                                  gtfifodbg);
5939                 I915_WRITE(GTFIFODBG, gtfifodbg);
5940         }
5941
5942         /* If VLV, Forcewake all wells, else re-direct to regular path */
5943         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5944
5945         /*  Disable RC states. */
5946         I915_WRITE(GEN6_RC_CONTROL, 0);
5947
5948         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5949         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5950         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5951         I915_WRITE(GEN6_RP_UP_EI, 66000);
5952         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5953
5954         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5955
5956         I915_WRITE(GEN6_RP_CONTROL,
5957                    GEN6_RP_MEDIA_TURBO |
5958                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5959                    GEN6_RP_MEDIA_IS_GFX |
5960                    GEN6_RP_ENABLE |
5961                    GEN6_RP_UP_BUSY_AVG |
5962                    GEN6_RP_DOWN_IDLE_CONT);
5963
5964         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5965         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5966         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5967
5968         for_each_engine(engine, dev_priv)
5969                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5970
5971         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5972
5973         /* allows RC6 residency counter to work */
5974         I915_WRITE(VLV_COUNTER_CONTROL,
5975                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5976                                       VLV_RENDER_RC0_COUNT_EN |
5977                                       VLV_MEDIA_RC6_COUNT_EN |
5978                                       VLV_RENDER_RC6_COUNT_EN));
5979
5980         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5981                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5982
5983         intel_print_rc6_info(dev_priv, rc6_mode);
5984
5985         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5986
5987         /* Setting Fixed Bias */
5988         val = VLV_OVERRIDE_EN |
5989                   VLV_SOC_TDP_EN |
5990                   VLV_BIAS_CPU_125_SOC_875;
5991         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5992
5993         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5994
5995         /* RPS code assumes GPLL is used */
5996         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5997
5998         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5999         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6000
6001         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6002         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6003                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6004                          dev_priv->rps.cur_freq);
6005
6006         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6007                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6008                          dev_priv->rps.idle_freq);
6009
6010         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6011
6012         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6013 }
6014
6015 static unsigned long intel_pxfreq(u32 vidfreq)
6016 {
6017         unsigned long freq;
6018         int div = (vidfreq & 0x3f0000) >> 16;
6019         int post = (vidfreq & 0x3000) >> 12;
6020         int pre = (vidfreq & 0x7);
6021
6022         if (!pre)
6023                 return 0;
6024
6025         freq = ((div * 133333) / ((1<<post) * pre));
6026
6027         return freq;
6028 }
6029
6030 static const struct cparams {
6031         u16 i;
6032         u16 t;
6033         u16 m;
6034         u16 c;
6035 } cparams[] = {
6036         { 1, 1333, 301, 28664 },
6037         { 1, 1066, 294, 24460 },
6038         { 1, 800, 294, 25192 },
6039         { 0, 1333, 276, 27605 },
6040         { 0, 1066, 276, 27605 },
6041         { 0, 800, 231, 23784 },
6042 };
6043
6044 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6045 {
6046         u64 total_count, diff, ret;
6047         u32 count1, count2, count3, m = 0, c = 0;
6048         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6049         int i;
6050
6051         assert_spin_locked(&mchdev_lock);
6052
6053         diff1 = now - dev_priv->ips.last_time1;
6054
6055         /* Prevent division-by-zero if we are asking too fast.
6056          * Also, we don't get interesting results if we are polling
6057          * faster than once in 10ms, so just return the saved value
6058          * in such cases.
6059          */
6060         if (diff1 <= 10)
6061                 return dev_priv->ips.chipset_power;
6062
6063         count1 = I915_READ(DMIEC);
6064         count2 = I915_READ(DDREC);
6065         count3 = I915_READ(CSIEC);
6066
6067         total_count = count1 + count2 + count3;
6068
6069         /* FIXME: handle per-counter overflow */
6070         if (total_count < dev_priv->ips.last_count1) {
6071                 diff = ~0UL - dev_priv->ips.last_count1;
6072                 diff += total_count;
6073         } else {
6074                 diff = total_count - dev_priv->ips.last_count1;
6075         }
6076
6077         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6078                 if (cparams[i].i == dev_priv->ips.c_m &&
6079                     cparams[i].t == dev_priv->ips.r_t) {
6080                         m = cparams[i].m;
6081                         c = cparams[i].c;
6082                         break;
6083                 }
6084         }
6085
6086         diff = div_u64(diff, diff1);
6087         ret = ((m * diff) + c);
6088         ret = div_u64(ret, 10);
6089
6090         dev_priv->ips.last_count1 = total_count;
6091         dev_priv->ips.last_time1 = now;
6092
6093         dev_priv->ips.chipset_power = ret;
6094
6095         return ret;
6096 }
6097
6098 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6099 {
6100         unsigned long val;
6101
6102         if (INTEL_INFO(dev_priv)->gen != 5)
6103                 return 0;
6104
6105         spin_lock_irq(&mchdev_lock);
6106
6107         val = __i915_chipset_val(dev_priv);
6108
6109         spin_unlock_irq(&mchdev_lock);
6110
6111         return val;
6112 }
6113
6114 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6115 {
6116         unsigned long m, x, b;
6117         u32 tsfs;
6118
6119         tsfs = I915_READ(TSFS);
6120
6121         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6122         x = I915_READ8(TR1);
6123
6124         b = tsfs & TSFS_INTR_MASK;
6125
6126         return ((m * x) / 127) - b;
6127 }
6128
6129 static int _pxvid_to_vd(u8 pxvid)
6130 {
6131         if (pxvid == 0)
6132                 return 0;
6133
6134         if (pxvid >= 8 && pxvid < 31)
6135                 pxvid = 31;
6136
6137         return (pxvid + 2) * 125;
6138 }
6139
6140 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6141 {
6142         const int vd = _pxvid_to_vd(pxvid);
6143         const int vm = vd - 1125;
6144
6145         if (INTEL_INFO(dev_priv)->is_mobile)
6146                 return vm > 0 ? vm : 0;
