Merge tag 'drm-intel-fixes-2016-08-15' of git://anongit.freedesktop.org/drm-intel...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         I915_WRITE(GEN8_CONFIG0,
67                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69         /* WaEnableChickenDCPR:skl,bxt,kbl */
70         I915_WRITE(GEN8_CHICKEN_DCPR_1,
71                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74         /* WaFbcWakeMemOn:skl,bxt,kbl */
75         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76                    DISP_FBC_WM_DIS |
77                    DISP_FBC_MEMORY_WAKE);
78
79         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81                    ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = to_i915(dev);
87
88         gen9_init_clock_gating(dev);
89
90         /* WaDisableSDEUnitClockGating:bxt */
91         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94         /*
95          * FIXME:
96          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97          */
98         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101         /*
102          * Wa: Backlight PWM may stop in the asserted state, causing backlight
103          * to stay fully on.
104          */
105         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107                            PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = to_i915(dev);
113         u32 tmp;
114
115         tmp = I915_READ(CLKCFG);
116
117         switch (tmp & CLKCFG_FSB_MASK) {
118         case CLKCFG_FSB_533:
119                 dev_priv->fsb_freq = 533; /* 133*4 */
120                 break;
121         case CLKCFG_FSB_800:
122                 dev_priv->fsb_freq = 800; /* 200*4 */
123                 break;
124         case CLKCFG_FSB_667:
125                 dev_priv->fsb_freq =  667; /* 167*4 */
126                 break;
127         case CLKCFG_FSB_400:
128                 dev_priv->fsb_freq = 400; /* 100*4 */
129                 break;
130         }
131
132         switch (tmp & CLKCFG_MEM_MASK) {
133         case CLKCFG_MEM_533:
134                 dev_priv->mem_freq = 533;
135                 break;
136         case CLKCFG_MEM_667:
137                 dev_priv->mem_freq = 667;
138                 break;
139         case CLKCFG_MEM_800:
140                 dev_priv->mem_freq = 800;
141                 break;
142         }
143
144         /* detect pineview DDR3 setting */
145         tmp = I915_READ(CSHRDDR3CTL);
146         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         u16 ddrpll, csipll;
153
154         ddrpll = I915_READ16(DDRMPLL1);
155         csipll = I915_READ16(CSIPLL0);
156
157         switch (ddrpll & 0xff) {
158         case 0xc:
159                 dev_priv->mem_freq = 800;
160                 break;
161         case 0x10:
162                 dev_priv->mem_freq = 1066;
163                 break;
164         case 0x14:
165                 dev_priv->mem_freq = 1333;
166                 break;
167         case 0x18:
168                 dev_priv->mem_freq = 1600;
169                 break;
170         default:
171                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172                                  ddrpll & 0xff);
173                 dev_priv->mem_freq = 0;
174                 break;
175         }
176
177         dev_priv->ips.r_t = dev_priv->mem_freq;
178
179         switch (csipll & 0x3ff) {
180         case 0x00c:
181                 dev_priv->fsb_freq = 3200;
182                 break;
183         case 0x00e:
184                 dev_priv->fsb_freq = 3733;
185                 break;
186         case 0x010:
187                 dev_priv->fsb_freq = 4266;
188                 break;
189         case 0x012:
190                 dev_priv->fsb_freq = 4800;
191                 break;
192         case 0x014:
193                 dev_priv->fsb_freq = 5333;
194                 break;
195         case 0x016:
196                 dev_priv->fsb_freq = 5866;
197                 break;
198         case 0x018:
199                 dev_priv->fsb_freq = 6400;
200                 break;
201         default:
202                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203                                  csipll & 0x3ff);
204                 dev_priv->fsb_freq = 0;
205                 break;
206         }
207
208         if (dev_priv->fsb_freq == 3200) {
209                 dev_priv->ips.c_m = 0;
210         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211                 dev_priv->ips.c_m = 1;
212         } else {
213                 dev_priv->ips.c_m = 2;
214         }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
219         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
220         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
221         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
222         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
223
224         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
225         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
226         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
227         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
228         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
229
230         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
231         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
232         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
233         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
234         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
235
236         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
237         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
238         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
239         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
240         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
241
242         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
243         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
244         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
245         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
246         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
247
248         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
249         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
250         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
251         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
252         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256                                                          int is_ddr3,
257                                                          int fsb,
258                                                          int mem)
259 {
260         const struct cxsr_latency *latency;
261         int i;
262
263         if (fsb == 0 || mem == 0)
264                 return NULL;
265
266         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267                 latency = &cxsr_latency_table[i];
268                 if (is_desktop == latency->is_desktop &&
269                     is_ddr3 == latency->is_ddr3 &&
270                     fsb == latency->fsb_freq && mem == latency->mem_freq)
271                         return latency;
272         }
273
274         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276         return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281         u32 val;
282
283         mutex_lock(&dev_priv->rps.hw_lock);
284
285         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286         if (enable)
287                 val &= ~FORCE_DDR_HIGH_FREQ;
288         else
289                 val |= FORCE_DDR_HIGH_FREQ;
290         val &= ~FORCE_DDR_LOW_FREQ;
291         val |= FORCE_DDR_FREQ_REQ_ACK;
292         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298         mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303         u32 val;
304
305         mutex_lock(&dev_priv->rps.hw_lock);
306
307         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308         if (enable)
309                 val |= DSP_MAXFIFO_PM5_ENABLE;
310         else
311                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314         mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322         struct drm_device *dev = &dev_priv->drm;
323         u32 val;
324
325         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327                 POSTING_READ(FW_BLC_SELF_VLV);
328                 dev_priv->wm.vlv.cxsr = enable;
329         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331                 POSTING_READ(FW_BLC_SELF);
332         } else if (IS_PINEVIEW(dev)) {
333                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335                 I915_WRITE(DSPFW3, val);
336                 POSTING_READ(DSPFW3);
337         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340                 I915_WRITE(FW_BLC_SELF, val);
341                 POSTING_READ(FW_BLC_SELF);
342         } else if (IS_I915GM(dev)) {
343                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
344                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
345                 I915_WRITE(INSTPM, val);
346                 POSTING_READ(INSTPM);
347         } else {
348                 return;
349         }
350
351         DRM_DEBUG_KMS("memory self-refresh is %s\n",
352                       enable ? "enabled" : "disabled");
353 }
354
355
356 /*
357  * Latency for FIFO fetches is dependent on several factors:
358  *   - memory configuration (speed, channels)
359  *   - chipset
360  *   - current MCH state
361  * It can be fairly high in some situations, so here we assume a fairly
362  * pessimal value.  It's a tradeoff between extra memory fetches (if we
363  * set this value too high, the FIFO will fetch frequently to stay full)
364  * and power consumption (set it too low to save power and we might see
365  * FIFO underruns and display "flicker").
366  *
367  * A value of 5us seems to be a good balance; safe for very low end
368  * platforms but not overly aggressive on lower latency configs.
369  */
370 static const int pessimal_latency_ns = 5000;
371
372 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
373         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
374
375 static int vlv_get_fifo_size(struct drm_device *dev,
376                               enum pipe pipe, int plane)
377 {
378         struct drm_i915_private *dev_priv = to_i915(dev);
379         int sprite0_start, sprite1_start, size;
380
381         switch (pipe) {
382                 uint32_t dsparb, dsparb2, dsparb3;
383         case PIPE_A:
384                 dsparb = I915_READ(DSPARB);
385                 dsparb2 = I915_READ(DSPARB2);
386                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
387                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
388                 break;
389         case PIPE_B:
390                 dsparb = I915_READ(DSPARB);
391                 dsparb2 = I915_READ(DSPARB2);
392                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
393                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
394                 break;
395         case PIPE_C:
396                 dsparb2 = I915_READ(DSPARB2);
397                 dsparb3 = I915_READ(DSPARB3);
398                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
399                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
400                 break;
401         default:
402                 return 0;
403         }
404
405         switch (plane) {
406         case 0:
407                 size = sprite0_start;
408                 break;
409         case 1:
410                 size = sprite1_start - sprite0_start;
411                 break;
412         case 2:
413                 size = 512 - 1 - sprite1_start;
414                 break;
415         default:
416                 return 0;
417         }
418
419         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
420                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
421                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
422                       size);
423
424         return size;
425 }
426
427 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428 {
429         struct drm_i915_private *dev_priv = to_i915(dev);
430         uint32_t dsparb = I915_READ(DSPARB);
431         int size;
432
433         size = dsparb & 0x7f;
434         if (plane)
435                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
436
437         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438                       plane ? "B" : "A", size);
439
440         return size;
441 }
442
443 static int i830_get_fifo_size(struct drm_device *dev, int plane)
444 {
445         struct drm_i915_private *dev_priv = to_i915(dev);
446         uint32_t dsparb = I915_READ(DSPARB);
447         int size;
448
449         size = dsparb & 0x1ff;
450         if (plane)
451                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
452         size >>= 1; /* Convert to cachelines */
453
454         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
455                       plane ? "B" : "A", size);
456
457         return size;
458 }
459
460 static int i845_get_fifo_size(struct drm_device *dev, int plane)
461 {
462         struct drm_i915_private *dev_priv = to_i915(dev);
463         uint32_t dsparb = I915_READ(DSPARB);
464         int size;
465
466         size = dsparb & 0x7f;
467         size >>= 2; /* Convert to cachelines */
468
469         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
470                       plane ? "B" : "A",
471                       size);
472
473         return size;
474 }
475
476 /* Pineview has different values for various configs */
477 static const struct intel_watermark_params pineview_display_wm = {
478         .fifo_size = PINEVIEW_DISPLAY_FIFO,
479         .max_wm = PINEVIEW_MAX_WM,
480         .default_wm = PINEVIEW_DFT_WM,
481         .guard_size = PINEVIEW_GUARD_WM,
482         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 };
484 static const struct intel_watermark_params pineview_display_hplloff_wm = {
485         .fifo_size = PINEVIEW_DISPLAY_FIFO,
486         .max_wm = PINEVIEW_MAX_WM,
487         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
488         .guard_size = PINEVIEW_GUARD_WM,
489         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 };
491 static const struct intel_watermark_params pineview_cursor_wm = {
492         .fifo_size = PINEVIEW_CURSOR_FIFO,
493         .max_wm = PINEVIEW_CURSOR_MAX_WM,
494         .default_wm = PINEVIEW_CURSOR_DFT_WM,
495         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
496         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 };
498 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499         .fifo_size = PINEVIEW_CURSOR_FIFO,
500         .max_wm = PINEVIEW_CURSOR_MAX_WM,
501         .default_wm = PINEVIEW_CURSOR_DFT_WM,
502         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
503         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 };
505 static const struct intel_watermark_params g4x_wm_info = {
506         .fifo_size = G4X_FIFO_SIZE,
507         .max_wm = G4X_MAX_WM,
508         .default_wm = G4X_MAX_WM,
509         .guard_size = 2,
510         .cacheline_size = G4X_FIFO_LINE_SIZE,
511 };
512 static const struct intel_watermark_params g4x_cursor_wm_info = {
513         .fifo_size = I965_CURSOR_FIFO,
514         .max_wm = I965_CURSOR_MAX_WM,
515         .default_wm = I965_CURSOR_DFT_WM,
516         .guard_size = 2,
517         .cacheline_size = G4X_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params i965_cursor_wm_info = {
520         .fifo_size = I965_CURSOR_FIFO,
521         .max_wm = I965_CURSOR_MAX_WM,
522         .default_wm = I965_CURSOR_DFT_WM,
523         .guard_size = 2,
524         .cacheline_size = I915_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params i945_wm_info = {
527         .fifo_size = I945_FIFO_SIZE,
528         .max_wm = I915_MAX_WM,
529         .default_wm = 1,
530         .guard_size = 2,
531         .cacheline_size = I915_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params i915_wm_info = {
534         .fifo_size = I915_FIFO_SIZE,
535         .max_wm = I915_MAX_WM,
536         .default_wm = 1,
537         .guard_size = 2,
538         .cacheline_size = I915_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params i830_a_wm_info = {
541         .fifo_size = I855GM_FIFO_SIZE,
542         .max_wm = I915_MAX_WM,
543         .default_wm = 1,
544         .guard_size = 2,
545         .cacheline_size = I830_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params i830_bc_wm_info = {
548         .fifo_size = I855GM_FIFO_SIZE,
549         .max_wm = I915_MAX_WM/2,
550         .default_wm = 1,
551         .guard_size = 2,
552         .cacheline_size = I830_FIFO_LINE_SIZE,
553 };
554 static const struct intel_watermark_params i845_wm_info = {
555         .fifo_size = I830_FIFO_SIZE,
556         .max_wm = I915_MAX_WM,
557         .default_wm = 1,
558         .guard_size = 2,
559         .cacheline_size = I830_FIFO_LINE_SIZE,
560 };
561
562 /**
563  * intel_calculate_wm - calculate watermark level
564  * @clock_in_khz: pixel clock
565  * @wm: chip FIFO params
566  * @cpp: bytes per pixel
567  * @latency_ns: memory latency for the platform
568  *
569  * Calculate the watermark level (the level at which the display plane will
570  * start fetching from memory again).  Each chip has a different display
571  * FIFO size and allocation, so the caller needs to figure that out and pass
572  * in the correct intel_watermark_params structure.
573  *
574  * As the pixel clock runs, the FIFO will be drained at a rate that depends
575  * on the pixel size.  When it reaches the watermark level, it'll start
576  * fetching FIFO line sized based chunks from memory until the FIFO fills
577  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
578  * will occur, and a display engine hang could result.
579  */
580 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
581                                         const struct intel_watermark_params *wm,
582                                         int fifo_size, int cpp,
583                                         unsigned long latency_ns)
584 {
585         long entries_required, wm_size;
586
587         /*
588          * Note: we need to make sure we don't overflow for various clock &
589          * latency values.
590          * clocks go from a few thousand to several hundred thousand.
591          * latency is usually a few thousand
592          */
593         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594                 1000;
595         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
596
597         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
598
599         wm_size = fifo_size - (entries_required + wm->guard_size);
600
601         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
602
603         /* Don't promote wm_size to unsigned... */
604         if (wm_size > (long)wm->max_wm)
605                 wm_size = wm->max_wm;
606         if (wm_size <= 0)
607                 wm_size = wm->default_wm;
608
609         /*
610          * Bspec seems to indicate that the value shouldn't be lower than
611          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
612          * Lets go for 8 which is the burst size since certain platforms
613          * already use a hardcoded 8 (which is what the spec says should be
614          * done).
615          */
616         if (wm_size <= 8)
617                 wm_size = 8;
618
619         return wm_size;
620 }
621
622 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
623 {
624         struct drm_crtc *crtc, *enabled = NULL;
625
626         for_each_crtc(dev, crtc) {
627                 if (intel_crtc_active(crtc)) {
628                         if (enabled)
629                                 return NULL;
630                         enabled = crtc;
631                 }
632         }
633
634         return enabled;
635 }
636
637 static void pineview_update_wm(struct drm_crtc *unused_crtc)
638 {
639         struct drm_device *dev = unused_crtc->dev;
640         struct drm_i915_private *dev_priv = to_i915(dev);
641         struct drm_crtc *crtc;
642         const struct cxsr_latency *latency;
643         u32 reg;
644         unsigned long wm;
645
646         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
647                                          dev_priv->fsb_freq, dev_priv->mem_freq);
648         if (!latency) {
649                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650                 intel_set_memory_cxsr(dev_priv, false);
651                 return;
652         }
653
654         crtc = single_enabled_crtc(dev);
655         if (crtc) {
656                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658                 int clock = adjusted_mode->crtc_clock;
659
660                 /* Display SR */
661                 wm = intel_calculate_wm(clock, &pineview_display_wm,
662                                         pineview_display_wm.fifo_size,
663                                         cpp, latency->display_sr);
664                 reg = I915_READ(DSPFW1);
665                 reg &= ~DSPFW_SR_MASK;
666                 reg |= FW_WM(wm, SR);
667                 I915_WRITE(DSPFW1, reg);
668                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
669
670                 /* cursor SR */
671                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
672                                         pineview_display_wm.fifo_size,
673                                         cpp, latency->cursor_sr);
674                 reg = I915_READ(DSPFW3);
675                 reg &= ~DSPFW_CURSOR_SR_MASK;
676                 reg |= FW_WM(wm, CURSOR_SR);
677                 I915_WRITE(DSPFW3, reg);
678
679                 /* Display HPLL off SR */
680                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
681                                         pineview_display_hplloff_wm.fifo_size,
682                                         cpp, latency->display_hpll_disable);
683                 reg = I915_READ(DSPFW3);
684                 reg &= ~DSPFW_HPLL_SR_MASK;
685                 reg |= FW_WM(wm, HPLL_SR);
686                 I915_WRITE(DSPFW3, reg);
687
688                 /* cursor HPLL off SR */
689                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
690                                         pineview_display_hplloff_wm.fifo_size,
691                                         cpp, latency->cursor_hpll_disable);
692                 reg = I915_READ(DSPFW3);
693                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
694                 reg |= FW_WM(wm, HPLL_CURSOR);
695                 I915_WRITE(DSPFW3, reg);
696                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
697
698                 intel_set_memory_cxsr(dev_priv, true);
699         } else {
700                 intel_set_memory_cxsr(dev_priv, false);
701         }
702 }
703
704 static bool g4x_compute_wm0(struct drm_device *dev,
705                             int plane,
706                             const struct intel_watermark_params *display,
707                             int display_latency_ns,
708                             const struct intel_watermark_params *cursor,
709                             int cursor_latency_ns,
710                             int *plane_wm,
711                             int *cursor_wm)
712 {
713         struct drm_crtc *crtc;
714         const struct drm_display_mode *adjusted_mode;
715         int htotal, hdisplay, clock, cpp;
716         int line_time_us, line_count;
717         int entries, tlb_miss;
718
719         crtc = intel_get_crtc_for_plane(dev, plane);
720         if (!intel_crtc_active(crtc)) {
721                 *cursor_wm = cursor->guard_size;
722                 *plane_wm = display->guard_size;
723                 return false;
724         }
725
726         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727         clock = adjusted_mode->crtc_clock;
728         htotal = adjusted_mode->crtc_htotal;
729         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731
732         /* Use the small buffer method to calculate plane watermark */
733         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735         if (tlb_miss > 0)
736                 entries += tlb_miss;
737         entries = DIV_ROUND_UP(entries, display->cacheline_size);
738         *plane_wm = entries + display->guard_size;
739         if (*plane_wm > (int)display->max_wm)
740                 *plane_wm = display->max_wm;
741
742         /* Use the large buffer method to calculate cursor watermark */
743         line_time_us = max(htotal * 1000 / clock, 1);
744         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745         entries = line_count * crtc->cursor->state->crtc_w * cpp;
746         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747         if (tlb_miss > 0)
748                 entries += tlb_miss;
749         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750         *cursor_wm = entries + cursor->guard_size;
751         if (*cursor_wm > (int)cursor->max_wm)
752                 *cursor_wm = (int)cursor->max_wm;
753
754         return true;
755 }
756
757 /*
758  * Check the wm result.
759  *
760  * If any calculated watermark values is larger than the maximum value that
761  * can be programmed into the associated watermark register, that watermark
762  * must be disabled.
763  */
764 static bool g4x_check_srwm(struct drm_device *dev,
765                            int display_wm, int cursor_wm,
766                            const struct intel_watermark_params *display,
767                            const struct intel_watermark_params *cursor)
768 {
769         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770                       display_wm, cursor_wm);
771
772         if (display_wm > display->max_wm) {
773                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
774                               display_wm, display->max_wm);
775                 return false;
776         }
777
778         if (cursor_wm > cursor->max_wm) {
779                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
780                               cursor_wm, cursor->max_wm);
781                 return false;
782         }
783
784         if (!(display_wm || cursor_wm)) {
785                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786                 return false;
787         }
788
789         return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_device *dev,
793                              int plane,
794                              int latency_ns,
795                              const struct intel_watermark_params *display,
796                              const struct intel_watermark_params *cursor,
797                              int *display_wm, int *cursor_wm)
798 {
799         struct drm_crtc *crtc;
800         const struct drm_display_mode *adjusted_mode;
801         int hdisplay, htotal, cpp, clock;
802         unsigned long line_time_us;
803         int line_count, line_size;
804         int small, large;
805         int entries;
806
807         if (!latency_ns) {
808                 *display_wm = *cursor_wm = 0;
809                 return false;
810         }
811
812         crtc = intel_get_crtc_for_plane(dev, plane);
813         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814         clock = adjusted_mode->crtc_clock;
815         htotal = adjusted_mode->crtc_htotal;
816         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818
819         line_time_us = max(htotal * 1000 / clock, 1);
820         line_count = (latency_ns / line_time_us + 1000) / 1000;
821         line_size = hdisplay * cpp;
822
823         /* Use the minimum of the small and large buffer method for primary */
824         small = ((clock * cpp / 1000) * latency_ns) / 1000;
825         large = line_count * line_size;
826
827         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
828         *display_wm = entries + display->guard_size;
829
830         /* calculate the self-refresh watermark for display cursor */
831         entries = line_count * cpp * crtc->cursor->state->crtc_w;
832         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
833         *cursor_wm = entries + cursor->guard_size;
834
835         return g4x_check_srwm(dev,
836                               *display_wm, *cursor_wm,
837                               display, cursor);
838 }
839
840 #define FW_WM_VLV(value, plane) \
841         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
842
843 static void vlv_write_wm_values(struct intel_crtc *crtc,
844                                 const struct vlv_wm_values *wm)
845 {
846         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
847         enum pipe pipe = crtc->pipe;
848
849         I915_WRITE(VLV_DDL(pipe),
850                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
851                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
852                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
853                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
854
855         I915_WRITE(DSPFW1,
856                    FW_WM(wm->sr.plane, SR) |
857                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
858                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
859                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860         I915_WRITE(DSPFW2,
861                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
862                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
863                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864         I915_WRITE(DSPFW3,
865                    FW_WM(wm->sr.cursor, CURSOR_SR));
866
867         if (IS_CHERRYVIEW(dev_priv)) {
868                 I915_WRITE(DSPFW7_CHV,
869                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
870                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871                 I915_WRITE(DSPFW8_CHV,
872                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
873                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874                 I915_WRITE(DSPFW9_CHV,
875                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
876                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877                 I915_WRITE(DSPHOWM,
878                            FW_WM(wm->sr.plane >> 9, SR_HI) |
879                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
880                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
881                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
882                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
883                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
884                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
885                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
886                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
887                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888         } else {
889                 I915_WRITE(DSPFW7,
890                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
891                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892                 I915_WRITE(DSPHOWM,
893                            FW_WM(wm->sr.plane >> 9, SR_HI) |
894                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
895                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
896                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
897                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
898                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
899                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900         }
901
902         /* zero (unused) WM1 watermarks */
903         I915_WRITE(DSPFW4, 0);
904         I915_WRITE(DSPFW5, 0);
905         I915_WRITE(DSPFW6, 0);
906         I915_WRITE(DSPHOWM1, 0);
907
908         POSTING_READ(DSPFW1);
909 }
910
911 #undef FW_WM_VLV
912
913 enum vlv_wm_level {
914         VLV_WM_LEVEL_PM2,
915         VLV_WM_LEVEL_PM5,
916         VLV_WM_LEVEL_DDR_DVFS,
917 };
918
919 /* latency must be in 0.1us units. */
920 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
921                                    unsigned int pipe_htotal,
922                                    unsigned int horiz_pixels,
923                                    unsigned int cpp,
924                                    unsigned int latency)
925 {
926         unsigned int ret;
927
928         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929         ret = (ret + 1) * horiz_pixels * cpp;
930         ret = DIV_ROUND_UP(ret, 64);
931
932         return ret;
933 }
934
935 static void vlv_setup_wm_latency(struct drm_device *dev)
936 {
937         struct drm_i915_private *dev_priv = to_i915(dev);
938
939         /* all latencies in usec */
940         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944         if (IS_CHERRYVIEW(dev_priv)) {
945                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949         }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953                                      struct intel_crtc *crtc,
954                                      const struct intel_plane_state *state,
955                                      int level)
956 {
957         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958         int clock, htotal, cpp, width, wm;
959
960         if (dev_priv->wm.pri_latency[level] == 0)
961                 return USHRT_MAX;
962
963         if (!state->visible)
964                 return 0;
965
966         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967         clock = crtc->config->base.adjusted_mode.crtc_clock;
968         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969         width = crtc->config->pipe_src_w;
970         if (WARN_ON(htotal == 0))
971                 htotal = 1;
972
973         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974                 /*
975                  * FIXME the formula gives values that are
976                  * too big for the cursor FIFO, and hence we
977                  * would never be able to use cursors. For
978                  * now just hardcode the watermark.
