drm/i915/gen9: Add WaEnableChickenDCPR
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         I915_WRITE(GEN8_CONFIG0,
67                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69         /* WaEnableChickenDCPR:skl,bxt,kbl */
70         I915_WRITE(GEN8_CHICKEN_DCPR_1,
71                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 }
73
74 static void bxt_init_clock_gating(struct drm_device *dev)
75 {
76         struct drm_i915_private *dev_priv = dev->dev_private;
77
78         gen9_init_clock_gating(dev);
79
80         /* WaDisableSDEUnitClockGating:bxt */
81         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
82                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
83
84         /*
85          * FIXME:
86          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
87          */
88         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
90
91         /*
92          * Wa: Backlight PWM may stop in the asserted state, causing backlight
93          * to stay fully on.
94          */
95         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
96                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
97                            PWM1_GATING_DIS | PWM2_GATING_DIS);
98 }
99
100 static void i915_pineview_get_mem_freq(struct drm_device *dev)
101 {
102         struct drm_i915_private *dev_priv = dev->dev_private;
103         u32 tmp;
104
105         tmp = I915_READ(CLKCFG);
106
107         switch (tmp & CLKCFG_FSB_MASK) {
108         case CLKCFG_FSB_533:
109                 dev_priv->fsb_freq = 533; /* 133*4 */
110                 break;
111         case CLKCFG_FSB_800:
112                 dev_priv->fsb_freq = 800; /* 200*4 */
113                 break;
114         case CLKCFG_FSB_667:
115                 dev_priv->fsb_freq =  667; /* 167*4 */
116                 break;
117         case CLKCFG_FSB_400:
118                 dev_priv->fsb_freq = 400; /* 100*4 */
119                 break;
120         }
121
122         switch (tmp & CLKCFG_MEM_MASK) {
123         case CLKCFG_MEM_533:
124                 dev_priv->mem_freq = 533;
125                 break;
126         case CLKCFG_MEM_667:
127                 dev_priv->mem_freq = 667;
128                 break;
129         case CLKCFG_MEM_800:
130                 dev_priv->mem_freq = 800;
131                 break;
132         }
133
134         /* detect pineview DDR3 setting */
135         tmp = I915_READ(CSHRDDR3CTL);
136         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
137 }
138
139 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         u16 ddrpll, csipll;
143
144         ddrpll = I915_READ16(DDRMPLL1);
145         csipll = I915_READ16(CSIPLL0);
146
147         switch (ddrpll & 0xff) {
148         case 0xc:
149                 dev_priv->mem_freq = 800;
150                 break;
151         case 0x10:
152                 dev_priv->mem_freq = 1066;
153                 break;
154         case 0x14:
155                 dev_priv->mem_freq = 1333;
156                 break;
157         case 0x18:
158                 dev_priv->mem_freq = 1600;
159                 break;
160         default:
161                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
162                                  ddrpll & 0xff);
163                 dev_priv->mem_freq = 0;
164                 break;
165         }
166
167         dev_priv->ips.r_t = dev_priv->mem_freq;
168
169         switch (csipll & 0x3ff) {
170         case 0x00c:
171                 dev_priv->fsb_freq = 3200;
172                 break;
173         case 0x00e:
174                 dev_priv->fsb_freq = 3733;
175                 break;
176         case 0x010:
177                 dev_priv->fsb_freq = 4266;
178                 break;
179         case 0x012:
180                 dev_priv->fsb_freq = 4800;
181                 break;
182         case 0x014:
183                 dev_priv->fsb_freq = 5333;
184                 break;
185         case 0x016:
186                 dev_priv->fsb_freq = 5866;
187                 break;
188         case 0x018:
189                 dev_priv->fsb_freq = 6400;
190                 break;
191         default:
192                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
193                                  csipll & 0x3ff);
194                 dev_priv->fsb_freq = 0;
195                 break;
196         }
197
198         if (dev_priv->fsb_freq == 3200) {
199                 dev_priv->ips.c_m = 0;
200         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
201                 dev_priv->ips.c_m = 1;
202         } else {
203                 dev_priv->ips.c_m = 2;
204         }
205 }
206
207 static const struct cxsr_latency cxsr_latency_table[] = {
208         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
209         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
210         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
211         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
212         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
213
214         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
215         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
216         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
217         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
218         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
219
220         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
221         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
222         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
223         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
224         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
225
226         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
227         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
228         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
229         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
230         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
231
232         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
233         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
234         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
235         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
236         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
237
238         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
239         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
240         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
241         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
242         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
243 };
244
245 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
246                                                          int is_ddr3,
247                                                          int fsb,
248                                                          int mem)
249 {
250         const struct cxsr_latency *latency;
251         int i;
252
253         if (fsb == 0 || mem == 0)
254                 return NULL;
255
256         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
257                 latency = &cxsr_latency_table[i];
258                 if (is_desktop == latency->is_desktop &&
259                     is_ddr3 == latency->is_ddr3 &&
260                     fsb == latency->fsb_freq && mem == latency->mem_freq)
261                         return latency;
262         }
263
264         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
265
266         return NULL;
267 }
268
269 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
270 {
271         u32 val;
272
273         mutex_lock(&dev_priv->rps.hw_lock);
274
275         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
276         if (enable)
277                 val &= ~FORCE_DDR_HIGH_FREQ;
278         else
279                 val |= FORCE_DDR_HIGH_FREQ;
280         val &= ~FORCE_DDR_LOW_FREQ;
281         val |= FORCE_DDR_FREQ_REQ_ACK;
282         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
283
284         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
285                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
286                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
287
288         mutex_unlock(&dev_priv->rps.hw_lock);
289 }
290
291 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
292 {
293         u32 val;
294
295         mutex_lock(&dev_priv->rps.hw_lock);
296
297         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
298         if (enable)
299                 val |= DSP_MAXFIFO_PM5_ENABLE;
300         else
301                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
302         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
303
304         mutex_unlock(&dev_priv->rps.hw_lock);
305 }
306
307 #define FW_WM(value, plane) \
308         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
309
310 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
311 {
312         struct drm_device *dev = dev_priv->dev;
313         u32 val;
314
315         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
316                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
317                 POSTING_READ(FW_BLC_SELF_VLV);
318                 dev_priv->wm.vlv.cxsr = enable;
319         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
320                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
321                 POSTING_READ(FW_BLC_SELF);
322         } else if (IS_PINEVIEW(dev)) {
323                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
324                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
325                 I915_WRITE(DSPFW3, val);
326                 POSTING_READ(DSPFW3);
327         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
328                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
329                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
330                 I915_WRITE(FW_BLC_SELF, val);
331                 POSTING_READ(FW_BLC_SELF);
332         } else if (IS_I915GM(dev)) {
333                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
334                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
335                 I915_WRITE(INSTPM, val);
336                 POSTING_READ(INSTPM);
337         } else {
338                 return;
339         }
340
341         DRM_DEBUG_KMS("memory self-refresh is %s\n",
342                       enable ? "enabled" : "disabled");
343 }
344
345
346 /*
347  * Latency for FIFO fetches is dependent on several factors:
348  *   - memory configuration (speed, channels)
349  *   - chipset
350  *   - current MCH state
351  * It can be fairly high in some situations, so here we assume a fairly
352  * pessimal value.  It's a tradeoff between extra memory fetches (if we
353  * set this value too high, the FIFO will fetch frequently to stay full)
354  * and power consumption (set it too low to save power and we might see
355  * FIFO underruns and display "flicker").
356  *
357  * A value of 5us seems to be a good balance; safe for very low end
358  * platforms but not overly aggressive on lower latency configs.
359  */
360 static const int pessimal_latency_ns = 5000;
361
362 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
363         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
364
365 static int vlv_get_fifo_size(struct drm_device *dev,
366                               enum pipe pipe, int plane)
367 {
368         struct drm_i915_private *dev_priv = dev->dev_private;
369         int sprite0_start, sprite1_start, size;
370
371         switch (pipe) {
372                 uint32_t dsparb, dsparb2, dsparb3;
373         case PIPE_A:
374                 dsparb = I915_READ(DSPARB);
375                 dsparb2 = I915_READ(DSPARB2);
376                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
377                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
378                 break;
379         case PIPE_B:
380                 dsparb = I915_READ(DSPARB);
381                 dsparb2 = I915_READ(DSPARB2);
382                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
383                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
384                 break;
385         case PIPE_C:
386                 dsparb2 = I915_READ(DSPARB2);
387                 dsparb3 = I915_READ(DSPARB3);
388                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
389                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
390                 break;
391         default:
392                 return 0;
393         }
394
395         switch (plane) {
396         case 0:
397                 size = sprite0_start;
398                 break;
399         case 1:
400                 size = sprite1_start - sprite0_start;
401                 break;
402         case 2:
403                 size = 512 - 1 - sprite1_start;
404                 break;
405         default:
406                 return 0;
407         }
408
409         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
410                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
411                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
412                       size);
413
414         return size;
415 }
416
417 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420         uint32_t dsparb = I915_READ(DSPARB);
421         int size;
422
423         size = dsparb & 0x7f;
424         if (plane)
425                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
426
427         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
428                       plane ? "B" : "A", size);
429
430         return size;
431 }
432
433 static int i830_get_fifo_size(struct drm_device *dev, int plane)
434 {
435         struct drm_i915_private *dev_priv = dev->dev_private;
436         uint32_t dsparb = I915_READ(DSPARB);
437         int size;
438
439         size = dsparb & 0x1ff;
440         if (plane)
441                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
442         size >>= 1; /* Convert to cachelines */
443
444         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
445                       plane ? "B" : "A", size);
446
447         return size;
448 }
449
450 static int i845_get_fifo_size(struct drm_device *dev, int plane)
451 {
452         struct drm_i915_private *dev_priv = dev->dev_private;
453         uint32_t dsparb = I915_READ(DSPARB);
454         int size;
455
456         size = dsparb & 0x7f;
457         size >>= 2; /* Convert to cachelines */
458
459         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
460                       plane ? "B" : "A",
461                       size);
462
463         return size;
464 }
465
466 /* Pineview has different values for various configs */
467 static const struct intel_watermark_params pineview_display_wm = {
468         .fifo_size = PINEVIEW_DISPLAY_FIFO,
469         .max_wm = PINEVIEW_MAX_WM,
470         .default_wm = PINEVIEW_DFT_WM,
471         .guard_size = PINEVIEW_GUARD_WM,
472         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params pineview_display_hplloff_wm = {
475         .fifo_size = PINEVIEW_DISPLAY_FIFO,
476         .max_wm = PINEVIEW_MAX_WM,
477         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
478         .guard_size = PINEVIEW_GUARD_WM,
479         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params pineview_cursor_wm = {
482         .fifo_size = PINEVIEW_CURSOR_FIFO,
483         .max_wm = PINEVIEW_CURSOR_MAX_WM,
484         .default_wm = PINEVIEW_CURSOR_DFT_WM,
485         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
486         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
489         .fifo_size = PINEVIEW_CURSOR_FIFO,
490         .max_wm = PINEVIEW_CURSOR_MAX_WM,
491         .default_wm = PINEVIEW_CURSOR_DFT_WM,
492         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
493         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params g4x_wm_info = {
496         .fifo_size = G4X_FIFO_SIZE,
497         .max_wm = G4X_MAX_WM,
498         .default_wm = G4X_MAX_WM,
499         .guard_size = 2,
500         .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params g4x_cursor_wm_info = {
503         .fifo_size = I965_CURSOR_FIFO,
504         .max_wm = I965_CURSOR_MAX_WM,
505         .default_wm = I965_CURSOR_DFT_WM,
506         .guard_size = 2,
507         .cacheline_size = G4X_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i965_cursor_wm_info = {
510         .fifo_size = I965_CURSOR_FIFO,
511         .max_wm = I965_CURSOR_MAX_WM,
512         .default_wm = I965_CURSOR_DFT_WM,
513         .guard_size = 2,
514         .cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i945_wm_info = {
517         .fifo_size = I945_FIFO_SIZE,
518         .max_wm = I915_MAX_WM,
519         .default_wm = 1,
520         .guard_size = 2,
521         .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i915_wm_info = {
524         .fifo_size = I915_FIFO_SIZE,
525         .max_wm = I915_MAX_WM,
526         .default_wm = 1,
527         .guard_size = 2,
528         .cacheline_size = I915_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i830_a_wm_info = {
531         .fifo_size = I855GM_FIFO_SIZE,
532         .max_wm = I915_MAX_WM,
533         .default_wm = 1,
534         .guard_size = 2,
535         .cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i830_bc_wm_info = {
538         .fifo_size = I855GM_FIFO_SIZE,
539         .max_wm = I915_MAX_WM/2,
540         .default_wm = 1,
541         .guard_size = 2,
542         .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544 static const struct intel_watermark_params i845_wm_info = {
545         .fifo_size = I830_FIFO_SIZE,
546         .max_wm = I915_MAX_WM,
547         .default_wm = 1,
548         .guard_size = 2,
549         .cacheline_size = I830_FIFO_LINE_SIZE,
550 };
551
552 /**
553  * intel_calculate_wm - calculate watermark level
554  * @clock_in_khz: pixel clock
555  * @wm: chip FIFO params
556  * @cpp: bytes per pixel
557  * @latency_ns: memory latency for the platform
558  *
559  * Calculate the watermark level (the level at which the display plane will
560  * start fetching from memory again).  Each chip has a different display
561  * FIFO size and allocation, so the caller needs to figure that out and pass
562  * in the correct intel_watermark_params structure.
563  *
564  * As the pixel clock runs, the FIFO will be drained at a rate that depends
565  * on the pixel size.  When it reaches the watermark level, it'll start
566  * fetching FIFO line sized based chunks from memory until the FIFO fills
567  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
568  * will occur, and a display engine hang could result.
569  */
570 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
571                                         const struct intel_watermark_params *wm,
572                                         int fifo_size, int cpp,
573                                         unsigned long latency_ns)
574 {
575         long entries_required, wm_size;
576
577         /*
578          * Note: we need to make sure we don't overflow for various clock &
579          * latency values.
580          * clocks go from a few thousand to several hundred thousand.
581          * latency is usually a few thousand
582          */
583         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
584                 1000;
585         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
586
587         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
588
589         wm_size = fifo_size - (entries_required + wm->guard_size);
590
591         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
592
593         /* Don't promote wm_size to unsigned... */
594         if (wm_size > (long)wm->max_wm)
595                 wm_size = wm->max_wm;
596         if (wm_size <= 0)
597                 wm_size = wm->default_wm;
598
599         /*
600          * Bspec seems to indicate that the value shouldn't be lower than
601          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
602          * Lets go for 8 which is the burst size since certain platforms
603          * already use a hardcoded 8 (which is what the spec says should be
604          * done).