6147
6148         return vd;
6149 }
6150
6151 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6152 {
6153         u64 now, diff, diffms;
6154         u32 count;
6155
6156         assert_spin_locked(&mchdev_lock);
6157
6158         now = ktime_get_raw_ns();
6159         diffms = now - dev_priv->ips.last_time2;
6160         do_div(diffms, NSEC_PER_MSEC);
6161
6162         /* Don't divide by 0 */
6163         if (!diffms)
6164                 return;
6165
6166         count = I915_READ(GFXEC);
6167
6168         if (count < dev_priv->ips.last_count2) {
6169                 diff = ~0UL - dev_priv->ips.last_count2;
6170                 diff += count;
6171         } else {
6172                 diff = count - dev_priv->ips.last_count2;
6173         }
6174
6175         dev_priv->ips.last_count2 = count;
6176         dev_priv->ips.last_time2 = now;
6177
6178         /* More magic constants... */
6179         diff = diff * 1181;
6180         diff = div_u64(diff, diffms * 10);
6181         dev_priv->ips.gfx_power = diff;
6182 }
6183
6184 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6185 {
6186         if (INTEL_INFO(dev_priv)->gen != 5)
6187                 return;
6188
6189         spin_lock_irq(&mchdev_lock);
6190
6191         __i915_update_gfx_val(dev_priv);
6192
6193         spin_unlock_irq(&mchdev_lock);
6194 }
6195
6196 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6197 {
6198         unsigned long t, corr, state1, corr2, state2;
6199         u32 pxvid, ext_v;
6200
6201         assert_spin_locked(&mchdev_lock);
6202
6203         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6204         pxvid = (pxvid >> 24) & 0x7f;
6205         ext_v = pvid_to_extvid(dev_priv, pxvid);
6206
6207         state1 = ext_v;
6208
6209         t = i915_mch_val(dev_priv);
6210
6211         /* Revel in the empirically derived constants */
6212
6213         /* Correction factor in 1/100000 units */
6214         if (t > 80)
6215                 corr = ((t * 2349) + 135940);
6216         else if (t >= 50)
6217                 corr = ((t * 964) + 29317);
6218         else /* < 50 */
6219                 corr = ((t * 301) + 1004);
6220
6221         corr = corr * ((150142 * state1) / 10000 - 78642);
6222         corr /= 100000;
6223         corr2 = (corr * dev_priv->ips.corr);
6224
6225         state2 = (corr2 * state1) / 10000;
6226         state2 /= 100; /* convert to mW */
6227
6228         __i915_update_gfx_val(dev_priv);
6229
6230         return dev_priv->ips.gfx_power + state2;
6231 }
6232
6233 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6234 {
6235         unsigned long val;
6236
6237         if (INTEL_INFO(dev_priv)->gen != 5)
6238                 return 0;
6239
6240         spin_lock_irq(&mchdev_lock);
6241
6242         val = __i915_gfx_val(dev_priv);
6243
6244         spin_unlock_irq(&mchdev_lock);
6245
6246         return val;
6247 }
6248
6249 /**
6250  * i915_read_mch_val - return value for IPS use
6251  *
6252  * Calculate and return a value for the IPS driver to use when deciding whether
6253  * we have thermal and power headroom to increase CPU or GPU power budget.
6254  */
6255 unsigned long i915_read_mch_val(void)
6256 {
6257         struct drm_i915_private *dev_priv;
6258         unsigned long chipset_val, graphics_val, ret = 0;
6259
6260         spin_lock_irq(&mchdev_lock);
6261         if (!i915_mch_dev)
6262                 goto out_unlock;
6263         dev_priv = i915_mch_dev;
6264
6265         chipset_val = __i915_chipset_val(dev_priv);
6266         graphics_val = __i915_gfx_val(dev_priv);
6267
6268         ret = chipset_val + graphics_val;
6269
6270 out_unlock:
6271         spin_unlock_irq(&mchdev_lock);
6272
6273         return ret;
6274 }
6275 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6276
6277 /**
6278  * i915_gpu_raise - raise GPU frequency limit
6279  *
6280  * Raise the limit; IPS indicates we have thermal headroom.
6281  */
6282 bool i915_gpu_raise(void)
6283 {
6284         struct drm_i915_private *dev_priv;
6285         bool ret = true;
6286
6287         spin_lock_irq(&mchdev_lock);
6288         if (!i915_mch_dev) {
6289                 ret = false;
6290                 goto out_unlock;
6291         }
6292         dev_priv = i915_mch_dev;
6293
6294         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6295                 dev_priv->ips.max_delay--;
6296
6297 out_unlock:
6298         spin_unlock_irq(&mchdev_lock);
6299
6300         return ret;
6301 }
6302 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6303
6304 /**
6305  * i915_gpu_lower - lower GPU frequency limit
6306  *
6307  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6308  * frequency maximum.
6309  */
6310 bool i915_gpu_lower(void)
6311 {
6312         struct drm_i915_private *dev_priv;
6313         bool ret = true;
6314
6315         spin_lock_irq(&mchdev_lock);
6316         if (!i915_mch_dev) {
6317                 ret = false;
6318                 goto out_unlock;
6319         }
6320         dev_priv = i915_mch_dev;
6321
6322         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6323                 dev_priv->ips.max_delay++;
6324
6325 out_unlock:
6326         spin_unlock_irq(&mchdev_lock);
6327
6328         return ret;
6329 }
6330 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6331
6332 /**
6333  * i915_gpu_busy - indicate GPU business to IPS
6334  *
6335  * Tell the IPS driver whether or not the GPU is busy.
6336  */
6337 bool i915_gpu_busy(void)
6338 {
6339         struct drm_i915_private *dev_priv;
6340         struct intel_engine_cs *engine;
6341         bool ret = false;
6342
6343         spin_lock_irq(&mchdev_lock);
6344         if (!i915_mch_dev)
6345                 goto out_unlock;
6346         dev_priv = i915_mch_dev;
6347
6348         for_each_engine(engine, dev_priv)
6349                 ret |= !list_empty(&engine->request_list);
6350
6351 out_unlock:
6352         spin_unlock_irq(&mchdev_lock);
6353
6354         return ret;
6355 }
6356 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6357
6358 /**
6359  * i915_gpu_turbo_disable - disable graphics turbo
6360  *
6361  * Disable graphics turbo by resetting the max frequency and setting the
6362  * current frequency to the default.
6363  */
6364 bool i915_gpu_turbo_disable(void)
6365 {
6366         struct drm_i915_private *dev_priv;
6367         bool ret = true;
6368
6369         spin_lock_irq(&mchdev_lock);
6370         if (!i915_mch_dev) {
6371                 ret = false;
6372                 goto out_unlock;
6373         }
6374         dev_priv = i915_mch_dev;
6375
6376         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6377
6378         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6379                 ret = false;
6380
6381 out_unlock:
6382         spin_unlock_irq(&mchdev_lock);
6383
6384         return ret;
6385 }
6386 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6387
6388 /**
6389  * Tells the intel_ips driver that the i915 driver is now loaded, if
6390  * IPS got loaded first.
6391  *
6392  * This awkward dance is so that neither module has to depend on the
6393  * other in order for IPS to do the appropriate communication of
6394  * GPU turbo limits to i915.