979                  */
980                 wm = 63;
981         } else {
982                 wm = vlv_wm_method2(clock, htotal, width, cpp,
983                                     dev_priv->wm.pri_latency[level] * 10);
984         }
985
986         return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991         struct drm_device *dev = crtc->base.dev;
992         struct vlv_wm_state *wm_state = &crtc->wm_state;
993         struct intel_plane *plane;
994         unsigned int total_rate = 0;
995         const int fifo_size = 512 - 1;
996         int fifo_extra, fifo_left = fifo_size;
997
998         for_each_intel_plane_on_crtc(dev, crtc, plane) {
999                 struct intel_plane_state *state =
1000                         to_intel_plane_state(plane->base.state);
1001
1002                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003                         continue;
1004
1005                 if (state->visible) {
1006                         wm_state->num_active_planes++;
1007                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008                 }
1009         }
1010
1011         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012                 struct intel_plane_state *state =
1013                         to_intel_plane_state(plane->base.state);
1014                 unsigned int rate;
1015
1016                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017                         plane->wm.fifo_size = 63;
1018                         continue;
1019                 }
1020
1021                 if (!state->visible) {
1022                         plane->wm.fifo_size = 0;
1023                         continue;
1024                 }
1025
1026                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028                 fifo_left -= plane->wm.fifo_size;
1029         }
1030
1031         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033         /* spread the remainder evenly */
1034         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035                 int plane_extra;
1036
1037                 if (fifo_left == 0)
1038                         break;
1039
1040                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041                         continue;
1042
1043                 /* give it all to the first plane if none are active */
1044                 if (plane->wm.fifo_size == 0 &&
1045                     wm_state->num_active_planes)
1046                         continue;
1047
1048                 plane_extra = min(fifo_extra, fifo_left);
1049                 plane->wm.fifo_size += plane_extra;
1050                 fifo_left -= plane_extra;
1051         }
1052
1053         WARN_ON(fifo_left != 0);
1054 }
1055
1056 static void vlv_invert_wms(struct intel_crtc *crtc)
1057 {
1058         struct vlv_wm_state *wm_state = &crtc->wm_state;
1059         int level;
1060
1061         for (level = 0; level < wm_state->num_levels; level++) {
1062                 struct drm_device *dev = crtc->base.dev;
1063                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1064                 struct intel_plane *plane;
1065
1066                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1067                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1068
1069                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1070                         switch (plane->base.type) {
1071                                 int sprite;
1072                         case DRM_PLANE_TYPE_CURSOR:
1073                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1074                                         wm_state->wm[level].cursor;
1075                                 break;
1076                         case DRM_PLANE_TYPE_PRIMARY:
1077                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1078                                         wm_state->wm[level].primary;
1079                                 break;
1080                         case DRM_PLANE_TYPE_OVERLAY:
1081                                 sprite = plane->plane;
1082                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1083                                         wm_state->wm[level].sprite[sprite];
1084                                 break;
1085                         }
1086                 }
1087         }
1088 }
1089
1090 static void vlv_compute_wm(struct intel_crtc *crtc)
1091 {
1092         struct drm_device *dev = crtc->base.dev;
1093         struct vlv_wm_state *wm_state = &crtc->wm_state;
1094         struct intel_plane *plane;
1095         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1096         int level;
1097
1098         memset(wm_state, 0, sizeof(*wm_state));
1099
1100         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102
1103         wm_state->num_active_planes = 0;
1104
1105         vlv_compute_fifo(crtc);
1106
1107         if (wm_state->num_active_planes != 1)
1108                 wm_state->cxsr = false;
1109
1110         if (wm_state->cxsr) {
1111                 for (level = 0; level < wm_state->num_levels; level++) {
1112                         wm_state->sr[level].plane = sr_fifo_size;
1113                         wm_state->sr[level].cursor = 63;
1114                 }
1115         }
1116
1117         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1118                 struct intel_plane_state *state =
1119                         to_intel_plane_state(plane->base.state);
1120
1121                 if (!state->visible)
1122                         continue;
1123
1124                 /* normal watermarks */
1125                 for (level = 0; level < wm_state->num_levels; level++) {
1126                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1127                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1128
1129                         /* hack */
1130                         if (WARN_ON(level == 0 && wm > max_wm))
1131                                 wm = max_wm;
1132
1133                         if (wm > plane->wm.fifo_size)
1134                                 break;
1135
1136                         switch (plane->base.type) {
1137                                 int sprite;
1138                         case DRM_PLANE_TYPE_CURSOR:
1139                                 wm_state->wm[level].cursor = wm;
1140                                 break;
1141                         case DRM_PLANE_TYPE_PRIMARY:
1142                                 wm_state->wm[level].primary = wm;
1143                                 break;
1144                         case DRM_PLANE_TYPE_OVERLAY:
1145                                 sprite = plane->plane;
1146                                 wm_state->wm[level].sprite[sprite] = wm;
1147                                 break;
1148                         }
1149                 }
1150
1151                 wm_state->num_levels = level;
1152
1153                 if (!wm_state->cxsr)
1154                         continue;
1155
1156                 /* maxfifo watermarks */
1157                 switch (plane->base.type) {
1158                         int sprite, level;
1159                 case DRM_PLANE_TYPE_CURSOR:
1160                         for (level = 0; level < wm_state->num_levels; level++)
1161                                 wm_state->sr[level].cursor =
1162                                         wm_state->wm[level].cursor;
1163                         break;
1164                 case DRM_PLANE_TYPE_PRIMARY:
1165                         for (level = 0; level < wm_state->num_levels; level++)
1166                                 wm_state->sr[level].plane =
1167                                         min(wm_state->sr[level].plane,
1168                                             wm_state->wm[level].primary);
1169                         break;
1170                 case DRM_PLANE_TYPE_OVERLAY:
1171                         sprite = plane->plane;
1172                         for (level = 0; level < wm_state->num_levels; level++)
1173                                 wm_state->sr[level].plane =
1174                                         min(wm_state->sr[level].plane,
1175                                             wm_state->wm[level].sprite[sprite]);
1176                         break;
1177                 }
1178         }
1179
1180         /* clear any (partially) filled invalid levels */
1181         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1183                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1184         }
1185
1186         vlv_invert_wms(crtc);
1187 }
1188
1189 #define VLV_FIFO(plane, value) \
1190         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1191
1192 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1193 {
1194         struct drm_device *dev = crtc->base.dev;
1195         struct drm_i915_private *dev_priv = to_i915(dev);
1196         struct intel_plane *plane;
1197         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1198
1199         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1200                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1201                         WARN_ON(plane->wm.fifo_size != 63);
1202                         continue;
1203                 }
1204
1205                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1206                         sprite0_start = plane->wm.fifo_size;
1207                 else if (plane->plane == 0)
1208                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1209                 else
1210                         fifo_size = sprite1_start + plane->wm.fifo_size;
1211         }
1212
1213         WARN_ON(fifo_size != 512 - 1);
1214
1215         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1216                       pipe_name(crtc->pipe), sprite0_start,
1217                       sprite1_start, fifo_size);
1218
1219         switch (crtc->pipe) {
1220                 uint32_t dsparb, dsparb2, dsparb3;
1221         case PIPE_A:
1222                 dsparb = I915_READ(DSPARB);
1223                 dsparb2 = I915_READ(DSPARB2);
1224
1225                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1226                             VLV_FIFO(SPRITEB, 0xff));
1227                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1228                            VLV_FIFO(SPRITEB, sprite1_start));
1229
1230                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1231                              VLV_FIFO(SPRITEB_HI, 0x1));
1232                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1233                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1234
1235                 I915_WRITE(DSPARB, dsparb);
1236                 I915_WRITE(DSPARB2, dsparb2);
1237                 break;
1238         case PIPE_B:
1239                 dsparb = I915_READ(DSPARB);
1240                 dsparb2 = I915_READ(DSPARB2);
1241
1242                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1243                             VLV_FIFO(SPRITED, 0xff));
1244                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1245                            VLV_FIFO(SPRITED, sprite1_start));
1246
1247                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1248                              VLV_FIFO(SPRITED_HI, 0xff));
1249                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1250                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1251
1252                 I915_WRITE(DSPARB, dsparb);
1253                 I915_WRITE(DSPARB2, dsparb2);
1254                 break;
1255         case PIPE_C:
1256                 dsparb3 = I915_READ(DSPARB3);
1257                 dsparb2 = I915_READ(DSPARB2);
1258
1259                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1260                              VLV_FIFO(SPRITEF, 0xff));
1261                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1262                             VLV_FIFO(SPRITEF, sprite1_start));
1263
1264                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1265                              VLV_FIFO(SPRITEF_HI, 0xff));
1266                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1267                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1268
1269                 I915_WRITE(DSPARB3, dsparb3);
1270                 I915_WRITE(DSPARB2, dsparb2);
1271                 break;
1272         default:
1273                 break;
1274         }
1275 }
1276
1277 #undef VLV_FIFO
1278
1279 static void vlv_merge_wm(struct drm_device *dev,
1280                          struct vlv_wm_values *wm)
1281 {
1282         struct intel_crtc *crtc;
1283         int num_active_crtcs = 0;
1284
1285         wm->level = to_i915(dev)->wm.max_level;
1286         wm->cxsr = true;
1287
1288         for_each_intel_crtc(dev, crtc) {
1289                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
1291                 if (!crtc->active)
1292                         continue;
1293
1294                 if (!wm_state->cxsr)
1295                         wm->cxsr = false;
1296
1297                 num_active_crtcs++;
1298                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1299         }
1300
1301         if (num_active_crtcs != 1)
1302                 wm->cxsr = false;
1303
1304         if (num_active_crtcs > 1)
1305                 wm->level = VLV_WM_LEVEL_PM2;
1306
1307         for_each_intel_crtc(dev, crtc) {
1308                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1309                 enum pipe pipe = crtc->pipe;
1310
1311                 if (!crtc->active)
1312                         continue;
1313
1314                 wm->pipe[pipe] = wm_state->wm[wm->level];
1315                 if (wm->cxsr)
1316                         wm->sr = wm_state->sr[wm->level];
1317
1318                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1319                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1320                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1321                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1322         }
1323 }
1324
1325 static void vlv_update_wm(struct drm_crtc *crtc)
1326 {
1327         struct drm_device *dev = crtc->dev;
1328         struct drm_i915_private *dev_priv = to_i915(dev);
1329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1330         enum pipe pipe = intel_crtc->pipe;
1331         struct vlv_wm_values wm = {};
1332
1333         vlv_compute_wm(intel_crtc);
1334         vlv_merge_wm(dev, &wm);
1335
1336         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1337                 /* FIXME should be part of crtc atomic commit */
1338                 vlv_pipe_set_fifo_size(intel_crtc);
1339                 return;
1340         }
1341
1342         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1343             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1344                 chv_set_memory_dvfs(dev_priv, false);
1345
1346         if (wm.level < VLV_WM_LEVEL_PM5 &&
1347             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1348                 chv_set_memory_pm5(dev_priv, false);
1349
1350         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351                 intel_set_memory_cxsr(dev_priv, false);
1352
1353         /* FIXME should be part of crtc atomic commit */
1354         vlv_pipe_set_fifo_size(intel_crtc);
1355
1356         vlv_write_wm_values(intel_crtc, &wm);
1357
1358         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1359                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1360                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1361                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1362                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1363
1364         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365                 intel_set_memory_cxsr(dev_priv, true);
1366
1367         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1368             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1369                 chv_set_memory_pm5(dev_priv, true);
1370
1371         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1372             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1373                 chv_set_memory_dvfs(dev_priv, true);
1374
1375         dev_priv->wm.vlv = wm;
1376 }
1377
1378 #define single_plane_enabled(mask) is_power_of_2(mask)
1379
1380 static void g4x_update_wm(struct drm_crtc *crtc)
1381 {
1382         struct drm_device *dev = crtc->dev;
1383         static const int sr_latency_ns = 12000;
1384         struct drm_i915_private *dev_priv = to_i915(dev);
1385         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386         int plane_sr, cursor_sr;
1387         unsigned int enabled = 0;
1388         bool cxsr_enabled;
1389
1390         if (g4x_compute_wm0(dev, PIPE_A,
1391                             &g4x_wm_info, pessimal_latency_ns,
1392                             &g4x_cursor_wm_info, pessimal_latency_ns,
1393                             &planea_wm, &cursora_wm))
1394                 enabled |= 1 << PIPE_A;
1395
1396         if (g4x_compute_wm0(dev, PIPE_B,
1397                             &g4x_wm_info, pessimal_latency_ns,
1398                             &g4x_cursor_wm_info, pessimal_latency_ns,
1399                             &planeb_wm, &cursorb_wm))
1400                 enabled |= 1 << PIPE_B;
1401
1402         if (single_plane_enabled(enabled) &&
1403             g4x_compute_srwm(dev, ffs(enabled) - 1,
1404                              sr_latency_ns,
1405                              &g4x_wm_info,
1406                              &g4x_cursor_wm_info,
1407                              &plane_sr, &cursor_sr)) {
1408                 cxsr_enabled = true;
1409         } else {
1410                 cxsr_enabled = false;
1411                 intel_set_memory_cxsr(dev_priv, false);
1412                 plane_sr = cursor_sr = 0;
1413         }
1414
1415         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417                       planea_wm, cursora_wm,
1418                       planeb_wm, cursorb_wm,
1419                       plane_sr, cursor_sr);
1420
1421         I915_WRITE(DSPFW1,
1422                    FW_WM(plane_sr, SR) |
1423                    FW_WM(cursorb_wm, CURSORB) |
1424                    FW_WM(planeb_wm, PLANEB) |
1425                    FW_WM(planea_wm, PLANEA));
1426         I915_WRITE(DSPFW2,
1427                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428                    FW_WM(cursora_wm, CURSORA));
1429         /* HPLL off in SR has some issues on G4x... disable it */
1430         I915_WRITE(DSPFW3,
1431                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432                    FW_WM(cursor_sr, CURSOR_SR));
1433
1434         if (cxsr_enabled)
1435                 intel_set_memory_cxsr(dev_priv, true);
1436 }
1437
1438 static void i965_update_wm(struct drm_crtc *unused_crtc)
1439 {
1440         struct drm_device *dev = unused_crtc->dev;
1441         struct drm_i915_private *dev_priv = to_i915(dev);
1442         struct drm_crtc *crtc;
1443         int srwm = 1;
1444         int cursor_sr = 16;
1445         bool cxsr_enabled;
1446
1447         /* Calc sr entries for one plane configs */
1448         crtc = single_enabled_crtc(dev);
1449         if (crtc) {
1450                 /* self-refresh has much higher latency */
1451                 static const int sr_latency_ns = 12000;
1452                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453                 int clock = adjusted_mode->crtc_clock;
1454                 int htotal = adjusted_mode->crtc_htotal;
1455                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457                 unsigned long line_time_us;
1458                 int entries;
1459
1460                 line_time_us = max(htotal * 1000 / clock, 1);
1461
1462                 /* Use ns/us then divide to preserve precision */
1463                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464                         cpp * hdisplay;
1465                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1466                 srwm = I965_FIFO_SIZE - entries;
1467                 if (srwm < 0)
1468                         srwm = 1;
1469                 srwm &= 0x1ff;
1470                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1471                               entries, srwm);
1472
1473                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474                         cpp * crtc->cursor->state->crtc_w;
1475                 entries = DIV_ROUND_UP(entries,
1476                                           i965_cursor_wm_info.cacheline_size);
1477                 cursor_sr = i965_cursor_wm_info.fifo_size -
1478                         (entries + i965_cursor_wm_info.guard_size);
1479
1480                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1481                         cursor_sr = i965_cursor_wm_info.max_wm;
1482
1483                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1484                               "cursor %d\n", srwm, cursor_sr);
1485
1486                 cxsr_enabled = true;
1487         } else {
1488                 cxsr_enabled = false;
1489                 /* Turn off self refresh if both pipes are enabled */
1490                 intel_set_memory_cxsr(dev_priv, false);
1491         }
1492
1493         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1494                       srwm);
1495
1496         /* 965 has limitations... */
1497         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1498                    FW_WM(8, CURSORB) |
1499                    FW_WM(8, PLANEB) |
1500                    FW_WM(8, PLANEA));
1501         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1502                    FW_WM(8, PLANEC_OLD));
1503         /* update cursor SR watermark */
1504         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505
1506         if (cxsr_enabled)
1507                 intel_set_memory_cxsr(dev_priv, true);
1508 }
1509
1510 #undef FW_WM
1511
1512 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513 {
1514         struct drm_device *dev = unused_crtc->dev;
1515         struct drm_i915_private *dev_priv = to_i915(dev);
1516         const struct intel_watermark_params *wm_info;
1517         uint32_t fwater_lo;
1518         uint32_t fwater_hi;
1519         int cwm, srwm = 1;
1520         int fifo_size;
1521         int planea_wm, planeb_wm;
1522         struct drm_crtc *crtc, *enabled = NULL;
1523
1524         if (IS_I945GM(dev))
1525                 wm_info = &i945_wm_info;
1526         else if (!IS_GEN2(dev))
1527                 wm_info = &i915_wm_info;
1528         else
1529                 wm_info = &i830_a_wm_info;
1530
1531         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1532         crtc = intel_get_crtc_for_plane(dev, 0);
1533         if (intel_crtc_active(crtc)) {
1534                 const struct drm_display_mode *adjusted_mode;
1535                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536                 if (IS_GEN2(dev))
1537                         cpp = 4;
1538
1539                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541                                                wm_info, fifo_size, cpp,
1542                                                pessimal_latency_ns);
1543                 enabled = crtc;
1544         } else {
1545                 planea_wm = fifo_size - wm_info->guard_size;
1546                 if (planea_wm > (long)wm_info->max_wm)
1547                         planea_wm = wm_info->max_wm;
1548         }
1549
1550         if (IS_GEN2(dev))
1551                 wm_info = &i830_bc_wm_info;
1552
1553         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554         crtc = intel_get_crtc_for_plane(dev, 1);
1555         if (intel_crtc_active(crtc)) {
1556                 const struct drm_display_mode *adjusted_mode;
1557                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558                 if (IS_GEN2(dev))
1559                         cpp = 4;
1560
1561                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563                                                wm_info, fifo_size, cpp,
1564                                                pessimal_latency_ns);
1565                 if (enabled == NULL)
1566                         enabled = crtc;
1567                 else
1568                         enabled = NULL;
1569         } else {
1570                 planeb_wm = fifo_size - wm_info->guard_size;
1571                 if (planeb_wm > (long)wm_info->max_wm)
1572                         planeb_wm = wm_info->max_wm;
1573         }
1574
1575         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1576
1577         if (IS_I915GM(dev) && enabled) {
1578                 struct drm_i915_gem_object *obj;
1579
1580                 obj = intel_fb_obj(enabled->primary->state->fb);
1581
1582                 /* self-refresh seems busted with untiled */
1583                 if (obj->tiling_mode == I915_TILING_NONE)
1584                         enabled = NULL;
1585         }
1586
1587         /*
1588          * Overlay gets an aggressive default since video jitter is bad.
1589          */
1590         cwm = 2;
1591
1592         /* Play safe and disable self-refresh before adjusting watermarks. */
1593         intel_set_memory_cxsr(dev_priv, false);
1594
1595         /* Calc sr entries for one plane configs */
1596         if (HAS_FW_BLC(dev) && enabled) {
1597                 /* self-refresh has much higher latency */
1598                 static const int sr_latency_ns = 6000;
1599                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600                 int clock = adjusted_mode->crtc_clock;
1601                 int htotal = adjusted_mode->crtc_htotal;
1602                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604                 unsigned long line_time_us;
1605                 int entries;
1606
1607                 line_time_us = max(htotal * 1000 / clock, 1);
1608
1609                 /* Use ns/us then divide to preserve precision */
1610                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1611                         cpp * hdisplay;
1612                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1613                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1614                 srwm = wm_info->fifo_size - entries;
1615                 if (srwm < 0)
1616                         srwm = 1;
1617
1618                 if (IS_I945G(dev) || IS_I945GM(dev))
1619                         I915_WRITE(FW_BLC_SELF,
1620                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1621                 else if (IS_I915GM(dev))
1622                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1623         }
1624
1625         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1626                       planea_wm, planeb_wm, cwm, srwm);
1627
1628         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1629         fwater_hi = (cwm & 0x1f);
1630
1631         /* Set request length to 8 cachelines per fetch */
1632         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1633         fwater_hi = fwater_hi | (1 << 8);
1634
1635         I915_WRITE(FW_BLC, fwater_lo);
1636         I915_WRITE(FW_BLC2, fwater_hi);
1637
1638         if (enabled)
1639                 intel_set_memory_cxsr(dev_priv, true);
1640 }
1641
1642 static void i845_update_wm(struct drm_crtc *unused_crtc)
1643 {
1644         struct drm_device *dev = unused_crtc->dev;
1645         struct drm_i915_private *dev_priv = to_i915(dev);
1646         struct drm_crtc *crtc;
1647         const struct drm_display_mode *adjusted_mode;
1648         uint32_t fwater_lo;
1649         int planea_wm;
1650
1651         crtc = single_enabled_crtc(dev);
1652         if (crtc == NULL)
1653                 return;
1654
1655         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1656         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1657                                        &i845_wm_info,
1658                                        dev_priv->display.get_fifo_size(dev, 0),
1659                                        4, pessimal_latency_ns);
1660         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1661         fwater_lo |= (3<<8) | planea_wm;
1662
1663         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1664
1665         I915_WRITE(FW_BLC, fwater_lo);
1666 }
1667
1668 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1669 {
1670         uint32_t pixel_rate;
1671
1672         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1673
1674         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1675          * adjust the pixel_rate here. */
1676
1677         if (pipe_config->pch_pfit.enabled) {
1678                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1679                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1680
1681                 pipe_w = pipe_config->pipe_src_w;
1682                 pipe_h = pipe_config->pipe_src_h;
1683
1684                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1685                 pfit_h = pfit_size & 0xFFFF;
1686                 if (pipe_w < pfit_w)
1687                         pipe_w = pfit_w;
1688                 if (pipe_h < pfit_h)
1689                         pipe_h = pfit_h;
1690
1691                 if (WARN_ON(!pfit_w || !pfit_h))
1692                         return pixel_rate;
1693
1694                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1695                                      pfit_w * pfit_h);
1696         }
1697
1698         return pixel_rate;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1703 {
1704         uint64_t ret;
1705
1706         if (WARN(latency == 0, "Latency value missing\n"))
1707                 return UINT_MAX;
1708
1709         ret = (uint64_t) pixel_rate * cpp * latency;
1710         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1711
1712         return ret;
1713 }
1714
1715 /* latency must be in 0.1us units. */
1716 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1717                                uint32_t horiz_pixels, uint8_t cpp,
1718                                uint32_t latency)
1719 {
1720         uint32_t ret;
1721
1722         if (WARN(latency == 0, "Latency value missing\n"))
1723                 return UINT_MAX;
1724         if (WARN_ON(!pipe_htotal))
1725                 return UINT_MAX;
1726
1727         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1728         ret = (ret + 1) * horiz_pixels * cpp;
1729         ret = DIV_ROUND_UP(ret, 64) + 2;
1730         return ret;
1731 }
1732
1733 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1734                            uint8_t cpp)
1735 {
1736         /*
1737          * Neither of these should be possible since this function shouldn't be
1738          * called if the CRTC is off or the plane is invisible.  But let's be
1739          * extra paranoid to avoid a potential divide-by-zero if we screw up
1740          * elsewhere in the driver.
1741          */
1742         if (WARN_ON(!cpp))
1743                 return 0;
1744         if (WARN_ON(!horiz_pixels))
1745                 return 0;
1746
1747         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1748 }
1749
1750 struct ilk_wm_maximums {
1751         uint16_t pri;
1752         uint16_t spr;
1753         uint16_t cur;
1754         uint16_t fbc;
1755 };
1756
1757 /*
1758  * For both WM_PIPE and WM_LP.
1759  * mem_value must be in 0.1us units.
1760  */
1761 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1762                                    const struct intel_plane_state *pstate,
1763                                    uint32_t mem_value,
1764                                    bool is_lp)
1765 {
1766         int cpp = pstate->base.fb ?
1767                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1768         uint32_t method1, method2;
1769
1770         if (!cstate->base.active || !pstate->visible)
1771                 return 0;
1772
1773         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1774
1775         if (!is_lp)
1776                 return method1;
1777
1778         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1779                                  cstate->base.adjusted_mode.crtc_htotal,
1780                                  drm_rect_width(&pstate->dst),
1781                                  cpp, mem_value);
1782
1783         return min(method1, method2);
1784 }
1785
1786 /*
1787  * For both WM_PIPE and WM_LP.
1788  * mem_value must be in 0.1us units.
1789  */
1790 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1791                                    const struct intel_plane_state *pstate,
1792                                    uint32_t mem_value)
1793 {
1794         int cpp = pstate->base.fb ?
1795                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796         uint32_t method1, method2;
1797
1798         if (!cstate->base.active || !pstate->visible)
1799                 return 0;
1800
1801         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1803                                  cstate->base.adjusted_mode.crtc_htotal,
1804                                  drm_rect_width(&pstate->dst),
1805                                  cpp, mem_value);
1806         return min(method1, method2);
1807 }
1808
1809 /*
1810  * For both WM_PIPE and WM_LP.
1811  * mem_value must be in 0.1us units.
1812  */
1813 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1814                                    const struct intel_plane_state *pstate,
1815                                    uint32_t mem_value)
1816 {
1817         /*
1818          * We treat the cursor plane as always-on for the purposes of watermark
1819          * calculation.  Until we have two-stage watermark programming merged,
1820          * this is necessary to avoid flickering.
1821          */
1822         int cpp = 4;
1823         int width = pstate->visible ? pstate->base.crtc_w : 64;
1824
1825         if (!cstate->base.active)
1826                 return 0;
1827
1828         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1829                               cstate->base.adjusted_mode.crtc_htotal,
1830                               width, cpp, mem_value);
1831 }
1832
1833 /* Only for WM_LP. */
1834 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1835                                    const struct intel_plane_state *pstate,
1836                                    uint32_t pri_val)
1837 {
1838         int cpp = pstate->base.fb ?
1839                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1840
1841         if (!cstate->base.active || !pstate->visible)
1842                 return 0;
1843
1844         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1845 }
1846
1847 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1848 {
1849         if (INTEL_INFO(dev)->gen >= 8)
1850                 return 3072;
1851         else if (INTEL_INFO(dev)->gen >= 7)
1852                 return 768;
1853         else
1854                 return 512;
1855 }
1856
1857 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1858                                          int level, bool is_sprite)
1859 {
1860         if (INTEL_INFO(dev)->gen >= 8)
1861                 /* BDW primary/sprite plane watermarks */
1862                 return level == 0 ? 255 : 2047;
1863         else if (INTEL_INFO(dev)->gen >= 7)
1864                 /* IVB/HSW primary/sprite plane watermarks */
1865                 return level == 0 ? 127 : 1023;
1866         else if (!is_sprite)
1867                 /* ILK/SNB primary plane watermarks */
1868                 return level == 0 ? 127 : 511;
1869         else
1870                 /* ILK/SNB sprite plane watermarks */
1871                 return level == 0 ? 63 : 255;
1872 }
1873
1874 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1875                                           int level)
1876 {
1877         if (INTEL_INFO(dev)->gen >= 7)
1878                 return level == 0 ? 63 : 255;
1879         else
1880                 return level == 0 ? 31 : 63;
1881 }
1882
1883 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1884 {
1885         if (INTEL_INFO(dev)->gen >= 8)
1886                 return 31;
1887         else
1888                 return 15;
1889 }
1890
1891 /* Calculate the maximum primary/sprite plane watermark */
1892 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1893                                      int level,
1894                                      const struct intel_wm_config *config,
1895                                      enum intel_ddb_partitioning ddb_partitioning,
1896                                      bool is_sprite)
1897 {
1898         unsigned int fifo_size = ilk_display_fifo_size(dev);
1899
1900         /* if sprites aren't enabled, sprites get nothing */
1901         if (is_sprite && !config->sprites_enabled)
1902                 return 0;
1903
1904         /* HSW allows LP1+ watermarks even with multiple pipes */
1905         if (level == 0 || config->num_pipes_active > 1) {
1906                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1907
1908                 /*
1909                  * For some reason the non self refresh
1910                  * FIFO size is only half of the self
1911                  * refresh FIFO size on ILK/SNB.
1912                  */
1913                 if (INTEL_INFO(dev)->gen <= 6)
1914                         fifo_size /= 2;
1915         }
1916
1917         if (config->sprites_enabled) {
1918                 /* level 0 is always calculated with 1:1 split */
1919                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1920                         if (is_sprite)
1921                                 fifo_size *= 5;
1922                         fifo_size /= 6;
1923                 } else {
1924                         fifo_size /= 2;
1925                 }
1926         }
1927
1928         /* clamp to max that the registers can hold */
1929         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1930 }
1931
1932 /* Calculate the maximum cursor plane watermark */
1933 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934                                       int level,
1935                                       const struct intel_wm_config *config)
1936 {
1937         /* HSW LP1+ watermarks w/ multiple pipes */
1938         if (level > 0 && config->num_pipes_active > 1)
1939                 return 64;
1940
1941         /* otherwise just report max that registers can hold */
1942         return ilk_cursor_wm_reg_max(dev, level);
1943 }
1944
1945 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946                                     int level,
1947                                     const struct intel_wm_config *config,
1948                                     enum intel_ddb_partitioning ddb_partitioning,
1949                                     struct ilk_wm_maximums *max)
1950 {
1951         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1952         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1953         max->cur = ilk_cursor_wm_max(dev, level, config);
1954         max->fbc = ilk_fbc_wm_reg_max(dev);
1955 }
1956
1957 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1958                                         int level,
1959                                         struct ilk_wm_maximums *max)
1960 {
1961         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1962         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1963         max->cur = ilk_cursor_wm_reg_max(dev, level);
1964         max->fbc = ilk_fbc_wm_reg_max(dev);
1965 }
1966
1967 static bool ilk_validate_wm_level(int level,
1968                                   const struct ilk_wm_maximums *max,
1969                                   struct intel_wm_level *result)
1970 {
1971         bool ret;
1972
1973         /* already determined to be invalid? */
1974         if (!result->enable)
1975                 return false;
1976
1977         result->enable = result->pri_val <= max->pri &&
1978                          result->spr_val <= max->spr &&
1979                          result->cur_val <= max->cur;
1980
1981         ret = result->enable;
1982
1983         /*
1984          * HACK until we can pre-compute everything,
1985          * and thus fail gracefully if LP0 watermarks
1986          * are exceeded...