605          */
606         if (wm_size <= 8)
607                 wm_size = 8;
608
609         return wm_size;
610 }
611
612 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
613 {
614         struct drm_crtc *crtc, *enabled = NULL;
615
616         for_each_crtc(dev, crtc) {
617                 if (intel_crtc_active(crtc)) {
618                         if (enabled)
619                                 return NULL;
620                         enabled = crtc;
621                 }
622         }
623
624         return enabled;
625 }
626
627 static void pineview_update_wm(struct drm_crtc *unused_crtc)
628 {
629         struct drm_device *dev = unused_crtc->dev;
630         struct drm_i915_private *dev_priv = dev->dev_private;
631         struct drm_crtc *crtc;
632         const struct cxsr_latency *latency;
633         u32 reg;
634         unsigned long wm;
635
636         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
637                                          dev_priv->fsb_freq, dev_priv->mem_freq);
638         if (!latency) {
639                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
640                 intel_set_memory_cxsr(dev_priv, false);
641                 return;
642         }
643
644         crtc = single_enabled_crtc(dev);
645         if (crtc) {
646                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
647                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
648                 int clock = adjusted_mode->crtc_clock;
649
650                 /* Display SR */
651                 wm = intel_calculate_wm(clock, &pineview_display_wm,
652                                         pineview_display_wm.fifo_size,
653                                         cpp, latency->display_sr);
654                 reg = I915_READ(DSPFW1);
655                 reg &= ~DSPFW_SR_MASK;
656                 reg |= FW_WM(wm, SR);
657                 I915_WRITE(DSPFW1, reg);
658                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
659
660                 /* cursor SR */
661                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
662                                         pineview_display_wm.fifo_size,
663                                         cpp, latency->cursor_sr);
664                 reg = I915_READ(DSPFW3);
665                 reg &= ~DSPFW_CURSOR_SR_MASK;
666                 reg |= FW_WM(wm, CURSOR_SR);
667                 I915_WRITE(DSPFW3, reg);
668
669                 /* Display HPLL off SR */
670                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
671                                         pineview_display_hplloff_wm.fifo_size,
672                                         cpp, latency->display_hpll_disable);
673                 reg = I915_READ(DSPFW3);
674                 reg &= ~DSPFW_HPLL_SR_MASK;
675                 reg |= FW_WM(wm, HPLL_SR);
676                 I915_WRITE(DSPFW3, reg);
677
678                 /* cursor HPLL off SR */
679                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
680                                         pineview_display_hplloff_wm.fifo_size,
681                                         cpp, latency->cursor_hpll_disable);
682                 reg = I915_READ(DSPFW3);
683                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
684                 reg |= FW_WM(wm, HPLL_CURSOR);
685                 I915_WRITE(DSPFW3, reg);
686                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
687
688                 intel_set_memory_cxsr(dev_priv, true);
689         } else {
690                 intel_set_memory_cxsr(dev_priv, false);
691         }
692 }
693
694 static bool g4x_compute_wm0(struct drm_device *dev,
695                             int plane,
696                             const struct intel_watermark_params *display,
697                             int display_latency_ns,
698                             const struct intel_watermark_params *cursor,
699                             int cursor_latency_ns,
700                             int *plane_wm,
701                             int *cursor_wm)
702 {
703         struct drm_crtc *crtc;
704         const struct drm_display_mode *adjusted_mode;
705         int htotal, hdisplay, clock, cpp;
706         int line_time_us, line_count;
707         int entries, tlb_miss;
708
709         crtc = intel_get_crtc_for_plane(dev, plane);
710         if (!intel_crtc_active(crtc)) {
711                 *cursor_wm = cursor->guard_size;
712                 *plane_wm = display->guard_size;
713                 return false;
714         }
715
716         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
717         clock = adjusted_mode->crtc_clock;
718         htotal = adjusted_mode->crtc_htotal;
719         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
720         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
721
722         /* Use the small buffer method to calculate plane watermark */
723         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
724         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
725         if (tlb_miss > 0)
726                 entries += tlb_miss;
727         entries = DIV_ROUND_UP(entries, display->cacheline_size);
728         *plane_wm = entries + display->guard_size;
729         if (*plane_wm > (int)display->max_wm)
730                 *plane_wm = display->max_wm;
731
732         /* Use the large buffer method to calculate cursor watermark */
733         line_time_us = max(htotal * 1000 / clock, 1);
734         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
735         entries = line_count * crtc->cursor->state->crtc_w * cpp;
736         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
737         if (tlb_miss > 0)
738                 entries += tlb_miss;
739         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
740         *cursor_wm = entries + cursor->guard_size;
741         if (*cursor_wm > (int)cursor->max_wm)
742                 *cursor_wm = (int)cursor->max_wm;
743
744         return true;
745 }
746
747 /*
748  * Check the wm result.
749  *
750  * If any calculated watermark values is larger than the maximum value that
751  * can be programmed into the associated watermark register, that watermark
752  * must be disabled.
753  */
754 static bool g4x_check_srwm(struct drm_device *dev,
755                            int display_wm, int cursor_wm,
756                            const struct intel_watermark_params *display,
757                            const struct intel_watermark_params *cursor)
758 {
759         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
760                       display_wm, cursor_wm);
761
762         if (display_wm > display->max_wm) {
763                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
764                               display_wm, display->max_wm);
765                 return false;
766         }
767
768         if (cursor_wm > cursor->max_wm) {
769                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
770                               cursor_wm, cursor->max_wm);
771                 return false;
772         }
773
774         if (!(display_wm || cursor_wm)) {
775                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
776                 return false;
777         }
778
779         return true;
780 }
781
782 static bool g4x_compute_srwm(struct drm_device *dev,
783                              int plane,
784                              int latency_ns,
785                              const struct intel_watermark_params *display,
786                              const struct intel_watermark_params *cursor,
787                              int *display_wm, int *cursor_wm)
788 {
789         struct drm_crtc *crtc;
790         const struct drm_display_mode *adjusted_mode;
791         int hdisplay, htotal, cpp, clock;
792         unsigned long line_time_us;
793         int line_count, line_size;
794         int small, large;
795         int entries;
796
797         if (!latency_ns) {
798                 *display_wm = *cursor_wm = 0;
799                 return false;
800         }
801
802         crtc = intel_get_crtc_for_plane(dev, plane);
803         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
804         clock = adjusted_mode->crtc_clock;
805         htotal = adjusted_mode->crtc_htotal;
806         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
807         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
808
809         line_time_us = max(htotal * 1000 / clock, 1);
810         line_count = (latency_ns / line_time_us + 1000) / 1000;
811         line_size = hdisplay * cpp;
812
813         /* Use the minimum of the small and large buffer method for primary */
814         small = ((clock * cpp / 1000) * latency_ns) / 1000;
815         large = line_count * line_size;
816
817         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
818         *display_wm = entries + display->guard_size;
819
820         /* calculate the self-refresh watermark for display cursor */
821         entries = line_count * cpp * crtc->cursor->state->crtc_w;
822         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
823         *cursor_wm = entries + cursor->guard_size;
824
825         return g4x_check_srwm(dev,
826                               *display_wm, *cursor_wm,
827                               display, cursor);
828 }
829
830 #define FW_WM_VLV(value, plane) \
831         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
832
833 static void vlv_write_wm_values(struct intel_crtc *crtc,
834                                 const struct vlv_wm_values *wm)
835 {
836         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
837         enum pipe pipe = crtc->pipe;
838
839         I915_WRITE(VLV_DDL(pipe),
840                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
841                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
842                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
843                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
844
845         I915_WRITE(DSPFW1,
846                    FW_WM(wm->sr.plane, SR) |
847                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
848                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
849                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
850         I915_WRITE(DSPFW2,
851                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
852                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
853                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
854         I915_WRITE(DSPFW3,
855                    FW_WM(wm->sr.cursor, CURSOR_SR));
856
857         if (IS_CHERRYVIEW(dev_priv)) {
858                 I915_WRITE(DSPFW7_CHV,
859                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
860                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
861                 I915_WRITE(DSPFW8_CHV,
862                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
863                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
864                 I915_WRITE(DSPFW9_CHV,
865                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
866                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
867                 I915_WRITE(DSPHOWM,
868                            FW_WM(wm->sr.plane >> 9, SR_HI) |
869                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
870                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
871                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
872                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
873                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
874                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
875                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
876                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
877                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
878         } else {
879                 I915_WRITE(DSPFW7,
880                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
881                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
882                 I915_WRITE(DSPHOWM,
883                            FW_WM(wm->sr.plane >> 9, SR_HI) |
884                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
885                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
886                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
887                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
888                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
889                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
890         }
891
892         /* zero (unused) WM1 watermarks */
893         I915_WRITE(DSPFW4, 0);
894         I915_WRITE(DSPFW5, 0);
895         I915_WRITE(DSPFW6, 0);
896         I915_WRITE(DSPHOWM1, 0);
897
898         POSTING_READ(DSPFW1);
899 }
900
901 #undef FW_WM_VLV
902
903 enum vlv_wm_level {
904         VLV_WM_LEVEL_PM2,
905         VLV_WM_LEVEL_PM5,
906         VLV_WM_LEVEL_DDR_DVFS,
907 };
908
909 /* latency must be in 0.1us units. */
910 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
911                                    unsigned int pipe_htotal,
912                                    unsigned int horiz_pixels,
913                                    unsigned int cpp,
914                                    unsigned int latency)
915 {
916         unsigned int ret;
917
918         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
919         ret = (ret + 1) * horiz_pixels * cpp;
920         ret = DIV_ROUND_UP(ret, 64);
921
922         return ret;
923 }
924
925 static void vlv_setup_wm_latency(struct drm_device *dev)
926 {
927         struct drm_i915_private *dev_priv = dev->dev_private;
928
929         /* all latencies in usec */
930         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
931
932         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
933
934         if (IS_CHERRYVIEW(dev_priv)) {
935                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
936                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
937
938                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
939         }
940 }
941
942 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
943                                      struct intel_crtc *crtc,
944                                      const struct intel_plane_state *state,
945                                      int level)
946 {
947         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
948         int clock, htotal, cpp, width, wm;
949
950         if (dev_priv->wm.pri_latency[level] == 0)
951                 return USHRT_MAX;
952
953         if (!state->visible)
954                 return 0;
955
956         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
957         clock = crtc->config->base.adjusted_mode.crtc_clock;
958         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
959         width = crtc->config->pipe_src_w;
960         if (WARN_ON(htotal == 0))
961                 htotal = 1;
962
963         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
964                 /*
965                  * FIXME the formula gives values that are
966                  * too big for the cursor FIFO, and hence we
967                  * would never be able to use cursors. For
968                  * now just hardcode the watermark.