6395  */
6396 static void
6397 ips_ping_for_i915_load(void)
6398 {
6399         void (*link)(void);
6400
6401         link = symbol_get(ips_link_to_i915_driver);
6402         if (link) {
6403                 link();
6404                 symbol_put(ips_link_to_i915_driver);
6405         }
6406 }
6407
6408 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6409 {
6410         /* We only register the i915 ips part with intel-ips once everything is
6411          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6412         spin_lock_irq(&mchdev_lock);
6413         i915_mch_dev = dev_priv;
6414         spin_unlock_irq(&mchdev_lock);
6415
6416         ips_ping_for_i915_load();
6417 }
6418
6419 void intel_gpu_ips_teardown(void)
6420 {
6421         spin_lock_irq(&mchdev_lock);
6422         i915_mch_dev = NULL;
6423         spin_unlock_irq(&mchdev_lock);
6424 }
6425
6426 static void intel_init_emon(struct drm_i915_private *dev_priv)
6427 {
6428         u32 lcfuse;
6429         u8 pxw[16];
6430         int i;
6431
6432         /* Disable to program */
6433         I915_WRITE(ECR, 0);
6434         POSTING_READ(ECR);
6435
6436         /* Program energy weights for various events */
6437         I915_WRITE(SDEW, 0x15040d00);
6438         I915_WRITE(CSIEW0, 0x007f0000);
6439         I915_WRITE(CSIEW1, 0x1e220004);
6440         I915_WRITE(CSIEW2, 0x04000004);
6441
6442         for (i = 0; i < 5; i++)
6443                 I915_WRITE(PEW(i), 0);
6444         for (i = 0; i < 3; i++)
6445                 I915_WRITE(DEW(i), 0);
6446
6447         /* Program P-state weights to account for frequency power adjustment */
6448         for (i = 0; i < 16; i++) {
6449                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6450                 unsigned long freq = intel_pxfreq(pxvidfreq);
6451                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6452                         PXVFREQ_PX_SHIFT;
6453                 unsigned long val;
6454
6455                 val = vid * vid;
6456                 val *= (freq / 1000);
6457                 val *= 255;
6458                 val /= (127*127*900);
6459                 if (val > 0xff)
6460                         DRM_ERROR("bad pxval: %ld\n", val);
6461                 pxw[i] = val;
6462         }
6463         /* Render standby states get 0 weight */
6464         pxw[14] = 0;
6465         pxw[15] = 0;
6466
6467         for (i = 0; i < 4; i++) {
6468                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6469                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6470                 I915_WRITE(PXW(i), val);
6471         }
6472
6473         /* Adjust magic regs to magic values (more experimental results) */
6474         I915_WRITE(OGW0, 0);
6475         I915_WRITE(OGW1, 0);
6476         I915_WRITE(EG0, 0x00007f00);
6477         I915_WRITE(EG1, 0x0000000e);
6478         I915_WRITE(EG2, 0x000e0000);
6479         I915_WRITE(EG3, 0x68000300);
6480         I915_WRITE(EG4, 0x42000000);
6481         I915_WRITE(EG5, 0x00140031);
6482         I915_WRITE(EG6, 0);
6483         I915_WRITE(EG7, 0);
6484
6485         for (i = 0; i < 8; i++)
6486                 I915_WRITE(PXWL(i), 0);
6487
6488         /* Enable PMON + select events */
6489         I915_WRITE(ECR, 0x80000019);
6490
6491         lcfuse = I915_READ(LCFUSE02);
6492
6493         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6494 }
6495
6496 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6497 {
6498         /*
6499          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6500          * requirement.
6501          */
6502         if (!i915.enable_rc6) {
6503                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6504                 intel_runtime_pm_get(dev_priv);
6505         }
6506
6507         if (IS_CHERRYVIEW(dev_priv))
6508                 cherryview_init_gt_powersave(dev_priv);
6509         else if (IS_VALLEYVIEW(dev_priv))
6510                 valleyview_init_gt_powersave(dev_priv);
6511 }
6512
6513 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6514 {
6515         if (IS_CHERRYVIEW(dev_priv))
6516                 return;
6517         else if (IS_VALLEYVIEW(dev_priv))
6518                 valleyview_cleanup_gt_powersave(dev_priv);
6519
6520         if (!i915.enable_rc6)
6521                 intel_runtime_pm_put(dev_priv);
6522 }
6523
6524 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6525 {
6526         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6527
6528         gen6_disable_rps_interrupts(dev_priv);
6529 }
6530
6531 /**
6532  * intel_suspend_gt_powersave - suspend PM work and helper threads
6533  * @dev_priv: i915 device
6534  *
6535  * We don't want to disable RC6 or other features here, we just want
6536  * to make sure any work we've queued has finished and won't bother
6537  * us while we're suspended.
6538  */
6539 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6540 {
6541         if (INTEL_GEN(dev_priv) < 6)
6542                 return;
6543
6544         gen6_suspend_rps(dev_priv);
6545
6546         /* Force GPU to min freq during suspend */
6547         gen6_rps_idle(dev_priv);
6548 }
6549
6550 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6551 {
6552         if (IS_IRONLAKE_M(dev_priv)) {
6553                 ironlake_disable_drps(dev_priv);
6554         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6555                 intel_suspend_gt_powersave(dev_priv);
6556
6557                 mutex_lock(&dev_priv->rps.hw_lock);
6558                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6559                         gen9_disable_rc6(dev_priv);
6560                         gen9_disable_rps(dev_priv);
6561                 } else if (IS_CHERRYVIEW(dev_priv))
6562                         cherryview_disable_rps(dev_priv);
6563                 else if (IS_VALLEYVIEW(dev_priv))
6564                         valleyview_disable_rps(dev_priv);
6565                 else
6566                         gen6_disable_rps(dev_priv);
6567
6568                 dev_priv->rps.enabled = false;
6569                 mutex_unlock(&dev_priv->rps.hw_lock);
6570         }
6571 }
6572
6573 static void intel_gen6_powersave_work(struct work_struct *work)
6574 {
6575         struct drm_i915_private *dev_priv =
6576                 container_of(work, struct drm_i915_private,
6577                              rps.delayed_resume_work.work);
6578
6579         mutex_lock(&dev_priv->rps.hw_lock);
6580
6581         gen6_reset_rps_interrupts(dev_priv);
6582
6583         if (IS_CHERRYVIEW(dev_priv)) {
6584                 cherryview_enable_rps(dev_priv);
6585         } else if (IS_VALLEYVIEW(dev_priv)) {
6586                 valleyview_enable_rps(dev_priv);
6587         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6588                 gen9_enable_rc6(dev_priv);
6589                 gen9_enable_rps(dev_priv);
6590                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6591                         __gen6_update_ring_freq(dev_priv);
6592         } else if (IS_BROADWELL(dev_priv)) {
6593                 gen8_enable_rps(dev_priv);
6594                 __gen6_update_ring_freq(dev_priv);
6595         } else {
6596                 gen6_enable_rps(dev_priv);
6597                 __gen6_update_ring_freq(dev_priv);
6598         }
6599
6600         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6601         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6602
6603         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6604         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6605
6606         dev_priv->rps.enabled = true;
6607
6608         gen6_enable_rps_interrupts(dev_priv);
6609
6610         mutex_unlock(&dev_priv->rps.hw_lock);
6611
6612         intel_runtime_pm_put(dev_priv);
6613 }
6614
6615 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6616 {
6617         /* Powersaving is controlled by the host when inside a VM */
6618         if (intel_vgpu_active(dev_priv))
6619                 return;
6620
6621         if (IS_IRONLAKE_M(dev_priv)) {
6622                 ironlake_enable_drps(dev_priv);
6623                 mutex_lock(&dev_priv->dev->struct_mutex);
6624                 intel_init_emon(dev_priv);
6625                 mutex_unlock(&dev_priv->dev->struct_mutex);
6626         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6627                 /*
6628                  * PCU communication is slow and this doesn't need to be
6629                  * done at any specific time, so do this out of our fast path
6630                  * to make resume and init faster.