1987          */
1988         if (level == 0 && !result->enable) {
1989                 if (result->pri_val > max->pri)
1990                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1991                                       level, result->pri_val, max->pri);
1992                 if (result->spr_val > max->spr)
1993                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1994                                       level, result->spr_val, max->spr);
1995                 if (result->cur_val > max->cur)
1996                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1997                                       level, result->cur_val, max->cur);
1998
1999                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2000                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2001                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2002                 result->enable = true;
2003         }
2004
2005         return ret;
2006 }
2007
2008 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009                                  const struct intel_crtc *intel_crtc,
2010                                  int level,
2011                                  struct intel_crtc_state *cstate,
2012                                  struct intel_plane_state *pristate,
2013                                  struct intel_plane_state *sprstate,
2014                                  struct intel_plane_state *curstate,
2015                                  struct intel_wm_level *result)
2016 {
2017         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2018         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2019         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2020
2021         /* WM1+ latency values stored in 0.5us units */
2022         if (level > 0) {
2023                 pri_latency *= 5;
2024                 spr_latency *= 5;
2025                 cur_latency *= 5;
2026         }
2027
2028         if (pristate) {
2029                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2030                                                      pri_latency, level);
2031                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2032         }
2033
2034         if (sprstate)
2035                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2036
2037         if (curstate)
2038                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2039
2040         result->enable = true;
2041 }
2042
2043 static uint32_t
2044 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045 {
2046         const struct intel_atomic_state *intel_state =
2047                 to_intel_atomic_state(cstate->base.state);
2048         const struct drm_display_mode *adjusted_mode =
2049                 &cstate->base.adjusted_mode;
2050         u32 linetime, ips_linetime;
2051
2052         if (!cstate->base.active)
2053                 return 0;
2054         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2055                 return 0;
2056         if (WARN_ON(intel_state->cdclk == 0))
2057                 return 0;
2058
2059         /* The WM are computed with base on how long it takes to fill a single
2060          * row at the given clock rate, multiplied by 8.
2061          * */
2062         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2063                                      adjusted_mode->crtc_clock);
2064         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065                                          intel_state->cdclk);
2066
2067         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2068                PIPE_WM_LINETIME_TIME(linetime);
2069 }
2070
2071 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2072 {
2073         struct drm_i915_private *dev_priv = to_i915(dev);
2074
2075         if (IS_GEN9(dev)) {
2076                 uint32_t val;
2077                 int ret, i;
2078                 int level, max_level = ilk_wm_max_level(dev);
2079
2080                 /* read the first set of memory latencies[0:3] */
2081                 val = 0; /* data0 to be programmed to 0 for first set */
2082                 mutex_lock(&dev_priv->rps.hw_lock);
2083                 ret = sandybridge_pcode_read(dev_priv,
2084                                              GEN9_PCODE_READ_MEM_LATENCY,
2085                                              &val);
2086                 mutex_unlock(&dev_priv->rps.hw_lock);
2087
2088                 if (ret) {
2089                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2090                         return;
2091                 }
2092
2093                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2097                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2098                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2099                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2100
2101                 /* read the second set of memory latencies[4:7] */
2102                 val = 1; /* data0 to be programmed to 1 for second set */
2103                 mutex_lock(&dev_priv->rps.hw_lock);
2104                 ret = sandybridge_pcode_read(dev_priv,
2105                                              GEN9_PCODE_READ_MEM_LATENCY,
2106                                              &val);
2107                 mutex_unlock(&dev_priv->rps.hw_lock);
2108                 if (ret) {
2109                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2110                         return;
2111                 }
2112
2113                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2114                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2115                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2116                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2117                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2118                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2119                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2120
2121                 /*
2122                  * WaWmMemoryReadLatency:skl
2123                  *
2124                  * punit doesn't take into account the read latency so we need
2125                  * to add 2us to the various latency levels we retrieve from
2126                  * the punit.
2127                  *   - W0 is a bit special in that it's the only level that
2128                  *   can't be disabled if we want to have display working, so
2129                  *   we always add 2us there.
2130                  *   - For levels >=1, punit returns 0us latency when they are
2131                  *   disabled, so we respect that and don't add 2us then
2132                  *
2133                  * Additionally, if a level n (n > 1) has a 0us latency, all
2134                  * levels m (m >= n) need to be disabled. We make sure to
2135                  * sanitize the values out of the punit to satisfy this
2136                  * requirement.
2137                  */
2138                 wm[0] += 2;
2139                 for (level = 1; level <= max_level; level++)
2140                         if (wm[level] != 0)
2141                                 wm[level] += 2;
2142                         else {
2143                                 for (i = level + 1; i <= max_level; i++)
2144                                         wm[i] = 0;
2145
2146                                 break;
2147                         }
2148         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2149                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2150
2151                 wm[0] = (sskpd >> 56) & 0xFF;
2152                 if (wm[0] == 0)
2153                         wm[0] = sskpd & 0xF;
2154                 wm[1] = (sskpd >> 4) & 0xFF;
2155                 wm[2] = (sskpd >> 12) & 0xFF;
2156                 wm[3] = (sskpd >> 20) & 0x1FF;
2157                 wm[4] = (sskpd >> 32) & 0x1FF;
2158         } else if (INTEL_INFO(dev)->gen >= 6) {
2159                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2160
2161                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2162                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2163                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2164                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2165         } else if (INTEL_INFO(dev)->gen >= 5) {
2166                 uint32_t mltr = I915_READ(MLTR_ILK);
2167
2168                 /* ILK primary LP0 latency is 700 ns */
2169                 wm[0] = 7;
2170                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2171                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2172         }
2173 }
2174
2175 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2176 {
2177         /* ILK sprite LP0 latency is 1300 ns */
2178         if (IS_GEN5(dev))
2179                 wm[0] = 13;
2180 }
2181
2182 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2183 {
2184         /* ILK cursor LP0 latency is 1300 ns */
2185         if (IS_GEN5(dev))
2186                 wm[0] = 13;
2187
2188         /* WaDoubleCursorLP3Latency:ivb */
2189         if (IS_IVYBRIDGE(dev))
2190                 wm[3] *= 2;
2191 }
2192
2193 int ilk_wm_max_level(const struct drm_device *dev)
2194 {
2195         /* how many WM levels are we expecting */
2196         if (INTEL_INFO(dev)->gen >= 9)
2197                 return 7;
2198         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2199                 return 4;
2200         else if (INTEL_INFO(dev)->gen >= 6)
2201                 return 3;
2202         else
2203                 return 2;
2204 }
2205
2206 static void intel_print_wm_latency(struct drm_device *dev,
2207                                    const char *name,
2208                                    const uint16_t wm[8])
2209 {
2210         int level, max_level = ilk_wm_max_level(dev);
2211
2212         for (level = 0; level <= max_level; level++) {
2213                 unsigned int latency = wm[level];
2214
2215                 if (latency == 0) {
2216                         DRM_ERROR("%s WM%d latency not provided\n",
2217                                   name, level);
2218                         continue;
2219                 }
2220
2221                 /*
2222                  * - latencies are in us on gen9.
2223                  * - before then, WM1+ latency values are in 0.5us units
2224                  */
2225                 if (IS_GEN9(dev))
2226                         latency *= 10;
2227                 else if (level > 0)
2228                         latency *= 5;
2229
2230                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2231                               name, level, wm[level],
2232                               latency / 10, latency % 10);
2233         }
2234 }
2235
2236 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2237                                     uint16_t wm[5], uint16_t min)
2238 {
2239         int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2240
2241         if (wm[0] >= min)
2242                 return false;
2243
2244         wm[0] = max(wm[0], min);
2245         for (level = 1; level <= max_level; level++)
2246                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2247
2248         return true;
2249 }
2250
2251 static void snb_wm_latency_quirk(struct drm_device *dev)
2252 {
2253         struct drm_i915_private *dev_priv = to_i915(dev);
2254         bool changed;
2255
2256         /*
2257          * The BIOS provided WM memory latency values are often
2258          * inadequate for high resolution displays. Adjust them.
2259          */
2260         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2261                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2262                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2263
2264         if (!changed)
2265                 return;
2266
2267         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2268         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2269         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2270         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2271 }
2272
2273 static void ilk_setup_wm_latency(struct drm_device *dev)
2274 {
2275         struct drm_i915_private *dev_priv = to_i915(dev);
2276
2277         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2278
2279         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2280                sizeof(dev_priv->wm.pri_latency));
2281         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2282                sizeof(dev_priv->wm.pri_latency));
2283
2284         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2285         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2286
2287         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2288         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2289         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2290
2291         if (IS_GEN6(dev))
2292                 snb_wm_latency_quirk(dev);
2293 }
2294
2295 static void skl_setup_wm_latency(struct drm_device *dev)
2296 {
2297         struct drm_i915_private *dev_priv = to_i915(dev);
2298
2299         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2300         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2301 }
2302
2303 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2304                                  struct intel_pipe_wm *pipe_wm)
2305 {
2306         /* LP0 watermark maximums depend on this pipe alone */
2307         const struct intel_wm_config config = {
2308                 .num_pipes_active = 1,
2309                 .sprites_enabled = pipe_wm->sprites_enabled,
2310                 .sprites_scaled = pipe_wm->sprites_scaled,
2311         };
2312         struct ilk_wm_maximums max;
2313
2314         /* LP0 watermarks always use 1/2 DDB partitioning */
2315         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2316
2317         /* At least LP0 must be valid */
2318         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2319                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2320                 return false;
2321         }
2322
2323         return true;
2324 }
2325
2326 /* Compute new watermarks for the pipe */
2327 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2328 {
2329         struct drm_atomic_state *state = cstate->base.state;
2330         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2331         struct intel_pipe_wm *pipe_wm;
2332         struct drm_device *dev = state->dev;
2333         const struct drm_i915_private *dev_priv = to_i915(dev);
2334         struct intel_plane *intel_plane;
2335         struct intel_plane_state *pristate = NULL;
2336         struct intel_plane_state *sprstate = NULL;
2337         struct intel_plane_state *curstate = NULL;
2338         int level, max_level = ilk_wm_max_level(dev), usable_level;
2339         struct ilk_wm_maximums max;
2340
2341         pipe_wm = &cstate->wm.ilk.optimal;
2342
2343         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2344                 struct intel_plane_state *ps;
2345
2346                 ps = intel_atomic_get_existing_plane_state(state,
2347                                                            intel_plane);
2348                 if (!ps)
2349                         continue;
2350
2351                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2352                         pristate = ps;
2353                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2354                         sprstate = ps;
2355                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2356                         curstate = ps;
2357         }
2358
2359         pipe_wm->pipe_enabled = cstate->base.active;
2360         if (sprstate) {
2361                 pipe_wm->sprites_enabled = sprstate->visible;
2362                 pipe_wm->sprites_scaled = sprstate->visible &&
2363                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2364                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2365         }
2366
2367         usable_level = max_level;
2368
2369         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2370         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2371                 usable_level = 1;
2372
2373         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2374         if (pipe_wm->sprites_scaled)
2375                 usable_level = 0;
2376
2377         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2378                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2379
2380         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2381         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2382
2383         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2384                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2385
2386         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2387                 return -EINVAL;
2388
2389         ilk_compute_wm_reg_maximums(dev, 1, &max);
2390
2391         for (level = 1; level <= max_level; level++) {
2392                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2393
2394                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2395                                      pristate, sprstate, curstate, wm);
2396
2397                 /*
2398                  * Disable any watermark level that exceeds the
2399                  * register maximums since such watermarks are
2400                  * always invalid.
2401                  */
2402                 if (level > usable_level)
2403                         continue;
2404
2405                 if (ilk_validate_wm_level(level, &max, wm))
2406                         pipe_wm->wm[level] = *wm;
2407                 else
2408                         usable_level = level;
2409         }
2410
2411         return 0;
2412 }
2413
2414 /*
2415  * Build a set of 'intermediate' watermark values that satisfy both the old
2416  * state and the new state.  These can be programmed to the hardware
2417  * immediately.
2418  */
2419 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2420                                        struct intel_crtc *intel_crtc,
2421                                        struct intel_crtc_state *newstate)
2422 {
2423         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2424         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2425         int level, max_level = ilk_wm_max_level(dev);
2426
2427         /*
2428          * Start with the final, target watermarks, then combine with the
2429          * currently active watermarks to get values that are safe both before
2430          * and after the vblank.
2431          */
2432         *a = newstate->wm.ilk.optimal;
2433         a->pipe_enabled |= b->pipe_enabled;
2434         a->sprites_enabled |= b->sprites_enabled;
2435         a->sprites_scaled |= b->sprites_scaled;
2436
2437         for (level = 0; level <= max_level; level++) {
2438                 struct intel_wm_level *a_wm = &a->wm[level];
2439                 const struct intel_wm_level *b_wm = &b->wm[level];
2440
2441                 a_wm->enable &= b_wm->enable;
2442                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2443                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2444                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2445                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2446         }
2447
2448         /*
2449          * We need to make sure that these merged watermark values are
2450          * actually a valid configuration themselves.  If they're not,
2451          * there's no safe way to transition from the old state to
2452          * the new state, so we need to fail the atomic transaction.
2453          */
2454         if (!ilk_validate_pipe_wm(dev, a))
2455                 return -EINVAL;
2456
2457         /*
2458          * If our intermediate WM are identical to the final WM, then we can
2459          * omit the post-vblank programming; only update if it's different.
2460          */
2461         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2462                 newstate->wm.need_postvbl_update = false;
2463
2464         return 0;
2465 }
2466
2467 /*
2468  * Merge the watermarks from all active pipes for a specific level.
2469  */
2470 static void ilk_merge_wm_level(struct drm_device *dev,
2471                                int level,
2472                                struct intel_wm_level *ret_wm)
2473 {
2474         const struct intel_crtc *intel_crtc;
2475
2476         ret_wm->enable = true;
2477
2478         for_each_intel_crtc(dev, intel_crtc) {
2479                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2480                 const struct intel_wm_level *wm = &active->wm[level];
2481
2482                 if (!active->pipe_enabled)
2483                         continue;
2484
2485                 /*
2486                  * The watermark values may have been used in the past,
2487                  * so we must maintain them in the registers for some
2488                  * time even if the level is now disabled.
2489                  */
2490                 if (!wm->enable)
2491                         ret_wm->enable = false;
2492
2493                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2494                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2495                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2496                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2497         }
2498 }
2499
2500 /*
2501  * Merge all low power watermarks for all active pipes.
2502  */
2503 static void ilk_wm_merge(struct drm_device *dev,
2504                          const struct intel_wm_config *config,
2505                          const struct ilk_wm_maximums *max,
2506                          struct intel_pipe_wm *merged)
2507 {
2508         struct drm_i915_private *dev_priv = to_i915(dev);
2509         int level, max_level = ilk_wm_max_level(dev);
2510         int last_enabled_level = max_level;
2511
2512         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2513         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2514             config->num_pipes_active > 1)
2515                 last_enabled_level = 0;
2516
2517         /* ILK: FBC WM must be disabled always */
2518         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2519
2520         /* merge each WM1+ level */
2521         for (level = 1; level <= max_level; level++) {
2522                 struct intel_wm_level *wm = &merged->wm[level];
2523
2524                 ilk_merge_wm_level(dev, level, wm);
2525
2526                 if (level > last_enabled_level)
2527                         wm->enable = false;
2528                 else if (!ilk_validate_wm_level(level, max, wm))
2529                         /* make sure all following levels get disabled */
2530                         last_enabled_level = level - 1;
2531
2532                 /*
2533                  * The spec says it is preferred to disable
2534                  * FBC WMs instead of disabling a WM level.
2535                  */
2536                 if (wm->fbc_val > max->fbc) {
2537                         if (wm->enable)
2538                                 merged->fbc_wm_enabled = false;
2539                         wm->fbc_val = 0;
2540                 }
2541         }
2542
2543         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2544         /*
2545          * FIXME this is racy. FBC might get enabled later.
2546          * What we should check here is whether FBC can be
2547          * enabled sometime later.
2548          */
2549         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2550             intel_fbc_is_active(dev_priv)) {
2551                 for (level = 2; level <= max_level; level++) {
2552                         struct intel_wm_level *wm = &merged->wm[level];
2553
2554                         wm->enable = false;
2555                 }
2556         }
2557 }
2558
2559 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2560 {
2561         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2562         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2563 }
2564
2565 /* The value we need to program into the WM_LPx latency field */
2566 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2567 {
2568         struct drm_i915_private *dev_priv = to_i915(dev);
2569
2570         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2571                 return 2 * level;
2572         else
2573                 return dev_priv->wm.pri_latency[level];
2574 }
2575
2576 static void ilk_compute_wm_results(struct drm_device *dev,
2577                                    const struct intel_pipe_wm *merged,
2578                                    enum intel_ddb_partitioning partitioning,
2579                                    struct ilk_wm_values *results)
2580 {
2581         struct intel_crtc *intel_crtc;
2582         int level, wm_lp;
2583
2584         results->enable_fbc_wm = merged->fbc_wm_enabled;
2585         results->partitioning = partitioning;
2586
2587         /* LP1+ register values */
2588         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2589                 const struct intel_wm_level *r;
2590
2591                 level = ilk_wm_lp_to_level(wm_lp, merged);
2592
2593                 r = &merged->wm[level];
2594
2595                 /*
2596                  * Maintain the watermark values even if the level is
2597                  * disabled. Doing otherwise could cause underruns.
2598                  */
2599                 results->wm_lp[wm_lp - 1] =
2600                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2601                         (r->pri_val << WM1_LP_SR_SHIFT) |
2602                         r->cur_val;
2603
2604                 if (r->enable)
2605                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2606
2607                 if (INTEL_INFO(dev)->gen >= 8)
2608                         results->wm_lp[wm_lp - 1] |=
2609                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2610                 else
2611                         results->wm_lp[wm_lp - 1] |=
2612                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2613
2614                 /*
2615                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2616                  * level is disabled. Doing otherwise could cause underruns.
2617                  */
2618                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2619                         WARN_ON(wm_lp != 1);
2620                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2621                 } else
2622                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2623         }
2624
2625         /* LP0 register values */
2626         for_each_intel_crtc(dev, intel_crtc) {
2627                 enum pipe pipe = intel_crtc->pipe;
2628                 const struct intel_wm_level *r =
2629                         &intel_crtc->wm.active.ilk.wm[0];
2630
2631                 if (WARN_ON(!r->enable))
2632                         continue;
2633
2634                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2635
2636                 results->wm_pipe[pipe] =
2637                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2638                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2639                         r->cur_val;
2640         }
2641 }
2642
2643 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2644  * case both are at the same level. Prefer r1 in case they're the same. */
2645 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2646                                                   struct intel_pipe_wm *r1,
2647                                                   struct intel_pipe_wm *r2)
2648 {
2649         int level, max_level = ilk_wm_max_level(dev);
2650         int level1 = 0, level2 = 0;
2651
2652         for (level = 1; level <= max_level; level++) {
2653                 if (r1->wm[level].enable)
2654                         level1 = level;
2655                 if (r2->wm[level].enable)
2656                         level2 = level;
2657         }
2658
2659         if (level1 == level2) {
2660                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2661                         return r2;
2662                 else
2663                         return r1;
2664         } else if (level1 > level2) {
2665                 return r1;
2666         } else {
2667                 return r2;
2668         }
2669 }
2670
2671 /* dirty bits used to track which watermarks need changes */
2672 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2673 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2674 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2675 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2676 #define WM_DIRTY_FBC (1 << 24)
2677 #define WM_DIRTY_DDB (1 << 25)
2678
2679 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2680                                          const struct ilk_wm_values *old,
2681                                          const struct ilk_wm_values *new)
2682 {
2683         unsigned int dirty = 0;
2684         enum pipe pipe;
2685         int wm_lp;
2686
2687         for_each_pipe(dev_priv, pipe) {
2688                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2689                         dirty |= WM_DIRTY_LINETIME(pipe);
2690                         /* Must disable LP1+ watermarks too */
2691                         dirty |= WM_DIRTY_LP_ALL;
2692                 }
2693
2694                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2695                         dirty |= WM_DIRTY_PIPE(pipe);
2696                         /* Must disable LP1+ watermarks too */
2697                         dirty |= WM_DIRTY_LP_ALL;
2698                 }
2699         }
2700
2701         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2702                 dirty |= WM_DIRTY_FBC;
2703                 /* Must disable LP1+ watermarks too */
2704                 dirty |= WM_DIRTY_LP_ALL;
2705         }
2706
2707         if (old->partitioning != new->partitioning) {
2708                 dirty |= WM_DIRTY_DDB;
2709                 /* Must disable LP1+ watermarks too */
2710                 dirty |= WM_DIRTY_LP_ALL;
2711         }
2712
2713         /* LP1+ watermarks already deemed dirty, no need to continue */
2714         if (dirty & WM_DIRTY_LP_ALL)
2715                 return dirty;
2716
2717         /* Find the lowest numbered LP1+ watermark in need of an update... */
2718         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2719                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2720                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2721                         break;
2722         }
2723
2724         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2725         for (; wm_lp <= 3; wm_lp++)
2726                 dirty |= WM_DIRTY_LP(wm_lp);
2727
2728         return dirty;
2729 }
2730
2731 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2732                                unsigned int dirty)
2733 {
2734         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2735         bool changed = false;
2736
2737         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2738                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2739                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2740                 changed = true;
2741         }
2742         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2743                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2744                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2745                 changed = true;
2746         }
2747         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2748                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2749                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2750                 changed = true;
2751         }
2752
2753         /*
2754          * Don't touch WM1S_LP_EN here.
2755          * Doing so could cause underruns.
2756          */
2757
2758         return changed;
2759 }
2760
2761 /*
2762  * The spec says we shouldn't write when we don't need, because every write
2763  * causes WMs to be re-evaluated, expending some power.
2764  */
2765 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2766                                 struct ilk_wm_values *results)
2767 {
2768         struct drm_device *dev = &dev_priv->drm;
2769         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770         unsigned int dirty;
2771         uint32_t val;
2772
2773         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2774         if (!dirty)
2775                 return;
2776
2777         _ilk_disable_lp_wm(dev_priv, dirty);
2778
2779         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2780                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2781         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2782                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2783         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2784                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2785
2786         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2787                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2788         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2789                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2790         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2791                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2792
2793         if (dirty & WM_DIRTY_DDB) {
2794                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2795                         val = I915_READ(WM_MISC);
2796                         if (results->partitioning == INTEL_DDB_PART_1_2)
2797                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2798                         else
2799                                 val |= WM_MISC_DATA_PARTITION_5_6;
2800                         I915_WRITE(WM_MISC, val);
2801                 } else {
2802                         val = I915_READ(DISP_ARB_CTL2);
2803                         if (results->partitioning == INTEL_DDB_PART_1_2)
2804                                 val &= ~DISP_DATA_PARTITION_5_6;
2805                         else
2806                                 val |= DISP_DATA_PARTITION_5_6;
2807                         I915_WRITE(DISP_ARB_CTL2, val);
2808                 }
2809         }
2810
2811         if (dirty & WM_DIRTY_FBC) {
2812                 val = I915_READ(DISP_ARB_CTL);
2813                 if (results->enable_fbc_wm)
2814                         val &= ~DISP_FBC_WM_DIS;
2815                 else
2816                         val |= DISP_FBC_WM_DIS;
2817                 I915_WRITE(DISP_ARB_CTL, val);
2818         }
2819
2820         if (dirty & WM_DIRTY_LP(1) &&
2821             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2822                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2823
2824         if (INTEL_INFO(dev)->gen >= 7) {
2825                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2826                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2827                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2828                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2829         }
2830
2831         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2832                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2833         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2834                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2835         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2836                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2837
2838         dev_priv->wm.hw = *results;
2839 }
2840
2841 bool ilk_disable_lp_wm(struct drm_device *dev)
2842 {
2843         struct drm_i915_private *dev_priv = to_i915(dev);
2844
2845         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2846 }
2847
2848 /*
2849  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2850  * different active planes.
2851  */
2852
2853 #define SKL_DDB_SIZE            896     /* in blocks */
2854 #define BXT_DDB_SIZE            512
2855
2856 /*
2857  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2858  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2859  * other universal planes are in indices 1..n.  Note that this may leave unused
2860  * indices between the top "sprite" plane and the cursor.
2861  */
2862 static int
2863 skl_wm_plane_id(const struct intel_plane *plane)
2864 {
2865         switch (plane->base.type) {
2866         case DRM_PLANE_TYPE_PRIMARY:
2867                 return 0;
2868         case DRM_PLANE_TYPE_CURSOR:
2869                 return PLANE_CURSOR;
2870         case DRM_PLANE_TYPE_OVERLAY:
2871                 return plane->plane + 1;
2872         default:
2873                 MISSING_CASE(plane->base.type);
2874                 return plane->plane;
2875         }
2876 }
2877
2878 static void
2879 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2880                                    const struct intel_crtc_state *cstate,
2881                                    struct skl_ddb_entry *alloc, /* out */
2882                                    int *num_active /* out */)
2883 {
2884         struct drm_atomic_state *state = cstate->base.state;
2885         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2886         struct drm_i915_private *dev_priv = to_i915(dev);
2887         struct drm_crtc *for_crtc = cstate->base.crtc;
2888         unsigned int pipe_size, ddb_size;
2889         int nth_active_pipe;
2890         int pipe = to_intel_crtc(for_crtc)->pipe;
2891
2892         if (WARN_ON(!state) || !cstate->base.active) {
2893                 alloc->start = 0;
2894                 alloc->end = 0;
2895                 *num_active = hweight32(dev_priv->active_crtcs);
2896                 return;
2897         }
2898
2899         if (intel_state->active_pipe_changes)
2900                 *num_active = hweight32(intel_state->active_crtcs);
2901         else
2902                 *num_active = hweight32(dev_priv->active_crtcs);
2903
2904         if (IS_BROXTON(dev))
2905                 ddb_size = BXT_DDB_SIZE;
2906         else
2907                 ddb_size = SKL_DDB_SIZE;
2908
2909         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2910
2911         /*
2912          * If the state doesn't change the active CRTC's, then there's
2913          * no need to recalculate; the existing pipe allocation limits
2914          * should remain unchanged.  Note that we're safe from racing
2915          * commits since any racing commit that changes the active CRTC
2916          * list would need to grab _all_ crtc locks, including the one
2917          * we currently hold.
2918          */
2919         if (!intel_state->active_pipe_changes) {
2920                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2921                 return;
2922         }
2923
2924         nth_active_pipe = hweight32(intel_state->active_crtcs &
2925                                     (drm_crtc_mask(for_crtc) - 1));
2926         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2927         alloc->start = nth_active_pipe * ddb_size / *num_active;
2928         alloc->end = alloc->start + pipe_size;
2929 }
2930
2931 static unsigned int skl_cursor_allocation(int num_active)
2932 {
2933         if (num_active == 1)
2934                 return 32;
2935
2936         return 8;
2937 }
2938
2939 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2940 {
2941         entry->start = reg & 0x3ff;
2942         entry->end = (reg >> 16) & 0x3ff;
2943         if (entry->end)
2944                 entry->end += 1;
2945 }
2946
2947 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2948                           struct skl_ddb_allocation *ddb /* out */)
2949 {
2950         enum pipe pipe;
2951         int plane;
2952         u32 val;
2953
2954         memset(ddb, 0, sizeof(*ddb));
2955
2956         for_each_pipe(dev_priv, pipe) {
2957                 enum intel_display_power_domain power_domain;
2958
2959                 power_domain = POWER_DOMAIN_PIPE(pipe);
2960                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2961                         continue;
2962
2963                 for_each_plane(dev_priv, pipe, plane) {
2964                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2965                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2966                                                    val);
2967                 }
2968
2969                 val = I915_READ(CUR_BUF_CFG(pipe));
2970                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2971                                            val);
2972
2973                 intel_display_power_put(dev_priv, power_domain);
2974         }
2975 }
2976
2977 /*
2978  * Determines the downscale amount of a plane for the purposes of watermark calculations.