969                  */
970                 wm = 63;
971         } else {
972                 wm = vlv_wm_method2(clock, htotal, width, cpp,
973                                     dev_priv->wm.pri_latency[level] * 10);
974         }
975
976         return min_t(int, wm, USHRT_MAX);
977 }
978
979 static void vlv_compute_fifo(struct intel_crtc *crtc)
980 {
981         struct drm_device *dev = crtc->base.dev;
982         struct vlv_wm_state *wm_state = &crtc->wm_state;
983         struct intel_plane *plane;
984         unsigned int total_rate = 0;
985         const int fifo_size = 512 - 1;
986         int fifo_extra, fifo_left = fifo_size;
987
988         for_each_intel_plane_on_crtc(dev, crtc, plane) {
989                 struct intel_plane_state *state =
990                         to_intel_plane_state(plane->base.state);
991
992                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
993                         continue;
994
995                 if (state->visible) {
996                         wm_state->num_active_planes++;
997                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
998                 }
999         }
1000
1001         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1002                 struct intel_plane_state *state =
1003                         to_intel_plane_state(plane->base.state);
1004                 unsigned int rate;
1005
1006                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1007                         plane->wm.fifo_size = 63;
1008                         continue;
1009                 }
1010
1011                 if (!state->visible) {
1012                         plane->wm.fifo_size = 0;
1013                         continue;
1014                 }
1015
1016                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1017                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1018                 fifo_left -= plane->wm.fifo_size;
1019         }
1020
1021         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1022
1023         /* spread the remainder evenly */
1024         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1025                 int plane_extra;
1026
1027                 if (fifo_left == 0)
1028                         break;
1029
1030                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1031                         continue;
1032
1033                 /* give it all to the first plane if none are active */
1034                 if (plane->wm.fifo_size == 0 &&
1035                     wm_state->num_active_planes)
1036                         continue;
1037
1038                 plane_extra = min(fifo_extra, fifo_left);
1039                 plane->wm.fifo_size += plane_extra;
1040                 fifo_left -= plane_extra;
1041         }
1042
1043         WARN_ON(fifo_left != 0);
1044 }
1045
1046 static void vlv_invert_wms(struct intel_crtc *crtc)
1047 {
1048         struct vlv_wm_state *wm_state = &crtc->wm_state;
1049         int level;
1050
1051         for (level = 0; level < wm_state->num_levels; level++) {
1052                 struct drm_device *dev = crtc->base.dev;
1053                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1054                 struct intel_plane *plane;
1055
1056                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1057                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1058
1059                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1060                         switch (plane->base.type) {
1061                                 int sprite;
1062                         case DRM_PLANE_TYPE_CURSOR:
1063                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1064                                         wm_state->wm[level].cursor;
1065                                 break;
1066                         case DRM_PLANE_TYPE_PRIMARY:
1067                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1068                                         wm_state->wm[level].primary;
1069                                 break;
1070                         case DRM_PLANE_TYPE_OVERLAY:
1071                                 sprite = plane->plane;
1072                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1073                                         wm_state->wm[level].sprite[sprite];
1074                                 break;
1075                         }
1076                 }
1077         }
1078 }
1079
1080 static void vlv_compute_wm(struct intel_crtc *crtc)
1081 {
1082         struct drm_device *dev = crtc->base.dev;
1083         struct vlv_wm_state *wm_state = &crtc->wm_state;
1084         struct intel_plane *plane;
1085         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1086         int level;
1087
1088         memset(wm_state, 0, sizeof(*wm_state));
1089
1090         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1091         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1092
1093         wm_state->num_active_planes = 0;
1094
1095         vlv_compute_fifo(crtc);
1096
1097         if (wm_state->num_active_planes != 1)
1098                 wm_state->cxsr = false;
1099
1100         if (wm_state->cxsr) {
1101                 for (level = 0; level < wm_state->num_levels; level++) {
1102                         wm_state->sr[level].plane = sr_fifo_size;
1103                         wm_state->sr[level].cursor = 63;
1104                 }
1105         }
1106
1107         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1108                 struct intel_plane_state *state =
1109                         to_intel_plane_state(plane->base.state);
1110
1111                 if (!state->visible)
1112                         continue;
1113
1114                 /* normal watermarks */
1115                 for (level = 0; level < wm_state->num_levels; level++) {
1116                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1117                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1118
1119                         /* hack */
1120                         if (WARN_ON(level == 0 && wm > max_wm))
1121                                 wm = max_wm;
1122
1123                         if (wm > plane->wm.fifo_size)
1124                                 break;
1125
1126                         switch (plane->base.type) {
1127                                 int sprite;
1128                         case DRM_PLANE_TYPE_CURSOR:
1129                                 wm_state->wm[level].cursor = wm;
1130                                 break;
1131                         case DRM_PLANE_TYPE_PRIMARY:
1132                                 wm_state->wm[level].primary = wm;
1133                                 break;
1134                         case DRM_PLANE_TYPE_OVERLAY:
1135                                 sprite = plane->plane;
1136                                 wm_state->wm[level].sprite[sprite] = wm;
1137                                 break;
1138                         }
1139                 }
1140
1141                 wm_state->num_levels = level;
1142
1143                 if (!wm_state->cxsr)
1144                         continue;
1145
1146                 /* maxfifo watermarks */
1147                 switch (plane->base.type) {
1148                         int sprite, level;
1149                 case DRM_PLANE_TYPE_CURSOR:
1150                         for (level = 0; level < wm_state->num_levels; level++)
1151                                 wm_state->sr[level].cursor =
1152                                         wm_state->wm[level].cursor;
1153                         break;
1154                 case DRM_PLANE_TYPE_PRIMARY:
1155                         for (level = 0; level < wm_state->num_levels; level++)
1156                                 wm_state->sr[level].plane =
1157                                         min(wm_state->sr[level].plane,
1158                                             wm_state->wm[level].primary);
1159                         break;
1160                 case DRM_PLANE_TYPE_OVERLAY:
1161                         sprite = plane->plane;
1162                         for (level = 0; level < wm_state->num_levels; level++)
1163                                 wm_state->sr[level].plane =
1164                                         min(wm_state->sr[level].plane,
1165                                             wm_state->wm[level].sprite[sprite]);
1166                         break;
1167                 }
1168         }
1169
1170         /* clear any (partially) filled invalid levels */
1171         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1172                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1173                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1174         }
1175
1176         vlv_invert_wms(crtc);
1177 }
1178
1179 #define VLV_FIFO(plane, value) \
1180         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1181
1182 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1183 {
1184         struct drm_device *dev = crtc->base.dev;
1185         struct drm_i915_private *dev_priv = to_i915(dev);
1186         struct intel_plane *plane;
1187         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1188
1189         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1190                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1191                         WARN_ON(plane->wm.fifo_size != 63);
1192                         continue;
1193                 }
1194
1195                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1196                         sprite0_start = plane->wm.fifo_size;
1197                 else if (plane->plane == 0)
1198                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1199                 else
1200                         fifo_size = sprite1_start + plane->wm.fifo_size;
1201         }
1202
1203         WARN_ON(fifo_size != 512 - 1);
1204
1205         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1206                       pipe_name(crtc->pipe), sprite0_start,
1207                       sprite1_start, fifo_size);
1208
1209         switch (crtc->pipe) {
1210                 uint32_t dsparb, dsparb2, dsparb3;
1211         case PIPE_A:
1212                 dsparb = I915_READ(DSPARB);
1213                 dsparb2 = I915_READ(DSPARB2);
1214
1215                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1216                             VLV_FIFO(SPRITEB, 0xff));
1217                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1218                            VLV_FIFO(SPRITEB, sprite1_start));
1219
1220                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1221                              VLV_FIFO(SPRITEB_HI, 0x1));
1222                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1223                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1224
1225                 I915_WRITE(DSPARB, dsparb);
1226                 I915_WRITE(DSPARB2, dsparb2);
1227                 break;
1228         case PIPE_B:
1229                 dsparb = I915_READ(DSPARB);
1230                 dsparb2 = I915_READ(DSPARB2);
1231
1232                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1233                             VLV_FIFO(SPRITED, 0xff));
1234                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1235                            VLV_FIFO(SPRITED, sprite1_start));
1236
1237                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1238                              VLV_FIFO(SPRITED_HI, 0xff));
1239                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1240                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1241
1242                 I915_WRITE(DSPARB, dsparb);
1243                 I915_WRITE(DSPARB2, dsparb2);
1244                 break;
1245         case PIPE_C:
1246                 dsparb3 = I915_READ(DSPARB3);
1247                 dsparb2 = I915_READ(DSPARB2);
1248
1249                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1250                              VLV_FIFO(SPRITEF, 0xff));
1251                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1252                             VLV_FIFO(SPRITEF, sprite1_start));
1253
1254                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1255                              VLV_FIFO(SPRITEF_HI, 0xff));
1256                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1257                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1258
1259                 I915_WRITE(DSPARB3, dsparb3);
1260                 I915_WRITE(DSPARB2, dsparb2);
1261                 break;
1262         default:
1263                 break;
1264         }
1265 }
1266
1267 #undef VLV_FIFO
1268
1269 static void vlv_merge_wm(struct drm_device *dev,
1270                          struct vlv_wm_values *wm)
1271 {
1272         struct intel_crtc *crtc;
1273         int num_active_crtcs = 0;
1274
1275         wm->level = to_i915(dev)->wm.max_level;
1276         wm->cxsr = true;
1277
1278         for_each_intel_crtc(dev, crtc) {
1279                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1280
1281                 if (!crtc->active)
1282                         continue;
1283
1284                 if (!wm_state->cxsr)
1285                         wm->cxsr = false;
1286
1287                 num_active_crtcs++;
1288                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1289         }
1290
1291         if (num_active_crtcs != 1)
1292                 wm->cxsr = false;
1293
1294         if (num_active_crtcs > 1)
1295                 wm->level = VLV_WM_LEVEL_PM2;
1296
1297         for_each_intel_crtc(dev, crtc) {
1298                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1299                 enum pipe pipe = crtc->pipe;
1300
1301                 if (!crtc->active)
1302                         continue;
1303
1304                 wm->pipe[pipe] = wm_state->wm[wm->level];
1305                 if (wm->cxsr)
1306                         wm->sr = wm_state->sr[wm->level];
1307
1308                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1309                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1310                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1311                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1312         }
1313 }
1314
1315 static void vlv_update_wm(struct drm_crtc *crtc)
1316 {
1317         struct drm_device *dev = crtc->dev;
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1320         enum pipe pipe = intel_crtc->pipe;
1321         struct vlv_wm_values wm = {};
1322
1323         vlv_compute_wm(intel_crtc);
1324         vlv_merge_wm(dev, &wm);
1325
1326         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1327                 /* FIXME should be part of crtc atomic commit */
1328                 vlv_pipe_set_fifo_size(intel_crtc);
1329                 return;
1330         }
1331
1332         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1333             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1334                 chv_set_memory_dvfs(dev_priv, false);
1335
1336         if (wm.level < VLV_WM_LEVEL_PM5 &&
1337             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1338                 chv_set_memory_pm5(dev_priv, false);
1339
1340         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1341                 intel_set_memory_cxsr(dev_priv, false);
1342
1343         /* FIXME should be part of crtc atomic commit */
1344         vlv_pipe_set_fifo_size(intel_crtc);
1345
1346         vlv_write_wm_values(intel_crtc, &wm);
1347
1348         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1349                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1350                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1351                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1352                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1353
1354         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1355                 intel_set_memory_cxsr(dev_priv, true);
1356
1357         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1358             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1359                 chv_set_memory_pm5(dev_priv, true);
1360
1361         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1362             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1363                 chv_set_memory_dvfs(dev_priv, true);
1364
1365         dev_priv->wm.vlv = wm;
1366 }
1367
1368 #define single_plane_enabled(mask) is_power_of_2(mask)
1369
1370 static void g4x_update_wm(struct drm_crtc *crtc)
1371 {
1372         struct drm_device *dev = crtc->dev;
1373         static const int sr_latency_ns = 12000;
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1376         int plane_sr, cursor_sr;
1377         unsigned int enabled = 0;
1378         bool cxsr_enabled;
1379
1380         if (g4x_compute_wm0(dev, PIPE_A,
1381                             &g4x_wm_info, pessimal_latency_ns,
1382                             &g4x_cursor_wm_info, pessimal_latency_ns,
1383                             &planea_wm, &cursora_wm))
1384                 enabled |= 1 << PIPE_A;
1385
1386         if (g4x_compute_wm0(dev, PIPE_B,
1387                             &g4x_wm_info, pessimal_latency_ns,
1388                             &g4x_cursor_wm_info, pessimal_latency_ns,
1389                             &planeb_wm, &cursorb_wm))
1390                 enabled |= 1 << PIPE_B;
1391
1392         if (single_plane_enabled(enabled) &&
1393             g4x_compute_srwm(dev, ffs(enabled) - 1,
1394                              sr_latency_ns,
1395                              &g4x_wm_info,
1396                              &g4x_cursor_wm_info,
1397                              &plane_sr, &cursor_sr)) {
1398                 cxsr_enabled = true;
1399         } else {
1400                 cxsr_enabled = false;
1401                 intel_set_memory_cxsr(dev_priv, false);
1402                 plane_sr = cursor_sr = 0;
1403         }
1404
1405         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1406                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1407                       planea_wm, cursora_wm,
1408                       planeb_wm, cursorb_wm,
1409                       plane_sr, cursor_sr);
1410
1411         I915_WRITE(DSPFW1,
1412                    FW_WM(plane_sr, SR) |
1413                    FW_WM(cursorb_wm, CURSORB) |
1414                    FW_WM(planeb_wm, PLANEB) |
1415                    FW_WM(planea_wm, PLANEA));
1416         I915_WRITE(DSPFW2,
1417                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1418                    FW_WM(cursora_wm, CURSORA));
1419         /* HPLL off in SR has some issues on G4x... disable it */
1420         I915_WRITE(DSPFW3,
1421                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1422                    FW_WM(cursor_sr, CURSOR_SR));
1423
1424         if (cxsr_enabled)
1425                 intel_set_memory_cxsr(dev_priv, true);
1426 }
1427
1428 static void i965_update_wm(struct drm_crtc *unused_crtc)
1429 {
1430         struct drm_device *dev = unused_crtc->dev;
1431         struct drm_i915_private *dev_priv = dev->dev_private;
1432         struct drm_crtc *crtc;
1433         int srwm = 1;
1434         int cursor_sr = 16;
1435         bool cxsr_enabled;
1436
1437         /* Calc sr entries for one plane configs */
1438         crtc = single_enabled_crtc(dev);
1439         if (crtc) {
1440                 /* self-refresh has much higher latency */
1441                 static const int sr_latency_ns = 12000;
1442                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1443                 int clock = adjusted_mode->crtc_clock;
1444                 int htotal = adjusted_mode->crtc_htotal;
1445                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1446                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1447                 unsigned long line_time_us;
1448                 int entries;
1449
1450                 line_time_us = max(htotal * 1000 / clock, 1);
1451
1452                 /* Use ns/us then divide to preserve precision */
1453                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1454                         cpp * hdisplay;
1455                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1456                 srwm = I965_FIFO_SIZE - entries;
1457                 if (srwm < 0)
1458                         srwm = 1;
1459                 srwm &= 0x1ff;
1460                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1461                               entries, srwm);
1462
1463                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464                         cpp * crtc->cursor->state->crtc_w;
1465                 entries = DIV_ROUND_UP(entries,
1466                                           i965_cursor_wm_info.cacheline_size);
1467                 cursor_sr = i965_cursor_wm_info.fifo_size -
1468                         (entries + i965_cursor_wm_info.guard_size);
1469
1470                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1471                         cursor_sr = i965_cursor_wm_info.max_wm;
1472
1473                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1474                               "cursor %d\n", srwm, cursor_sr);
1475
1476                 cxsr_enabled = true;
1477         } else {
1478                 cxsr_enabled = false;
1479                 /* Turn off self refresh if both pipes are enabled */
1480                 intel_set_memory_cxsr(dev_priv, false);
1481         }
1482
1483         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1484                       srwm);
1485
1486         /* 965 has limitations... */
1487         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1488                    FW_WM(8, CURSORB) |
1489                    FW_WM(8, PLANEB) |
1490                    FW_WM(8, PLANEA));
1491         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1492                    FW_WM(8, PLANEC_OLD));
1493         /* update cursor SR watermark */
1494         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1495
1496         if (cxsr_enabled)
1497                 intel_set_memory_cxsr(dev_priv, true);
1498 }
1499
1500 #undef FW_WM
1501
1502 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1503 {
1504         struct drm_device *dev = unused_crtc->dev;
1505         struct drm_i915_private *dev_priv = dev->dev_private;
1506         const struct intel_watermark_params *wm_info;
1507         uint32_t fwater_lo;
1508         uint32_t fwater_hi;
1509         int cwm, srwm = 1;
1510         int fifo_size;
1511         int planea_wm, planeb_wm;
1512         struct drm_crtc *crtc, *enabled = NULL;
1513
1514         if (IS_I945GM(dev))
1515                 wm_info = &i945_wm_info;
1516         else if (!IS_GEN2(dev))
1517                 wm_info = &i915_wm_info;
1518         else
1519                 wm_info = &i830_a_wm_info;
1520
1521         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1522         crtc = intel_get_crtc_for_plane(dev, 0);
1523         if (intel_crtc_active(crtc)) {
1524                 const struct drm_display_mode *adjusted_mode;
1525                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1526                 if (IS_GEN2(dev))
1527                         cpp = 4;
1528
1529                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1530                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1531                                                wm_info, fifo_size, cpp,
1532                                                pessimal_latency_ns);
1533                 enabled = crtc;
1534         } else {
1535                 planea_wm = fifo_size - wm_info->guard_size;
1536                 if (planea_wm > (long)wm_info->max_wm)
1537                         planea_wm = wm_info->max_wm;
1538         }
1539
1540         if (IS_GEN2(dev))
1541                 wm_info = &i830_bc_wm_info;
1542
1543         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1544         crtc = intel_get_crtc_for_plane(dev, 1);
1545         if (intel_crtc_active(crtc)) {
1546                 const struct drm_display_mode *adjusted_mode;
1547                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1548                 if (IS_GEN2(dev))
1549                         cpp = 4;
1550
1551                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1552                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1553                                                wm_info, fifo_size, cpp,
1554                                                pessimal_latency_ns);
1555                 if (enabled == NULL)
1556                         enabled = crtc;
1557                 else
1558                         enabled = NULL;
1559         } else {
1560                 planeb_wm = fifo_size - wm_info->guard_size;
1561                 if (planeb_wm > (long)wm_info->max_wm)
1562                         planeb_wm = wm_info->max_wm;
1563         }
1564
1565         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1566
1567         if (IS_I915GM(dev) && enabled) {
1568                 struct drm_i915_gem_object *obj;
1569
1570                 obj = intel_fb_obj(enabled->primary->state->fb);
1571
1572                 /* self-refresh seems busted with untiled */
1573                 if (obj->tiling_mode == I915_TILING_NONE)
1574                         enabled = NULL;
1575         }
1576
1577         /*
1578          * Overlay gets an aggressive default since video jitter is bad.