6631                  *
6632                  * We depend on the HW RC6 power context save/restore
6633                  * mechanism when entering D3 through runtime PM suspend. So
6634                  * disable RPM until RPS/RC6 is properly setup. We can only
6635                  * get here via the driver load/system resume/runtime resume
6636                  * paths, so the _noresume version is enough (and in case of
6637                  * runtime resume it's necessary).
6638                  */
6639                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6640                                            round_jiffies_up_relative(HZ)))
6641                         intel_runtime_pm_get_noresume(dev_priv);
6642         }
6643 }
6644
6645 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6646 {
6647         if (INTEL_INFO(dev_priv)->gen < 6)
6648                 return;
6649
6650         gen6_suspend_rps(dev_priv);
6651         dev_priv->rps.enabled = false;
6652 }
6653
6654 static void ibx_init_clock_gating(struct drm_device *dev)
6655 {
6656         struct drm_i915_private *dev_priv = dev->dev_private;
6657
6658         /*
6659          * On Ibex Peak and Cougar Point, we need to disable clock
6660          * gating for the panel power sequencer or it will fail to
6661          * start up when no ports are active.
6662          */
6663         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6664 }
6665
6666 static void g4x_disable_trickle_feed(struct drm_device *dev)
6667 {
6668         struct drm_i915_private *dev_priv = dev->dev_private;
6669         enum pipe pipe;
6670
6671         for_each_pipe(dev_priv, pipe) {
6672                 I915_WRITE(DSPCNTR(pipe),
6673                            I915_READ(DSPCNTR(pipe)) |
6674                            DISPPLANE_TRICKLE_FEED_DISABLE);
6675
6676                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6677                 POSTING_READ(DSPSURF(pipe));
6678         }
6679 }
6680
6681 static void ilk_init_lp_watermarks(struct drm_device *dev)
6682 {
6683         struct drm_i915_private *dev_priv = dev->dev_private;
6684
6685         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6686         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6687         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6688
6689         /*
6690          * Don't touch WM1S_LP_EN here.
6691          * Doing so could cause underruns.
6692          */
6693 }
6694
6695 static void ironlake_init_clock_gating(struct drm_device *dev)
6696 {
6697         struct drm_i915_private *dev_priv = dev->dev_private;
6698         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6699
6700         /*
6701          * Required for FBC
6702          * WaFbcDisableDpfcClockGating:ilk
6703          */
6704         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6705                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6706                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6707
6708         I915_WRITE(PCH_3DCGDIS0,
6709                    MARIUNIT_CLOCK_GATE_DISABLE |
6710                    SVSMUNIT_CLOCK_GATE_DISABLE);
6711         I915_WRITE(PCH_3DCGDIS1,
6712                    VFMUNIT_CLOCK_GATE_DISABLE);
6713
6714         /*
6715          * According to the spec the following bits should be set in
6716          * order to enable memory self-refresh
6717          * The bit 22/21 of 0x42004
6718          * The bit 5 of 0x42020
6719          * The bit 15 of 0x45000
6720          */
6721         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6722                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6723                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6724         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6725         I915_WRITE(DISP_ARB_CTL,
6726                    (I915_READ(DISP_ARB_CTL) |
6727                     DISP_FBC_WM_DIS));
6728
6729         ilk_init_lp_watermarks(dev);
6730
6731         /*
6732          * Based on the document from hardware guys the following bits
6733          * should be set unconditionally in order to enable FBC.
6734          * The bit 22 of 0x42000
6735          * The bit 22 of 0x42004
6736          * The bit 7,8,9 of 0x42020.
6737          */
6738         if (IS_IRONLAKE_M(dev)) {
6739                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6740                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6741                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6742                            ILK_FBCQ_DIS);
6743                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6744                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6745                            ILK_DPARB_GATE);
6746         }
6747
6748         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6749
6750         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6751                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6752                    ILK_ELPIN_409_SELECT);
6753         I915_WRITE(_3D_CHICKEN2,
6754                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6755                    _3D_CHICKEN2_WM_READ_PIPELINED);
6756
6757         /* WaDisableRenderCachePipelinedFlush:ilk */
6758         I915_WRITE(CACHE_MODE_0,
6759                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6760
6761         /* WaDisable_RenderCache_OperationalFlush:ilk */
6762         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6763
6764         g4x_disable_trickle_feed(dev);
6765
6766         ibx_init_clock_gating(dev);
6767 }
6768
6769 static void cpt_init_clock_gating(struct drm_device *dev)
6770 {
6771         struct drm_i915_private *dev_priv = dev->dev_private;
6772         int pipe;
6773         uint32_t val;
6774
6775         /*
6776          * On Ibex Peak and Cougar Point, we need to disable clock
6777          * gating for the panel power sequencer or it will fail to
6778          * start up when no ports are active.
6779          */
6780         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6781                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6782                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6783         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6784                    DPLS_EDP_PPS_FIX_DIS);
6785         /* The below fixes the weird display corruption, a few pixels shifted
6786          * downward, on (only) LVDS of some HP laptops with IVY.
6787          */
6788         for_each_pipe(dev_priv, pipe) {
6789                 val = I915_READ(TRANS_CHICKEN2(pipe));
6790                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6791                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6792                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6793                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6794                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6795                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6796                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6797                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6798         }
6799         /* WADP0ClockGatingDisable */
6800         for_each_pipe(dev_priv, pipe) {
6801                 I915_WRITE(TRANS_CHICKEN1(pipe),
6802                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6803         }
6804 }
6805
6806 static void gen6_check_mch_setup(struct drm_device *dev)
6807 {
6808         struct drm_i915_private *dev_priv = dev->dev_private;
6809         uint32_t tmp;
6810
6811         tmp = I915_READ(MCH_SSKPD);
6812         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6813                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6814                               tmp);
6815 }
6816
6817 static void gen6_init_clock_gating(struct drm_device *dev)
6818 {
6819         struct drm_i915_private *dev_priv = dev->dev_private;
6820         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6821
6822         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6823
6824         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6825                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6826                    ILK_ELPIN_409_SELECT);
6827
6828         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6829         I915_WRITE(_3D_CHICKEN,
6830                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6831
6832         /* WaDisable_RenderCache_OperationalFlush:snb */
6833         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6834
6835         /*
6836          * BSpec recoomends 8x4 when MSAA is used,
6837          * however in practice 16x4 seems fastest.