2979  * The bspec defines downscale amount as:
2980  *
2981  * """
2982  * Horizontal down scale amount = maximum[1, Horizontal source size /
2983  *                                           Horizontal destination size]
2984  * Vertical down scale amount = maximum[1, Vertical source size /
2985  *                                         Vertical destination size]
2986  * Total down scale amount = Horizontal down scale amount *
2987  *                           Vertical down scale amount
2988  * """
2989  *
2990  * Return value is provided in 16.16 fixed point form to retain fractional part.
2991  * Caller should take care of dividing & rounding off the value.
2992  */
2993 static uint32_t
2994 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
2995 {
2996         uint32_t downscale_h, downscale_w;
2997         uint32_t src_w, src_h, dst_w, dst_h;
2998
2999         if (WARN_ON(!pstate->visible))
3000                 return DRM_PLANE_HELPER_NO_SCALING;
3001
3002         /* n.b., src is 16.16 fixed point, dst is whole integer */
3003         src_w = drm_rect_width(&pstate->src);
3004         src_h = drm_rect_height(&pstate->src);
3005         dst_w = drm_rect_width(&pstate->dst);
3006         dst_h = drm_rect_height(&pstate->dst);
3007         if (intel_rotation_90_or_270(pstate->base.rotation))
3008                 swap(dst_w, dst_h);
3009
3010         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3011         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3012
3013         /* Provide result in 16.16 fixed point */
3014         return (uint64_t)downscale_w * downscale_h >> 16;
3015 }
3016
3017 static unsigned int
3018 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3019                              const struct drm_plane_state *pstate,
3020                              int y)
3021 {
3022         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3023         struct drm_framebuffer *fb = pstate->fb;
3024         uint32_t down_scale_amount, data_rate;
3025         uint32_t width = 0, height = 0;
3026         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3027
3028         if (!intel_pstate->visible)
3029                 return 0;
3030         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3031                 return 0;
3032         if (y && format != DRM_FORMAT_NV12)
3033                 return 0;
3034
3035         width = drm_rect_width(&intel_pstate->src) >> 16;
3036         height = drm_rect_height(&intel_pstate->src) >> 16;
3037
3038         if (intel_rotation_90_or_270(pstate->rotation))
3039                 swap(width, height);
3040
3041         /* for planar format */
3042         if (format == DRM_FORMAT_NV12) {
3043                 if (y)  /* y-plane data rate */
3044                         data_rate = width * height *
3045                                 drm_format_plane_cpp(format, 0);
3046                 else    /* uv-plane data rate */
3047                         data_rate = (width / 2) * (height / 2) *
3048                                 drm_format_plane_cpp(format, 1);
3049         } else {
3050                 /* for packed formats */
3051                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3052         }
3053
3054         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3055
3056         return (uint64_t)data_rate * down_scale_amount >> 16;
3057 }
3058
3059 /*
3060  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3061  * a 8192x4096@32bpp framebuffer:
3062  *   3 * 4096 * 8192  * 4 < 2^32
3063  */
3064 static unsigned int
3065 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3066 {
3067         struct drm_crtc_state *cstate = &intel_cstate->base;
3068         struct drm_atomic_state *state = cstate->state;
3069         struct drm_crtc *crtc = cstate->crtc;
3070         struct drm_device *dev = crtc->dev;
3071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072         const struct drm_plane *plane;
3073         const struct intel_plane *intel_plane;
3074         struct drm_plane_state *pstate;
3075         unsigned int rate, total_data_rate = 0;
3076         int id;
3077         int i;
3078
3079         if (WARN_ON(!state))
3080                 return 0;
3081
3082         /* Calculate and cache data rate for each plane */
3083         for_each_plane_in_state(state, plane, pstate, i) {
3084                 id = skl_wm_plane_id(to_intel_plane(plane));
3085                 intel_plane = to_intel_plane(plane);
3086
3087                 if (intel_plane->pipe != intel_crtc->pipe)
3088                         continue;
3089
3090                 /* packed/uv */
3091                 rate = skl_plane_relative_data_rate(intel_cstate,
3092                                                     pstate, 0);
3093                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3094
3095                 /* y-plane */
3096                 rate = skl_plane_relative_data_rate(intel_cstate,
3097                                                     pstate, 1);
3098                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3099         }
3100
3101         /* Calculate CRTC's total data rate from cached values */
3102         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3103                 int id = skl_wm_plane_id(intel_plane);
3104
3105                 /* packed/uv */
3106                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3107                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3108         }
3109
3110         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3111
3112         return total_data_rate;
3113 }
3114
3115 static uint16_t
3116 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3117                   const int y)
3118 {
3119         struct drm_framebuffer *fb = pstate->fb;
3120         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3121         uint32_t src_w, src_h;
3122         uint32_t min_scanlines = 8;
3123         uint8_t plane_bpp;
3124
3125         if (WARN_ON(!fb))
3126                 return 0;
3127
3128         /* For packed formats, no y-plane, return 0 */
3129         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3130                 return 0;
3131
3132         /* For Non Y-tile return 8-blocks */
3133         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3134             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3135                 return 8;
3136
3137         src_w = drm_rect_width(&intel_pstate->src) >> 16;
3138         src_h = drm_rect_height(&intel_pstate->src) >> 16;
3139
3140         if (intel_rotation_90_or_270(pstate->rotation))
3141                 swap(src_w, src_h);
3142
3143         /* Halve UV plane width and height for NV12 */
3144         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3145                 src_w /= 2;
3146                 src_h /= 2;
3147         }
3148
3149         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3150                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3151         else
3152                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3153
3154         if (intel_rotation_90_or_270(pstate->rotation)) {
3155                 switch (plane_bpp) {
3156                 case 1:
3157                         min_scanlines = 32;
3158                         break;
3159                 case 2:
3160                         min_scanlines = 16;
3161                         break;
3162                 case 4:
3163                         min_scanlines = 8;
3164                         break;
3165                 case 8:
3166                         min_scanlines = 4;
3167                         break;
3168                 default:
3169                         WARN(1, "Unsupported pixel depth %u for rotation",
3170                              plane_bpp);
3171                         min_scanlines = 32;
3172                 }
3173         }
3174
3175         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3176 }
3177
3178 static int
3179 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3180                       struct skl_ddb_allocation *ddb /* out */)
3181 {
3182         struct drm_atomic_state *state = cstate->base.state;
3183         struct drm_crtc *crtc = cstate->base.crtc;
3184         struct drm_device *dev = crtc->dev;
3185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3186         struct intel_plane *intel_plane;
3187         struct drm_plane *plane;
3188         struct drm_plane_state *pstate;
3189         enum pipe pipe = intel_crtc->pipe;
3190         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3191         uint16_t alloc_size, start, cursor_blocks;
3192         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3193         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3194         unsigned int total_data_rate;
3195         int num_active;
3196         int id, i;
3197
3198         if (WARN_ON(!state))
3199                 return 0;
3200
3201         if (!cstate->base.active) {
3202                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3203                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3204                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3205                 return 0;
3206         }
3207
3208         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3209         alloc_size = skl_ddb_entry_size(alloc);
3210         if (alloc_size == 0) {
3211                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3212                 return 0;
3213         }
3214
3215         cursor_blocks = skl_cursor_allocation(num_active);
3216         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3217         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3218
3219         alloc_size -= cursor_blocks;
3220
3221         /* 1. Allocate the mininum required blocks for each active plane */
3222         for_each_plane_in_state(state, plane, pstate, i) {
3223                 intel_plane = to_intel_plane(plane);
3224                 id = skl_wm_plane_id(intel_plane);
3225
3226                 if (intel_plane->pipe != pipe)
3227                         continue;
3228
3229                 if (!to_intel_plane_state(pstate)->visible) {
3230                         minimum[id] = 0;
3231                         y_minimum[id] = 0;
3232                         continue;
3233                 }
3234                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3235                         minimum[id] = 0;
3236                         y_minimum[id] = 0;
3237                         continue;
3238                 }
3239
3240                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3241                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3242         }
3243
3244         for (i = 0; i < PLANE_CURSOR; i++) {
3245                 alloc_size -= minimum[i];
3246                 alloc_size -= y_minimum[i];
3247         }
3248
3249         /*
3250          * 2. Distribute the remaining space in proportion to the amount of
3251          * data each plane needs to fetch from memory.
3252          *
3253          * FIXME: we may not allocate every single block here.
3254          */
3255         total_data_rate = skl_get_total_relative_data_rate(cstate);
3256         if (total_data_rate == 0)
3257                 return 0;
3258
3259         start = alloc->start;
3260         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3261                 unsigned int data_rate, y_data_rate;
3262                 uint16_t plane_blocks, y_plane_blocks = 0;
3263                 int id = skl_wm_plane_id(intel_plane);
3264
3265                 data_rate = cstate->wm.skl.plane_data_rate[id];
3266
3267                 /*
3268                  * allocation for (packed formats) or (uv-plane part of planar format):
3269                  * promote the expression to 64 bits to avoid overflowing, the
3270                  * result is < available as data_rate / total_data_rate < 1
3271                  */
3272                 plane_blocks = minimum[id];
3273                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3274                                         total_data_rate);
3275
3276                 /* Leave disabled planes at (0,0) */
3277                 if (data_rate) {
3278                         ddb->plane[pipe][id].start = start;
3279                         ddb->plane[pipe][id].end = start + plane_blocks;
3280                 }
3281
3282                 start += plane_blocks;
3283
3284                 /*
3285                  * allocation for y_plane part of planar format:
3286                  */
3287                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3288
3289                 y_plane_blocks = y_minimum[id];
3290                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3291                                         total_data_rate);
3292
3293                 if (y_data_rate) {
3294                         ddb->y_plane[pipe][id].start = start;
3295                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3296                 }
3297
3298                 start += y_plane_blocks;
3299         }
3300
3301         return 0;
3302 }
3303
3304 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3305 {
3306         /* TODO: Take into account the scalers once we support them */
3307         return config->base.adjusted_mode.crtc_clock;
3308 }
3309
3310 /*
3311  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3312  * for the read latency) and cpp should always be <= 8, so that
3313  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3314  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3315 */
3316 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3317 {
3318         uint32_t wm_intermediate_val, ret;
3319
3320         if (latency == 0)
3321                 return UINT_MAX;
3322
3323         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3324         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3325
3326         return ret;
3327 }
3328
3329 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3330                                uint32_t horiz_pixels, uint8_t cpp,
3331                                uint64_t tiling, uint32_t latency)
3332 {
3333         uint32_t ret;
3334         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3335         uint32_t wm_intermediate_val;
3336
3337         if (latency == 0)
3338                 return UINT_MAX;
3339
3340         plane_bytes_per_line = horiz_pixels * cpp;
3341
3342         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3343             tiling == I915_FORMAT_MOD_Yf_TILED) {
3344                 plane_bytes_per_line *= 4;
3345                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3346                 plane_blocks_per_line /= 4;
3347         } else if (tiling == DRM_FORMAT_MOD_NONE) {
3348                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3349         } else {
3350                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3351         }
3352
3353         wm_intermediate_val = latency * pixel_rate;
3354         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3355                                 plane_blocks_per_line;
3356
3357         return ret;
3358 }
3359
3360 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3361                                               struct intel_plane_state *pstate)
3362 {
3363         uint64_t adjusted_pixel_rate;
3364         uint64_t downscale_amount;
3365         uint64_t pixel_rate;
3366
3367         /* Shouldn't reach here on disabled planes... */
3368         if (WARN_ON(!pstate->visible))
3369                 return 0;
3370
3371         /*
3372          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3373          * with additional adjustments for plane-specific scaling.
3374          */
3375         adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3376         downscale_amount = skl_plane_downscale_amount(pstate);
3377
3378         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3379         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3380
3381         return pixel_rate;
3382 }
3383
3384 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3385                                 struct intel_crtc_state *cstate,
3386                                 struct intel_plane_state *intel_pstate,
3387                                 uint16_t ddb_allocation,
3388                                 int level,
3389                                 uint16_t *out_blocks, /* out */
3390                                 uint8_t *out_lines, /* out */
3391                                 bool *enabled /* out */)
3392 {
3393         struct drm_plane_state *pstate = &intel_pstate->base;
3394         struct drm_framebuffer *fb = pstate->fb;
3395         uint32_t latency = dev_priv->wm.skl_latency[level];
3396         uint32_t method1, method2;
3397         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3398         uint32_t res_blocks, res_lines;
3399         uint32_t selected_result;
3400         uint8_t cpp;
3401         uint32_t width = 0, height = 0;
3402         uint32_t plane_pixel_rate;
3403
3404         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3405                 *enabled = false;
3406                 return 0;
3407         }
3408
3409         width = drm_rect_width(&intel_pstate->src) >> 16;
3410         height = drm_rect_height(&intel_pstate->src) >> 16;
3411
3412         if (intel_rotation_90_or_270(pstate->rotation))
3413                 swap(width, height);
3414
3415         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3416         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3417
3418         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3419         method2 = skl_wm_method2(plane_pixel_rate,
3420                                  cstate->base.adjusted_mode.crtc_htotal,
3421                                  width,
3422                                  cpp,
3423                                  fb->modifier[0],
3424                                  latency);
3425
3426         plane_bytes_per_line = width * cpp;
3427         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3428
3429         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3430             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3431                 uint32_t min_scanlines = 4;
3432                 uint32_t y_tile_minimum;
3433                 if (intel_rotation_90_or_270(pstate->rotation)) {
3434                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3435                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3436                                 drm_format_plane_cpp(fb->pixel_format, 0);
3437
3438                         switch (cpp) {
3439                         case 1:
3440                                 min_scanlines = 16;
3441                                 break;
3442                         case 2:
3443                                 min_scanlines = 8;
3444                                 break;
3445                         case 8:
3446                                 WARN(1, "Unsupported pixel depth for rotation");
3447                         }
3448                 }
3449                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3450                 selected_result = max(method2, y_tile_minimum);
3451         } else {
3452                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3453                         selected_result = min(method1, method2);
3454                 else
3455                         selected_result = method1;
3456         }
3457
3458         res_blocks = selected_result + 1;
3459         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3460
3461         if (level >= 1 && level <= 7) {
3462                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3463                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3464                         res_lines += 4;
3465                 else
3466                         res_blocks++;
3467         }
3468
3469         if (res_blocks >= ddb_allocation || res_lines > 31) {
3470                 *enabled = false;
3471
3472                 /*
3473                  * If there are no valid level 0 watermarks, then we can't
3474                  * support this display configuration.
3475                  */
3476                 if (level) {
3477                         return 0;
3478                 } else {
3479                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3480                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3481                                       to_intel_crtc(cstate->base.crtc)->pipe,
3482                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3483                                       res_blocks, ddb_allocation, res_lines);
3484
3485                         return -EINVAL;
3486                 }
3487         }
3488
3489         *out_blocks = res_blocks;
3490         *out_lines = res_lines;
3491         *enabled = true;
3492
3493         return 0;
3494 }
3495
3496 static int
3497 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3498                      struct skl_ddb_allocation *ddb,
3499                      struct intel_crtc_state *cstate,
3500                      int level,
3501                      struct skl_wm_level *result)
3502 {
3503         struct drm_atomic_state *state = cstate->base.state;
3504         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3505         struct drm_plane *plane;
3506         struct intel_plane *intel_plane;
3507         struct intel_plane_state *intel_pstate;
3508         uint16_t ddb_blocks;
3509         enum pipe pipe = intel_crtc->pipe;
3510         int ret;
3511
3512         /*
3513          * We'll only calculate watermarks for planes that are actually
3514          * enabled, so make sure all other planes are set as disabled.
3515          */
3516         memset(result, 0, sizeof(*result));
3517
3518         for_each_intel_plane_mask(&dev_priv->drm,
3519                                   intel_plane,
3520                                   cstate->base.plane_mask) {
3521                 int i = skl_wm_plane_id(intel_plane);
3522
3523                 plane = &intel_plane->base;
3524                 intel_pstate = NULL;
3525                 if (state)
3526                         intel_pstate =
3527                                 intel_atomic_get_existing_plane_state(state,
3528                                                                       intel_plane);
3529
3530                 /*
3531                  * Note: If we start supporting multiple pending atomic commits
3532                  * against the same planes/CRTC's in the future, plane->state
3533                  * will no longer be the correct pre-state to use for the
3534                  * calculations here and we'll need to change where we get the
3535                  * 'unchanged' plane data from.
3536                  *
3537                  * For now this is fine because we only allow one queued commit
3538                  * against a CRTC.  Even if the plane isn't modified by this
3539                  * transaction and we don't have a plane lock, we still have
3540                  * the CRTC's lock, so we know that no other transactions are
3541                  * racing with us to update it.
3542                  */
3543                 if (!intel_pstate)
3544                         intel_pstate = to_intel_plane_state(plane->state);
3545
3546                 WARN_ON(!intel_pstate->base.fb);
3547
3548                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3549
3550                 ret = skl_compute_plane_wm(dev_priv,
3551                                            cstate,
3552                                            intel_pstate,
3553                                            ddb_blocks,
3554                                            level,
3555                                            &result->plane_res_b[i],
3556                                            &result->plane_res_l[i],
3557                                            &result->plane_en[i]);
3558                 if (ret)
3559                         return ret;
3560         }
3561
3562         return 0;
3563 }
3564
3565 static uint32_t
3566 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3567 {
3568         if (!cstate->base.active)
3569                 return 0;
3570
3571         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3572                 return 0;
3573
3574         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3575                             skl_pipe_pixel_rate(cstate));
3576 }
3577
3578 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3579                                       struct skl_wm_level *trans_wm /* out */)
3580 {
3581         struct drm_crtc *crtc = cstate->base.crtc;
3582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3583         struct intel_plane *intel_plane;
3584
3585         if (!cstate->base.active)
3586                 return;
3587
3588         /* Until we know more, just disable transition WMs */
3589         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3590                 int i = skl_wm_plane_id(intel_plane);
3591
3592                 trans_wm->plane_en[i] = false;
3593         }
3594 }
3595
3596 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3597                              struct skl_ddb_allocation *ddb,
3598                              struct skl_pipe_wm *pipe_wm)
3599 {
3600         struct drm_device *dev = cstate->base.crtc->dev;
3601         const struct drm_i915_private *dev_priv = to_i915(dev);
3602         int level, max_level = ilk_wm_max_level(dev);
3603         int ret;
3604
3605         for (level = 0; level <= max_level; level++) {
3606                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3607                                            level, &pipe_wm->wm[level]);
3608                 if (ret)
3609                         return ret;
3610         }
3611         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3612
3613         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3614
3615         return 0;
3616 }
3617
3618 static void skl_compute_wm_results(struct drm_device *dev,
3619                                    struct skl_pipe_wm *p_wm,
3620                                    struct skl_wm_values *r,
3621                                    struct intel_crtc *intel_crtc)
3622 {
3623         int level, max_level = ilk_wm_max_level(dev);
3624         enum pipe pipe = intel_crtc->pipe;
3625         uint32_t temp;
3626         int i;
3627
3628         for (level = 0; level <= max_level; level++) {
3629                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3630                         temp = 0;
3631
3632                         temp |= p_wm->wm[level].plane_res_l[i] <<
3633                                         PLANE_WM_LINES_SHIFT;
3634                         temp |= p_wm->wm[level].plane_res_b[i];
3635                         if (p_wm->wm[level].plane_en[i])
3636                                 temp |= PLANE_WM_EN;
3637
3638                         r->plane[pipe][i][level] = temp;
3639                 }
3640
3641                 temp = 0;
3642
3643                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3644                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3645
3646                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3647                         temp |= PLANE_WM_EN;
3648
3649                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3650
3651         }
3652
3653         /* transition WMs */
3654         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3655                 temp = 0;
3656                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3657                 temp |= p_wm->trans_wm.plane_res_b[i];
3658                 if (p_wm->trans_wm.plane_en[i])
3659                         temp |= PLANE_WM_EN;
3660
3661                 r->plane_trans[pipe][i] = temp;
3662         }
3663
3664         temp = 0;
3665         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3666         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3667         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3668                 temp |= PLANE_WM_EN;
3669
3670         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3671
3672         r->wm_linetime[pipe] = p_wm->linetime;
3673 }
3674
3675 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3676                                 i915_reg_t reg,
3677                                 const struct skl_ddb_entry *entry)
3678 {
3679         if (entry->end)
3680                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3681         else
3682                 I915_WRITE(reg, 0);
3683 }
3684
3685 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3686                                 const struct skl_wm_values *new)
3687 {
3688         struct drm_device *dev = &dev_priv->drm;
3689         struct intel_crtc *crtc;
3690
3691         for_each_intel_crtc(dev, crtc) {
3692                 int i, level, max_level = ilk_wm_max_level(dev);
3693                 enum pipe pipe = crtc->pipe;
3694
3695                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3696                         continue;
3697                 if (!crtc->active)
3698                         continue;
3699
3700                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3701
3702                 for (level = 0; level <= max_level; level++) {
3703                         for (i = 0; i < intel_num_planes(crtc); i++)
3704                                 I915_WRITE(PLANE_WM(pipe, i, level),
3705                                            new->plane[pipe][i][level]);
3706                         I915_WRITE(CUR_WM(pipe, level),
3707                                    new->plane[pipe][PLANE_CURSOR][level]);
3708                 }
3709                 for (i = 0; i < intel_num_planes(crtc); i++)
3710                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3711                                    new->plane_trans[pipe][i]);
3712                 I915_WRITE(CUR_WM_TRANS(pipe),
3713                            new->plane_trans[pipe][PLANE_CURSOR]);
3714
3715                 for (i = 0; i < intel_num_planes(crtc); i++) {
3716                         skl_ddb_entry_write(dev_priv,
3717                                             PLANE_BUF_CFG(pipe, i),
3718                                             &new->ddb.plane[pipe][i]);
3719                         skl_ddb_entry_write(dev_priv,
3720                                             PLANE_NV12_BUF_CFG(pipe, i),
3721                                             &new->ddb.y_plane[pipe][i]);
3722                 }
3723
3724                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3725                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3726         }
3727 }
3728
3729 /*
3730  * When setting up a new DDB allocation arrangement, we need to correctly
3731  * sequence the times at which the new allocations for the pipes are taken into
3732  * account or we'll have pipes fetching from space previously allocated to
3733  * another pipe.
3734  *
3735  * Roughly the sequence looks like:
3736  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3737  *     overlapping with a previous light-up pipe (another way to put it is:
3738  *     pipes with their new allocation strickly included into their old ones).
3739  *  2. re-allocate the other pipes that get their allocation reduced
3740  *  3. allocate the pipes having their allocation increased
3741  *
3742  * Steps 1. and 2. are here to take care of the following case:
3743  * - Initially DDB looks like this:
3744  *     |   B    |   C    |
3745  * - enable pipe A.
3746  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3747  *   allocation
3748  *     |  A  |  B  |  C  |
3749  *
3750  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3751  */
3752
3753 static void
3754 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3755 {
3756         int plane;
3757
3758         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3759
3760         for_each_plane(dev_priv, pipe, plane) {
3761                 I915_WRITE(PLANE_SURF(pipe, plane),
3762                            I915_READ(PLANE_SURF(pipe, plane)));
3763         }
3764         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3765 }
3766
3767 static bool
3768 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3769                             const struct skl_ddb_allocation *new,
3770                             enum pipe pipe)
3771 {
3772         uint16_t old_size, new_size;
3773
3774         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3775         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3776
3777         return old_size != new_size &&
3778                new->pipe[pipe].start >= old->pipe[pipe].start &&
3779                new->pipe[pipe].end <= old->pipe[pipe].end;
3780 }
3781
3782 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3783                                 struct skl_wm_values *new_values)
3784 {
3785         struct drm_device *dev = &dev_priv->drm;
3786         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3787         bool reallocated[I915_MAX_PIPES] = {};
3788         struct intel_crtc *crtc;
3789         enum pipe pipe;
3790
3791         new_ddb = &new_values->ddb;
3792         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3793
3794         /*
3795          * First pass: flush the pipes with the new allocation contained into
3796          * the old space.
3797          *
3798          * We'll wait for the vblank on those pipes to ensure we can safely
3799          * re-allocate the freed space without this pipe fetching from it.
3800          */
3801         for_each_intel_crtc(dev, crtc) {
3802                 if (!crtc->active)
3803                         continue;
3804
3805                 pipe = crtc->pipe;
3806
3807                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3808                         continue;
3809
3810                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3811                 intel_wait_for_vblank(dev, pipe);
3812
3813                 reallocated[pipe] = true;
3814         }
3815
3816
3817         /*
3818          * Second pass: flush the pipes that are having their allocation
3819          * reduced, but overlapping with a previous allocation.
3820          *
3821          * Here as well we need to wait for the vblank to make sure the freed
3822          * space is not used anymore.
3823          */
3824         for_each_intel_crtc(dev, crtc) {
3825                 if (!crtc->active)
3826                         continue;
3827
3828                 pipe = crtc->pipe;
3829
3830                 if (reallocated[pipe])
3831                         continue;
3832
3833                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3834                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3835                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3836                         intel_wait_for_vblank(dev, pipe);
3837                         reallocated[pipe] = true;
3838                 }
3839         }
3840
3841         /*
3842          * Third pass: flush the pipes that got more space allocated.
3843          *
3844          * We don't need to actively wait for the update here, next vblank
3845          * will just get more DDB space with the correct WM values.
3846          */
3847         for_each_intel_crtc(dev, crtc) {
3848                 if (!crtc->active)
3849                         continue;
3850
3851                 pipe = crtc->pipe;
3852
3853                 /*
3854                  * At this point, only the pipes more space than before are
3855                  * left to re-allocate.
3856                  */
3857                 if (reallocated[pipe])
3858                         continue;
3859
3860                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3861         }
3862 }
3863
3864 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3865                               struct skl_ddb_allocation *ddb, /* out */
3866                               struct skl_pipe_wm *pipe_wm, /* out */
3867                               bool *changed /* out */)
3868 {
3869         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3870         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3871         int ret;
3872
3873         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3874         if (ret)
3875                 return ret;
3876
3877         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3878                 *changed = false;
3879         else
3880                 *changed = true;
3881
3882         return 0;
3883 }
3884
3885 static uint32_t
3886 pipes_modified(struct drm_atomic_state *state)
3887 {
3888         struct drm_crtc *crtc;
3889         struct drm_crtc_state *cstate;
3890         uint32_t i, ret = 0;
3891
3892         for_each_crtc_in_state(state, crtc, cstate, i)
3893                 ret |= drm_crtc_mask(crtc);
3894
3895         return ret;
3896 }
3897
3898 static int
3899 skl_compute_ddb(struct drm_atomic_state *state)
3900 {
3901         struct drm_device *dev = state->dev;
3902         struct drm_i915_private *dev_priv = to_i915(dev);
3903         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3904         struct intel_crtc *intel_crtc;
3905         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3906         uint32_t realloc_pipes = pipes_modified(state);
3907         int ret;
3908
3909         /*
3910          * If this is our first atomic update following hardware readout,
3911          * we can't trust the DDB that the BIOS programmed for us.  Let's
3912          * pretend that all pipes switched active status so that we'll
3913          * ensure a full DDB recompute.
3914          */
3915         if (dev_priv->wm.distrust_bios_wm)
3916                 intel_state->active_pipe_changes = ~0;
3917
3918         /*
3919          * If the modeset changes which CRTC's are active, we need to
3920          * recompute the DDB allocation for *all* active pipes, even
3921          * those that weren't otherwise being modified in any way by this
3922          * atomic commit.  Due to the shrinking of the per-pipe allocations
3923          * when new active CRTC's are added, it's possible for a pipe that
3924          * we were already using and aren't changing at all here to suddenly
3925          * become invalid if its DDB needs exceeds its new allocation.