1579          */
1580         cwm = 2;
1581
1582         /* Play safe and disable self-refresh before adjusting watermarks. */
1583         intel_set_memory_cxsr(dev_priv, false);
1584
1585         /* Calc sr entries for one plane configs */
1586         if (HAS_FW_BLC(dev) && enabled) {
1587                 /* self-refresh has much higher latency */
1588                 static const int sr_latency_ns = 6000;
1589                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1590                 int clock = adjusted_mode->crtc_clock;
1591                 int htotal = adjusted_mode->crtc_htotal;
1592                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1593                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1594                 unsigned long line_time_us;
1595                 int entries;
1596
1597                 line_time_us = max(htotal * 1000 / clock, 1);
1598
1599                 /* Use ns/us then divide to preserve precision */
1600                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1601                         cpp * hdisplay;
1602                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1603                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1604                 srwm = wm_info->fifo_size - entries;
1605                 if (srwm < 0)
1606                         srwm = 1;
1607
1608                 if (IS_I945G(dev) || IS_I945GM(dev))
1609                         I915_WRITE(FW_BLC_SELF,
1610                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1611                 else if (IS_I915GM(dev))
1612                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1613         }
1614
1615         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1616                       planea_wm, planeb_wm, cwm, srwm);
1617
1618         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1619         fwater_hi = (cwm & 0x1f);
1620
1621         /* Set request length to 8 cachelines per fetch */
1622         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1623         fwater_hi = fwater_hi | (1 << 8);
1624
1625         I915_WRITE(FW_BLC, fwater_lo);
1626         I915_WRITE(FW_BLC2, fwater_hi);
1627
1628         if (enabled)
1629                 intel_set_memory_cxsr(dev_priv, true);
1630 }
1631
1632 static void i845_update_wm(struct drm_crtc *unused_crtc)
1633 {
1634         struct drm_device *dev = unused_crtc->dev;
1635         struct drm_i915_private *dev_priv = dev->dev_private;
1636         struct drm_crtc *crtc;
1637         const struct drm_display_mode *adjusted_mode;
1638         uint32_t fwater_lo;
1639         int planea_wm;
1640
1641         crtc = single_enabled_crtc(dev);
1642         if (crtc == NULL)
1643                 return;
1644
1645         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1646         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1647                                        &i845_wm_info,
1648                                        dev_priv->display.get_fifo_size(dev, 0),
1649                                        4, pessimal_latency_ns);
1650         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1651         fwater_lo |= (3<<8) | planea_wm;
1652
1653         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1654
1655         I915_WRITE(FW_BLC, fwater_lo);
1656 }
1657
1658 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1659 {
1660         uint32_t pixel_rate;
1661
1662         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1663
1664         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1665          * adjust the pixel_rate here. */
1666
1667         if (pipe_config->pch_pfit.enabled) {
1668                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1669                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1670
1671                 pipe_w = pipe_config->pipe_src_w;
1672                 pipe_h = pipe_config->pipe_src_h;
1673
1674                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1675                 pfit_h = pfit_size & 0xFFFF;
1676                 if (pipe_w < pfit_w)
1677                         pipe_w = pfit_w;
1678                 if (pipe_h < pfit_h)
1679                         pipe_h = pfit_h;
1680
1681                 if (WARN_ON(!pfit_w || !pfit_h))
1682                         return pixel_rate;
1683
1684                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1685                                      pfit_w * pfit_h);
1686         }
1687
1688         return pixel_rate;
1689 }
1690
1691 /* latency must be in 0.1us units. */
1692 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1693 {
1694         uint64_t ret;
1695
1696         if (WARN(latency == 0, "Latency value missing\n"))
1697                 return UINT_MAX;
1698
1699         ret = (uint64_t) pixel_rate * cpp * latency;
1700         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1701
1702         return ret;
1703 }
1704
1705 /* latency must be in 0.1us units. */
1706 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1707                                uint32_t horiz_pixels, uint8_t cpp,
1708                                uint32_t latency)
1709 {
1710         uint32_t ret;
1711
1712         if (WARN(latency == 0, "Latency value missing\n"))
1713                 return UINT_MAX;
1714         if (WARN_ON(!pipe_htotal))
1715                 return UINT_MAX;
1716
1717         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1718         ret = (ret + 1) * horiz_pixels * cpp;
1719         ret = DIV_ROUND_UP(ret, 64) + 2;
1720         return ret;
1721 }
1722
1723 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1724                            uint8_t cpp)
1725 {
1726         /*
1727          * Neither of these should be possible since this function shouldn't be
1728          * called if the CRTC is off or the plane is invisible.  But let's be
1729          * extra paranoid to avoid a potential divide-by-zero if we screw up
1730          * elsewhere in the driver.
1731          */
1732         if (WARN_ON(!cpp))
1733                 return 0;
1734         if (WARN_ON(!horiz_pixels))
1735                 return 0;
1736
1737         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1738 }
1739
1740 struct ilk_wm_maximums {
1741         uint16_t pri;
1742         uint16_t spr;
1743         uint16_t cur;
1744         uint16_t fbc;
1745 };
1746
1747 /*
1748  * For both WM_PIPE and WM_LP.
1749  * mem_value must be in 0.1us units.
1750  */
1751 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1752                                    const struct intel_plane_state *pstate,
1753                                    uint32_t mem_value,
1754                                    bool is_lp)
1755 {
1756         int cpp = pstate->base.fb ?
1757                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1758         uint32_t method1, method2;
1759
1760         if (!cstate->base.active || !pstate->visible)
1761                 return 0;
1762
1763         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1764
1765         if (!is_lp)
1766                 return method1;
1767
1768         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1769                                  cstate->base.adjusted_mode.crtc_htotal,
1770                                  drm_rect_width(&pstate->dst),
1771                                  cpp, mem_value);
1772
1773         return min(method1, method2);
1774 }
1775
1776 /*
1777  * For both WM_PIPE and WM_LP.
1778  * mem_value must be in 0.1us units.
1779  */
1780 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1781                                    const struct intel_plane_state *pstate,
1782                                    uint32_t mem_value)
1783 {
1784         int cpp = pstate->base.fb ?
1785                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1786         uint32_t method1, method2;
1787
1788         if (!cstate->base.active || !pstate->visible)
1789                 return 0;
1790
1791         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1792         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1793                                  cstate->base.adjusted_mode.crtc_htotal,
1794                                  drm_rect_width(&pstate->dst),
1795                                  cpp, mem_value);
1796         return min(method1, method2);
1797 }
1798
1799 /*
1800  * For both WM_PIPE and WM_LP.
1801  * mem_value must be in 0.1us units.
1802  */
1803 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1804                                    const struct intel_plane_state *pstate,
1805                                    uint32_t mem_value)
1806 {
1807         /*
1808          * We treat the cursor plane as always-on for the purposes of watermark
1809          * calculation.  Until we have two-stage watermark programming merged,
1810          * this is necessary to avoid flickering.
1811          */
1812         int cpp = 4;
1813         int width = pstate->visible ? pstate->base.crtc_w : 64;
1814
1815         if (!cstate->base.active)
1816                 return 0;
1817
1818         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1819                               cstate->base.adjusted_mode.crtc_htotal,
1820                               width, cpp, mem_value);
1821 }
1822
1823 /* Only for WM_LP. */
1824 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1825                                    const struct intel_plane_state *pstate,
1826                                    uint32_t pri_val)
1827 {
1828         int cpp = pstate->base.fb ?
1829                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1830
1831         if (!cstate->base.active || !pstate->visible)
1832                 return 0;
1833
1834         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1835 }
1836
1837 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1838 {
1839         if (INTEL_INFO(dev)->gen >= 8)
1840                 return 3072;
1841         else if (INTEL_INFO(dev)->gen >= 7)
1842                 return 768;
1843         else
1844                 return 512;
1845 }
1846
1847 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1848                                          int level, bool is_sprite)
1849 {
1850         if (INTEL_INFO(dev)->gen >= 8)
1851                 /* BDW primary/sprite plane watermarks */
1852                 return level == 0 ? 255 : 2047;
1853         else if (INTEL_INFO(dev)->gen >= 7)
1854                 /* IVB/HSW primary/sprite plane watermarks */
1855                 return level == 0 ? 127 : 1023;
1856         else if (!is_sprite)
1857                 /* ILK/SNB primary plane watermarks */
1858                 return level == 0 ? 127 : 511;
1859         else
1860                 /* ILK/SNB sprite plane watermarks */
1861                 return level == 0 ? 63 : 255;
1862 }
1863
1864 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1865                                           int level)
1866 {
1867         if (INTEL_INFO(dev)->gen >= 7)
1868                 return level == 0 ? 63 : 255;
1869         else
1870                 return level == 0 ? 31 : 63;
1871 }
1872
1873 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1874 {
1875         if (INTEL_INFO(dev)->gen >= 8)
1876                 return 31;
1877         else
1878                 return 15;
1879 }
1880
1881 /* Calculate the maximum primary/sprite plane watermark */
1882 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1883                                      int level,
1884                                      const struct intel_wm_config *config,
1885                                      enum intel_ddb_partitioning ddb_partitioning,
1886                                      bool is_sprite)
1887 {
1888         unsigned int fifo_size = ilk_display_fifo_size(dev);
1889
1890         /* if sprites aren't enabled, sprites get nothing */
1891         if (is_sprite && !config->sprites_enabled)
1892                 return 0;
1893
1894         /* HSW allows LP1+ watermarks even with multiple pipes */
1895         if (level == 0 || config->num_pipes_active > 1) {
1896                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1897
1898                 /*
1899                  * For some reason the non self refresh
1900                  * FIFO size is only half of the self
1901                  * refresh FIFO size on ILK/SNB.
1902                  */
1903                 if (INTEL_INFO(dev)->gen <= 6)
1904                         fifo_size /= 2;
1905         }
1906
1907         if (config->sprites_enabled) {
1908                 /* level 0 is always calculated with 1:1 split */
1909                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1910                         if (is_sprite)
1911                                 fifo_size *= 5;
1912                         fifo_size /= 6;
1913                 } else {
1914                         fifo_size /= 2;
1915                 }
1916         }
1917
1918         /* clamp to max that the registers can hold */
1919         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1920 }
1921
1922 /* Calculate the maximum cursor plane watermark */
1923 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1924                                       int level,
1925                                       const struct intel_wm_config *config)
1926 {
1927         /* HSW LP1+ watermarks w/ multiple pipes */
1928         if (level > 0 && config->num_pipes_active > 1)
1929                 return 64;
1930
1931         /* otherwise just report max that registers can hold */
1932         return ilk_cursor_wm_reg_max(dev, level);
1933 }
1934
1935 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1936                                     int level,
1937                                     const struct intel_wm_config *config,
1938                                     enum intel_ddb_partitioning ddb_partitioning,
1939                                     struct ilk_wm_maximums *max)
1940 {
1941         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1942         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1943         max->cur = ilk_cursor_wm_max(dev, level, config);
1944         max->fbc = ilk_fbc_wm_reg_max(dev);
1945 }
1946
1947 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1948                                         int level,
1949                                         struct ilk_wm_maximums *max)
1950 {
1951         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1952         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1953         max->cur = ilk_cursor_wm_reg_max(dev, level);
1954         max->fbc = ilk_fbc_wm_reg_max(dev);
1955 }
1956
1957 static bool ilk_validate_wm_level(int level,
1958                                   const struct ilk_wm_maximums *max,
1959                                   struct intel_wm_level *result)
1960 {
1961         bool ret;
1962
1963         /* already determined to be invalid? */
1964         if (!result->enable)
1965                 return false;
1966
1967         result->enable = result->pri_val <= max->pri &&
1968                          result->spr_val <= max->spr &&
1969                          result->cur_val <= max->cur;
1970
1971         ret = result->enable;
1972
1973         /*
1974          * HACK until we can pre-compute everything,
1975          * and thus fail gracefully if LP0 watermarks
1976          * are exceeded...
1977          */
1978         if (level == 0 && !result->enable) {
1979                 if (result->pri_val > max->pri)
1980                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1981                                       level, result->pri_val, max->pri);
1982                 if (result->spr_val > max->spr)
1983                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1984                                       level, result->spr_val, max->spr);
1985                 if (result->cur_val > max->cur)
1986                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1987                                       level, result->cur_val, max->cur);
1988
1989                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1990                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1991                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1992                 result->enable = true;
1993         }
1994
1995         return ret;
1996 }
1997
1998 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1999                                  const struct intel_crtc *intel_crtc,
2000                                  int level,
2001                                  struct intel_crtc_state *cstate,
2002                                  struct intel_plane_state *pristate,
2003                                  struct intel_plane_state *sprstate,
2004                                  struct intel_plane_state *curstate,
2005                                  struct intel_wm_level *result)
2006 {
2007         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2008         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2009         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2010
2011         /* WM1+ latency values stored in 0.5us units */
2012         if (level > 0) {
2013                 pri_latency *= 5;
2014                 spr_latency *= 5;
2015                 cur_latency *= 5;
2016         }
2017
2018         if (pristate) {
2019                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2020                                                      pri_latency, level);
2021                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2022         }
2023
2024         if (sprstate)
2025                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2026
2027         if (curstate)
2028                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2029
2030         result->enable = true;
2031 }
2032
2033 static uint32_t
2034 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2035 {
2036         const struct intel_atomic_state *intel_state =
2037                 to_intel_atomic_state(cstate->base.state);
2038         const struct drm_display_mode *adjusted_mode =
2039                 &cstate->base.adjusted_mode;
2040         u32 linetime, ips_linetime;
2041
2042         if (!cstate->base.active)
2043                 return 0;
2044         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2045                 return 0;
2046         if (WARN_ON(intel_state->cdclk == 0))
2047                 return 0;
2048
2049         /* The WM are computed with base on how long it takes to fill a single
2050          * row at the given clock rate, multiplied by 8.