6838          *
6839          * Note that PS/WM thread counts depend on the WIZ hashing
6840          * disable bit, which we don't touch here, but it's good
6841          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6842          */
6843         I915_WRITE(GEN6_GT_MODE,
6844                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6845
6846         ilk_init_lp_watermarks(dev);
6847
6848         I915_WRITE(CACHE_MODE_0,
6849                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6850
6851         I915_WRITE(GEN6_UCGCTL1,
6852                    I915_READ(GEN6_UCGCTL1) |
6853                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6854                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6855
6856         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6857          * gating disable must be set.  Failure to set it results in
6858          * flickering pixels due to Z write ordering failures after
6859          * some amount of runtime in the Mesa "fire" demo, and Unigine
6860          * Sanctuary and Tropics, and apparently anything else with
6861          * alpha test or pixel discard.
6862          *
6863          * According to the spec, bit 11 (RCCUNIT) must also be set,
6864          * but we didn't debug actual testcases to find it out.
6865          *
6866          * WaDisableRCCUnitClockGating:snb
6867          * WaDisableRCPBUnitClockGating:snb
6868          */
6869         I915_WRITE(GEN6_UCGCTL2,
6870                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6871                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6872
6873         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6874         I915_WRITE(_3D_CHICKEN3,
6875                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6876
6877         /*
6878          * Bspec says:
6879          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6880          * 3DSTATE_SF number of SF output attributes is more than 16."
6881          */
6882         I915_WRITE(_3D_CHICKEN3,
6883                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6884
6885         /*
6886          * According to the spec the following bits should be
6887          * set in order to enable memory self-refresh and fbc:
6888          * The bit21 and bit22 of 0x42000
6889          * The bit21 and bit22 of 0x42004
6890          * The bit5 and bit7 of 0x42020
6891          * The bit14 of 0x70180
6892          * The bit14 of 0x71180
6893          *
6894          * WaFbcAsynchFlipDisableFbcQueue:snb
6895          */
6896         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6897                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6898                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6899         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6900                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6901                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6902         I915_WRITE(ILK_DSPCLK_GATE_D,
6903                    I915_READ(ILK_DSPCLK_GATE_D) |
6904                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6905                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6906
6907         g4x_disable_trickle_feed(dev);
6908
6909         cpt_init_clock_gating(dev);
6910
6911         gen6_check_mch_setup(dev);
6912 }
6913
6914 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6915 {
6916         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6917
6918         /*
6919          * WaVSThreadDispatchOverride:ivb,vlv
6920          *
6921          * This actually overrides the dispatch
6922          * mode for all thread types.
6923          */
6924         reg &= ~GEN7_FF_SCHED_MASK;
6925         reg |= GEN7_FF_TS_SCHED_HW;
6926         reg |= GEN7_FF_VS_SCHED_HW;
6927         reg |= GEN7_FF_DS_SCHED_HW;
6928
6929         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6930 }
6931
6932 static void lpt_init_clock_gating(struct drm_device *dev)
6933 {
6934         struct drm_i915_private *dev_priv = dev->dev_private;
6935
6936         /*
6937          * TODO: this bit should only be enabled when really needed, then
6938          * disabled when not needed anymore in order to save power.
6939          */
6940         if (HAS_PCH_LPT_LP(dev))
6941                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6942                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6943                            PCH_LP_PARTITION_LEVEL_DISABLE);
6944
6945         /* WADPOClockGatingDisable:hsw */
6946         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6947                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6948                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6949 }
6950
6951 static void lpt_suspend_hw(struct drm_device *dev)
6952 {
6953         struct drm_i915_private *dev_priv = dev->dev_private;
6954
6955         if (HAS_PCH_LPT_LP(dev)) {
6956                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6957
6958                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6959                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6960         }
6961 }
6962
6963 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6964                                    int general_prio_credits,
6965                                    int high_prio_credits)
6966 {
6967         u32 misccpctl;
6968
6969         /* WaTempDisableDOPClkGating:bdw */
6970         misccpctl = I915_READ(GEN7_MISCCPCTL);
6971         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6972
6973         I915_WRITE(GEN8_L3SQCREG1,
6974                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
6975                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
6976
6977         /*
6978          * Wait at least 100 clocks before re-enabling clock gating.
6979          * See the definition of L3SQCREG1 in BSpec.
6980          */
6981         POSTING_READ(GEN8_L3SQCREG1);
6982         udelay(1);
6983         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6984 }
6985
6986 static void kabylake_init_clock_gating(struct drm_device *dev)
6987 {
6988         struct drm_i915_private *dev_priv = dev->dev_private;
6989
6990         gen9_init_clock_gating(dev);
6991
6992         /* WaDisableSDEUnitClockGating:kbl */
6993         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6994                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6995                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6996
6997         /* WaDisableGamClockGating:kbl */
6998         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6999                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7000                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7001 }
7002
7003 static void skylake_init_clock_gating(struct drm_device *dev)
7004 {
7005         struct drm_i915_private *dev_priv = dev->dev_private;
7006
7007         gen9_init_clock_gating(dev);
7008
7009         /* WAC6entrylatency:skl */
7010         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7011                    FBC_LLC_FULLY_OPEN);
7012 }
7013
7014 static void broadwell_init_clock_gating(struct drm_device *dev)
7015 {
7016         struct drm_i915_private *dev_priv = dev->dev_private;
7017         enum pipe pipe;
7018
7019         ilk_init_lp_watermarks(dev);
7020
7021         /* WaSwitchSolVfFArbitrationPriority:bdw */
7022         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7023
7024         /* WaPsrDPAMaskVBlankInSRD:bdw */
7025         I915_WRITE(CHICKEN_PAR1_1,
7026                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7027
7028         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7029         for_each_pipe(dev_priv, pipe) {
7030                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7031                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7032                            BDW_DPRS_MASK_VBLANK_SRD);
7033         }
7034
7035         /* WaVSRefCountFullforceMissDisable:bdw */
7036         /* WaDSRefCountFullforceMissDisable:bdw */
7037         I915_WRITE(GEN7_FF_THREAD_MODE,
7038                    I915_READ(GEN7_FF_THREAD_MODE) &
7039                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7040
7041         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7042                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7043
7044         /* WaDisableSDEUnitClockGating:bdw */
7045         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7046                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7047
7048         /* WaProgramL3SqcReg1Default:bdw */
7049         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7050
7051         /*
7052          * WaGttCachingOffByDefault:bdw
7053          * GTT cache may not work with big pages, so if those
7054          * are ever enabled GTT cache may need to be disabled.