3926          *
3927          * Note that if we wind up doing a full DDB recompute, we can't let
3928          * any other display updates race with this transaction, so we need
3929          * to grab the lock on *all* CRTC's.
3930          */
3931         if (intel_state->active_pipe_changes) {
3932                 realloc_pipes = ~0;
3933                 intel_state->wm_results.dirty_pipes = ~0;
3934         }
3935
3936         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3937                 struct intel_crtc_state *cstate;
3938
3939                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3940                 if (IS_ERR(cstate))
3941                         return PTR_ERR(cstate);
3942
3943                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3944                 if (ret)
3945                         return ret;
3946         }
3947
3948         return 0;
3949 }
3950
3951 static int
3952 skl_compute_wm(struct drm_atomic_state *state)
3953 {
3954         struct drm_crtc *crtc;
3955         struct drm_crtc_state *cstate;
3956         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3957         struct skl_wm_values *results = &intel_state->wm_results;
3958         struct skl_pipe_wm *pipe_wm;
3959         bool changed = false;
3960         int ret, i;
3961
3962         /*
3963          * If this transaction isn't actually touching any CRTC's, don't
3964          * bother with watermark calculation.  Note that if we pass this
3965          * test, we're guaranteed to hold at least one CRTC state mutex,
3966          * which means we can safely use values like dev_priv->active_crtcs
3967          * since any racing commits that want to update them would need to
3968          * hold _all_ CRTC state mutexes.
3969          */
3970         for_each_crtc_in_state(state, crtc, cstate, i)
3971                 changed = true;
3972         if (!changed)
3973                 return 0;
3974
3975         /* Clear all dirty flags */
3976         results->dirty_pipes = 0;
3977
3978         ret = skl_compute_ddb(state);
3979         if (ret)
3980                 return ret;
3981
3982         /*
3983          * Calculate WM's for all pipes that are part of this transaction.
3984          * Note that the DDB allocation above may have added more CRTC's that
3985          * weren't otherwise being modified (and set bits in dirty_pipes) if
3986          * pipe allocations had to change.
3987          *
3988          * FIXME:  Now that we're doing this in the atomic check phase, we
3989          * should allow skl_update_pipe_wm() to return failure in cases where
3990          * no suitable watermark values can be found.
3991          */
3992         for_each_crtc_in_state(state, crtc, cstate, i) {
3993                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3994                 struct intel_crtc_state *intel_cstate =
3995                         to_intel_crtc_state(cstate);
3996
3997                 pipe_wm = &intel_cstate->wm.skl.optimal;
3998                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3999                                          &changed);
4000                 if (ret)
4001                         return ret;
4002
4003                 if (changed)
4004                         results->dirty_pipes |= drm_crtc_mask(crtc);
4005
4006                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4007                         /* This pipe's WM's did not change */
4008                         continue;
4009
4010                 intel_cstate->update_wm_pre = true;
4011                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4012         }
4013
4014         return 0;
4015 }
4016
4017 static void skl_update_wm(struct drm_crtc *crtc)
4018 {
4019         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4020         struct drm_device *dev = crtc->dev;
4021         struct drm_i915_private *dev_priv = to_i915(dev);
4022         struct skl_wm_values *results = &dev_priv->wm.skl_results;
4023         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4024         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4025
4026         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4027                 return;
4028
4029         intel_crtc->wm.active.skl = *pipe_wm;
4030
4031         mutex_lock(&dev_priv->wm.wm_mutex);
4032
4033         skl_write_wm_values(dev_priv, results);
4034         skl_flush_wm_values(dev_priv, results);
4035
4036         /* store the new configuration */
4037         dev_priv->wm.skl_hw = *results;
4038
4039         mutex_unlock(&dev_priv->wm.wm_mutex);
4040 }
4041
4042 static void ilk_compute_wm_config(struct drm_device *dev,
4043                                   struct intel_wm_config *config)
4044 {
4045         struct intel_crtc *crtc;
4046
4047         /* Compute the currently _active_ config */
4048         for_each_intel_crtc(dev, crtc) {
4049                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4050
4051                 if (!wm->pipe_enabled)
4052                         continue;
4053
4054                 config->sprites_enabled |= wm->sprites_enabled;
4055                 config->sprites_scaled |= wm->sprites_scaled;
4056                 config->num_pipes_active++;
4057         }
4058 }
4059
4060 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4061 {
4062         struct drm_device *dev = &dev_priv->drm;
4063         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4064         struct ilk_wm_maximums max;
4065         struct intel_wm_config config = {};
4066         struct ilk_wm_values results = {};
4067         enum intel_ddb_partitioning partitioning;
4068
4069         ilk_compute_wm_config(dev, &config);
4070
4071         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4072         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4073
4074         /* 5/6 split only in single pipe config on IVB+ */
4075         if (INTEL_INFO(dev)->gen >= 7 &&
4076             config.num_pipes_active == 1 && config.sprites_enabled) {
4077                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4078                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4079
4080                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4081         } else {
4082                 best_lp_wm = &lp_wm_1_2;
4083         }
4084
4085         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4086                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4087
4088         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4089
4090         ilk_write_wm_values(dev_priv, &results);
4091 }
4092
4093 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4094 {
4095         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4096         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4097
4098         mutex_lock(&dev_priv->wm.wm_mutex);
4099         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4100         ilk_program_watermarks(dev_priv);
4101         mutex_unlock(&dev_priv->wm.wm_mutex);
4102 }
4103
4104 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4105 {
4106         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4107         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4108
4109         mutex_lock(&dev_priv->wm.wm_mutex);
4110         if (cstate->wm.need_postvbl_update) {
4111                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4112                 ilk_program_watermarks(dev_priv);
4113         }
4114         mutex_unlock(&dev_priv->wm.wm_mutex);
4115 }
4116
4117 static void skl_pipe_wm_active_state(uint32_t val,
4118                                      struct skl_pipe_wm *active,
4119                                      bool is_transwm,
4120                                      bool is_cursor,
4121                                      int i,
4122                                      int level)
4123 {
4124         bool is_enabled = (val & PLANE_WM_EN) != 0;
4125
4126         if (!is_transwm) {
4127                 if (!is_cursor) {
4128                         active->wm[level].plane_en[i] = is_enabled;
4129                         active->wm[level].plane_res_b[i] =
4130                                         val & PLANE_WM_BLOCKS_MASK;
4131                         active->wm[level].plane_res_l[i] =
4132                                         (val >> PLANE_WM_LINES_SHIFT) &
4133                                                 PLANE_WM_LINES_MASK;
4134                 } else {
4135                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4136                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4137                                         val & PLANE_WM_BLOCKS_MASK;
4138                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4139                                         (val >> PLANE_WM_LINES_SHIFT) &
4140                                                 PLANE_WM_LINES_MASK;
4141                 }
4142         } else {
4143                 if (!is_cursor) {
4144                         active->trans_wm.plane_en[i] = is_enabled;
4145                         active->trans_wm.plane_res_b[i] =
4146                                         val & PLANE_WM_BLOCKS_MASK;
4147                         active->trans_wm.plane_res_l[i] =
4148                                         (val >> PLANE_WM_LINES_SHIFT) &
4149                                                 PLANE_WM_LINES_MASK;
4150                 } else {
4151                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4152                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4153                                         val & PLANE_WM_BLOCKS_MASK;
4154                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4155                                         (val >> PLANE_WM_LINES_SHIFT) &
4156                                                 PLANE_WM_LINES_MASK;
4157                 }
4158         }
4159 }
4160
4161 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4162 {
4163         struct drm_device *dev = crtc->dev;
4164         struct drm_i915_private *dev_priv = to_i915(dev);
4165         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4167         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4168         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4169         enum pipe pipe = intel_crtc->pipe;
4170         int level, i, max_level;
4171         uint32_t temp;
4172
4173         max_level = ilk_wm_max_level(dev);
4174
4175         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4176
4177         for (level = 0; level <= max_level; level++) {
4178                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4179                         hw->plane[pipe][i][level] =
4180                                         I915_READ(PLANE_WM(pipe, i, level));
4181                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4182         }
4183
4184         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4185                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4186         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4187
4188         if (!intel_crtc->active)
4189                 return;
4190
4191         hw->dirty_pipes |= drm_crtc_mask(crtc);
4192
4193         active->linetime = hw->wm_linetime[pipe];
4194
4195         for (level = 0; level <= max_level; level++) {
4196                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4197                         temp = hw->plane[pipe][i][level];
4198                         skl_pipe_wm_active_state(temp, active, false,
4199                                                 false, i, level);
4200                 }
4201                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4202                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4203         }
4204
4205         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4206                 temp = hw->plane_trans[pipe][i];
4207                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4208         }
4209
4210         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4211         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4212
4213         intel_crtc->wm.active.skl = *active;
4214 }
4215
4216 void skl_wm_get_hw_state(struct drm_device *dev)
4217 {
4218         struct drm_i915_private *dev_priv = to_i915(dev);
4219         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4220         struct drm_crtc *crtc;
4221
4222         skl_ddb_get_hw_state(dev_priv, ddb);
4223         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4224                 skl_pipe_wm_get_hw_state(crtc);
4225
4226         if (dev_priv->active_crtcs) {
4227                 /* Fully recompute DDB on first atomic commit */
4228                 dev_priv->wm.distrust_bios_wm = true;
4229         } else {
4230                 /* Easy/common case; just sanitize DDB now if everything off */
4231                 memset(ddb, 0, sizeof(*ddb));
4232         }
4233 }
4234
4235 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4236 {
4237         struct drm_device *dev = crtc->dev;
4238         struct drm_i915_private *dev_priv = to_i915(dev);
4239         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4241         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4242         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4243         enum pipe pipe = intel_crtc->pipe;
4244         static const i915_reg_t wm0_pipe_reg[] = {
4245                 [PIPE_A] = WM0_PIPEA_ILK,
4246                 [PIPE_B] = WM0_PIPEB_ILK,
4247                 [PIPE_C] = WM0_PIPEC_IVB,
4248         };
4249
4250         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4251         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4252                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4253
4254         memset(active, 0, sizeof(*active));
4255
4256         active->pipe_enabled = intel_crtc->active;
4257
4258         if (active->pipe_enabled) {
4259                 u32 tmp = hw->wm_pipe[pipe];
4260
4261                 /*
4262                  * For active pipes LP0 watermark is marked as
4263                  * enabled, and LP1+ watermaks as disabled since
4264                  * we can't really reverse compute them in case
4265                  * multiple pipes are active.
4266                  */
4267                 active->wm[0].enable = true;
4268                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4269                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4270                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4271                 active->linetime = hw->wm_linetime[pipe];
4272         } else {
4273                 int level, max_level = ilk_wm_max_level(dev);
4274
4275                 /*
4276                  * For inactive pipes, all watermark levels
4277                  * should be marked as enabled but zeroed,
4278                  * which is what we'd compute them to.
4279                  */
4280                 for (level = 0; level <= max_level; level++)
4281                         active->wm[level].enable = true;
4282         }
4283
4284         intel_crtc->wm.active.ilk = *active;
4285 }
4286
4287 #define _FW_WM(value, plane) \
4288         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4289 #define _FW_WM_VLV(value, plane) \
4290         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4291
4292 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4293                                struct vlv_wm_values *wm)
4294 {
4295         enum pipe pipe;
4296         uint32_t tmp;
4297
4298         for_each_pipe(dev_priv, pipe) {
4299                 tmp = I915_READ(VLV_DDL(pipe));
4300
4301                 wm->ddl[pipe].primary =
4302                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4303                 wm->ddl[pipe].cursor =
4304                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4305                 wm->ddl[pipe].sprite[0] =
4306                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4307                 wm->ddl[pipe].sprite[1] =
4308                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4309         }
4310
4311         tmp = I915_READ(DSPFW1);
4312         wm->sr.plane = _FW_WM(tmp, SR);
4313         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4314         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4315         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4316
4317         tmp = I915_READ(DSPFW2);
4318         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4319         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4320         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4321
4322         tmp = I915_READ(DSPFW3);
4323         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4324
4325         if (IS_CHERRYVIEW(dev_priv)) {
4326                 tmp = I915_READ(DSPFW7_CHV);
4327                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4328                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4329
4330                 tmp = I915_READ(DSPFW8_CHV);
4331                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4332                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4333
4334                 tmp = I915_READ(DSPFW9_CHV);
4335                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4336                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4337
4338                 tmp = I915_READ(DSPHOWM);
4339                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4340                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4341                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4342                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4343                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4344                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4345                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4346                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4347                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4348                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4349         } else {
4350                 tmp = I915_READ(DSPFW7);
4351                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4352                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4353
4354                 tmp = I915_READ(DSPHOWM);
4355                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4356                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4357                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4358                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4359                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4360                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4361                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4362         }
4363 }
4364
4365 #undef _FW_WM
4366 #undef _FW_WM_VLV
4367
4368 void vlv_wm_get_hw_state(struct drm_device *dev)
4369 {
4370         struct drm_i915_private *dev_priv = to_i915(dev);
4371         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4372         struct intel_plane *plane;
4373         enum pipe pipe;
4374         u32 val;
4375
4376         vlv_read_wm_values(dev_priv, wm);
4377
4378         for_each_intel_plane(dev, plane) {
4379                 switch (plane->base.type) {
4380                         int sprite;
4381                 case DRM_PLANE_TYPE_CURSOR:
4382                         plane->wm.fifo_size = 63;
4383                         break;
4384                 case DRM_PLANE_TYPE_PRIMARY:
4385                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4386                         break;
4387                 case DRM_PLANE_TYPE_OVERLAY:
4388                         sprite = plane->plane;
4389                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4390                         break;
4391                 }
4392         }
4393
4394         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4395         wm->level = VLV_WM_LEVEL_PM2;
4396
4397         if (IS_CHERRYVIEW(dev_priv)) {
4398                 mutex_lock(&dev_priv->rps.hw_lock);
4399
4400                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4401                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4402                         wm->level = VLV_WM_LEVEL_PM5;
4403
4404                 /*
4405                  * If DDR DVFS is disabled in the BIOS, Punit
4406                  * will never ack the request. So if that happens
4407                  * assume we don't have to enable/disable DDR DVFS
4408                  * dynamically. To test that just set the REQ_ACK
4409                  * bit to poke the Punit, but don't change the
4410                  * HIGH/LOW bits so that we don't actually change
4411                  * the current state.
4412                  */
4413                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4414                 val |= FORCE_DDR_FREQ_REQ_ACK;
4415                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4416
4417                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4418                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4419                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4420                                       "assuming DDR DVFS is disabled\n");
4421                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4422                 } else {
4423                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4424                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4425                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4426                 }
4427
4428                 mutex_unlock(&dev_priv->rps.hw_lock);
4429         }
4430
4431         for_each_pipe(dev_priv, pipe)
4432                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4433                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4434                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4435
4436         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4437                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4438 }
4439
4440 void ilk_wm_get_hw_state(struct drm_device *dev)
4441 {
4442         struct drm_i915_private *dev_priv = to_i915(dev);
4443         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4444         struct drm_crtc *crtc;
4445
4446         for_each_crtc(dev, crtc)
4447                 ilk_pipe_wm_get_hw_state(crtc);
4448
4449         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4450         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4451         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4452
4453         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4454         if (INTEL_INFO(dev)->gen >= 7) {
4455                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4456                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4457         }
4458
4459         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4460                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4461                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4462         else if (IS_IVYBRIDGE(dev))
4463                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4464                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4465
4466         hw->enable_fbc_wm =
4467                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4468 }
4469
4470 /**
4471  * intel_update_watermarks - update FIFO watermark values based on current modes
4472  *
4473  * Calculate watermark values for the various WM regs based on current mode
4474  * and plane configuration.
4475  *
4476  * There are several cases to deal with here:
4477  *   - normal (i.e. non-self-refresh)
4478  *   - self-refresh (SR) mode
4479  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4480  *   - lines are small relative to FIFO size (buffer can hold more than 2
4481  *     lines), so need to account for TLB latency
4482  *
4483  *   The normal calculation is:
4484  *     watermark = dotclock * bytes per pixel * latency
4485  *   where latency is platform & configuration dependent (we assume pessimal
4486  *   values here).
4487  *
4488  *   The SR calculation is:
4489  *     watermark = (trunc(latency/line time)+1) * surface width *
4490  *       bytes per pixel
4491  *   where
4492  *     line time = htotal / dotclock
4493  *     surface width = hdisplay for normal plane and 64 for cursor
4494  *   and latency is assumed to be high, as above.
4495  *
4496  * The final value programmed to the register should always be rounded up,
4497  * and include an extra 2 entries to account for clock crossings.
4498  *
4499  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4500  * to set the non-SR watermarks to 8.
4501  */
4502 void intel_update_watermarks(struct drm_crtc *crtc)
4503 {
4504         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4505
4506         if (dev_priv->display.update_wm)
4507                 dev_priv->display.update_wm(crtc);
4508 }
4509
4510 /*
4511  * Lock protecting IPS related data structures
4512  */
4513 DEFINE_SPINLOCK(mchdev_lock);
4514
4515 /* Global for IPS driver to get at the current i915 device. Protected by
4516  * mchdev_lock. */
4517 static struct drm_i915_private *i915_mch_dev;
4518
4519 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4520 {
4521         u16 rgvswctl;
4522
4523         assert_spin_locked(&mchdev_lock);
4524
4525         rgvswctl = I915_READ16(MEMSWCTL);
4526         if (rgvswctl & MEMCTL_CMD_STS) {
4527                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4528                 return false; /* still busy with another command */
4529         }
4530
4531         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4532                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4533         I915_WRITE16(MEMSWCTL, rgvswctl);
4534         POSTING_READ16(MEMSWCTL);
4535
4536         rgvswctl |= MEMCTL_CMD_STS;
4537         I915_WRITE16(MEMSWCTL, rgvswctl);
4538
4539         return true;
4540 }
4541
4542 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4543 {
4544         u32 rgvmodectl;
4545         u8 fmax, fmin, fstart, vstart;
4546
4547         spin_lock_irq(&mchdev_lock);
4548
4549         rgvmodectl = I915_READ(MEMMODECTL);
4550
4551         /* Enable temp reporting */
4552         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4553         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4554
4555         /* 100ms RC evaluation intervals */
4556         I915_WRITE(RCUPEI, 100000);
4557         I915_WRITE(RCDNEI, 100000);
4558
4559         /* Set max/min thresholds to 90ms and 80ms respectively */
4560         I915_WRITE(RCBMAXAVG, 90000);
4561         I915_WRITE(RCBMINAVG, 80000);
4562
4563         I915_WRITE(MEMIHYST, 1);
4564
4565         /* Set up min, max, and cur for interrupt handling */
4566         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4567         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4568         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4569                 MEMMODE_FSTART_SHIFT;
4570
4571         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4572                 PXVFREQ_PX_SHIFT;
4573
4574         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4575         dev_priv->ips.fstart = fstart;
4576
4577         dev_priv->ips.max_delay = fstart;
4578         dev_priv->ips.min_delay = fmin;
4579         dev_priv->ips.cur_delay = fstart;
4580
4581         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4582                          fmax, fmin, fstart);
4583
4584         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4585
4586         /*
4587          * Interrupts will be enabled in ironlake_irq_postinstall
4588          */
4589
4590         I915_WRITE(VIDSTART, vstart);
4591         POSTING_READ(VIDSTART);
4592
4593         rgvmodectl |= MEMMODE_SWMODE_EN;
4594         I915_WRITE(MEMMODECTL, rgvmodectl);
4595
4596         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4597                 DRM_ERROR("stuck trying to change perf mode\n");
4598         mdelay(1);
4599
4600         ironlake_set_drps(dev_priv, fstart);
4601
4602         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4603                 I915_READ(DDREC) + I915_READ(CSIEC);
4604         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4605         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4606         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4607
4608         spin_unlock_irq(&mchdev_lock);
4609 }
4610
4611 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4612 {
4613         u16 rgvswctl;
4614
4615         spin_lock_irq(&mchdev_lock);
4616
4617         rgvswctl = I915_READ16(MEMSWCTL);
4618
4619         /* Ack interrupts, disable EFC interrupt */
4620         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4621         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4622         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4623         I915_WRITE(DEIIR, DE_PCU_EVENT);
4624         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4625
4626         /* Go back to the starting frequency */
4627         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4628         mdelay(1);
4629         rgvswctl |= MEMCTL_CMD_STS;
4630         I915_WRITE(MEMSWCTL, rgvswctl);
4631         mdelay(1);
4632
4633         spin_unlock_irq(&mchdev_lock);
4634 }
4635
4636 /* There's a funny hw issue where the hw returns all 0 when reading from
4637  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4638  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4639  * all limits and the gpu stuck at whatever frequency it is at atm).
4640  */
4641 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4642 {
4643         u32 limits;
4644
4645         /* Only set the down limit when we've reached the lowest level to avoid
4646          * getting more interrupts, otherwise leave this clear. This prevents a
4647          * race in the hw when coming out of rc6: There's a tiny window where
4648          * the hw runs at the minimal clock before selecting the desired
4649          * frequency, if the down threshold expires in that window we will not
4650          * receive a down interrupt. */
4651         if (IS_GEN9(dev_priv)) {
4652                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4653                 if (val <= dev_priv->rps.min_freq_softlimit)
4654                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4655         } else {
4656                 limits = dev_priv->rps.max_freq_softlimit << 24;
4657                 if (val <= dev_priv->rps.min_freq_softlimit)
4658                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4659         }
4660
4661         return limits;
4662 }
4663
4664 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4665 {
4666         int new_power;
4667         u32 threshold_up = 0, threshold_down = 0; /* in % */
4668         u32 ei_up = 0, ei_down = 0;
4669
4670         new_power = dev_priv->rps.power;
4671         switch (dev_priv->rps.power) {
4672         case LOW_POWER:
4673                 if (val > dev_priv->rps.efficient_freq + 1 &&
4674                     val > dev_priv->rps.cur_freq)
4675                         new_power = BETWEEN;
4676                 break;
4677
4678         case BETWEEN:
4679                 if (val <= dev_priv->rps.efficient_freq &&
4680                     val < dev_priv->rps.cur_freq)
4681                         new_power = LOW_POWER;
4682                 else if (val >= dev_priv->rps.rp0_freq &&
4683                          val > dev_priv->rps.cur_freq)
4684                         new_power = HIGH_POWER;
4685                 break;
4686
4687         case HIGH_POWER:
4688                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4689                     val < dev_priv->rps.cur_freq)
4690                         new_power = BETWEEN;
4691                 break;
4692         }
4693         /* Max/min bins are special */
4694         if (val <= dev_priv->rps.min_freq_softlimit)
4695                 new_power = LOW_POWER;
4696         if (val >= dev_priv->rps.max_freq_softlimit)
4697                 new_power = HIGH_POWER;
4698         if (new_power == dev_priv->rps.power)
4699                 return;
4700
4701         /* Note the units here are not exactly 1us, but 1280ns. */
4702         switch (new_power) {
4703         case LOW_POWER:
4704                 /* Upclock if more than 95% busy over 16ms */
4705                 ei_up = 16000;
4706                 threshold_up = 95;
4707
4708                 /* Downclock if less than 85% busy over 32ms */
4709                 ei_down = 32000;
4710                 threshold_down = 85;
4711                 break;
4712
4713         case BETWEEN:
4714                 /* Upclock if more than 90% busy over 13ms */
4715                 ei_up = 13000;
4716                 threshold_up = 90;
4717
4718                 /* Downclock if less than 75% busy over 32ms */
4719                 ei_down = 32000;
4720                 threshold_down = 75;
4721                 break;
4722
4723         case HIGH_POWER:
4724                 /* Upclock if more than 85% busy over 10ms */
4725                 ei_up = 10000;
4726                 threshold_up = 85;
4727
4728                 /* Downclock if less than 60% busy over 32ms */
4729                 ei_down = 32000;
4730                 threshold_down = 60;
4731                 break;
4732         }
4733
4734         I915_WRITE(GEN6_RP_UP_EI,
4735                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
4736         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4737                    GT_INTERVAL_FROM_US(dev_priv,
4738                                        ei_up * threshold_up / 100));
4739
4740         I915_WRITE(GEN6_RP_DOWN_EI,
4741                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
4742         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4743                    GT_INTERVAL_FROM_US(dev_priv,
4744                                        ei_down * threshold_down / 100));
4745
4746         I915_WRITE(GEN6_RP_CONTROL,
4747                    GEN6_RP_MEDIA_TURBO |
4748                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4749                    GEN6_RP_MEDIA_IS_GFX |
4750                    GEN6_RP_ENABLE |
4751                    GEN6_RP_UP_BUSY_AVG |
4752                    GEN6_RP_DOWN_IDLE_AVG);
4753
4754         dev_priv->rps.power = new_power;
4755         dev_priv->rps.up_threshold = threshold_up;
4756         dev_priv->rps.down_threshold = threshold_down;
4757         dev_priv->rps.last_adj = 0;
4758 }
4759
4760 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4761 {
4762         u32 mask = 0;
4763
4764         if (val > dev_priv->rps.min_freq_softlimit)
4765                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4766         if (val < dev_priv->rps.max_freq_softlimit)
4767                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4768
4769         mask &= dev_priv->pm_rps_events;
4770
4771         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4772 }
4773
4774 /* gen6_set_rps is called to update the frequency request, but should also be
4775  * called when the range (min_delay and max_delay) is modified so that we can
4776  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4777 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4778 {
4779         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4780         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4781                 return;
4782
4783         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4784         WARN_ON(val > dev_priv->rps.max_freq);
4785         WARN_ON(val < dev_priv->rps.min_freq);
4786
4787         /* min/max delay may still have been modified so be sure to
4788          * write the limits value.
4789          */
4790         if (val != dev_priv->rps.cur_freq) {
4791                 gen6_set_rps_thresholds(dev_priv, val);
4792
4793                 if (IS_GEN9(dev_priv))
4794                         I915_WRITE(GEN6_RPNSWREQ,
4795                                    GEN9_FREQUENCY(val));
4796                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4797                         I915_WRITE(GEN6_RPNSWREQ,
4798                                    HSW_FREQUENCY(val));
4799                 else
4800                         I915_WRITE(GEN6_RPNSWREQ,
4801                                    GEN6_FREQUENCY(val) |
4802                                    GEN6_OFFSET(0) |
4803                                    GEN6_AGGRESSIVE_TURBO);
4804         }
4805
4806         /* Make sure we continue to get interrupts
4807          * until we hit the minimum or maximum frequencies.
4808          */
4809         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4810         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4811
4812         POSTING_READ(GEN6_RPNSWREQ);
4813
4814         dev_priv->rps.cur_freq = val;
4815         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4816 }
4817
4818 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4819 {
4820         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4821         WARN_ON(val > dev_priv->rps.max_freq);
4822         WARN_ON(val < dev_priv->rps.min_freq);
4823
4824         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4825                       "Odd GPU freq value\n"))
4826                 val &= ~1;
4827
4828         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4829
4830         if (val != dev_priv->rps.cur_freq) {
4831                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4832                 if (!IS_CHERRYVIEW(dev_priv))
4833                         gen6_set_rps_thresholds(dev_priv, val);
4834         }
4835
4836         dev_priv->rps.cur_freq = val;
4837         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4838 }
4839
4840 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4841  *
4842  * * If Gfx is Idle, then
4843  * 1. Forcewake Media well.
4844  * 2. Request idle freq.
4845  * 3. Release Forcewake of Media well.