2051          * */
2052         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2053                                      adjusted_mode->crtc_clock);
2054         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2055                                          intel_state->cdclk);
2056
2057         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2058                PIPE_WM_LINETIME_TIME(linetime);
2059 }
2060
2061 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2062 {
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064
2065         if (IS_GEN9(dev)) {
2066                 uint32_t val;
2067                 int ret, i;
2068                 int level, max_level = ilk_wm_max_level(dev);
2069
2070                 /* read the first set of memory latencies[0:3] */
2071                 val = 0; /* data0 to be programmed to 0 for first set */
2072                 mutex_lock(&dev_priv->rps.hw_lock);
2073                 ret = sandybridge_pcode_read(dev_priv,
2074                                              GEN9_PCODE_READ_MEM_LATENCY,
2075                                              &val);
2076                 mutex_unlock(&dev_priv->rps.hw_lock);
2077
2078                 if (ret) {
2079                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2080                         return;
2081                 }
2082
2083                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2084                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2085                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2086                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2087                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2088                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2089                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2090
2091                 /* read the second set of memory latencies[4:7] */
2092                 val = 1; /* data0 to be programmed to 1 for second set */
2093                 mutex_lock(&dev_priv->rps.hw_lock);
2094                 ret = sandybridge_pcode_read(dev_priv,
2095                                              GEN9_PCODE_READ_MEM_LATENCY,
2096                                              &val);
2097                 mutex_unlock(&dev_priv->rps.hw_lock);
2098                 if (ret) {
2099                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2100                         return;
2101                 }
2102
2103                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2104                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2105                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2106                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2107                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2108                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2109                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2110
2111                 /*
2112                  * WaWmMemoryReadLatency:skl
2113                  *
2114                  * punit doesn't take into account the read latency so we need
2115                  * to add 2us to the various latency levels we retrieve from
2116                  * the punit.
2117                  *   - W0 is a bit special in that it's the only level that
2118                  *   can't be disabled if we want to have display working, so
2119                  *   we always add 2us there.
2120                  *   - For levels >=1, punit returns 0us latency when they are
2121                  *   disabled, so we respect that and don't add 2us then
2122                  *
2123                  * Additionally, if a level n (n > 1) has a 0us latency, all
2124                  * levels m (m >= n) need to be disabled. We make sure to
2125                  * sanitize the values out of the punit to satisfy this
2126                  * requirement.
2127                  */
2128                 wm[0] += 2;
2129                 for (level = 1; level <= max_level; level++)
2130                         if (wm[level] != 0)
2131                                 wm[level] += 2;
2132                         else {
2133                                 for (i = level + 1; i <= max_level; i++)
2134                                         wm[i] = 0;
2135
2136                                 break;
2137                         }
2138         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2139                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2140
2141                 wm[0] = (sskpd >> 56) & 0xFF;
2142                 if (wm[0] == 0)
2143                         wm[0] = sskpd & 0xF;
2144                 wm[1] = (sskpd >> 4) & 0xFF;
2145                 wm[2] = (sskpd >> 12) & 0xFF;
2146                 wm[3] = (sskpd >> 20) & 0x1FF;
2147                 wm[4] = (sskpd >> 32) & 0x1FF;
2148         } else if (INTEL_INFO(dev)->gen >= 6) {
2149                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2150
2151                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2152                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2153                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2154                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2155         } else if (INTEL_INFO(dev)->gen >= 5) {
2156                 uint32_t mltr = I915_READ(MLTR_ILK);
2157
2158                 /* ILK primary LP0 latency is 700 ns */
2159                 wm[0] = 7;
2160                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2161                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2162         }
2163 }
2164
2165 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2166 {
2167         /* ILK sprite LP0 latency is 1300 ns */
2168         if (IS_GEN5(dev))
2169                 wm[0] = 13;
2170 }
2171
2172 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2173 {
2174         /* ILK cursor LP0 latency is 1300 ns */
2175         if (IS_GEN5(dev))
2176                 wm[0] = 13;
2177
2178         /* WaDoubleCursorLP3Latency:ivb */
2179         if (IS_IVYBRIDGE(dev))
2180                 wm[3] *= 2;
2181 }
2182
2183 int ilk_wm_max_level(const struct drm_device *dev)
2184 {
2185         /* how many WM levels are we expecting */
2186         if (INTEL_INFO(dev)->gen >= 9)
2187                 return 7;
2188         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2189                 return 4;
2190         else if (INTEL_INFO(dev)->gen >= 6)
2191                 return 3;
2192         else
2193                 return 2;
2194 }
2195
2196 static void intel_print_wm_latency(struct drm_device *dev,
2197                                    const char *name,
2198                                    const uint16_t wm[8])
2199 {
2200         int level, max_level = ilk_wm_max_level(dev);
2201
2202         for (level = 0; level <= max_level; level++) {
2203                 unsigned int latency = wm[level];
2204
2205                 if (latency == 0) {
2206                         DRM_ERROR("%s WM%d latency not provided\n",
2207                                   name, level);
2208                         continue;
2209                 }
2210
2211                 /*
2212                  * - latencies are in us on gen9.
2213                  * - before then, WM1+ latency values are in 0.5us units
2214                  */
2215                 if (IS_GEN9(dev))
2216                         latency *= 10;
2217                 else if (level > 0)
2218                         latency *= 5;
2219
2220                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2221                               name, level, wm[level],
2222                               latency / 10, latency % 10);
2223         }
2224 }
2225
2226 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2227                                     uint16_t wm[5], uint16_t min)
2228 {
2229         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2230
2231         if (wm[0] >= min)
2232                 return false;
2233
2234         wm[0] = max(wm[0], min);
2235         for (level = 1; level <= max_level; level++)
2236                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2237
2238         return true;
2239 }
2240
2241 static void snb_wm_latency_quirk(struct drm_device *dev)
2242 {
2243         struct drm_i915_private *dev_priv = dev->dev_private;
2244         bool changed;
2245
2246         /*
2247          * The BIOS provided WM memory latency values are often
2248          * inadequate for high resolution displays. Adjust them.
2249          */
2250         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2251                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2252                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2253
2254         if (!changed)
2255                 return;
2256
2257         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2258         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2259         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2260         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2261 }
2262
2263 static void ilk_setup_wm_latency(struct drm_device *dev)
2264 {
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266
2267         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2268
2269         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2270                sizeof(dev_priv->wm.pri_latency));
2271         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2272                sizeof(dev_priv->wm.pri_latency));
2273
2274         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2275         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2276
2277         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2278         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2279         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2280
2281         if (IS_GEN6(dev))
2282                 snb_wm_latency_quirk(dev);
2283 }
2284
2285 static void skl_setup_wm_latency(struct drm_device *dev)
2286 {
2287         struct drm_i915_private *dev_priv = dev->dev_private;
2288
2289         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2290         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2291 }
2292
2293 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2294                                  struct intel_pipe_wm *pipe_wm)
2295 {
2296         /* LP0 watermark maximums depend on this pipe alone */
2297         const struct intel_wm_config config = {
2298                 .num_pipes_active = 1,
2299                 .sprites_enabled = pipe_wm->sprites_enabled,
2300                 .sprites_scaled = pipe_wm->sprites_scaled,
2301         };
2302         struct ilk_wm_maximums max;
2303
2304         /* LP0 watermarks always use 1/2 DDB partitioning */
2305         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2306
2307         /* At least LP0 must be valid */
2308         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2309                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2310                 return false;
2311         }
2312
2313         return true;
2314 }
2315
2316 /* Compute new watermarks for the pipe */
2317 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2318 {
2319         struct drm_atomic_state *state = cstate->base.state;
2320         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2321         struct intel_pipe_wm *pipe_wm;
2322         struct drm_device *dev = state->dev;
2323         const struct drm_i915_private *dev_priv = dev->dev_private;
2324         struct intel_plane *intel_plane;
2325         struct intel_plane_state *pristate = NULL;
2326         struct intel_plane_state *sprstate = NULL;
2327         struct intel_plane_state *curstate = NULL;
2328         int level, max_level = ilk_wm_max_level(dev), usable_level;
2329         struct ilk_wm_maximums max;
2330
2331         pipe_wm = &cstate->wm.ilk.optimal;
2332
2333         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2334                 struct intel_plane_state *ps;
2335
2336                 ps = intel_atomic_get_existing_plane_state(state,
2337                                                            intel_plane);
2338                 if (!ps)
2339                         continue;
2340
2341                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2342                         pristate = ps;
2343                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2344                         sprstate = ps;
2345                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2346                         curstate = ps;
2347         }
2348
2349         pipe_wm->pipe_enabled = cstate->base.active;
2350         if (sprstate) {
2351                 pipe_wm->sprites_enabled = sprstate->visible;
2352                 pipe_wm->sprites_scaled = sprstate->visible &&
2353                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2354                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2355         }
2356
2357         usable_level = max_level;
2358
2359         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2360         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2361                 usable_level = 1;
2362
2363         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2364         if (pipe_wm->sprites_scaled)
2365                 usable_level = 0;
2366
2367         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2368                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2369
2370         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2371         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2372
2373         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2374                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2375
2376         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2377                 return -EINVAL;
2378
2379         ilk_compute_wm_reg_maximums(dev, 1, &max);
2380
2381         for (level = 1; level <= max_level; level++) {
2382                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2383
2384                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2385                                      pristate, sprstate, curstate, wm);
2386
2387                 /*
2388                  * Disable any watermark level that exceeds the
2389                  * register maximums since such watermarks are
2390                  * always invalid.
2391                  */
2392                 if (level > usable_level)
2393                         continue;
2394
2395                 if (ilk_validate_wm_level(level, &max, wm))
2396                         pipe_wm->wm[level] = *wm;
2397                 else
2398                         usable_level = level;
2399         }
2400
2401         return 0;
2402 }
2403
2404 /*
2405  * Build a set of 'intermediate' watermark values that satisfy both the old
2406  * state and the new state.  These can be programmed to the hardware
2407  * immediately.
2408  */
2409 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2410                                        struct intel_crtc *intel_crtc,
2411                                        struct intel_crtc_state *newstate)
2412 {
2413         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2414         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2415         int level, max_level = ilk_wm_max_level(dev);
2416
2417         /*
2418          * Start with the final, target watermarks, then combine with the
2419          * currently active watermarks to get values that are safe both before
2420          * and after the vblank.
2421          */
2422         *a = newstate->wm.ilk.optimal;
2423         a->pipe_enabled |= b->pipe_enabled;
2424         a->sprites_enabled |= b->sprites_enabled;
2425         a->sprites_scaled |= b->sprites_scaled;
2426
2427         for (level = 0; level <= max_level; level++) {
2428                 struct intel_wm_level *a_wm = &a->wm[level];
2429                 const struct intel_wm_level *b_wm = &b->wm[level];
2430
2431                 a_wm->enable &= b_wm->enable;
2432                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2433                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2434                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2435                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2436         }
2437
2438         /*
2439          * We need to make sure that these merged watermark values are
2440          * actually a valid configuration themselves.  If they're not,
2441          * there's no safe way to transition from the old state to
2442          * the new state, so we need to fail the atomic transaction.
2443          */
2444         if (!ilk_validate_pipe_wm(dev, a))
2445                 return -EINVAL;
2446
2447         /*
2448          * If our intermediate WM are identical to the final WM, then we can
2449          * omit the post-vblank programming; only update if it's different.
2450          */
2451         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2452                 newstate->wm.need_postvbl_update = false;
2453
2454         return 0;
2455 }
2456
2457 /*
2458  * Merge the watermarks from all active pipes for a specific level.
2459  */
2460 static void ilk_merge_wm_level(struct drm_device *dev,
2461                                int level,
2462                                struct intel_wm_level *ret_wm)
2463 {
2464         const struct intel_crtc *intel_crtc;
2465
2466         ret_wm->enable = true;
2467
2468         for_each_intel_crtc(dev, intel_crtc) {
2469                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2470                 const struct intel_wm_level *wm = &active->wm[level];
2471
2472                 if (!active->pipe_enabled)
2473                         continue;
2474
2475                 /*
2476                  * The watermark values may have been used in the past,
2477                  * so we must maintain them in the registers for some
2478                  * time even if the level is now disabled.
2479                  */
2480                 if (!wm->enable)
2481                         ret_wm->enable = false;
2482
2483                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2484                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2485                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2486                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2487         }
2488 }
2489
2490 /*
2491  * Merge all low power watermarks for all active pipes.
2492  */
2493 static void ilk_wm_merge(struct drm_device *dev,
2494                          const struct intel_wm_config *config,
2495                          const struct ilk_wm_maximums *max,
2496                          struct intel_pipe_wm *merged)
2497 {
2498         struct drm_i915_private *dev_priv = dev->dev_private;
2499         int level, max_level = ilk_wm_max_level(dev);
2500         int last_enabled_level = max_level;
2501
2502         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2503         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2504             config->num_pipes_active > 1)
2505                 last_enabled_level = 0;
2506
2507         /* ILK: FBC WM must be disabled always */
2508         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2509
2510         /* merge each WM1+ level */
2511         for (level = 1; level <= max_level; level++) {
2512                 struct intel_wm_level *wm = &merged->wm[level];
2513
2514                 ilk_merge_wm_level(dev, level, wm);
2515
2516                 if (level > last_enabled_level)
2517                         wm->enable = false;
2518                 else if (!ilk_validate_wm_level(level, max, wm))
2519                         /* make sure all following levels get disabled */
2520                         last_enabled_level = level - 1;
2521
2522                 /*
2523                  * The spec says it is preferred to disable
2524                  * FBC WMs instead of disabling a WM level.
2525                  */
2526                 if (wm->fbc_val > max->fbc) {
2527                         if (wm->enable)
2528                                 merged->fbc_wm_enabled = false;
2529                         wm->fbc_val = 0;
2530                 }
2531         }
2532
2533         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2534         /*
2535          * FIXME this is racy. FBC might get enabled later.
2536          * What we should check here is whether FBC can be
2537          * enabled sometime later.