7055          */
7056         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7057
7058         /* WaKVMNotificationOnConfigChange:bdw */
7059         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7060                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7061
7062         lpt_init_clock_gating(dev);
7063 }
7064
7065 static void haswell_init_clock_gating(struct drm_device *dev)
7066 {
7067         struct drm_i915_private *dev_priv = dev->dev_private;
7068
7069         ilk_init_lp_watermarks(dev);
7070
7071         /* L3 caching of data atomics doesn't work -- disable it. */
7072         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7073         I915_WRITE(HSW_ROW_CHICKEN3,
7074                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7075
7076         /* This is required by WaCatErrorRejectionIssue:hsw */
7077         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7078                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7079                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7080
7081         /* WaVSRefCountFullforceMissDisable:hsw */
7082         I915_WRITE(GEN7_FF_THREAD_MODE,
7083                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7084
7085         /* WaDisable_RenderCache_OperationalFlush:hsw */
7086         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7087
7088         /* enable HiZ Raw Stall Optimization */
7089         I915_WRITE(CACHE_MODE_0_GEN7,
7090                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7091
7092         /* WaDisable4x2SubspanOptimization:hsw */
7093         I915_WRITE(CACHE_MODE_1,
7094                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7095
7096         /*
7097          * BSpec recommends 8x4 when MSAA is used,
7098          * however in practice 16x4 seems fastest.
7099          *
7100          * Note that PS/WM thread counts depend on the WIZ hashing
7101          * disable bit, which we don't touch here, but it's good
7102          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7103          */
7104         I915_WRITE(GEN7_GT_MODE,
7105                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7106
7107         /* WaSampleCChickenBitEnable:hsw */
7108         I915_WRITE(HALF_SLICE_CHICKEN3,
7109                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7110
7111         /* WaSwitchSolVfFArbitrationPriority:hsw */
7112         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7113
7114         /* WaRsPkgCStateDisplayPMReq:hsw */
7115         I915_WRITE(CHICKEN_PAR1_1,
7116                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7117
7118         lpt_init_clock_gating(dev);
7119 }
7120
7121 static void ivybridge_init_clock_gating(struct drm_device *dev)
7122 {
7123         struct drm_i915_private *dev_priv = dev->dev_private;
7124         uint32_t snpcr;
7125
7126         ilk_init_lp_watermarks(dev);
7127
7128         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7129
7130         /* WaDisableEarlyCull:ivb */
7131         I915_WRITE(_3D_CHICKEN3,
7132                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7133
7134         /* WaDisableBackToBackFlipFix:ivb */
7135         I915_WRITE(IVB_CHICKEN3,
7136                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7137                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7138
7139         /* WaDisablePSDDualDispatchEnable:ivb */
7140         if (IS_IVB_GT1(dev))
7141                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7142                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7143
7144         /* WaDisable_RenderCache_OperationalFlush:ivb */
7145         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7146
7147         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7148         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7149                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7150
7151         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7152         I915_WRITE(GEN7_L3CNTLREG1,
7153                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7154         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7155                    GEN7_WA_L3_CHICKEN_MODE);
7156         if (IS_IVB_GT1(dev))
7157                 I915_WRITE(GEN7_ROW_CHICKEN2,
7158                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7159         else {
7160                 /* must write both registers */
7161                 I915_WRITE(GEN7_ROW_CHICKEN2,
7162                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7163                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7164                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7165         }
7166
7167         /* WaForceL3Serialization:ivb */
7168         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7169                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7170
7171         /*
7172          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7173          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7174          */
7175         I915_WRITE(GEN6_UCGCTL2,
7176                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7177
7178         /* This is required by WaCatErrorRejectionIssue:ivb */
7179         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7180                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7181                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7182
7183         g4x_disable_trickle_feed(dev);
7184
7185         gen7_setup_fixed_func_scheduler(dev_priv);
7186
7187         if (0) { /* causes HiZ corruption on ivb:gt1 */
7188                 /* enable HiZ Raw Stall Optimization */
7189                 I915_WRITE(CACHE_MODE_0_GEN7,
7190                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7191         }
7192
7193         /* WaDisable4x2SubspanOptimization:ivb */
7194         I915_WRITE(CACHE_MODE_1,
7195                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7196
7197         /*
7198          * BSpec recommends 8x4 when MSAA is used,
7199          * however in practice 16x4 seems fastest.
7200          *
7201          * Note that PS/WM thread counts depend on the WIZ hashing
7202          * disable bit, which we don't touch here, but it's good
7203          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7204          */
7205         I915_WRITE(GEN7_GT_MODE,
7206                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7207
7208         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7209         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7210         snpcr |= GEN6_MBC_SNPCR_MED;
7211         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7212
7213         if (!HAS_PCH_NOP(dev))
7214                 cpt_init_clock_gating(dev);
7215
7216         gen6_check_mch_setup(dev);
7217 }
7218
7219 static void valleyview_init_clock_gating(struct drm_device *dev)
7220 {
7221         struct drm_i915_private *dev_priv = dev->dev_private;
7222
7223         /* WaDisableEarlyCull:vlv */
7224         I915_WRITE(_3D_CHICKEN3,
7225                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7226
7227         /* WaDisableBackToBackFlipFix:vlv */
7228         I915_WRITE(IVB_CHICKEN3,
7229                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7230                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7231
7232         /* WaPsdDispatchEnable:vlv */
7233         /* WaDisablePSDDualDispatchEnable:vlv */
7234         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7235                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7236                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7237
7238         /* WaDisable_RenderCache_OperationalFlush:vlv */
7239         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7240
7241         /* WaForceL3Serialization:vlv */
7242         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7243                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7244
7245         /* WaDisableDopClockGating:vlv */
7246         I915_WRITE(GEN7_ROW_CHICKEN2,
7247                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7248
7249         /* This is required by WaCatErrorRejectionIssue:vlv */
7250         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7251                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7252                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7253
7254         gen7_setup_fixed_func_scheduler(dev_priv);
7255
7256         /*
7257          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7258          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7259          */
7260         I915_WRITE(GEN6_UCGCTL2,
7261                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7262
7263         /* WaDisableL3Bank2xClockGate:vlv
7264          * Disabling L3 clock gating- MMIO 940c[25] = 1
7265          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7266         I915_WRITE(GEN7_UCGCTL4,
7267                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7268
7269         /*
7270          * BSpec says this must be set, even though
7271          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7272          */
7273         I915_WRITE(CACHE_MODE_1,
7274                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7275
7276         /*
7277          * BSpec recommends 8x4 when MSAA is used,
7278          * however in practice 16x4 seems fastest.
7279          *
7280          * Note that PS/WM thread counts depend on the WIZ hashing
7281          * disable bit, which we don't touch here, but it's good
7282          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7283          */
7284         I915_WRITE(GEN7_GT_MODE,
7285                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7286
7287         /*
7288          * WaIncreaseL3CreditsForVLVB0:vlv
7289          * This is the hardware default actually.
7290          */
7291         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7292
7293         /*
7294          * WaDisableVLVClockGating_VBIIssue:vlv
7295          * Disable clock gating on th GCFG unit to prevent a delay
7296          * in the reporting of vblank events.