4846 */
4847 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4848 {
4849         u32 val = dev_priv->rps.idle_freq;
4850
4851         if (dev_priv->rps.cur_freq <= val)
4852                 return;
4853
4854         /* Wake up the media well, as that takes a lot less
4855          * power than the Render well. */
4856         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4857         valleyview_set_rps(dev_priv, val);
4858         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4859 }
4860
4861 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4862 {
4863         mutex_lock(&dev_priv->rps.hw_lock);
4864         if (dev_priv->rps.enabled) {
4865                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4866                         gen6_rps_reset_ei(dev_priv);
4867                 I915_WRITE(GEN6_PMINTRMSK,
4868                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4869
4870                 gen6_enable_rps_interrupts(dev_priv);
4871
4872                 /* Ensure we start at the user's desired frequency */
4873                 intel_set_rps(dev_priv,
4874                               clamp(dev_priv->rps.cur_freq,
4875                                     dev_priv->rps.min_freq_softlimit,
4876                                     dev_priv->rps.max_freq_softlimit));
4877         }
4878         mutex_unlock(&dev_priv->rps.hw_lock);
4879 }
4880
4881 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4882 {
4883         /* Flush our bottom-half so that it does not race with us
4884          * setting the idle frequency and so that it is bounded by
4885          * our rpm wakeref. And then disable the interrupts to stop any
4886          * futher RPS reclocking whilst we are asleep.
4887          */
4888         gen6_disable_rps_interrupts(dev_priv);
4889
4890         mutex_lock(&dev_priv->rps.hw_lock);
4891         if (dev_priv->rps.enabled) {
4892                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4893                         vlv_set_rps_idle(dev_priv);
4894                 else
4895                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4896                 dev_priv->rps.last_adj = 0;
4897                 I915_WRITE(GEN6_PMINTRMSK,
4898                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4899         }
4900         mutex_unlock(&dev_priv->rps.hw_lock);
4901
4902         spin_lock(&dev_priv->rps.client_lock);
4903         while (!list_empty(&dev_priv->rps.clients))
4904                 list_del_init(dev_priv->rps.clients.next);
4905         spin_unlock(&dev_priv->rps.client_lock);
4906 }
4907
4908 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4909                     struct intel_rps_client *rps,
4910                     unsigned long submitted)
4911 {
4912         /* This is intentionally racy! We peek at the state here, then
4913          * validate inside the RPS worker.
4914          */
4915         if (!(dev_priv->gt.awake &&
4916               dev_priv->rps.enabled &&
4917               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4918                 return;
4919
4920         /* Force a RPS boost (and don't count it against the client) if
4921          * the GPU is severely congested.
4922          */
4923         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4924                 rps = NULL;
4925
4926         spin_lock(&dev_priv->rps.client_lock);
4927         if (rps == NULL || list_empty(&rps->link)) {
4928                 spin_lock_irq(&dev_priv->irq_lock);
4929                 if (dev_priv->rps.interrupts_enabled) {
4930                         dev_priv->rps.client_boost = true;
4931                         schedule_work(&dev_priv->rps.work);
4932                 }
4933                 spin_unlock_irq(&dev_priv->irq_lock);
4934
4935                 if (rps != NULL) {
4936                         list_add(&rps->link, &dev_priv->rps.clients);
4937                         rps->boosts++;
4938                 } else
4939                         dev_priv->rps.boosts++;
4940         }
4941         spin_unlock(&dev_priv->rps.client_lock);
4942 }
4943
4944 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4945 {
4946         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4947                 valleyview_set_rps(dev_priv, val);
4948         else
4949                 gen6_set_rps(dev_priv, val);
4950 }
4951
4952 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4953 {
4954         I915_WRITE(GEN6_RC_CONTROL, 0);
4955         I915_WRITE(GEN9_PG_ENABLE, 0);
4956 }
4957
4958 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4959 {
4960         I915_WRITE(GEN6_RP_CONTROL, 0);
4961 }
4962
4963 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4964 {
4965         I915_WRITE(GEN6_RC_CONTROL, 0);
4966         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4967         I915_WRITE(GEN6_RP_CONTROL, 0);
4968 }
4969
4970 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4971 {
4972         I915_WRITE(GEN6_RC_CONTROL, 0);
4973 }
4974
4975 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4976 {
4977         /* we're doing forcewake before Disabling RC6,
4978          * This what the BIOS expects when going into suspend */
4979         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4980
4981         I915_WRITE(GEN6_RC_CONTROL, 0);
4982
4983         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4984 }
4985
4986 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4987 {
4988         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4989                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4990                         mode = GEN6_RC_CTL_RC6_ENABLE;
4991                 else
4992                         mode = 0;
4993         }
4994         if (HAS_RC6p(dev_priv))
4995                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
4996                                  "RC6 %s RC6p %s RC6pp %s\n",
4997                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4998                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4999                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5000
5001         else
5002                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5003                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5004 }
5005
5006 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5007 {
5008         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5009         bool enable_rc6 = true;
5010         unsigned long rc6_ctx_base;
5011         u32 rc_ctl;
5012         int rc_sw_target;
5013
5014         rc_ctl = I915_READ(GEN6_RC_CONTROL);
5015         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5016                        RC_SW_TARGET_STATE_SHIFT;
5017         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5018                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5019                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5020                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5021                          rc_sw_target);
5022
5023         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5024                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5025                 enable_rc6 = false;
5026         }
5027
5028         /*
5029          * The exact context size is not known for BXT, so assume a page size
5030          * for this check.
5031          */
5032         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5033         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5034               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5035                                         ggtt->stolen_reserved_size))) {
5036                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5037                 enable_rc6 = false;
5038         }
5039
5040         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5041               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5042               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5043               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5044                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5045                 enable_rc6 = false;
5046         }
5047
5048         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5049             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5050             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5051                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5052                 enable_rc6 = false;
5053         }
5054
5055         if (!I915_READ(GEN6_GFXPAUSE)) {
5056                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5057                 enable_rc6 = false;
5058         }
5059
5060         if (!I915_READ(GEN8_MISC_CTRL0)) {
5061                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5062                 enable_rc6 = false;
5063         }
5064
5065         return enable_rc6;
5066 }
5067
5068 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5069 {
5070         /* No RC6 before Ironlake and code is gone for ilk. */
5071         if (INTEL_INFO(dev_priv)->gen < 6)
5072                 return 0;
5073
5074         if (!enable_rc6)
5075                 return 0;
5076
5077         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5078                 DRM_INFO("RC6 disabled by BIOS\n");
5079                 return 0;
5080         }
5081
5082         /* Respect the kernel parameter if it is set */
5083         if (enable_rc6 >= 0) {
5084                 int mask;
5085
5086                 if (HAS_RC6p(dev_priv))
5087                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5088                                INTEL_RC6pp_ENABLE;
5089                 else
5090                         mask = INTEL_RC6_ENABLE;
5091
5092                 if ((enable_rc6 & mask) != enable_rc6)
5093                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5094                                          "(requested %d, valid %d)\n",
5095                                          enable_rc6 & mask, enable_rc6, mask);
5096
5097                 return enable_rc6 & mask;
5098         }
5099
5100         if (IS_IVYBRIDGE(dev_priv))
5101                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5102
5103         return INTEL_RC6_ENABLE;
5104 }
5105
5106 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5107 {
5108         uint32_t rp_state_cap;
5109         u32 ddcc_status = 0;
5110         int ret;
5111
5112         /* All of these values are in units of 50MHz */
5113         dev_priv->rps.cur_freq          = 0;
5114         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5115         if (IS_BROXTON(dev_priv)) {
5116                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5117                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5118                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5119                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5120         } else {
5121                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5122                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5123                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5124                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5125         }
5126
5127         /* hw_max = RP0 until we check for overclocking */
5128         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
5129
5130         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5131         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5132             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5133                 ret = sandybridge_pcode_read(dev_priv,
5134                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5135                                         &ddcc_status);
5136                 if (0 == ret)
5137                         dev_priv->rps.efficient_freq =
5138                                 clamp_t(u8,
5139                                         ((ddcc_status >> 8) & 0xff),
5140                                         dev_priv->rps.min_freq,
5141                                         dev_priv->rps.max_freq);
5142         }
5143
5144         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5145                 /* Store the frequency values in 16.66 MHZ units, which is
5146                    the natural hardware unit for SKL */
5147                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5148                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5149                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5150                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5151                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5152         }
5153
5154         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5155
5156         /* Preserve min/max settings in case of re-init */
5157         if (dev_priv->rps.max_freq_softlimit == 0)
5158                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5159
5160         if (dev_priv->rps.min_freq_softlimit == 0) {
5161                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5162                         dev_priv->rps.min_freq_softlimit =
5163                                 max_t(int, dev_priv->rps.efficient_freq,
5164                                       intel_freq_opcode(dev_priv, 450));
5165                 else
5166                         dev_priv->rps.min_freq_softlimit =
5167                                 dev_priv->rps.min_freq;
5168         }
5169 }
5170
5171 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5172 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5173 {
5174         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5175
5176         gen6_init_rps_frequencies(dev_priv);
5177
5178         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5179         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5180                 /*
5181                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5182                  * clear out the Control register just to avoid inconsitency
5183                  * with debugfs interface, which will show  Turbo as enabled
5184                  * only and that is not expected by the User after adding the
5185                  * WaGsvDisableTurbo. Apart from this there is no problem even
5186                  * if the Turbo is left enabled in the Control register, as the
5187                  * Up/Down interrupts would remain masked.
5188                  */
5189                 gen9_disable_rps(dev_priv);
5190                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5191                 return;
5192         }
5193
5194         /* Program defaults and thresholds for RPS*/
5195         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5196                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5197
5198         /* 1 second timeout*/
5199         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5200                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5201
5202         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5203
5204         /* Leaning on the below call to gen6_set_rps to program/setup the
5205          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5206          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5207         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5208         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5209
5210         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5211 }
5212
5213 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5214 {
5215         struct intel_engine_cs *engine;
5216         uint32_t rc6_mask = 0;
5217
5218         /* 1a: Software RC state - RC0 */
5219         I915_WRITE(GEN6_RC_STATE, 0);
5220
5221         /* 1b: Get forcewake during program sequence. Although the driver
5222          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5223         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5224
5225         /* 2a: Disable RC states. */
5226         I915_WRITE(GEN6_RC_CONTROL, 0);
5227
5228         /* 2b: Program RC6 thresholds.*/
5229
5230         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5231         if (IS_SKYLAKE(dev_priv))
5232                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5233         else
5234                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5235         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5236         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5237         for_each_engine(engine, dev_priv)
5238                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5239
5240         if (HAS_GUC(dev_priv))
5241                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5242
5243         I915_WRITE(GEN6_RC_SLEEP, 0);
5244
5245         /* 2c: Program Coarse Power Gating Policies. */
5246         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5247         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5248
5249         /* 3a: Enable RC6 */
5250         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5251                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5252         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5253         /* WaRsUseTimeoutMode */
5254         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5255             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5256                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5257                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5258                            GEN7_RC_CTL_TO_MODE |
5259                            rc6_mask);
5260         } else {
5261                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5262                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5263                            GEN6_RC_CTL_EI_MODE(1) |
5264                            rc6_mask);
5265         }
5266
5267         /*
5268          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5269          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5270          */
5271         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5272                 I915_WRITE(GEN9_PG_ENABLE, 0);
5273         else
5274                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5275                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5276
5277         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5278 }
5279
5280 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5281 {
5282         struct intel_engine_cs *engine;
5283         uint32_t rc6_mask = 0;
5284
5285         /* 1a: Software RC state - RC0 */
5286         I915_WRITE(GEN6_RC_STATE, 0);
5287
5288         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5289          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5290         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5291
5292         /* 2a: Disable RC states. */
5293         I915_WRITE(GEN6_RC_CONTROL, 0);
5294
5295         /* Initialize rps frequencies */
5296         gen6_init_rps_frequencies(dev_priv);
5297
5298         /* 2b: Program RC6 thresholds.*/
5299         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5300         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5301         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5302         for_each_engine(engine, dev_priv)
5303                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5304         I915_WRITE(GEN6_RC_SLEEP, 0);
5305         if (IS_BROADWELL(dev_priv))
5306                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5307         else
5308                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5309
5310         /* 3: Enable RC6 */
5311         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5312                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5313         intel_print_rc6_info(dev_priv, rc6_mask);
5314         if (IS_BROADWELL(dev_priv))
5315                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5316                                 GEN7_RC_CTL_TO_MODE |
5317                                 rc6_mask);
5318         else
5319                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5320                                 GEN6_RC_CTL_EI_MODE(1) |
5321                                 rc6_mask);
5322
5323         /* 4 Program defaults and thresholds for RPS*/
5324         I915_WRITE(GEN6_RPNSWREQ,
5325                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5326         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5327                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5328         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5329         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5330
5331         /* Docs recommend 900MHz, and 300 MHz respectively */
5332         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5333                    dev_priv->rps.max_freq_softlimit << 24 |
5334                    dev_priv->rps.min_freq_softlimit << 16);
5335
5336         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5337         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5338         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5339         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5340
5341         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5342
5343         /* 5: Enable RPS */
5344         I915_WRITE(GEN6_RP_CONTROL,
5345                    GEN6_RP_MEDIA_TURBO |
5346                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5347                    GEN6_RP_MEDIA_IS_GFX |
5348                    GEN6_RP_ENABLE |
5349                    GEN6_RP_UP_BUSY_AVG |
5350                    GEN6_RP_DOWN_IDLE_AVG);
5351
5352         /* 6: Ring frequency + overclocking (our driver does this later */
5353
5354         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5355         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5356
5357         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5358 }
5359
5360 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5361 {
5362         struct intel_engine_cs *engine;
5363         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5364         u32 gtfifodbg;
5365         int rc6_mode;
5366         int ret;
5367
5368         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5369
5370         /* Here begins a magic sequence of register writes to enable
5371          * auto-downclocking.
5372          *
5373          * Perhaps there might be some value in exposing these to
5374          * userspace...
5375          */
5376         I915_WRITE(GEN6_RC_STATE, 0);
5377
5378         /* Clear the DBG now so we don't confuse earlier errors */
5379         gtfifodbg = I915_READ(GTFIFODBG);
5380         if (gtfifodbg) {
5381                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5382                 I915_WRITE(GTFIFODBG, gtfifodbg);
5383         }
5384
5385         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5386
5387         /* Initialize rps frequencies */
5388         gen6_init_rps_frequencies(dev_priv);
5389
5390         /* disable the counters and set deterministic thresholds */
5391         I915_WRITE(GEN6_RC_CONTROL, 0);
5392
5393         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5394         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5395         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5396         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5397         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5398
5399         for_each_engine(engine, dev_priv)
5400                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5401
5402         I915_WRITE(GEN6_RC_SLEEP, 0);
5403         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5404         if (IS_IVYBRIDGE(dev_priv))
5405                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5406         else
5407                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5408         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5409         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5410
5411         /* Check if we are enabling RC6 */
5412         rc6_mode = intel_enable_rc6();
5413         if (rc6_mode & INTEL_RC6_ENABLE)
5414                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5415
5416         /* We don't use those on Haswell */
5417         if (!IS_HASWELL(dev_priv)) {
5418                 if (rc6_mode & INTEL_RC6p_ENABLE)
5419                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5420
5421                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5422                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5423         }
5424
5425         intel_print_rc6_info(dev_priv, rc6_mask);
5426
5427         I915_WRITE(GEN6_RC_CONTROL,
5428                    rc6_mask |
5429                    GEN6_RC_CTL_EI_MODE(1) |
5430                    GEN6_RC_CTL_HW_ENABLE);
5431
5432         /* Power down if completely idle for over 50ms */
5433         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5434         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5435
5436         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5437         if (ret)
5438                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5439
5440         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5441         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5442                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5443                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5444                                  (pcu_mbox & 0xff) * 50);
5445                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5446         }
5447
5448         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5449         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5450
5451         rc6vids = 0;
5452         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5453         if (IS_GEN6(dev_priv) && ret) {
5454                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5455         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5456                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5457                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5458                 rc6vids &= 0xffff00;
5459                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5460                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5461                 if (ret)
5462                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5463         }
5464
5465         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5466 }
5467
5468 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5469 {
5470         int min_freq = 15;
5471         unsigned int gpu_freq;
5472         unsigned int max_ia_freq, min_ring_freq;
5473         unsigned int max_gpu_freq, min_gpu_freq;
5474         int scaling_factor = 180;
5475         struct cpufreq_policy *policy;
5476
5477         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5478
5479         policy = cpufreq_cpu_get(0);
5480         if (policy) {
5481                 max_ia_freq = policy->cpuinfo.max_freq;
5482                 cpufreq_cpu_put(policy);
5483         } else {
5484                 /*
5485                  * Default to measured freq if none found, PCU will ensure we
5486                  * don't go over
5487                  */
5488                 max_ia_freq = tsc_khz;
5489         }
5490
5491         /* Convert from kHz to MHz */
5492         max_ia_freq /= 1000;
5493
5494         min_ring_freq = I915_READ(DCLK) & 0xf;
5495         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5496         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5497
5498         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5499                 /* Convert GT frequency to 50 HZ units */
5500                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5501                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5502         } else {
5503                 min_gpu_freq = dev_priv->rps.min_freq;
5504                 max_gpu_freq = dev_priv->rps.max_freq;
5505         }
5506
5507         /*
5508          * For each potential GPU frequency, load a ring frequency we'd like
5509          * to use for memory access.  We do this by specifying the IA frequency
5510          * the PCU should use as a reference to determine the ring frequency.
5511          */
5512         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5513                 int diff = max_gpu_freq - gpu_freq;
5514                 unsigned int ia_freq = 0, ring_freq = 0;
5515
5516                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5517                         /*
5518                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5519                          * No floor required for ring frequency on SKL.
5520                          */
5521                         ring_freq = gpu_freq;
5522                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5523                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5524                         ring_freq = max(min_ring_freq, gpu_freq);
5525                 } else if (IS_HASWELL(dev_priv)) {
5526                         ring_freq = mult_frac(gpu_freq, 5, 4);
5527                         ring_freq = max(min_ring_freq, ring_freq);
5528                         /* leave ia_freq as the default, chosen by cpufreq */
5529                 } else {
5530                         /* On older processors, there is no separate ring
5531                          * clock domain, so in order to boost the bandwidth
5532                          * of the ring, we need to upclock the CPU (ia_freq).
5533                          *
5534                          * For GPU frequencies less than 750MHz,
5535                          * just use the lowest ring freq.
5536                          */
5537                         if (gpu_freq < min_freq)
5538                                 ia_freq = 800;
5539                         else
5540                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5541                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5542                 }
5543
5544                 sandybridge_pcode_write(dev_priv,
5545                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5546                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5547                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5548                                         gpu_freq);
5549         }
5550 }
5551
5552 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5553 {
5554         if (!HAS_CORE_RING_FREQ(dev_priv))
5555                 return;
5556
5557         mutex_lock(&dev_priv->rps.hw_lock);
5558         __gen6_update_ring_freq(dev_priv);
5559         mutex_unlock(&dev_priv->rps.hw_lock);
5560 }
5561
5562 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5563 {
5564         u32 val, rp0;
5565
5566         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5567
5568         switch (INTEL_INFO(dev_priv)->eu_total) {
5569         case 8:
5570                 /* (2 * 4) config */
5571                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5572                 break;
5573         case 12:
5574                 /* (2 * 6) config */
5575                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5576                 break;
5577         case 16:
5578                 /* (2 * 8) config */
5579         default:
5580                 /* Setting (2 * 8) Min RP0 for any other combination */
5581                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5582                 break;
5583         }
5584
5585         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5586
5587         return rp0;
5588 }
5589
5590 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5591 {
5592         u32 val, rpe;
5593
5594         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5595         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5596
5597         return rpe;
5598 }
5599
5600 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5601 {
5602         u32 val, rp1;
5603
5604         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5605         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5606
5607         return rp1;
5608 }
5609
5610 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5611 {
5612         u32 val, rp1;
5613
5614         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5615
5616         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5617
5618         return rp1;
5619 }
5620
5621 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5622 {
5623         u32 val, rp0;
5624
5625         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5626
5627         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5628         /* Clamp to max */
5629         rp0 = min_t(u32, rp0, 0xea);
5630
5631         return rp0;
5632 }
5633
5634 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5635 {
5636         u32 val, rpe;
5637
5638         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5639         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5640         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5641         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5642
5643         return rpe;
5644 }
5645
5646 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5647 {
5648         u32 val;
5649
5650         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5651         /*
5652          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5653          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5654          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5655          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5656          * to make sure it matches what Punit accepts.
5657          */
5658         return max_t(u32, val, 0xc0);
5659 }
5660
5661 /* Check that the pctx buffer wasn't move under us. */
5662 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5663 {
5664         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5665
5666         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5667                              dev_priv->vlv_pctx->stolen->start);
5668 }
5669
5670
5671 /* Check that the pcbr address is not empty. */
5672 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5673 {
5674         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5675
5676         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5677 }
5678
5679 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5680 {
5681         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5682         unsigned long pctx_paddr, paddr;
5683         u32 pcbr;
5684         int pctx_size = 32*1024;
5685
5686         pcbr = I915_READ(VLV_PCBR);
5687         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5688                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5689                 paddr = (dev_priv->mm.stolen_base +
5690                          (ggtt->stolen_size - pctx_size));
5691
5692                 pctx_paddr = (paddr & (~4095));
5693                 I915_WRITE(VLV_PCBR, pctx_paddr);
5694         }
5695
5696         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5697 }
5698
5699 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5700 {
5701         struct drm_i915_gem_object *pctx;
5702         unsigned long pctx_paddr;
5703         u32 pcbr;
5704         int pctx_size = 24*1024;
5705
5706         mutex_lock(&dev_priv->drm.struct_mutex);
5707
5708         pcbr = I915_READ(VLV_PCBR);
5709         if (pcbr) {
5710                 /* BIOS set it up already, grab the pre-alloc'd space */
5711                 int pcbr_offset;
5712
5713                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5714                 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5715                                                                       pcbr_offset,
5716                                                                       I915_GTT_OFFSET_NONE,
5717                                                                       pctx_size);
5718                 goto out;
5719         }
5720
5721         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5722
5723         /*
5724          * From the Gunit register HAS:
5725          * The Gfx driver is expected to program this register and ensure
5726          * proper allocation within Gfx stolen memory.  For example, this
5727          * register should be programmed such than the PCBR range does not
5728          * overlap with other ranges, such as the frame buffer, protected
5729          * memory, or any other relevant ranges.
5730          */
5731         pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5732         if (!pctx) {
5733                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5734                 goto out;
5735         }
5736
5737         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5738         I915_WRITE(VLV_PCBR, pctx_paddr);
5739
5740 out:
5741         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5742         dev_priv->vlv_pctx = pctx;
5743         mutex_unlock(&dev_priv->drm.struct_mutex);
5744 }
5745
5746 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5747 {
5748         if (WARN_ON(!dev_priv->vlv_pctx))
5749                 return;
5750
5751         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5752         dev_priv->vlv_pctx = NULL;
5753 }
5754
5755 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5756 {
5757         dev_priv->rps.gpll_ref_freq =
5758                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5759                                   CCK_GPLL_CLOCK_CONTROL,
5760                                   dev_priv->czclk_freq);
5761
5762         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5763                          dev_priv->rps.gpll_ref_freq);
5764 }
5765
5766 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5767 {
5768         u32 val;
5769
5770         valleyview_setup_pctx(dev_priv);
5771
5772         vlv_init_gpll_ref_freq(dev_priv);
5773
5774         mutex_lock(&dev_priv->rps.hw_lock);
5775
5776         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5777         switch ((val >> 6) & 3) {
5778         case 0:
5779         case 1:
5780                 dev_priv->mem_freq = 800;
5781                 break;
5782         case 2:
5783                 dev_priv->mem_freq = 1066;
5784                 break;
5785         case 3:
5786                 dev_priv->mem_freq = 1333;
5787                 break;
5788         }
5789         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5790
5791         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5792         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5793         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5794                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5795                          dev_priv->rps.max_freq);
5796
5797         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5798         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5799                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5800                          dev_priv->rps.efficient_freq);
5801
5802         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5803         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5804                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5805                          dev_priv->rps.rp1_freq);
5806
5807         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5808         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5809                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5810                          dev_priv->rps.min_freq);
5811
5812         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5813
5814         /* Preserve min/max settings in case of re-init */
5815         if (dev_priv->rps.max_freq_softlimit == 0)
5816                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5817
5818         if (dev_priv->rps.min_freq_softlimit == 0)
5819                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5820
5821         mutex_unlock(&dev_priv->rps.hw_lock);
5822 }
5823
5824 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5825 {
5826         u32 val;
5827
5828         cherryview_setup_pctx(dev_priv);
5829
5830         vlv_init_gpll_ref_freq(dev_priv);
5831
5832         mutex_lock(&dev_priv->rps.hw_lock);
5833
5834         mutex_lock(&dev_priv->sb_lock);
5835         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5836         mutex_unlock(&dev_priv->sb_lock);
5837
5838         switch ((val >> 2) & 0x7) {
5839         case 3:
5840                 dev_priv->mem_freq = 2000;
5841                 break;
5842         default:
5843                 dev_priv->mem_freq = 1600;
5844                 break;
5845         }
5846         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5847
5848         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5849         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5850         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5851                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5852                          dev_priv->rps.max_freq);
5853
5854         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5855         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5856                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5857                          dev_priv->rps.efficient_freq);
5858
5859         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5860         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5861                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5862                          dev_priv->rps.rp1_freq);
5863
5864         /* PUnit validated range is only [RPe, RP0] */
5865         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5866         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5867                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5868                          dev_priv->rps.min_freq);
5869
5870         WARN_ONCE((dev_priv->rps.max_freq |
5871                    dev_priv->rps.efficient_freq |
5872                    dev_priv->rps.rp1_freq |
5873                    dev_priv->rps.min_freq) & 1,
5874                   "Odd GPU freq values\n");
5875
5876         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5877
5878         /* Preserve min/max settings in case of re-init */
5879         if (dev_priv->rps.max_freq_softlimit == 0)
5880                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5881
5882         if (dev_priv->rps.min_freq_softlimit == 0)
5883                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5884
5885         mutex_unlock(&dev_priv->rps.hw_lock);
5886 }
5887
5888 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5889 {
5890         valleyview_cleanup_pctx(dev_priv);
5891 }
5892
5893 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5894 {
5895         struct intel_engine_cs *engine;
5896         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5897
5898         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5899
5900         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5901                                              GT_FIFO_FREE_ENTRIES_CHV);
5902         if (gtfifodbg) {
5903                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5904                                  gtfifodbg);
5905                 I915_WRITE(GTFIFODBG, gtfifodbg);
5906         }
5907
5908         cherryview_check_pctx(dev_priv);
5909
5910         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5911          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5912         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5913
5914         /*  Disable RC states. */
5915         I915_WRITE(GEN6_RC_CONTROL, 0);
5916
5917         /* 2a: Program RC6 thresholds.*/
5918         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5919         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5920         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5921
5922         for_each_engine(engine, dev_priv)
5923                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5924         I915_WRITE(GEN6_RC_SLEEP, 0);
5925
5926         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5927         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5928
5929         /* allows RC6 residency counter to work */
5930         I915_WRITE(VLV_COUNTER_CONTROL,
5931                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5932                                       VLV_MEDIA_RC6_COUNT_EN |
5933                                       VLV_RENDER_RC6_COUNT_EN));
5934
5935         /* For now we assume BIOS is allocating and populating the PCBR  */
5936         pcbr = I915_READ(VLV_PCBR);
5937
5938         /* 3: Enable RC6 */
5939         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5940             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5941                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5942
5943         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5944
5945         /* 4 Program defaults and thresholds for RPS*/
5946         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5947         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5948         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5949         I915_WRITE(GEN6_RP_UP_EI, 66000);
5950         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5951
5952         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5953
5954         /* 5: Enable RPS */
5955         I915_WRITE(GEN6_RP_CONTROL,
5956                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5957                    GEN6_RP_MEDIA_IS_GFX |
5958                    GEN6_RP_ENABLE |
5959                    GEN6_RP_UP_BUSY_AVG |
5960                    GEN6_RP_DOWN_IDLE_AVG);
5961
5962         /* Setting Fixed Bias */
5963         val = VLV_OVERRIDE_EN |
5964                   VLV_SOC_TDP_EN |
5965                   CHV_BIAS_CPU_50_SOC_50;
5966         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5967
5968         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5969
5970         /* RPS code assumes GPLL is used */
5971         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5972
5973         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5974         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5975
5976         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5977         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5978                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5979                          dev_priv->rps.cur_freq);
5980
5981         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5982                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5983                          dev_priv->rps.idle_freq);
5984
5985         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5986
5987         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5988 }
5989
5990 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5991 {
5992         struct intel_engine_cs *engine;
5993         u32 gtfifodbg, val, rc6_mode = 0;
5994
5995         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5996
5997         valleyview_check_pctx(dev_priv);
5998
5999         gtfifodbg = I915_READ(GTFIFODBG);
6000         if (gtfifodbg) {
6001                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6002                                  gtfifodbg);
6003                 I915_WRITE(GTFIFODBG, gtfifodbg);
6004         }
6005
6006         /* If VLV, Forcewake all wells, else re-direct to regular path */
6007         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6008
6009         /*  Disable RC states. */
6010         I915_WRITE(GEN6_RC_CONTROL, 0);
6011
6012         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6013         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6014         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6015         I915_WRITE(GEN6_RP_UP_EI, 66000);
6016         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6017
6018         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6019
6020         I915_WRITE(GEN6_RP_CONTROL,
6021                    GEN6_RP_MEDIA_TURBO |
6022                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6023                    GEN6_RP_MEDIA_IS_GFX |
6024                    GEN6_RP_ENABLE |
6025                    GEN6_RP_UP_BUSY_AVG |
6026                    GEN6_RP_DOWN_IDLE_CONT);
6027
6028         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6029         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6030         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6031
6032         for_each_engine(engine, dev_priv)
6033                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6034
6035         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6036
6037         /* allows RC6 residency counter to work */
6038         I915_WRITE(VLV_COUNTER_CONTROL,
6039                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6040                                       VLV_RENDER_RC0_COUNT_EN |
6041                                       VLV_MEDIA_RC6_COUNT_EN |
6042                                       VLV_RENDER_RC6_COUNT_EN));
6043
6044         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6045                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6046
6047         intel_print_rc6_info(dev_priv, rc6_mode);
6048
6049         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6050
6051         /* Setting Fixed Bias */
6052         val = VLV_OVERRIDE_EN |
6053                   VLV_SOC_TDP_EN |
6054                   VLV_BIAS_CPU_125_SOC_875;
6055         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6056
6057         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6058
6059         /* RPS code assumes GPLL is used */
6060         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6061
6062         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6063         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6064
6065         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6066         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6067                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6068                          dev_priv->rps.cur_freq);
6069
6070         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6071                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6072                          dev_priv->rps.idle_freq);
6073
6074         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6075
6076         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6077 }
6078
6079 static unsigned long intel_pxfreq(u32 vidfreq)
6080 {
6081         unsigned long freq;
6082         int div = (vidfreq & 0x3f0000) >> 16;
6083         int post = (vidfreq & 0x3000) >> 12;
6084         int pre = (vidfreq & 0x7);
6085
6086         if (!pre)
6087                 return 0;
6088
6089         freq = ((div * 133333) / ((1<<post) * pre));
6090
6091         return freq;
6092 }
6093
6094 static const struct cparams {
6095         u16 i;
6096         u16 t;
6097         u16 m;
6098         u16 c;
6099 } cparams[] = {
6100         { 1, 1333, 301, 28664 },
6101         { 1, 1066, 294, 24460 },
6102         { 1, 800, 294, 25192 },
6103         { 0, 1333, 276, 27605 },
6104         { 0, 1066, 276, 27605 },
6105         { 0, 800, 231, 23784 },
6106 };
6107
6108 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6109 {
6110         u64 total_count, diff, ret;
6111         u32 count1, count2, count3, m = 0, c = 0;
6112         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6113         int i;
6114
6115         assert_spin_locked(&mchdev_lock);
6116
6117         diff1 = now - dev_priv->ips.last_time1;
6118
6119         /* Prevent division-by-zero if we are asking too fast.