2538          */
2539         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2540             intel_fbc_is_active(dev_priv)) {
2541                 for (level = 2; level <= max_level; level++) {
2542                         struct intel_wm_level *wm = &merged->wm[level];
2543
2544                         wm->enable = false;
2545                 }
2546         }
2547 }
2548
2549 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2550 {
2551         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2552         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2553 }
2554
2555 /* The value we need to program into the WM_LPx latency field */
2556 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2557 {
2558         struct drm_i915_private *dev_priv = dev->dev_private;
2559
2560         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2561                 return 2 * level;
2562         else
2563                 return dev_priv->wm.pri_latency[level];
2564 }
2565
2566 static void ilk_compute_wm_results(struct drm_device *dev,
2567                                    const struct intel_pipe_wm *merged,
2568                                    enum intel_ddb_partitioning partitioning,
2569                                    struct ilk_wm_values *results)
2570 {
2571         struct intel_crtc *intel_crtc;
2572         int level, wm_lp;
2573
2574         results->enable_fbc_wm = merged->fbc_wm_enabled;
2575         results->partitioning = partitioning;
2576
2577         /* LP1+ register values */
2578         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2579                 const struct intel_wm_level *r;
2580
2581                 level = ilk_wm_lp_to_level(wm_lp, merged);
2582
2583                 r = &merged->wm[level];
2584
2585                 /*
2586                  * Maintain the watermark values even if the level is
2587                  * disabled. Doing otherwise could cause underruns.
2588                  */
2589                 results->wm_lp[wm_lp - 1] =
2590                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2591                         (r->pri_val << WM1_LP_SR_SHIFT) |
2592                         r->cur_val;
2593
2594                 if (r->enable)
2595                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2596
2597                 if (INTEL_INFO(dev)->gen >= 8)
2598                         results->wm_lp[wm_lp - 1] |=
2599                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2600                 else
2601                         results->wm_lp[wm_lp - 1] |=
2602                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2603
2604                 /*
2605                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2606                  * level is disabled. Doing otherwise could cause underruns.
2607                  */
2608                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2609                         WARN_ON(wm_lp != 1);
2610                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2611                 } else
2612                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2613         }
2614
2615         /* LP0 register values */
2616         for_each_intel_crtc(dev, intel_crtc) {
2617                 enum pipe pipe = intel_crtc->pipe;
2618                 const struct intel_wm_level *r =
2619                         &intel_crtc->wm.active.ilk.wm[0];
2620
2621                 if (WARN_ON(!r->enable))
2622                         continue;
2623
2624                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2625
2626                 results->wm_pipe[pipe] =
2627                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2628                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2629                         r->cur_val;
2630         }
2631 }
2632
2633 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2634  * case both are at the same level. Prefer r1 in case they're the same. */
2635 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2636                                                   struct intel_pipe_wm *r1,
2637                                                   struct intel_pipe_wm *r2)
2638 {
2639         int level, max_level = ilk_wm_max_level(dev);
2640         int level1 = 0, level2 = 0;
2641
2642         for (level = 1; level <= max_level; level++) {
2643                 if (r1->wm[level].enable)
2644                         level1 = level;
2645                 if (r2->wm[level].enable)
2646                         level2 = level;
2647         }
2648
2649         if (level1 == level2) {
2650                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2651                         return r2;
2652                 else
2653                         return r1;
2654         } else if (level1 > level2) {
2655                 return r1;
2656         } else {
2657                 return r2;
2658         }
2659 }
2660
2661 /* dirty bits used to track which watermarks need changes */
2662 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2663 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2664 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2665 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2666 #define WM_DIRTY_FBC (1 << 24)
2667 #define WM_DIRTY_DDB (1 << 25)
2668
2669 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2670                                          const struct ilk_wm_values *old,
2671                                          const struct ilk_wm_values *new)
2672 {
2673         unsigned int dirty = 0;
2674         enum pipe pipe;
2675         int wm_lp;
2676
2677         for_each_pipe(dev_priv, pipe) {
2678                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2679                         dirty |= WM_DIRTY_LINETIME(pipe);
2680                         /* Must disable LP1+ watermarks too */
2681                         dirty |= WM_DIRTY_LP_ALL;
2682                 }
2683
2684                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2685                         dirty |= WM_DIRTY_PIPE(pipe);
2686                         /* Must disable LP1+ watermarks too */
2687                         dirty |= WM_DIRTY_LP_ALL;
2688                 }
2689         }
2690
2691         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2692                 dirty |= WM_DIRTY_FBC;
2693                 /* Must disable LP1+ watermarks too */
2694                 dirty |= WM_DIRTY_LP_ALL;
2695         }
2696
2697         if (old->partitioning != new->partitioning) {
2698                 dirty |= WM_DIRTY_DDB;
2699                 /* Must disable LP1+ watermarks too */
2700                 dirty |= WM_DIRTY_LP_ALL;
2701         }
2702
2703         /* LP1+ watermarks already deemed dirty, no need to continue */
2704         if (dirty & WM_DIRTY_LP_ALL)
2705                 return dirty;
2706
2707         /* Find the lowest numbered LP1+ watermark in need of an update... */
2708         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2709                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2710                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2711                         break;
2712         }
2713
2714         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2715         for (; wm_lp <= 3; wm_lp++)
2716                 dirty |= WM_DIRTY_LP(wm_lp);
2717
2718         return dirty;
2719 }
2720
2721 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2722                                unsigned int dirty)
2723 {
2724         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2725         bool changed = false;
2726
2727         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2728                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2729                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2730                 changed = true;
2731         }
2732         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2733                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2734                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2735                 changed = true;
2736         }
2737         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2738                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2739                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2740                 changed = true;
2741         }
2742
2743         /*
2744          * Don't touch WM1S_LP_EN here.
2745          * Doing so could cause underruns.
2746          */
2747
2748         return changed;
2749 }
2750
2751 /*
2752  * The spec says we shouldn't write when we don't need, because every write
2753  * causes WMs to be re-evaluated, expending some power.
2754  */
2755 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2756                                 struct ilk_wm_values *results)
2757 {
2758         struct drm_device *dev = dev_priv->dev;
2759         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2760         unsigned int dirty;
2761         uint32_t val;
2762
2763         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2764         if (!dirty)
2765                 return;
2766
2767         _ilk_disable_lp_wm(dev_priv, dirty);
2768
2769         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2770                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2771         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2772                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2773         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2774                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2775
2776         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2777                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2778         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2779                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2780         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2781                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2782
2783         if (dirty & WM_DIRTY_DDB) {
2784                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2785                         val = I915_READ(WM_MISC);
2786                         if (results->partitioning == INTEL_DDB_PART_1_2)
2787                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2788                         else
2789                                 val |= WM_MISC_DATA_PARTITION_5_6;
2790                         I915_WRITE(WM_MISC, val);
2791                 } else {
2792                         val = I915_READ(DISP_ARB_CTL2);
2793                         if (results->partitioning == INTEL_DDB_PART_1_2)
2794                                 val &= ~DISP_DATA_PARTITION_5_6;
2795                         else
2796                                 val |= DISP_DATA_PARTITION_5_6;
2797                         I915_WRITE(DISP_ARB_CTL2, val);
2798                 }
2799         }
2800
2801         if (dirty & WM_DIRTY_FBC) {
2802                 val = I915_READ(DISP_ARB_CTL);
2803                 if (results->enable_fbc_wm)
2804                         val &= ~DISP_FBC_WM_DIS;
2805                 else
2806                         val |= DISP_FBC_WM_DIS;
2807                 I915_WRITE(DISP_ARB_CTL, val);
2808         }
2809
2810         if (dirty & WM_DIRTY_LP(1) &&
2811             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2812                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2813
2814         if (INTEL_INFO(dev)->gen >= 7) {
2815                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2816                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2817                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2818                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2819         }
2820
2821         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2822                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2823         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2824                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2825         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2826                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2827
2828         dev_priv->wm.hw = *results;
2829 }
2830
2831 bool ilk_disable_lp_wm(struct drm_device *dev)
2832 {
2833         struct drm_i915_private *dev_priv = dev->dev_private;
2834
2835         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2836 }
2837
2838 /*
2839  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2840  * different active planes.
2841  */
2842
2843 #define SKL_DDB_SIZE            896     /* in blocks */
2844 #define BXT_DDB_SIZE            512
2845
2846 /*
2847  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2848  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2849  * other universal planes are in indices 1..n.  Note that this may leave unused
2850  * indices between the top "sprite" plane and the cursor.
2851  */
2852 static int
2853 skl_wm_plane_id(const struct intel_plane *plane)
2854 {
2855         switch (plane->base.type) {
2856         case DRM_PLANE_TYPE_PRIMARY:
2857                 return 0;
2858         case DRM_PLANE_TYPE_CURSOR:
2859                 return PLANE_CURSOR;
2860         case DRM_PLANE_TYPE_OVERLAY:
2861                 return plane->plane + 1;
2862         default:
2863                 MISSING_CASE(plane->base.type);
2864                 return plane->plane;
2865         }
2866 }
2867
2868 static void
2869 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2870                                    const struct intel_crtc_state *cstate,
2871                                    struct skl_ddb_entry *alloc, /* out */
2872                                    int *num_active /* out */)
2873 {
2874         struct drm_atomic_state *state = cstate->base.state;
2875         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2876         struct drm_i915_private *dev_priv = to_i915(dev);
2877         struct drm_crtc *for_crtc = cstate->base.crtc;
2878         unsigned int pipe_size, ddb_size;
2879         int nth_active_pipe;
2880         int pipe = to_intel_crtc(for_crtc)->pipe;
2881
2882         if (WARN_ON(!state) || !cstate->base.active) {
2883                 alloc->start = 0;
2884                 alloc->end = 0;
2885                 *num_active = hweight32(dev_priv->active_crtcs);
2886                 return;
2887         }
2888
2889         if (intel_state->active_pipe_changes)
2890                 *num_active = hweight32(intel_state->active_crtcs);
2891         else
2892                 *num_active = hweight32(dev_priv->active_crtcs);
2893
2894         if (IS_BROXTON(dev))
2895                 ddb_size = BXT_DDB_SIZE;
2896         else
2897                 ddb_size = SKL_DDB_SIZE;
2898
2899         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2900
2901         /*
2902          * If the state doesn't change the active CRTC's, then there's
2903          * no need to recalculate; the existing pipe allocation limits
2904          * should remain unchanged.  Note that we're safe from racing
2905          * commits since any racing commit that changes the active CRTC
2906          * list would need to grab _all_ crtc locks, including the one
2907          * we currently hold.
2908          */
2909         if (!intel_state->active_pipe_changes) {
2910                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2911                 return;
2912         }
2913
2914         nth_active_pipe = hweight32(intel_state->active_crtcs &
2915                                     (drm_crtc_mask(for_crtc) - 1));
2916         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2917         alloc->start = nth_active_pipe * ddb_size / *num_active;
2918         alloc->end = alloc->start + pipe_size;
2919 }
2920
2921 static unsigned int skl_cursor_allocation(int num_active)
2922 {
2923         if (num_active == 1)
2924                 return 32;
2925
2926         return 8;
2927 }
2928
2929 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2930 {
2931         entry->start = reg & 0x3ff;
2932         entry->end = (reg >> 16) & 0x3ff;
2933         if (entry->end)
2934                 entry->end += 1;
2935 }
2936
2937 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2938                           struct skl_ddb_allocation *ddb /* out */)
2939 {
2940         enum pipe pipe;
2941         int plane;
2942         u32 val;
2943
2944         memset(ddb, 0, sizeof(*ddb));
2945
2946         for_each_pipe(dev_priv, pipe) {
2947                 enum intel_display_power_domain power_domain;
2948
2949                 power_domain = POWER_DOMAIN_PIPE(pipe);
2950                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2951                         continue;
2952
2953                 for_each_plane(dev_priv, pipe, plane) {
2954                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2955                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2956                                                    val);
2957                 }
2958
2959                 val = I915_READ(CUR_BUF_CFG(pipe));
2960                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2961                                            val);
2962
2963                 intel_display_power_put(dev_priv, power_domain);
2964         }
2965 }
2966
2967 /*
2968  * Determines the downscale amount of a plane for the purposes of watermark calculations.
2969  * The bspec defines downscale amount as:
2970  *
2971  * """
2972  * Horizontal down scale amount = maximum[1, Horizontal source size /
2973  *                                           Horizontal destination size]
2974  * Vertical down scale amount = maximum[1, Vertical source size /
2975  *                                         Vertical destination size]
2976  * Total down scale amount = Horizontal down scale amount *
2977  *                           Vertical down scale amount
2978  * """
2979  *
2980  * Return value is provided in 16.16 fixed point form to retain fractional part.
2981  * Caller should take care of dividing & rounding off the value.