7297          */
7298         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7299 }
7300
7301 static void cherryview_init_clock_gating(struct drm_device *dev)
7302 {
7303         struct drm_i915_private *dev_priv = dev->dev_private;
7304
7305         /* WaVSRefCountFullforceMissDisable:chv */
7306         /* WaDSRefCountFullforceMissDisable:chv */
7307         I915_WRITE(GEN7_FF_THREAD_MODE,
7308                    I915_READ(GEN7_FF_THREAD_MODE) &
7309                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7310
7311         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7312         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7313                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7314
7315         /* WaDisableCSUnitClockGating:chv */
7316         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7317                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7318
7319         /* WaDisableSDEUnitClockGating:chv */
7320         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7321                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7322
7323         /*
7324          * WaProgramL3SqcReg1Default:chv
7325          * See gfxspecs/Related Documents/Performance Guide/
7326          * LSQC Setting Recommendations.
7327          */
7328         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7329
7330         /*
7331          * GTT cache may not work with big pages, so if those
7332          * are ever enabled GTT cache may need to be disabled.
7333          */
7334         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7335 }
7336
7337 static void g4x_init_clock_gating(struct drm_device *dev)
7338 {
7339         struct drm_i915_private *dev_priv = dev->dev_private;
7340         uint32_t dspclk_gate;
7341
7342         I915_WRITE(RENCLK_GATE_D1, 0);
7343         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7344                    GS_UNIT_CLOCK_GATE_DISABLE |
7345                    CL_UNIT_CLOCK_GATE_DISABLE);
7346         I915_WRITE(RAMCLK_GATE_D, 0);
7347         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7348                 OVRUNIT_CLOCK_GATE_DISABLE |
7349                 OVCUNIT_CLOCK_GATE_DISABLE;
7350         if (IS_GM45(dev))
7351                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7352         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7353
7354         /* WaDisableRenderCachePipelinedFlush */
7355         I915_WRITE(CACHE_MODE_0,
7356                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7357
7358         /* WaDisable_RenderCache_OperationalFlush:g4x */
7359         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7360
7361         g4x_disable_trickle_feed(dev);
7362 }
7363
7364 static void crestline_init_clock_gating(struct drm_device *dev)
7365 {
7366         struct drm_i915_private *dev_priv = dev->dev_private;
7367
7368         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7369         I915_WRITE(RENCLK_GATE_D2, 0);
7370         I915_WRITE(DSPCLK_GATE_D, 0);
7371         I915_WRITE(RAMCLK_GATE_D, 0);
7372         I915_WRITE16(DEUC, 0);
7373         I915_WRITE(MI_ARB_STATE,
7374                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7375
7376         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7377         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7378 }
7379
7380 static void broadwater_init_clock_gating(struct drm_device *dev)
7381 {
7382         struct drm_i915_private *dev_priv = dev->dev_private;
7383
7384         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7385                    I965_RCC_CLOCK_GATE_DISABLE |
7386                    I965_RCPB_CLOCK_GATE_DISABLE |
7387                    I965_ISC_CLOCK_GATE_DISABLE |
7388                    I965_FBC_CLOCK_GATE_DISABLE);
7389         I915_WRITE(RENCLK_GATE_D2, 0);
7390         I915_WRITE(MI_ARB_STATE,
7391                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7392
7393         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7394         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7395 }
7396
7397 static void gen3_init_clock_gating(struct drm_device *dev)
7398 {
7399         struct drm_i915_private *dev_priv = dev->dev_private;
7400         u32 dstate = I915_READ(D_STATE);
7401
7402         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7403                 DSTATE_DOT_CLOCK_GATING;
7404         I915_WRITE(D_STATE, dstate);
7405
7406         if (IS_PINEVIEW(dev))
7407                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7408
7409         /* IIR "flip pending" means done if this bit is set */
7410         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7411
7412         /* interrupts should cause a wake up from C3 */
7413         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7414
7415         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7416         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7417
7418         I915_WRITE(MI_ARB_STATE,
7419                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7420 }
7421
7422 static void i85x_init_clock_gating(struct drm_device *dev)
7423 {
7424         struct drm_i915_private *dev_priv = dev->dev_private;
7425
7426         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7427
7428         /* interrupts should cause a wake up from C3 */
7429         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7430                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7431
7432         I915_WRITE(MEM_MODE,
7433                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7434 }
7435
7436 static void i830_init_clock_gating(struct drm_device *dev)
7437 {
7438         struct drm_i915_private *dev_priv = dev->dev_private;
7439
7440         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7441
7442         I915_WRITE(MEM_MODE,
7443                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7444                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7445 }
7446
7447 void intel_init_clock_gating(struct drm_device *dev)
7448 {
7449         struct drm_i915_private *dev_priv = dev->dev_private;
7450
7451         dev_priv->display.init_clock_gating(dev);
7452 }
7453
7454 void intel_suspend_hw(struct drm_device *dev)
7455 {
7456         if (HAS_PCH_LPT(dev))
7457                 lpt_suspend_hw(dev);
7458 }
7459
7460 static void nop_init_clock_gating(struct drm_device *dev)
7461 {
7462         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7463 }
7464
7465 /**
7466  * intel_init_clock_gating_hooks - setup the clock gating hooks
7467  * @dev_priv: device private
7468  *
7469  * Setup the hooks that configure which clocks of a given platform can be
7470  * gated and also apply various GT and display specific workarounds for these
7471  * platforms. Note that some GT specific workarounds are applied separately
7472  * when GPU contexts or batchbuffers start their execution.