6120          * Also, we don't get interesting results if we are polling
6121          * faster than once in 10ms, so just return the saved value
6122          * in such cases.
6123          */
6124         if (diff1 <= 10)
6125                 return dev_priv->ips.chipset_power;
6126
6127         count1 = I915_READ(DMIEC);
6128         count2 = I915_READ(DDREC);
6129         count3 = I915_READ(CSIEC);
6130
6131         total_count = count1 + count2 + count3;
6132
6133         /* FIXME: handle per-counter overflow */
6134         if (total_count < dev_priv->ips.last_count1) {
6135                 diff = ~0UL - dev_priv->ips.last_count1;
6136                 diff += total_count;
6137         } else {
6138                 diff = total_count - dev_priv->ips.last_count1;
6139         }
6140
6141         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6142                 if (cparams[i].i == dev_priv->ips.c_m &&
6143                     cparams[i].t == dev_priv->ips.r_t) {
6144                         m = cparams[i].m;
6145                         c = cparams[i].c;
6146                         break;
6147                 }
6148         }
6149
6150         diff = div_u64(diff, diff1);
6151         ret = ((m * diff) + c);
6152         ret = div_u64(ret, 10);
6153
6154         dev_priv->ips.last_count1 = total_count;
6155         dev_priv->ips.last_time1 = now;
6156
6157         dev_priv->ips.chipset_power = ret;
6158
6159         return ret;
6160 }
6161
6162 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6163 {
6164         unsigned long val;
6165
6166         if (INTEL_INFO(dev_priv)->gen != 5)
6167                 return 0;
6168
6169         spin_lock_irq(&mchdev_lock);
6170
6171         val = __i915_chipset_val(dev_priv);
6172
6173         spin_unlock_irq(&mchdev_lock);
6174
6175         return val;
6176 }
6177
6178 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6179 {
6180         unsigned long m, x, b;
6181         u32 tsfs;
6182
6183         tsfs = I915_READ(TSFS);
6184
6185         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6186         x = I915_READ8(TR1);
6187
6188         b = tsfs & TSFS_INTR_MASK;
6189
6190         return ((m * x) / 127) - b;
6191 }
6192
6193 static int _pxvid_to_vd(u8 pxvid)
6194 {
6195         if (pxvid == 0)
6196                 return 0;
6197
6198         if (pxvid >= 8 && pxvid < 31)
6199                 pxvid = 31;
6200
6201         return (pxvid + 2) * 125;
6202 }
6203
6204 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6205 {
6206         const int vd = _pxvid_to_vd(pxvid);
6207         const int vm = vd - 1125;
6208
6209         if (INTEL_INFO(dev_priv)->is_mobile)
6210                 return vm > 0 ? vm : 0;
6211
6212         return vd;
6213 }
6214
6215 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6216 {
6217         u64 now, diff, diffms;
6218         u32 count;
6219
6220         assert_spin_locked(&mchdev_lock);
6221
6222         now = ktime_get_raw_ns();
6223         diffms = now - dev_priv->ips.last_time2;
6224         do_div(diffms, NSEC_PER_MSEC);
6225
6226         /* Don't divide by 0 */
6227         if (!diffms)
6228                 return;
6229
6230         count = I915_READ(GFXEC);
6231
6232         if (count < dev_priv->ips.last_count2) {
6233                 diff = ~0UL - dev_priv->ips.last_count2;
6234                 diff += count;
6235         } else {
6236                 diff = count - dev_priv->ips.last_count2;
6237         }
6238
6239         dev_priv->ips.last_count2 = count;
6240         dev_priv->ips.last_time2 = now;
6241
6242         /* More magic constants... */
6243         diff = diff * 1181;
6244         diff = div_u64(diff, diffms * 10);
6245         dev_priv->ips.gfx_power = diff;
6246 }
6247
6248 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6249 {
6250         if (INTEL_INFO(dev_priv)->gen != 5)
6251                 return;
6252
6253         spin_lock_irq(&mchdev_lock);
6254
6255         __i915_update_gfx_val(dev_priv);
6256
6257         spin_unlock_irq(&mchdev_lock);
6258 }
6259
6260 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6261 {
6262         unsigned long t, corr, state1, corr2, state2;
6263         u32 pxvid, ext_v;
6264
6265         assert_spin_locked(&mchdev_lock);
6266
6267         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6268         pxvid = (pxvid >> 24) & 0x7f;
6269         ext_v = pvid_to_extvid(dev_priv, pxvid);
6270
6271         state1 = ext_v;
6272
6273         t = i915_mch_val(dev_priv);
6274
6275         /* Revel in the empirically derived constants */
6276
6277         /* Correction factor in 1/100000 units */
6278         if (t > 80)
6279                 corr = ((t * 2349) + 135940);
6280         else if (t >= 50)
6281                 corr = ((t * 964) + 29317);
6282         else /* < 50 */
6283                 corr = ((t * 301) + 1004);
6284
6285         corr = corr * ((150142 * state1) / 10000 - 78642);
6286         corr /= 100000;
6287         corr2 = (corr * dev_priv->ips.corr);
6288
6289         state2 = (corr2 * state1) / 10000;
6290         state2 /= 100; /* convert to mW */
6291
6292         __i915_update_gfx_val(dev_priv);
6293
6294         return dev_priv->ips.gfx_power + state2;
6295 }
6296
6297 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6298 {
6299         unsigned long val;
6300
6301         if (INTEL_INFO(dev_priv)->gen != 5)
6302                 return 0;
6303
6304         spin_lock_irq(&mchdev_lock);
6305
6306         val = __i915_gfx_val(dev_priv);
6307
6308         spin_unlock_irq(&mchdev_lock);
6309
6310         return val;
6311 }
6312
6313 /**
6314  * i915_read_mch_val - return value for IPS use
6315  *
6316  * Calculate and return a value for the IPS driver to use when deciding whether
6317  * we have thermal and power headroom to increase CPU or GPU power budget.
6318  */
6319 unsigned long i915_read_mch_val(void)
6320 {
6321         struct drm_i915_private *dev_priv;
6322         unsigned long chipset_val, graphics_val, ret = 0;
6323
6324         spin_lock_irq(&mchdev_lock);
6325         if (!i915_mch_dev)
6326                 goto out_unlock;
6327         dev_priv = i915_mch_dev;
6328
6329         chipset_val = __i915_chipset_val(dev_priv);
6330         graphics_val = __i915_gfx_val(dev_priv);
6331
6332         ret = chipset_val + graphics_val;
6333
6334 out_unlock:
6335         spin_unlock_irq(&mchdev_lock);
6336
6337         return ret;
6338 }
6339 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6340
6341 /**
6342  * i915_gpu_raise - raise GPU frequency limit
6343  *
6344  * Raise the limit; IPS indicates we have thermal headroom.
6345  */
6346 bool i915_gpu_raise(void)
6347 {
6348         struct drm_i915_private *dev_priv;
6349         bool ret = true;
6350
6351         spin_lock_irq(&mchdev_lock);
6352         if (!i915_mch_dev) {
6353                 ret = false;
6354                 goto out_unlock;
6355         }
6356         dev_priv = i915_mch_dev;
6357
6358         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6359                 dev_priv->ips.max_delay--;
6360
6361 out_unlock:
6362         spin_unlock_irq(&mchdev_lock);
6363
6364         return ret;
6365 }
6366 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6367
6368 /**
6369  * i915_gpu_lower - lower GPU frequency limit
6370  *
6371  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6372  * frequency maximum.
6373  */
6374 bool i915_gpu_lower(void)
6375 {
6376         struct drm_i915_private *dev_priv;
6377         bool ret = true;
6378
6379         spin_lock_irq(&mchdev_lock);
6380         if (!i915_mch_dev) {
6381                 ret = false;
6382                 goto out_unlock;
6383         }
6384         dev_priv = i915_mch_dev;
6385
6386         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6387                 dev_priv->ips.max_delay++;
6388
6389 out_unlock:
6390         spin_unlock_irq(&mchdev_lock);
6391
6392         return ret;
6393 }
6394 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6395
6396 /**
6397  * i915_gpu_busy - indicate GPU business to IPS
6398  *
6399  * Tell the IPS driver whether or not the GPU is busy.
6400  */
6401 bool i915_gpu_busy(void)
6402 {
6403         struct drm_i915_private *dev_priv;
6404         struct intel_engine_cs *engine;
6405         bool ret = false;
6406
6407         spin_lock_irq(&mchdev_lock);
6408         if (!i915_mch_dev)
6409                 goto out_unlock;
6410         dev_priv = i915_mch_dev;
6411
6412         for_each_engine(engine, dev_priv)
6413                 ret |= !list_empty(&engine->request_list);
6414
6415 out_unlock:
6416         spin_unlock_irq(&mchdev_lock);
6417
6418         return ret;
6419 }
6420 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6421
6422 /**
6423  * i915_gpu_turbo_disable - disable graphics turbo
6424  *
6425  * Disable graphics turbo by resetting the max frequency and setting the
6426  * current frequency to the default.
6427  */
6428 bool i915_gpu_turbo_disable(void)
6429 {
6430         struct drm_i915_private *dev_priv;
6431         bool ret = true;
6432
6433         spin_lock_irq(&mchdev_lock);
6434         if (!i915_mch_dev) {
6435                 ret = false;
6436                 goto out_unlock;
6437         }
6438         dev_priv = i915_mch_dev;
6439
6440         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6441
6442         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6443                 ret = false;
6444
6445 out_unlock:
6446         spin_unlock_irq(&mchdev_lock);
6447
6448         return ret;
6449 }
6450 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6451
6452 /**
6453  * Tells the intel_ips driver that the i915 driver is now loaded, if
6454  * IPS got loaded first.
6455  *
6456  * This awkward dance is so that neither module has to depend on the
6457  * other in order for IPS to do the appropriate communication of
6458  * GPU turbo limits to i915.
6459  */
6460 static void
6461 ips_ping_for_i915_load(void)
6462 {
6463         void (*link)(void);
6464
6465         link = symbol_get(ips_link_to_i915_driver);
6466         if (link) {
6467                 link();
6468                 symbol_put(ips_link_to_i915_driver);
6469         }
6470 }
6471
6472 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6473 {
6474         /* We only register the i915 ips part with intel-ips once everything is
6475          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6476         spin_lock_irq(&mchdev_lock);
6477         i915_mch_dev = dev_priv;
6478         spin_unlock_irq(&mchdev_lock);
6479
6480         ips_ping_for_i915_load();
6481 }
6482
6483 void intel_gpu_ips_teardown(void)
6484 {
6485         spin_lock_irq(&mchdev_lock);
6486         i915_mch_dev = NULL;
6487         spin_unlock_irq(&mchdev_lock);
6488 }
6489
6490 static void intel_init_emon(struct drm_i915_private *dev_priv)
6491 {
6492         u32 lcfuse;
6493         u8 pxw[16];
6494         int i;
6495
6496         /* Disable to program */
6497         I915_WRITE(ECR, 0);
6498         POSTING_READ(ECR);
6499
6500         /* Program energy weights for various events */
6501         I915_WRITE(SDEW, 0x15040d00);
6502         I915_WRITE(CSIEW0, 0x007f0000);
6503         I915_WRITE(CSIEW1, 0x1e220004);
6504         I915_WRITE(CSIEW2, 0x04000004);
6505
6506         for (i = 0; i < 5; i++)
6507                 I915_WRITE(PEW(i), 0);
6508         for (i = 0; i < 3; i++)
6509                 I915_WRITE(DEW(i), 0);
6510
6511         /* Program P-state weights to account for frequency power adjustment */
6512         for (i = 0; i < 16; i++) {
6513                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6514                 unsigned long freq = intel_pxfreq(pxvidfreq);
6515                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6516                         PXVFREQ_PX_SHIFT;
6517                 unsigned long val;
6518
6519                 val = vid * vid;
6520                 val *= (freq / 1000);
6521                 val *= 255;
6522                 val /= (127*127*900);
6523                 if (val > 0xff)
6524                         DRM_ERROR("bad pxval: %ld\n", val);
6525                 pxw[i] = val;
6526         }
6527         /* Render standby states get 0 weight */
6528         pxw[14] = 0;
6529         pxw[15] = 0;
6530
6531         for (i = 0; i < 4; i++) {
6532                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6533                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6534                 I915_WRITE(PXW(i), val);
6535         }
6536
6537         /* Adjust magic regs to magic values (more experimental results) */
6538         I915_WRITE(OGW0, 0);
6539         I915_WRITE(OGW1, 0);
6540         I915_WRITE(EG0, 0x00007f00);
6541         I915_WRITE(EG1, 0x0000000e);
6542         I915_WRITE(EG2, 0x000e0000);
6543         I915_WRITE(EG3, 0x68000300);
6544         I915_WRITE(EG4, 0x42000000);
6545         I915_WRITE(EG5, 0x00140031);
6546         I915_WRITE(EG6, 0);
6547         I915_WRITE(EG7, 0);
6548
6549         for (i = 0; i < 8; i++)
6550                 I915_WRITE(PXWL(i), 0);
6551
6552         /* Enable PMON + select events */
6553         I915_WRITE(ECR, 0x80000019);
6554
6555         lcfuse = I915_READ(LCFUSE02);
6556
6557         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6558 }
6559
6560 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6561 {
6562         /*
6563          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6564          * requirement.
6565          */
6566         if (!i915.enable_rc6) {
6567                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6568                 intel_runtime_pm_get(dev_priv);
6569         }
6570
6571         if (IS_CHERRYVIEW(dev_priv))
6572                 cherryview_init_gt_powersave(dev_priv);
6573         else if (IS_VALLEYVIEW(dev_priv))
6574                 valleyview_init_gt_powersave(dev_priv);
6575 }
6576
6577 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6578 {
6579         if (IS_VALLEYVIEW(dev_priv))
6580                 valleyview_cleanup_gt_powersave(dev_priv);
6581
6582         if (!i915.enable_rc6)
6583                 intel_runtime_pm_put(dev_priv);
6584 }
6585
6586 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6587 {
6588         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6589
6590         gen6_disable_rps_interrupts(dev_priv);
6591 }
6592
6593 /**
6594  * intel_suspend_gt_powersave - suspend PM work and helper threads
6595  * @dev_priv: i915 device
6596  *
6597  * We don't want to disable RC6 or other features here, we just want
6598  * to make sure any work we've queued has finished and won't bother
6599  * us while we're suspended.
6600  */
6601 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6602 {
6603         if (INTEL_GEN(dev_priv) < 6)
6604                 return;
6605
6606         gen6_suspend_rps(dev_priv);
6607
6608         /* Force GPU to min freq during suspend */
6609         gen6_rps_idle(dev_priv);
6610 }
6611
6612 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6613 {
6614         if (IS_IRONLAKE_M(dev_priv)) {
6615                 ironlake_disable_drps(dev_priv);
6616         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6617                 intel_suspend_gt_powersave(dev_priv);
6618
6619                 mutex_lock(&dev_priv->rps.hw_lock);
6620                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6621                         gen9_disable_rc6(dev_priv);
6622                         gen9_disable_rps(dev_priv);
6623                 } else if (IS_CHERRYVIEW(dev_priv))
6624                         cherryview_disable_rps(dev_priv);
6625                 else if (IS_VALLEYVIEW(dev_priv))
6626                         valleyview_disable_rps(dev_priv);
6627                 else
6628                         gen6_disable_rps(dev_priv);
6629
6630                 dev_priv->rps.enabled = false;
6631                 mutex_unlock(&dev_priv->rps.hw_lock);
6632         }
6633 }
6634
6635 static void intel_gen6_powersave_work(struct work_struct *work)
6636 {
6637         struct drm_i915_private *dev_priv =
6638                 container_of(work, struct drm_i915_private,
6639                              rps.delayed_resume_work.work);
6640
6641         mutex_lock(&dev_priv->rps.hw_lock);
6642
6643         gen6_reset_rps_interrupts(dev_priv);
6644
6645         if (IS_CHERRYVIEW(dev_priv)) {
6646                 cherryview_enable_rps(dev_priv);
6647         } else if (IS_VALLEYVIEW(dev_priv)) {
6648                 valleyview_enable_rps(dev_priv);
6649         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6650                 gen9_enable_rc6(dev_priv);
6651                 gen9_enable_rps(dev_priv);
6652                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6653                         __gen6_update_ring_freq(dev_priv);
6654         } else if (IS_BROADWELL(dev_priv)) {
6655                 gen8_enable_rps(dev_priv);
6656                 __gen6_update_ring_freq(dev_priv);
6657         } else {
6658                 gen6_enable_rps(dev_priv);
6659                 __gen6_update_ring_freq(dev_priv);
6660         }
6661
6662         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6663         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6664
6665         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6666         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6667
6668         dev_priv->rps.enabled = true;
6669
6670         gen6_enable_rps_interrupts(dev_priv);
6671
6672         mutex_unlock(&dev_priv->rps.hw_lock);
6673
6674         intel_runtime_pm_put(dev_priv);
6675 }
6676
6677 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6678 {
6679         /* Powersaving is controlled by the host when inside a VM */
6680         if (intel_vgpu_active(dev_priv))
6681                 return;
6682
6683         if (IS_IRONLAKE_M(dev_priv)) {
6684                 ironlake_enable_drps(dev_priv);
6685                 mutex_lock(&dev_priv->drm.struct_mutex);
6686                 intel_init_emon(dev_priv);
6687                 mutex_unlock(&dev_priv->drm.struct_mutex);
6688         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6689                 /*
6690                  * PCU communication is slow and this doesn't need to be
6691                  * done at any specific time, so do this out of our fast path
6692                  * to make resume and init faster.
6693                  *
6694                  * We depend on the HW RC6 power context save/restore
6695                  * mechanism when entering D3 through runtime PM suspend. So
6696                  * disable RPM until RPS/RC6 is properly setup. We can only
6697                  * get here via the driver load/system resume/runtime resume
6698                  * paths, so the _noresume version is enough (and in case of
6699                  * runtime resume it's necessary).
6700                  */
6701                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6702                                            round_jiffies_up_relative(HZ)))
6703                         intel_runtime_pm_get_noresume(dev_priv);
6704         }
6705 }
6706
6707 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6708 {
6709         if (INTEL_INFO(dev_priv)->gen < 6)
6710                 return;
6711
6712         gen6_suspend_rps(dev_priv);
6713         dev_priv->rps.enabled = false;
6714 }
6715
6716 static void ibx_init_clock_gating(struct drm_device *dev)
6717 {
6718         struct drm_i915_private *dev_priv = to_i915(dev);
6719
6720         /*
6721          * On Ibex Peak and Cougar Point, we need to disable clock
6722          * gating for the panel power sequencer or it will fail to
6723          * start up when no ports are active.
6724          */
6725         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6726 }
6727
6728 static void g4x_disable_trickle_feed(struct drm_device *dev)
6729 {
6730         struct drm_i915_private *dev_priv = to_i915(dev);
6731         enum pipe pipe;
6732
6733         for_each_pipe(dev_priv, pipe) {
6734                 I915_WRITE(DSPCNTR(pipe),
6735                            I915_READ(DSPCNTR(pipe)) |
6736                            DISPPLANE_TRICKLE_FEED_DISABLE);
6737
6738                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6739                 POSTING_READ(DSPSURF(pipe));
6740         }
6741 }
6742
6743 static void ilk_init_lp_watermarks(struct drm_device *dev)
6744 {
6745         struct drm_i915_private *dev_priv = to_i915(dev);
6746
6747         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6748         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6749         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6750
6751         /*
6752          * Don't touch WM1S_LP_EN here.
6753          * Doing so could cause underruns.
6754          */
6755 }
6756
6757 static void ironlake_init_clock_gating(struct drm_device *dev)
6758 {
6759         struct drm_i915_private *dev_priv = to_i915(dev);
6760         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6761
6762         /*
6763          * Required for FBC
6764          * WaFbcDisableDpfcClockGating:ilk
6765          */
6766         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6767                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6768                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6769
6770         I915_WRITE(PCH_3DCGDIS0,
6771                    MARIUNIT_CLOCK_GATE_DISABLE |
6772                    SVSMUNIT_CLOCK_GATE_DISABLE);
6773         I915_WRITE(PCH_3DCGDIS1,
6774                    VFMUNIT_CLOCK_GATE_DISABLE);
6775
6776         /*
6777          * According to the spec the following bits should be set in
6778          * order to enable memory self-refresh
6779          * The bit 22/21 of 0x42004
6780          * The bit 5 of 0x42020
6781          * The bit 15 of 0x45000
6782          */
6783         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6784                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6785                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6786         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6787         I915_WRITE(DISP_ARB_CTL,
6788                    (I915_READ(DISP_ARB_CTL) |
6789                     DISP_FBC_WM_DIS));
6790
6791         ilk_init_lp_watermarks(dev);
6792
6793         /*
6794          * Based on the document from hardware guys the following bits
6795          * should be set unconditionally in order to enable FBC.
6796          * The bit 22 of 0x42000
6797          * The bit 22 of 0x42004
6798          * The bit 7,8,9 of 0x42020.
6799          */
6800         if (IS_IRONLAKE_M(dev)) {
6801                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6802                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6803                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6804                            ILK_FBCQ_DIS);
6805                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6806                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6807                            ILK_DPARB_GATE);
6808         }
6809
6810         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6811
6812         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6813                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6814                    ILK_ELPIN_409_SELECT);
6815         I915_WRITE(_3D_CHICKEN2,
6816                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6817                    _3D_CHICKEN2_WM_READ_PIPELINED);
6818
6819         /* WaDisableRenderCachePipelinedFlush:ilk */
6820         I915_WRITE(CACHE_MODE_0,
6821                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6822
6823         /* WaDisable_RenderCache_OperationalFlush:ilk */
6824         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6825
6826         g4x_disable_trickle_feed(dev);
6827
6828         ibx_init_clock_gating(dev);
6829 }
6830
6831 static void cpt_init_clock_gating(struct drm_device *dev)
6832 {
6833         struct drm_i915_private *dev_priv = to_i915(dev);
6834         int pipe;
6835         uint32_t val;
6836
6837         /*
6838          * On Ibex Peak and Cougar Point, we need to disable clock
6839          * gating for the panel power sequencer or it will fail to
6840          * start up when no ports are active.
6841          */
6842         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6843                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6844                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6845         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6846                    DPLS_EDP_PPS_FIX_DIS);
6847         /* The below fixes the weird display corruption, a few pixels shifted
6848          * downward, on (only) LVDS of some HP laptops with IVY.
6849          */
6850         for_each_pipe(dev_priv, pipe) {
6851                 val = I915_READ(TRANS_CHICKEN2(pipe));
6852                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6853                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6854                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6855                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6856                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6857                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6858                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6859                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6860         }
6861         /* WADP0ClockGatingDisable */
6862         for_each_pipe(dev_priv, pipe) {
6863                 I915_WRITE(TRANS_CHICKEN1(pipe),
6864                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6865         }
6866 }
6867
6868 static void gen6_check_mch_setup(struct drm_device *dev)
6869 {
6870         struct drm_i915_private *dev_priv = to_i915(dev);
6871         uint32_t tmp;
6872
6873         tmp = I915_READ(MCH_SSKPD);
6874         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6875                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6876                               tmp);
6877 }
6878
6879 static void gen6_init_clock_gating(struct drm_device *dev)
6880 {
6881         struct drm_i915_private *dev_priv = to_i915(dev);
6882         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6883
6884         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6885
6886         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6887                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6888                    ILK_ELPIN_409_SELECT);
6889
6890         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6891         I915_WRITE(_3D_CHICKEN,
6892                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6893
6894         /* WaDisable_RenderCache_OperationalFlush:snb */
6895         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6896
6897         /*
6898          * BSpec recoomends 8x4 when MSAA is used,
6899          * however in practice 16x4 seems fastest.