2982  */
2983 static uint32_t
2984 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
2985 {
2986         uint32_t downscale_h, downscale_w;
2987         uint32_t src_w, src_h, dst_w, dst_h;
2988
2989         if (WARN_ON(!pstate->visible))
2990                 return DRM_PLANE_HELPER_NO_SCALING;
2991
2992         /* n.b., src is 16.16 fixed point, dst is whole integer */
2993         src_w = drm_rect_width(&pstate->src);
2994         src_h = drm_rect_height(&pstate->src);
2995         dst_w = drm_rect_width(&pstate->dst);
2996         dst_h = drm_rect_height(&pstate->dst);
2997         if (intel_rotation_90_or_270(pstate->base.rotation))
2998                 swap(dst_w, dst_h);
2999
3000         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3001         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3002
3003         /* Provide result in 16.16 fixed point */
3004         return (uint64_t)downscale_w * downscale_h >> 16;
3005 }
3006
3007 static unsigned int
3008 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3009                              const struct drm_plane_state *pstate,
3010                              int y)
3011 {
3012         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3013         struct drm_framebuffer *fb = pstate->fb;
3014         uint32_t down_scale_amount, data_rate;
3015         uint32_t width = 0, height = 0;
3016         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3017
3018         if (!intel_pstate->visible)
3019                 return 0;
3020         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3021                 return 0;
3022         if (y && format != DRM_FORMAT_NV12)
3023                 return 0;
3024
3025         width = drm_rect_width(&intel_pstate->src) >> 16;
3026         height = drm_rect_height(&intel_pstate->src) >> 16;
3027
3028         if (intel_rotation_90_or_270(pstate->rotation))
3029                 swap(width, height);
3030
3031         /* for planar format */
3032         if (format == DRM_FORMAT_NV12) {
3033                 if (y)  /* y-plane data rate */
3034                         data_rate = width * height *
3035                                 drm_format_plane_cpp(format, 0);
3036                 else    /* uv-plane data rate */
3037                         data_rate = (width / 2) * (height / 2) *
3038                                 drm_format_plane_cpp(format, 1);
3039         } else {
3040                 /* for packed formats */
3041                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3042         }
3043
3044         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3045
3046         return (uint64_t)data_rate * down_scale_amount >> 16;
3047 }
3048
3049 /*
3050  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3051  * a 8192x4096@32bpp framebuffer:
3052  *   3 * 4096 * 8192  * 4 < 2^32
3053  */
3054 static unsigned int
3055 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3056 {
3057         struct drm_crtc_state *cstate = &intel_cstate->base;
3058         struct drm_atomic_state *state = cstate->state;
3059         struct drm_crtc *crtc = cstate->crtc;
3060         struct drm_device *dev = crtc->dev;
3061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3062         const struct drm_plane *plane;
3063         const struct intel_plane *intel_plane;
3064         struct drm_plane_state *pstate;
3065         unsigned int rate, total_data_rate = 0;
3066         int id;
3067         int i;
3068
3069         if (WARN_ON(!state))
3070                 return 0;
3071
3072         /* Calculate and cache data rate for each plane */
3073         for_each_plane_in_state(state, plane, pstate, i) {
3074                 id = skl_wm_plane_id(to_intel_plane(plane));
3075                 intel_plane = to_intel_plane(plane);
3076
3077                 if (intel_plane->pipe != intel_crtc->pipe)
3078                         continue;
3079
3080                 /* packed/uv */
3081                 rate = skl_plane_relative_data_rate(intel_cstate,
3082                                                     pstate, 0);
3083                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3084
3085                 /* y-plane */
3086                 rate = skl_plane_relative_data_rate(intel_cstate,
3087                                                     pstate, 1);
3088                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3089         }
3090
3091         /* Calculate CRTC's total data rate from cached values */
3092         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3093                 int id = skl_wm_plane_id(intel_plane);
3094
3095                 /* packed/uv */
3096                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3097                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3098         }
3099
3100         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3101
3102         return total_data_rate;
3103 }
3104
3105 static uint16_t
3106 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3107                   const int y)
3108 {
3109         struct drm_framebuffer *fb = pstate->fb;
3110         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3111         uint32_t src_w, src_h;
3112         uint32_t min_scanlines = 8;
3113         uint8_t plane_bpp;
3114
3115         if (WARN_ON(!fb))
3116                 return 0;
3117
3118         /* For packed formats, no y-plane, return 0 */
3119         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3120                 return 0;
3121
3122         /* For Non Y-tile return 8-blocks */
3123         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3124             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3125                 return 8;
3126
3127         src_w = drm_rect_width(&intel_pstate->src) >> 16;
3128         src_h = drm_rect_height(&intel_pstate->src) >> 16;
3129
3130         if (intel_rotation_90_or_270(pstate->rotation))
3131                 swap(src_w, src_h);
3132
3133         /* Halve UV plane width and height for NV12 */
3134         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3135                 src_w /= 2;
3136                 src_h /= 2;
3137         }
3138
3139         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3140                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3141         else
3142                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3143
3144         if (intel_rotation_90_or_270(pstate->rotation)) {
3145                 switch (plane_bpp) {
3146                 case 1:
3147                         min_scanlines = 32;
3148                         break;
3149                 case 2:
3150                         min_scanlines = 16;
3151                         break;
3152                 case 4:
3153                         min_scanlines = 8;
3154                         break;
3155                 case 8:
3156                         min_scanlines = 4;
3157                         break;
3158                 default:
3159                         WARN(1, "Unsupported pixel depth %u for rotation",
3160                              plane_bpp);
3161                         min_scanlines = 32;
3162                 }
3163         }
3164
3165         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3166 }
3167
3168 static int
3169 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3170                       struct skl_ddb_allocation *ddb /* out */)
3171 {
3172         struct drm_atomic_state *state = cstate->base.state;
3173         struct drm_crtc *crtc = cstate->base.crtc;
3174         struct drm_device *dev = crtc->dev;
3175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3176         struct intel_plane *intel_plane;
3177         struct drm_plane *plane;
3178         struct drm_plane_state *pstate;
3179         enum pipe pipe = intel_crtc->pipe;
3180         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3181         uint16_t alloc_size, start, cursor_blocks;
3182         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3183         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3184         unsigned int total_data_rate;
3185         int num_active;
3186         int id, i;
3187
3188         if (WARN_ON(!state))
3189                 return 0;
3190
3191         if (!cstate->base.active) {
3192                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3193                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3194                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3195                 return 0;
3196         }
3197
3198         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3199         alloc_size = skl_ddb_entry_size(alloc);
3200         if (alloc_size == 0) {
3201                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3202                 return 0;
3203         }
3204
3205         cursor_blocks = skl_cursor_allocation(num_active);
3206         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3207         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3208
3209         alloc_size -= cursor_blocks;
3210
3211         /* 1. Allocate the mininum required blocks for each active plane */
3212         for_each_plane_in_state(state, plane, pstate, i) {
3213                 intel_plane = to_intel_plane(plane);
3214                 id = skl_wm_plane_id(intel_plane);
3215
3216                 if (intel_plane->pipe != pipe)
3217                         continue;
3218
3219                 if (!to_intel_plane_state(pstate)->visible) {
3220                         minimum[id] = 0;
3221                         y_minimum[id] = 0;
3222                         continue;
3223                 }
3224                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3225                         minimum[id] = 0;
3226                         y_minimum[id] = 0;
3227                         continue;
3228                 }
3229
3230                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3231                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3232         }
3233
3234         for (i = 0; i < PLANE_CURSOR; i++) {
3235                 alloc_size -= minimum[i];
3236                 alloc_size -= y_minimum[i];
3237         }
3238
3239         /*
3240          * 2. Distribute the remaining space in proportion to the amount of
3241          * data each plane needs to fetch from memory.
3242          *
3243          * FIXME: we may not allocate every single block here.
3244          */
3245         total_data_rate = skl_get_total_relative_data_rate(cstate);
3246         if (total_data_rate == 0)
3247                 return 0;
3248
3249         start = alloc->start;
3250         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3251                 unsigned int data_rate, y_data_rate;
3252                 uint16_t plane_blocks, y_plane_blocks = 0;
3253                 int id = skl_wm_plane_id(intel_plane);
3254
3255                 data_rate = cstate->wm.skl.plane_data_rate[id];
3256
3257                 /*
3258                  * allocation for (packed formats) or (uv-plane part of planar format):
3259                  * promote the expression to 64 bits to avoid overflowing, the
3260                  * result is < available as data_rate / total_data_rate < 1
3261                  */
3262                 plane_blocks = minimum[id];
3263                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3264                                         total_data_rate);
3265
3266                 /* Leave disabled planes at (0,0) */
3267                 if (data_rate) {
3268                         ddb->plane[pipe][id].start = start;
3269                         ddb->plane[pipe][id].end = start + plane_blocks;
3270                 }
3271
3272                 start += plane_blocks;
3273
3274                 /*
3275                  * allocation for y_plane part of planar format:
3276                  */
3277                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3278
3279                 y_plane_blocks = y_minimum[id];
3280                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3281                                         total_data_rate);
3282
3283                 if (y_data_rate) {
3284                         ddb->y_plane[pipe][id].start = start;
3285                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3286                 }
3287
3288                 start += y_plane_blocks;
3289         }
3290
3291         return 0;
3292 }
3293
3294 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3295 {
3296         /* TODO: Take into account the scalers once we support them */
3297         return config->base.adjusted_mode.crtc_clock;
3298 }
3299
3300 /*
3301  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3302  * for the read latency) and cpp should always be <= 8, so that
3303  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3304  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3305 */
3306 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3307 {
3308         uint32_t wm_intermediate_val, ret;
3309
3310         if (latency == 0)
3311                 return UINT_MAX;
3312
3313         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3314         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3315
3316         return ret;
3317 }
3318
3319 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3320                                uint32_t horiz_pixels, uint8_t cpp,
3321                                uint64_t tiling, uint32_t latency)
3322 {
3323         uint32_t ret;
3324         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3325         uint32_t wm_intermediate_val;
3326
3327         if (latency == 0)
3328                 return UINT_MAX;
3329
3330         plane_bytes_per_line = horiz_pixels * cpp;
3331
3332         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3333             tiling == I915_FORMAT_MOD_Yf_TILED) {
3334                 plane_bytes_per_line *= 4;
3335                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3336                 plane_blocks_per_line /= 4;
3337         } else {
3338                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3339         }
3340
3341         wm_intermediate_val = latency * pixel_rate;
3342         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3343                                 plane_blocks_per_line;
3344
3345         return ret;
3346 }
3347
3348 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3349                                               struct intel_plane_state *pstate)
3350 {
3351         uint64_t adjusted_pixel_rate;
3352         uint64_t downscale_amount;
3353         uint64_t pixel_rate;
3354
3355         /* Shouldn't reach here on disabled planes... */
3356         if (WARN_ON(!pstate->visible))
3357                 return 0;
3358
3359         /*
3360          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3361          * with additional adjustments for plane-specific scaling.
3362          */
3363         adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3364         downscale_amount = skl_plane_downscale_amount(pstate);
3365
3366         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3367         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3368
3369         return pixel_rate;
3370 }
3371
3372 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3373                                 struct intel_crtc_state *cstate,
3374                                 struct intel_plane_state *intel_pstate,
3375                                 uint16_t ddb_allocation,
3376                                 int level,
3377                                 uint16_t *out_blocks, /* out */
3378                                 uint8_t *out_lines, /* out */
3379                                 bool *enabled /* out */)
3380 {
3381         struct drm_plane_state *pstate = &intel_pstate->base;
3382         struct drm_framebuffer *fb = pstate->fb;
3383         uint32_t latency = dev_priv->wm.skl_latency[level];
3384         uint32_t method1, method2;
3385         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3386         uint32_t res_blocks, res_lines;
3387         uint32_t selected_result;
3388         uint8_t cpp;
3389         uint32_t width = 0, height = 0;
3390         uint32_t plane_pixel_rate;
3391
3392         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3393                 *enabled = false;
3394                 return 0;
3395         }
3396
3397         width = drm_rect_width(&intel_pstate->src) >> 16;
3398         height = drm_rect_height(&intel_pstate->src) >> 16;
3399
3400         if (intel_rotation_90_or_270(pstate->rotation))
3401                 swap(width, height);
3402
3403         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3404         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3405
3406         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3407         method2 = skl_wm_method2(plane_pixel_rate,
3408                                  cstate->base.adjusted_mode.crtc_htotal,
3409                                  width,
3410                                  cpp,
3411                                  fb->modifier[0],
3412                                  latency);
3413
3414         plane_bytes_per_line = width * cpp;
3415         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3416
3417         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3418             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3419                 uint32_t min_scanlines = 4;
3420                 uint32_t y_tile_minimum;
3421                 if (intel_rotation_90_or_270(pstate->rotation)) {
3422                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3423                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3424                                 drm_format_plane_cpp(fb->pixel_format, 0);
3425
3426                         switch (cpp) {
3427                         case 1:
3428                                 min_scanlines = 16;
3429                                 break;
3430                         case 2:
3431                                 min_scanlines = 8;
3432                                 break;
3433                         case 8:
3434                                 WARN(1, "Unsupported pixel depth for rotation");
3435                         }
3436                 }
3437                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3438                 selected_result = max(method2, y_tile_minimum);
3439         } else {
3440                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3441                         selected_result = min(method1, method2);
3442                 else
3443                         selected_result = method1;
3444         }
3445
3446         res_blocks = selected_result + 1;
3447         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3448
3449         if (level >= 1 && level <= 7) {
3450                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3451                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3452                         res_lines += 4;
3453                 else
3454                         res_blocks++;
3455         }
3456
3457         if (res_blocks >= ddb_allocation || res_lines > 31) {
3458                 *enabled = false;
3459
3460                 /*
3461                  * If there are no valid level 0 watermarks, then we can't
3462                  * support this display configuration.
3463                  */
3464                 if (level) {
3465                         return 0;
3466                 } else {
3467                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3468                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3469                                       to_intel_crtc(cstate->base.crtc)->pipe,
3470                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3471                                       res_blocks, ddb_allocation, res_lines);
3472
3473                         return -EINVAL;
3474                 }
3475         }
3476
3477         *out_blocks = res_blocks;
3478         *out_lines = res_lines;
3479         *enabled = true;
3480
3481         return 0;
3482 }
3483
3484 static int
3485 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3486                      struct skl_ddb_allocation *ddb,
3487                      struct intel_crtc_state *cstate,
3488                      int level,
3489                      struct skl_wm_level *result)
3490 {
3491         struct drm_device *dev = dev_priv->dev;
3492         struct drm_atomic_state *state = cstate->base.state;
3493         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3494         struct drm_plane *plane;
3495         struct intel_plane *intel_plane;
3496         struct intel_plane_state *intel_pstate;
3497         uint16_t ddb_blocks;
3498         enum pipe pipe = intel_crtc->pipe;
3499         int ret;
3500
3501         /*
3502          * We'll only calculate watermarks for planes that are actually
3503          * enabled, so make sure all other planes are set as disabled.
3504          */
3505         memset(result, 0, sizeof(*result));
3506
3507         for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3508                 int i = skl_wm_plane_id(intel_plane);
3509
3510                 plane = &intel_plane->base;
3511                 intel_pstate = NULL;
3512                 if (state)
3513                         intel_pstate =
3514                                 intel_atomic_get_existing_plane_state(state,
3515                                                                       intel_plane);
3516
3517                 /*
3518                  * Note: If we start supporting multiple pending atomic commits
3519                  * against the same planes/CRTC's in the future, plane->state
3520                  * will no longer be the correct pre-state to use for the
3521                  * calculations here and we'll need to change where we get the
3522                  * 'unchanged' plane data from.
3523                  *
3524                  * For now this is fine because we only allow one queued commit
3525                  * against a CRTC.  Even if the plane isn't modified by this
3526                  * transaction and we don't have a plane lock, we still have
3527                  * the CRTC's lock, so we know that no other transactions are
3528                  * racing with us to update it.