7473  */
7474 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7475 {
7476         if (IS_SKYLAKE(dev_priv))
7477                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7478         else if (IS_KABYLAKE(dev_priv))
7479                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7480         else if (IS_BROXTON(dev_priv))
7481                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7482         else if (IS_BROADWELL(dev_priv))
7483                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7484         else if (IS_CHERRYVIEW(dev_priv))
7485                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7486         else if (IS_HASWELL(dev_priv))
7487                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7488         else if (IS_IVYBRIDGE(dev_priv))
7489                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7490         else if (IS_VALLEYVIEW(dev_priv))
7491                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7492         else if (IS_GEN6(dev_priv))
7493                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7494         else if (IS_GEN5(dev_priv))
7495                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7496         else if (IS_G4X(dev_priv))
7497                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7498         else if (IS_CRESTLINE(dev_priv))
7499                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7500         else if (IS_BROADWATER(dev_priv))
7501                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7502         else if (IS_GEN3(dev_priv))
7503                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7504         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7505                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7506         else if (IS_GEN2(dev_priv))
7507                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7508         else {
7509                 MISSING_CASE(INTEL_DEVID(dev_priv));
7510                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7511         }
7512 }
7513
7514 /* Set up chip specific power management-related functions */
7515 void intel_init_pm(struct drm_device *dev)
7516 {
7517         struct drm_i915_private *dev_priv = dev->dev_private;
7518
7519         intel_fbc_init(dev_priv);
7520
7521         /* For cxsr */
7522         if (IS_PINEVIEW(dev))
7523                 i915_pineview_get_mem_freq(dev);
7524         else if (IS_GEN5(dev))
7525                 i915_ironlake_get_mem_freq(dev);
7526
7527         /* For FIFO watermark updates */
7528         if (INTEL_INFO(dev)->gen >= 9) {
7529                 skl_setup_wm_latency(dev);
7530                 dev_priv->display.update_wm = skl_update_wm;
7531                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7532         } else if (HAS_PCH_SPLIT(dev)) {
7533                 ilk_setup_wm_latency(dev);
7534
7535                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7536                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7537                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7538                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7539                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7540                         dev_priv->display.compute_intermediate_wm =
7541                                 ilk_compute_intermediate_wm;
7542                         dev_priv->display.initial_watermarks =
7543                                 ilk_initial_watermarks;
7544                         dev_priv->display.optimize_watermarks =
7545                                 ilk_optimize_watermarks;
7546                 } else {
7547                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7548                                       "Disable CxSR\n");
7549                 }
7550         } else if (IS_CHERRYVIEW(dev)) {
7551                 vlv_setup_wm_latency(dev);
7552                 dev_priv->display.update_wm = vlv_update_wm;
7553         } else if (IS_VALLEYVIEW(dev)) {
7554                 vlv_setup_wm_latency(dev);
7555                 dev_priv->display.update_wm = vlv_update_wm;
7556         } else if (IS_PINEVIEW(dev)) {
7557                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7558                                             dev_priv->is_ddr3,
7559                                             dev_priv->fsb_freq,
7560                                             dev_priv->mem_freq)) {
7561                         DRM_INFO("failed to find known CxSR latency "
7562                                  "(found ddr%s fsb freq %d, mem freq %d), "
7563                                  "disabling CxSR\n",
7564                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7565                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7566                         /* Disable CxSR and never update its watermark again */
7567                         intel_set_memory_cxsr(dev_priv, false);
7568                         dev_priv->display.update_wm = NULL;
7569                 } else
7570                         dev_priv->display.update_wm = pineview_update_wm;
7571         } else if (IS_G4X(dev)) {
7572                 dev_priv->display.update_wm = g4x_update_wm;
7573         } else if (IS_GEN4(dev)) {
7574                 dev_priv->display.update_wm = i965_update_wm;
7575         } else if (IS_GEN3(dev)) {
7576                 dev_priv->display.update_wm = i9xx_update_wm;
7577                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7578         } else if (IS_GEN2(dev)) {
7579                 if (INTEL_INFO(dev)->num_pipes == 1) {
7580                         dev_priv->display.update_wm = i845_update_wm;
7581                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7582                 } else {
7583                         dev_priv->display.update_wm = i9xx_update_wm;
7584                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7585                 }
7586         } else {
7587                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7588         }
7589 }
7590
7591 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7592 {
7593         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7594
7595         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7596                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7597                 return -EAGAIN;
7598         }
7599
7600         I915_WRITE(GEN6_PCODE_DATA, *val);
7601         I915_WRITE(GEN6_PCODE_DATA1, 0);
7602         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7603
7604         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7605                      500)) {
7606                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7607                 return -ETIMEDOUT;
7608         }
7609
7610         *val = I915_READ(GEN6_PCODE_DATA);
7611         I915_WRITE(GEN6_PCODE_DATA, 0);
7612
7613         return 0;
7614 }
7615
7616 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7617 {
7618         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7619
7620         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7621                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7622                 return -EAGAIN;
7623         }
7624
7625         I915_WRITE(GEN6_PCODE_DATA, val);
7626         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7627
7628         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7629                      500)) {
7630                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7631                 return -ETIMEDOUT;
7632         }
7633
7634         I915_WRITE(GEN6_PCODE_DATA, 0);
7635
7636         return 0;
7637 }
7638
7639 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7640 {
7641         /*
7642          * N = val - 0xb7
7643          * Slow = Fast = GPLL ref * N
7644          */
7645         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7646 }
7647
7648 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7649 {
7650         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7651 }
7652
7653 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7654 {
7655         /*
7656          * N = val / 2
7657          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7658          */
7659         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7660 }
7661
7662 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7663 {
7664         /* CHV needs even values */
7665         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7666 }
7667
7668 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7669 {
7670         if (IS_GEN9(dev_priv))
7671                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7672                                          GEN9_FREQ_SCALER);
7673         else if (IS_CHERRYVIEW(dev_priv))
7674                 return chv_gpu_freq(dev_priv, val);
7675         else if (IS_VALLEYVIEW(dev_priv))
7676                 return byt_gpu_freq(dev_priv, val);
7677         else
7678                 return val * GT_FREQUENCY_MULTIPLIER;
7679 }
7680
7681 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7682 {
7683         if (IS_GEN9(dev_priv))
7684                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7685                                          GT_FREQUENCY_MULTIPLIER);
7686         else if (IS_CHERRYVIEW(dev_priv))
7687                 return chv_freq_opcode(dev_priv, val);
7688         else if (IS_VALLEYVIEW(dev_priv))
7689                 return byt_freq_opcode(dev_priv, val);
7690         else
7691                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7692 }
7693
7694 struct request_boost {
7695         struct work_struct work;
7696         struct drm_i915_gem_request *req;
7697 };
7698
7699 static void __intel_rps_boost_work(struct work_struct *work)
7700 {
7701         struct request_boost *boost = container_of(work, struct request_boost, work);
7702         struct drm_i915_gem_request *req = boost->req;
7703
7704         if (!i915_gem_request_completed(req, true))
7705                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7706
7707         i915_gem_request_unreference(req);
7708         kfree(boost);
7709 }
7710
7711 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7712 {
7713         struct request_boost *boost;
7714
7715         if (req == NULL || INTEL_GEN(req->i915) < 6)
7716                 return;
7717
7718         if (i915_gem_request_completed(req, true))
7719                 return;
7720
7721         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7722         if (boost == NULL)
7723                 return;
7724
7725         i915_gem_request_reference(req);
7726         boost->req = req;
7727
7728         INIT_WORK(&boost->work, __intel_rps_boost_work);
7729         queue_work(req->i915->wq, &boost->work);
7730 }
7731
7732 void intel_pm_setup(struct drm_device *dev)
7733 {
7734         struct drm_i915_private *dev_priv = dev->dev_private;
7735
7736         mutex_init(&dev_priv->rps.hw_lock);
7737         spin_lock_init(&dev_priv->rps.client_lock);
7738
7739         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7740                           intel_gen6_powersave_work);
7741         INIT_LIST_HEAD(&dev_priv->rps.clients);
7742         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7743         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7744
7745         dev_priv->pm.suspended = false;
7746         atomic_set(&dev_priv->pm.wakeref_count, 0);
7747         atomic_set(&dev_priv->pm.atomic_seq, 0);
7748 }