6900          *
6901          * Note that PS/WM thread counts depend on the WIZ hashing
6902          * disable bit, which we don't touch here, but it's good
6903          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6904          */
6905         I915_WRITE(GEN6_GT_MODE,
6906                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6907
6908         ilk_init_lp_watermarks(dev);
6909
6910         I915_WRITE(CACHE_MODE_0,
6911                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6912
6913         I915_WRITE(GEN6_UCGCTL1,
6914                    I915_READ(GEN6_UCGCTL1) |
6915                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6916                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6917
6918         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6919          * gating disable must be set.  Failure to set it results in
6920          * flickering pixels due to Z write ordering failures after
6921          * some amount of runtime in the Mesa "fire" demo, and Unigine
6922          * Sanctuary and Tropics, and apparently anything else with
6923          * alpha test or pixel discard.
6924          *
6925          * According to the spec, bit 11 (RCCUNIT) must also be set,
6926          * but we didn't debug actual testcases to find it out.
6927          *
6928          * WaDisableRCCUnitClockGating:snb
6929          * WaDisableRCPBUnitClockGating:snb
6930          */
6931         I915_WRITE(GEN6_UCGCTL2,
6932                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6933                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6934
6935         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6936         I915_WRITE(_3D_CHICKEN3,
6937                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6938
6939         /*
6940          * Bspec says:
6941          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6942          * 3DSTATE_SF number of SF output attributes is more than 16."
6943          */
6944         I915_WRITE(_3D_CHICKEN3,
6945                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6946
6947         /*
6948          * According to the spec the following bits should be
6949          * set in order to enable memory self-refresh and fbc:
6950          * The bit21 and bit22 of 0x42000
6951          * The bit21 and bit22 of 0x42004
6952          * The bit5 and bit7 of 0x42020
6953          * The bit14 of 0x70180
6954          * The bit14 of 0x71180
6955          *
6956          * WaFbcAsynchFlipDisableFbcQueue:snb
6957          */
6958         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6959                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6960                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6961         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6962                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6963                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6964         I915_WRITE(ILK_DSPCLK_GATE_D,
6965                    I915_READ(ILK_DSPCLK_GATE_D) |
6966                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6967                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6968
6969         g4x_disable_trickle_feed(dev);
6970
6971         cpt_init_clock_gating(dev);
6972
6973         gen6_check_mch_setup(dev);
6974 }
6975
6976 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6977 {
6978         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6979
6980         /*
6981          * WaVSThreadDispatchOverride:ivb,vlv
6982          *
6983          * This actually overrides the dispatch
6984          * mode for all thread types.
6985          */
6986         reg &= ~GEN7_FF_SCHED_MASK;
6987         reg |= GEN7_FF_TS_SCHED_HW;
6988         reg |= GEN7_FF_VS_SCHED_HW;
6989         reg |= GEN7_FF_DS_SCHED_HW;
6990
6991         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6992 }
6993
6994 static void lpt_init_clock_gating(struct drm_device *dev)
6995 {
6996         struct drm_i915_private *dev_priv = to_i915(dev);
6997
6998         /*
6999          * TODO: this bit should only be enabled when really needed, then
7000          * disabled when not needed anymore in order to save power.
7001          */
7002         if (HAS_PCH_LPT_LP(dev))
7003                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7004                            I915_READ(SOUTH_DSPCLK_GATE_D) |
7005                            PCH_LP_PARTITION_LEVEL_DISABLE);
7006
7007         /* WADPOClockGatingDisable:hsw */
7008         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7009                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7010                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7011 }
7012
7013 static void lpt_suspend_hw(struct drm_device *dev)
7014 {
7015         struct drm_i915_private *dev_priv = to_i915(dev);
7016
7017         if (HAS_PCH_LPT_LP(dev)) {
7018                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7019
7020                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7021                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7022         }
7023 }
7024
7025 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7026                                    int general_prio_credits,
7027                                    int high_prio_credits)
7028 {
7029         u32 misccpctl;
7030
7031         /* WaTempDisableDOPClkGating:bdw */
7032         misccpctl = I915_READ(GEN7_MISCCPCTL);
7033         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7034
7035         I915_WRITE(GEN8_L3SQCREG1,
7036                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7037                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7038
7039         /*
7040          * Wait at least 100 clocks before re-enabling clock gating.
7041          * See the definition of L3SQCREG1 in BSpec.
7042          */
7043         POSTING_READ(GEN8_L3SQCREG1);
7044         udelay(1);
7045         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7046 }
7047
7048 static void kabylake_init_clock_gating(struct drm_device *dev)
7049 {
7050         struct drm_i915_private *dev_priv = dev->dev_private;
7051
7052         gen9_init_clock_gating(dev);
7053
7054         /* WaDisableSDEUnitClockGating:kbl */
7055         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7056                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7057                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7058
7059         /* WaDisableGamClockGating:kbl */
7060         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7061                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7062                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7063
7064         /* WaFbcNukeOnHostModify:kbl */
7065         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7066                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7067 }
7068
7069 static void skylake_init_clock_gating(struct drm_device *dev)
7070 {
7071         struct drm_i915_private *dev_priv = dev->dev_private;
7072
7073         gen9_init_clock_gating(dev);
7074
7075         /* WAC6entrylatency:skl */
7076         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7077                    FBC_LLC_FULLY_OPEN);
7078
7079         /* WaFbcNukeOnHostModify:skl */
7080         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7081                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7082 }
7083
7084 static void broadwell_init_clock_gating(struct drm_device *dev)
7085 {
7086         struct drm_i915_private *dev_priv = to_i915(dev);
7087         enum pipe pipe;
7088
7089         ilk_init_lp_watermarks(dev);
7090
7091         /* WaSwitchSolVfFArbitrationPriority:bdw */
7092         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7093
7094         /* WaPsrDPAMaskVBlankInSRD:bdw */
7095         I915_WRITE(CHICKEN_PAR1_1,
7096                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7097
7098         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7099         for_each_pipe(dev_priv, pipe) {
7100                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7101                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7102                            BDW_DPRS_MASK_VBLANK_SRD);
7103         }
7104
7105         /* WaVSRefCountFullforceMissDisable:bdw */
7106         /* WaDSRefCountFullforceMissDisable:bdw */
7107         I915_WRITE(GEN7_FF_THREAD_MODE,
7108                    I915_READ(GEN7_FF_THREAD_MODE) &
7109                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7110
7111         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7112                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7113
7114         /* WaDisableSDEUnitClockGating:bdw */
7115         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7116                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7117
7118         /* WaProgramL3SqcReg1Default:bdw */
7119         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7120
7121         /*
7122          * WaGttCachingOffByDefault:bdw
7123          * GTT cache may not work with big pages, so if those
7124          * are ever enabled GTT cache may need to be disabled.
7125          */
7126         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7127
7128         /* WaKVMNotificationOnConfigChange:bdw */
7129         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7130                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7131
7132         lpt_init_clock_gating(dev);
7133 }
7134
7135 static void haswell_init_clock_gating(struct drm_device *dev)
7136 {
7137         struct drm_i915_private *dev_priv = to_i915(dev);
7138
7139         ilk_init_lp_watermarks(dev);
7140
7141         /* L3 caching of data atomics doesn't work -- disable it. */
7142         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7143         I915_WRITE(HSW_ROW_CHICKEN3,
7144                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7145
7146         /* This is required by WaCatErrorRejectionIssue:hsw */
7147         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7148                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7149                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7150
7151         /* WaVSRefCountFullforceMissDisable:hsw */
7152         I915_WRITE(GEN7_FF_THREAD_MODE,
7153                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7154
7155         /* WaDisable_RenderCache_OperationalFlush:hsw */
7156         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7157
7158         /* enable HiZ Raw Stall Optimization */
7159         I915_WRITE(CACHE_MODE_0_GEN7,
7160                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7161
7162         /* WaDisable4x2SubspanOptimization:hsw */
7163         I915_WRITE(CACHE_MODE_1,
7164                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7165
7166         /*
7167          * BSpec recommends 8x4 when MSAA is used,
7168          * however in practice 16x4 seems fastest.
7169          *
7170          * Note that PS/WM thread counts depend on the WIZ hashing
7171          * disable bit, which we don't touch here, but it's good
7172          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7173          */
7174         I915_WRITE(GEN7_GT_MODE,
7175                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7176
7177         /* WaSampleCChickenBitEnable:hsw */
7178         I915_WRITE(HALF_SLICE_CHICKEN3,
7179                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7180
7181         /* WaSwitchSolVfFArbitrationPriority:hsw */
7182         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7183
7184         /* WaRsPkgCStateDisplayPMReq:hsw */
7185         I915_WRITE(CHICKEN_PAR1_1,
7186                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7187
7188         lpt_init_clock_gating(dev);
7189 }
7190
7191 static void ivybridge_init_clock_gating(struct drm_device *dev)
7192 {
7193         struct drm_i915_private *dev_priv = to_i915(dev);
7194         uint32_t snpcr;
7195
7196         ilk_init_lp_watermarks(dev);
7197
7198         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7199
7200         /* WaDisableEarlyCull:ivb */
7201         I915_WRITE(_3D_CHICKEN3,
7202                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7203
7204         /* WaDisableBackToBackFlipFix:ivb */
7205         I915_WRITE(IVB_CHICKEN3,
7206                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7207                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7208
7209         /* WaDisablePSDDualDispatchEnable:ivb */
7210         if (IS_IVB_GT1(dev))
7211                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7212                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7213
7214         /* WaDisable_RenderCache_OperationalFlush:ivb */
7215         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7216
7217         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7218         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7219                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7220
7221         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7222         I915_WRITE(GEN7_L3CNTLREG1,
7223                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7224         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7225                    GEN7_WA_L3_CHICKEN_MODE);
7226         if (IS_IVB_GT1(dev))
7227                 I915_WRITE(GEN7_ROW_CHICKEN2,
7228                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7229         else {
7230                 /* must write both registers */
7231                 I915_WRITE(GEN7_ROW_CHICKEN2,
7232                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7233                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7234                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7235         }
7236
7237         /* WaForceL3Serialization:ivb */
7238         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7239                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7240
7241         /*
7242          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7243          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7244          */
7245         I915_WRITE(GEN6_UCGCTL2,
7246                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7247
7248         /* This is required by WaCatErrorRejectionIssue:ivb */
7249         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7250                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7251                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7252
7253         g4x_disable_trickle_feed(dev);
7254
7255         gen7_setup_fixed_func_scheduler(dev_priv);
7256
7257         if (0) { /* causes HiZ corruption on ivb:gt1 */
7258                 /* enable HiZ Raw Stall Optimization */
7259                 I915_WRITE(CACHE_MODE_0_GEN7,
7260                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7261         }
7262
7263         /* WaDisable4x2SubspanOptimization:ivb */
7264         I915_WRITE(CACHE_MODE_1,
7265                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7266
7267         /*
7268          * BSpec recommends 8x4 when MSAA is used,
7269          * however in practice 16x4 seems fastest.
7270          *
7271          * Note that PS/WM thread counts depend on the WIZ hashing
7272          * disable bit, which we don't touch here, but it's good
7273          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7274          */
7275         I915_WRITE(GEN7_GT_MODE,
7276                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7277
7278         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7279         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7280         snpcr |= GEN6_MBC_SNPCR_MED;
7281         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7282
7283         if (!HAS_PCH_NOP(dev))
7284                 cpt_init_clock_gating(dev);
7285
7286         gen6_check_mch_setup(dev);
7287 }
7288
7289 static void valleyview_init_clock_gating(struct drm_device *dev)
7290 {
7291         struct drm_i915_private *dev_priv = to_i915(dev);
7292
7293         /* WaDisableEarlyCull:vlv */
7294         I915_WRITE(_3D_CHICKEN3,
7295                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7296
7297         /* WaDisableBackToBackFlipFix:vlv */
7298         I915_WRITE(IVB_CHICKEN3,
7299                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7300                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7301
7302         /* WaPsdDispatchEnable:vlv */
7303         /* WaDisablePSDDualDispatchEnable:vlv */
7304         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7305                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7306                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7307
7308         /* WaDisable_RenderCache_OperationalFlush:vlv */
7309         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7310
7311         /* WaForceL3Serialization:vlv */
7312         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7313                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7314
7315         /* WaDisableDopClockGating:vlv */
7316         I915_WRITE(GEN7_ROW_CHICKEN2,
7317                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7318
7319         /* This is required by WaCatErrorRejectionIssue:vlv */
7320         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7321                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7322                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7323
7324         gen7_setup_fixed_func_scheduler(dev_priv);
7325
7326         /*
7327          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7328          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7329          */
7330         I915_WRITE(GEN6_UCGCTL2,
7331                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7332
7333         /* WaDisableL3Bank2xClockGate:vlv
7334          * Disabling L3 clock gating- MMIO 940c[25] = 1
7335          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7336         I915_WRITE(GEN7_UCGCTL4,
7337                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7338
7339         /*
7340          * BSpec says this must be set, even though
7341          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7342          */
7343         I915_WRITE(CACHE_MODE_1,
7344                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7345
7346         /*
7347          * BSpec recommends 8x4 when MSAA is used,
7348          * however in practice 16x4 seems fastest.
7349          *
7350          * Note that PS/WM thread counts depend on the WIZ hashing
7351          * disable bit, which we don't touch here, but it's good
7352          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7353          */
7354         I915_WRITE(GEN7_GT_MODE,
7355                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7356
7357         /*
7358          * WaIncreaseL3CreditsForVLVB0:vlv
7359          * This is the hardware default actually.
7360          */
7361         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7362
7363         /*
7364          * WaDisableVLVClockGating_VBIIssue:vlv
7365          * Disable clock gating on th GCFG unit to prevent a delay
7366          * in the reporting of vblank events.
7367          */
7368         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7369 }
7370
7371 static void cherryview_init_clock_gating(struct drm_device *dev)
7372 {
7373         struct drm_i915_private *dev_priv = to_i915(dev);
7374
7375         /* WaVSRefCountFullforceMissDisable:chv */
7376         /* WaDSRefCountFullforceMissDisable:chv */
7377         I915_WRITE(GEN7_FF_THREAD_MODE,
7378                    I915_READ(GEN7_FF_THREAD_MODE) &
7379                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7380
7381         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7382         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7383                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7384
7385         /* WaDisableCSUnitClockGating:chv */
7386         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7387                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7388
7389         /* WaDisableSDEUnitClockGating:chv */
7390         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7391                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7392
7393         /*
7394          * WaProgramL3SqcReg1Default:chv
7395          * See gfxspecs/Related Documents/Performance Guide/
7396          * LSQC Setting Recommendations.
7397          */
7398         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7399
7400         /*
7401          * GTT cache may not work with big pages, so if those
7402          * are ever enabled GTT cache may need to be disabled.
7403          */
7404         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7405 }
7406
7407 static void g4x_init_clock_gating(struct drm_device *dev)
7408 {
7409         struct drm_i915_private *dev_priv = to_i915(dev);
7410         uint32_t dspclk_gate;
7411
7412         I915_WRITE(RENCLK_GATE_D1, 0);
7413         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7414                    GS_UNIT_CLOCK_GATE_DISABLE |
7415                    CL_UNIT_CLOCK_GATE_DISABLE);
7416         I915_WRITE(RAMCLK_GATE_D, 0);
7417         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7418                 OVRUNIT_CLOCK_GATE_DISABLE |
7419                 OVCUNIT_CLOCK_GATE_DISABLE;
7420         if (IS_GM45(dev))
7421                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7422         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7423
7424         /* WaDisableRenderCachePipelinedFlush */
7425         I915_WRITE(CACHE_MODE_0,
7426                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7427
7428         /* WaDisable_RenderCache_OperationalFlush:g4x */
7429         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7430
7431         g4x_disable_trickle_feed(dev);
7432 }
7433
7434 static void crestline_init_clock_gating(struct drm_device *dev)
7435 {
7436         struct drm_i915_private *dev_priv = to_i915(dev);
7437
7438         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7439         I915_WRITE(RENCLK_GATE_D2, 0);
7440         I915_WRITE(DSPCLK_GATE_D, 0);
7441         I915_WRITE(RAMCLK_GATE_D, 0);
7442         I915_WRITE16(DEUC, 0);
7443         I915_WRITE(MI_ARB_STATE,
7444                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7445
7446         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7447         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7448 }
7449
7450 static void broadwater_init_clock_gating(struct drm_device *dev)
7451 {
7452         struct drm_i915_private *dev_priv = to_i915(dev);
7453
7454         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7455                    I965_RCC_CLOCK_GATE_DISABLE |
7456                    I965_RCPB_CLOCK_GATE_DISABLE |
7457                    I965_ISC_CLOCK_GATE_DISABLE |
7458                    I965_FBC_CLOCK_GATE_DISABLE);
7459         I915_WRITE(RENCLK_GATE_D2, 0);
7460         I915_WRITE(MI_ARB_STATE,
7461                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7462
7463         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7464         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7465 }
7466
7467 static void gen3_init_clock_gating(struct drm_device *dev)
7468 {
7469         struct drm_i915_private *dev_priv = to_i915(dev);
7470         u32 dstate = I915_READ(D_STATE);
7471
7472         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7473                 DSTATE_DOT_CLOCK_GATING;
7474         I915_WRITE(D_STATE, dstate);
7475
7476         if (IS_PINEVIEW(dev))
7477                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7478
7479         /* IIR "flip pending" means done if this bit is set */
7480         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7481
7482         /* interrupts should cause a wake up from C3 */
7483         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7484
7485         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7486         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7487
7488         I915_WRITE(MI_ARB_STATE,
7489                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7490 }
7491
7492 static void i85x_init_clock_gating(struct drm_device *dev)
7493 {
7494         struct drm_i915_private *dev_priv = to_i915(dev);
7495
7496         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7497
7498         /* interrupts should cause a wake up from C3 */
7499         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7500                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7501
7502         I915_WRITE(MEM_MODE,
7503                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7504 }
7505
7506 static void i830_init_clock_gating(struct drm_device *dev)
7507 {
7508         struct drm_i915_private *dev_priv = to_i915(dev);
7509
7510         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7511
7512         I915_WRITE(MEM_MODE,
7513                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7514                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7515 }
7516
7517 void intel_init_clock_gating(struct drm_device *dev)
7518 {
7519         struct drm_i915_private *dev_priv = to_i915(dev);
7520
7521         dev_priv->display.init_clock_gating(dev);
7522 }
7523
7524 void intel_suspend_hw(struct drm_device *dev)
7525 {
7526         if (HAS_PCH_LPT(dev))
7527                 lpt_suspend_hw(dev);
7528 }
7529
7530 static void nop_init_clock_gating(struct drm_device *dev)
7531 {
7532         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7533 }
7534
7535 /**
7536  * intel_init_clock_gating_hooks - setup the clock gating hooks
7537  * @dev_priv: device private
7538  *
7539  * Setup the hooks that configure which clocks of a given platform can be
7540  * gated and also apply various GT and display specific workarounds for these
7541  * platforms. Note that some GT specific workarounds are applied separately
7542  * when GPU contexts or batchbuffers start their execution.
7543  */
7544 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7545 {
7546         if (IS_SKYLAKE(dev_priv))
7547                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7548         else if (IS_KABYLAKE(dev_priv))
7549                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7550         else if (IS_BROXTON(dev_priv))
7551                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7552         else if (IS_BROADWELL(dev_priv))
7553                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7554         else if (IS_CHERRYVIEW(dev_priv))
7555                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7556         else if (IS_HASWELL(dev_priv))
7557                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7558         else if (IS_IVYBRIDGE(dev_priv))
7559                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7560         else if (IS_VALLEYVIEW(dev_priv))
7561                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7562         else if (IS_GEN6(dev_priv))
7563                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7564         else if (IS_GEN5(dev_priv))
7565                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7566         else if (IS_G4X(dev_priv))
7567                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7568         else if (IS_CRESTLINE(dev_priv))
7569                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7570         else if (IS_BROADWATER(dev_priv))
7571                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7572         else if (IS_GEN3(dev_priv))
7573                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7574         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7575                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7576         else if (IS_GEN2(dev_priv))
7577                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7578         else {
7579                 MISSING_CASE(INTEL_DEVID(dev_priv));
7580                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7581         }
7582 }
7583
7584 /* Set up chip specific power management-related functions */
7585 void intel_init_pm(struct drm_device *dev)
7586 {
7587         struct drm_i915_private *dev_priv = to_i915(dev);
7588
7589         intel_fbc_init(dev_priv);
7590
7591         /* For cxsr */
7592         if (IS_PINEVIEW(dev))
7593                 i915_pineview_get_mem_freq(dev);
7594         else if (IS_GEN5(dev))
7595                 i915_ironlake_get_mem_freq(dev);
7596
7597         /* For FIFO watermark updates */
7598         if (INTEL_INFO(dev)->gen >= 9) {
7599                 skl_setup_wm_latency(dev);
7600                 dev_priv->display.update_wm = skl_update_wm;
7601                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7602         } else if (HAS_PCH_SPLIT(dev)) {
7603                 ilk_setup_wm_latency(dev);
7604
7605                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7606                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7607                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7608                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7609                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7610                         dev_priv->display.compute_intermediate_wm =
7611                                 ilk_compute_intermediate_wm;
7612                         dev_priv->display.initial_watermarks =
7613                                 ilk_initial_watermarks;
7614                         dev_priv->display.optimize_watermarks =
7615                                 ilk_optimize_watermarks;
7616                 } else {
7617                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7618                                       "Disable CxSR\n");
7619                 }
7620         } else if (IS_CHERRYVIEW(dev)) {
7621                 vlv_setup_wm_latency(dev);
7622                 dev_priv->display.update_wm = vlv_update_wm;
7623         } else if (IS_VALLEYVIEW(dev)) {
7624                 vlv_setup_wm_latency(dev);
7625                 dev_priv->display.update_wm = vlv_update_wm;
7626         } else if (IS_PINEVIEW(dev)) {
7627                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7628                                             dev_priv->is_ddr3,
7629                                             dev_priv->fsb_freq,
7630                                             dev_priv->mem_freq)) {
7631                         DRM_INFO("failed to find known CxSR latency "
7632                                  "(found ddr%s fsb freq %d, mem freq %d), "
7633                                  "disabling CxSR\n",
7634                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7635                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7636                         /* Disable CxSR and never update its watermark again */
7637                         intel_set_memory_cxsr(dev_priv, false);
7638                         dev_priv->display.update_wm = NULL;
7639                 } else
7640                         dev_priv->display.update_wm = pineview_update_wm;
7641         } else if (IS_G4X(dev)) {
7642                 dev_priv->display.update_wm = g4x_update_wm;
7643         } else if (IS_GEN4(dev)) {
7644                 dev_priv->display.update_wm = i965_update_wm;
7645         } else if (IS_GEN3(dev)) {
7646                 dev_priv->display.update_wm = i9xx_update_wm;
7647                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7648         } else if (IS_GEN2(dev)) {
7649                 if (INTEL_INFO(dev)->num_pipes == 1) {
7650                         dev_priv->display.update_wm = i845_update_wm;
7651                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7652                 } else {
7653                         dev_priv->display.update_wm = i9xx_update_wm;
7654                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7655                 }
7656         } else {
7657                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7658         }
7659 }
7660
7661 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7662 {
7663         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7664
7665         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7666          * use te fw I915_READ variants to reduce the amount of work
7667          * required when reading/writing.
7668          */
7669
7670         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7671                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7672                 return -EAGAIN;
7673         }
7674
7675         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7676         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7677         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7678
7679         if (intel_wait_for_register_fw(dev_priv,
7680                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7681                                        500)) {
7682                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7683                 return -ETIMEDOUT;
7684         }
7685
7686         *val = I915_READ_FW(GEN6_PCODE_DATA);
7687         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7688
7689         return 0;
7690 }
7691
7692 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7693                                u32 mbox, u32 val)
7694 {
7695         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7696
7697         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7698          * use te fw I915_READ variants to reduce the amount of work
7699          * required when reading/writing.
7700          */
7701
7702         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7703                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7704                 return -EAGAIN;
7705         }
7706
7707         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7708         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7709
7710         if (intel_wait_for_register_fw(dev_priv,
7711                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7712                                        500)) {
7713                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7714                 return -ETIMEDOUT;
7715         }
7716
7717         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7718
7719         return 0;
7720 }
7721
7722 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7723 {
7724         /*
7725          * N = val - 0xb7
7726          * Slow = Fast = GPLL ref * N
7727          */
7728         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7729 }
7730
7731 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7732 {
7733         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7734 }
7735
7736 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7737 {
7738         /*
7739          * N = val / 2
7740          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7741          */
7742         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7743 }
7744
7745 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7746 {
7747         /* CHV needs even values */
7748         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7749 }
7750
7751 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7752 {
7753         if (IS_GEN9(dev_priv))
7754                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7755                                          GEN9_FREQ_SCALER);
7756         else if (IS_CHERRYVIEW(dev_priv))
7757                 return chv_gpu_freq(dev_priv, val);
7758         else if (IS_VALLEYVIEW(dev_priv))
7759                 return byt_gpu_freq(dev_priv, val);
7760         else
7761                 return val * GT_FREQUENCY_MULTIPLIER;
7762 }
7763
7764 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7765 {
7766         if (IS_GEN9(dev_priv))
7767                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7768                                          GT_FREQUENCY_MULTIPLIER);
7769         else if (IS_CHERRYVIEW(dev_priv))
7770                 return chv_freq_opcode(dev_priv, val);
7771         else if (IS_VALLEYVIEW(dev_priv))
7772                 return byt_freq_opcode(dev_priv, val);
7773         else
7774                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7775 }
7776
7777 struct request_boost {
7778         struct work_struct work;
7779         struct drm_i915_gem_request *req;
7780 };
7781
7782 static void __intel_rps_boost_work(struct work_struct *work)
7783 {
7784         struct request_boost *boost = container_of(work, struct request_boost, work);
7785         struct drm_i915_gem_request *req = boost->req;
7786
7787         if (!i915_gem_request_completed(req))
7788                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7789
7790         i915_gem_request_unreference(req);
7791         kfree(boost);
7792 }
7793
7794 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7795 {
7796         struct request_boost *boost;
7797
7798         if (req == NULL || INTEL_GEN(req->i915) < 6)
7799                 return;
7800
7801         if (i915_gem_request_completed(req))
7802                 return;
7803
7804         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7805         if (boost == NULL)
7806                 return;
7807
7808         i915_gem_request_reference(req);
7809         boost->req = req;
7810
7811         INIT_WORK(&boost->work, __intel_rps_boost_work);
7812         queue_work(req->i915->wq, &boost->work);
7813 }
7814
7815 void intel_pm_setup(struct drm_device *dev)
7816 {
7817         struct drm_i915_private *dev_priv = to_i915(dev);
7818
7819         mutex_init(&dev_priv->rps.hw_lock);
7820         spin_lock_init(&dev_priv->rps.client_lock);
7821
7822         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7823                           intel_gen6_powersave_work);
7824         INIT_LIST_HEAD(&dev_priv->rps.clients);
7825         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7826         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7827
7828         dev_priv->pm.suspended = false;
7829         atomic_set(&dev_priv->pm.wakeref_count, 0);
7830         atomic_set(&dev_priv->pm.atomic_seq, 0);
7831 }