3529                  */
3530                 if (!intel_pstate)
3531                         intel_pstate = to_intel_plane_state(plane->state);
3532
3533                 WARN_ON(!intel_pstate->base.fb);
3534
3535                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3536
3537                 ret = skl_compute_plane_wm(dev_priv,
3538                                            cstate,
3539                                            intel_pstate,
3540                                            ddb_blocks,
3541                                            level,
3542                                            &result->plane_res_b[i],
3543                                            &result->plane_res_l[i],
3544                                            &result->plane_en[i]);
3545                 if (ret)
3546                         return ret;
3547         }
3548
3549         return 0;
3550 }
3551
3552 static uint32_t
3553 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3554 {
3555         if (!cstate->base.active)
3556                 return 0;
3557
3558         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3559                 return 0;
3560
3561         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3562                             skl_pipe_pixel_rate(cstate));
3563 }
3564
3565 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3566                                       struct skl_wm_level *trans_wm /* out */)
3567 {
3568         struct drm_crtc *crtc = cstate->base.crtc;
3569         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3570         struct intel_plane *intel_plane;
3571
3572         if (!cstate->base.active)
3573                 return;
3574
3575         /* Until we know more, just disable transition WMs */
3576         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3577                 int i = skl_wm_plane_id(intel_plane);
3578
3579                 trans_wm->plane_en[i] = false;
3580         }
3581 }
3582
3583 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3584                              struct skl_ddb_allocation *ddb,
3585                              struct skl_pipe_wm *pipe_wm)
3586 {
3587         struct drm_device *dev = cstate->base.crtc->dev;
3588         const struct drm_i915_private *dev_priv = dev->dev_private;
3589         int level, max_level = ilk_wm_max_level(dev);
3590         int ret;
3591
3592         for (level = 0; level <= max_level; level++) {
3593                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3594                                            level, &pipe_wm->wm[level]);
3595                 if (ret)
3596                         return ret;
3597         }
3598         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3599
3600         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3601
3602         return 0;
3603 }
3604
3605 static void skl_compute_wm_results(struct drm_device *dev,
3606                                    struct skl_pipe_wm *p_wm,
3607                                    struct skl_wm_values *r,
3608                                    struct intel_crtc *intel_crtc)
3609 {
3610         int level, max_level = ilk_wm_max_level(dev);
3611         enum pipe pipe = intel_crtc->pipe;
3612         uint32_t temp;
3613         int i;
3614
3615         for (level = 0; level <= max_level; level++) {
3616                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3617                         temp = 0;
3618
3619                         temp |= p_wm->wm[level].plane_res_l[i] <<
3620                                         PLANE_WM_LINES_SHIFT;
3621                         temp |= p_wm->wm[level].plane_res_b[i];
3622                         if (p_wm->wm[level].plane_en[i])
3623                                 temp |= PLANE_WM_EN;
3624
3625                         r->plane[pipe][i][level] = temp;
3626                 }
3627
3628                 temp = 0;
3629
3630                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3631                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3632
3633                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3634                         temp |= PLANE_WM_EN;
3635
3636                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3637
3638         }
3639
3640         /* transition WMs */
3641         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3642                 temp = 0;
3643                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3644                 temp |= p_wm->trans_wm.plane_res_b[i];
3645                 if (p_wm->trans_wm.plane_en[i])
3646                         temp |= PLANE_WM_EN;
3647
3648                 r->plane_trans[pipe][i] = temp;
3649         }
3650
3651         temp = 0;
3652         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3653         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3654         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3655                 temp |= PLANE_WM_EN;
3656
3657         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3658
3659         r->wm_linetime[pipe] = p_wm->linetime;
3660 }
3661
3662 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3663                                 i915_reg_t reg,
3664                                 const struct skl_ddb_entry *entry)
3665 {
3666         if (entry->end)
3667                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3668         else
3669                 I915_WRITE(reg, 0);
3670 }
3671
3672 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3673                                 const struct skl_wm_values *new)
3674 {
3675         struct drm_device *dev = dev_priv->dev;
3676         struct intel_crtc *crtc;
3677
3678         for_each_intel_crtc(dev, crtc) {
3679                 int i, level, max_level = ilk_wm_max_level(dev);
3680                 enum pipe pipe = crtc->pipe;
3681
3682                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3683                         continue;
3684                 if (!crtc->active)
3685                         continue;
3686
3687                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3688
3689                 for (level = 0; level <= max_level; level++) {
3690                         for (i = 0; i < intel_num_planes(crtc); i++)
3691                                 I915_WRITE(PLANE_WM(pipe, i, level),
3692                                            new->plane[pipe][i][level]);
3693                         I915_WRITE(CUR_WM(pipe, level),
3694                                    new->plane[pipe][PLANE_CURSOR][level]);
3695                 }
3696                 for (i = 0; i < intel_num_planes(crtc); i++)
3697                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3698                                    new->plane_trans[pipe][i]);
3699                 I915_WRITE(CUR_WM_TRANS(pipe),
3700                            new->plane_trans[pipe][PLANE_CURSOR]);
3701
3702                 for (i = 0; i < intel_num_planes(crtc); i++) {
3703                         skl_ddb_entry_write(dev_priv,
3704                                             PLANE_BUF_CFG(pipe, i),
3705                                             &new->ddb.plane[pipe][i]);
3706                         skl_ddb_entry_write(dev_priv,
3707                                             PLANE_NV12_BUF_CFG(pipe, i),
3708                                             &new->ddb.y_plane[pipe][i]);
3709                 }
3710
3711                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3712                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3713         }
3714 }
3715
3716 /*
3717  * When setting up a new DDB allocation arrangement, we need to correctly
3718  * sequence the times at which the new allocations for the pipes are taken into
3719  * account or we'll have pipes fetching from space previously allocated to
3720  * another pipe.
3721  *
3722  * Roughly the sequence looks like:
3723  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3724  *     overlapping with a previous light-up pipe (another way to put it is:
3725  *     pipes with their new allocation strickly included into their old ones).
3726  *  2. re-allocate the other pipes that get their allocation reduced
3727  *  3. allocate the pipes having their allocation increased
3728  *
3729  * Steps 1. and 2. are here to take care of the following case:
3730  * - Initially DDB looks like this:
3731  *     |   B    |   C    |
3732  * - enable pipe A.
3733  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3734  *   allocation
3735  *     |  A  |  B  |  C  |
3736  *
3737  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3738  */
3739
3740 static void
3741 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3742 {
3743         int plane;
3744
3745         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3746
3747         for_each_plane(dev_priv, pipe, plane) {
3748                 I915_WRITE(PLANE_SURF(pipe, plane),
3749                            I915_READ(PLANE_SURF(pipe, plane)));
3750         }
3751         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3752 }
3753
3754 static bool
3755 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3756                             const struct skl_ddb_allocation *new,
3757                             enum pipe pipe)
3758 {
3759         uint16_t old_size, new_size;
3760
3761         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3762         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3763
3764         return old_size != new_size &&
3765                new->pipe[pipe].start >= old->pipe[pipe].start &&
3766                new->pipe[pipe].end <= old->pipe[pipe].end;
3767 }
3768
3769 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3770                                 struct skl_wm_values *new_values)
3771 {
3772         struct drm_device *dev = dev_priv->dev;
3773         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3774         bool reallocated[I915_MAX_PIPES] = {};
3775         struct intel_crtc *crtc;
3776         enum pipe pipe;
3777
3778         new_ddb = &new_values->ddb;
3779         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3780
3781         /*
3782          * First pass: flush the pipes with the new allocation contained into
3783          * the old space.
3784          *
3785          * We'll wait for the vblank on those pipes to ensure we can safely
3786          * re-allocate the freed space without this pipe fetching from it.
3787          */
3788         for_each_intel_crtc(dev, crtc) {
3789                 if (!crtc->active)
3790                         continue;
3791
3792                 pipe = crtc->pipe;
3793
3794                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3795                         continue;
3796
3797                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3798                 intel_wait_for_vblank(dev, pipe);
3799
3800                 reallocated[pipe] = true;
3801         }
3802
3803
3804         /*
3805          * Second pass: flush the pipes that are having their allocation
3806          * reduced, but overlapping with a previous allocation.
3807          *
3808          * Here as well we need to wait for the vblank to make sure the freed
3809          * space is not used anymore.
3810          */
3811         for_each_intel_crtc(dev, crtc) {
3812                 if (!crtc->active)
3813                         continue;
3814
3815                 pipe = crtc->pipe;
3816
3817                 if (reallocated[pipe])
3818                         continue;
3819
3820                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3821                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3822                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3823                         intel_wait_for_vblank(dev, pipe);
3824                         reallocated[pipe] = true;
3825                 }
3826         }
3827
3828         /*
3829          * Third pass: flush the pipes that got more space allocated.
3830          *
3831          * We don't need to actively wait for the update here, next vblank
3832          * will just get more DDB space with the correct WM values.
3833          */
3834         for_each_intel_crtc(dev, crtc) {
3835                 if (!crtc->active)
3836                         continue;
3837
3838                 pipe = crtc->pipe;
3839
3840                 /*
3841                  * At this point, only the pipes more space than before are
3842                  * left to re-allocate.
3843                  */
3844                 if (reallocated[pipe])
3845                         continue;
3846
3847                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3848         }
3849 }
3850
3851 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3852                               struct skl_ddb_allocation *ddb, /* out */
3853                               struct skl_pipe_wm *pipe_wm, /* out */
3854                               bool *changed /* out */)
3855 {
3856         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3857         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3858         int ret;
3859
3860         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3861         if (ret)
3862                 return ret;
3863
3864         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3865                 *changed = false;
3866         else
3867                 *changed = true;
3868
3869         return 0;
3870 }
3871
3872 static int
3873 skl_compute_ddb(struct drm_atomic_state *state)
3874 {
3875         struct drm_device *dev = state->dev;
3876         struct drm_i915_private *dev_priv = to_i915(dev);
3877         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3878         struct intel_crtc *intel_crtc;
3879         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3880         unsigned realloc_pipes = dev_priv->active_crtcs;
3881         int ret;
3882
3883         /*
3884          * If this is our first atomic update following hardware readout,
3885          * we can't trust the DDB that the BIOS programmed for us.  Let's
3886          * pretend that all pipes switched active status so that we'll
3887          * ensure a full DDB recompute.
3888          */
3889         if (dev_priv->wm.distrust_bios_wm)
3890                 intel_state->active_pipe_changes = ~0;
3891
3892         /*
3893          * If the modeset changes which CRTC's are active, we need to
3894          * recompute the DDB allocation for *all* active pipes, even
3895          * those that weren't otherwise being modified in any way by this
3896          * atomic commit.  Due to the shrinking of the per-pipe allocations
3897          * when new active CRTC's are added, it's possible for a pipe that
3898          * we were already using and aren't changing at all here to suddenly
3899          * become invalid if its DDB needs exceeds its new allocation.
3900          *
3901          * Note that if we wind up doing a full DDB recompute, we can't let
3902          * any other display updates race with this transaction, so we need
3903          * to grab the lock on *all* CRTC's.
3904          */
3905         if (intel_state->active_pipe_changes) {
3906                 realloc_pipes = ~0;
3907                 intel_state->wm_results.dirty_pipes = ~0;
3908         }
3909
3910         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3911                 struct intel_crtc_state *cstate;
3912
3913                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3914                 if (IS_ERR(cstate))
3915                         return PTR_ERR(cstate);
3916
3917                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3918                 if (ret)
3919                         return ret;
3920         }
3921
3922         return 0;
3923 }
3924
3925 static int
3926 skl_compute_wm(struct drm_atomic_state *state)
3927 {
3928         struct drm_crtc *crtc;
3929         struct drm_crtc_state *cstate;
3930         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3931         struct skl_wm_values *results = &intel_state->wm_results;
3932         struct skl_pipe_wm *pipe_wm;
3933         bool changed = false;
3934         int ret, i;
3935
3936         /*
3937          * If this transaction isn't actually touching any CRTC's, don't
3938          * bother with watermark calculation.  Note that if we pass this
3939          * test, we're guaranteed to hold at least one CRTC state mutex,
3940          * which means we can safely use values like dev_priv->active_crtcs
3941          * since any racing commits that want to update them would need to
3942          * hold _all_ CRTC state mutexes.
3943          */
3944         for_each_crtc_in_state(state, crtc, cstate, i)
3945                 changed = true;
3946         if (!changed)
3947                 return 0;
3948
3949         /* Clear all dirty flags */
3950         results->dirty_pipes = 0;
3951
3952         ret = skl_compute_ddb(state);
3953         if (ret)
3954                 return ret;
3955
3956         /*
3957          * Calculate WM's for all pipes that are part of this transaction.
3958          * Note that the DDB allocation above may have added more CRTC's that
3959          * weren't otherwise being modified (and set bits in dirty_pipes) if
3960          * pipe allocations had to change.
3961          *
3962          * FIXME:  Now that we're doing this in the atomic check phase, we
3963          * should allow skl_update_pipe_wm() to return failure in cases where
3964          * no suitable watermark values can be found.
3965          */
3966         for_each_crtc_in_state(state, crtc, cstate, i) {
3967                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3968                 struct intel_crtc_state *intel_cstate =
3969                         to_intel_crtc_state(cstate);
3970
3971                 pipe_wm = &intel_cstate->wm.skl.optimal;
3972                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3973                                          &changed);
3974                 if (ret)
3975                         return ret;
3976
3977                 if (changed)
3978                         results->dirty_pipes |= drm_crtc_mask(crtc);
3979
3980                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3981                         /* This pipe's WM's did not change */
3982                         continue;
3983
3984                 intel_cstate->update_wm_pre = true;
3985                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
3986         }
3987
3988         return 0;
3989 }
3990
3991 static void skl_update_wm(struct drm_crtc *crtc)
3992 {
3993         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3994         struct drm_device *dev = crtc->dev;
3995         struct drm_i915_private *dev_priv = dev->dev_private;
3996         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3997         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3998         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3999
4000         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4001                 return;
4002
4003         intel_crtc->wm.active.skl = *pipe_wm;
4004
4005         mutex_lock(&dev_priv->wm.wm_mutex);
4006
4007         skl_write_wm_values(dev_priv, results);
4008         skl_flush_wm_values(dev_priv, results);
4009
4010         /* store the new configuration */
4011         dev_priv->wm.skl_hw = *results;
4012
4013         mutex_unlock(&dev_priv->wm.wm_mutex);
4014 }
4015
4016 static void ilk_compute_wm_config(struct drm_device *dev,
4017                                   struct intel_wm_config *config)
4018 {
4019         struct intel_crtc *crtc;
4020
4021         /* Compute the currently _active_ config */
4022         for_each_intel_crtc(dev, crtc) {
4023                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4024
4025                 if (!wm->pipe_enabled)
4026                         continue;
4027
4028                 config->sprites_enabled |= wm->sprites_enabled;
4029                 config->sprites_scaled |= wm->sprites_scaled;
4030                 config->num_pipes_active++;
4031         }
4032 }
4033
4034 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4035 {
4036         struct drm_device *dev = dev_priv->dev;
4037         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4038         struct ilk_wm_maximums max;
4039         struct intel_wm_config config = {};
4040         struct ilk_wm_values results = {};
4041         enum intel_ddb_partitioning partitioning;
4042
4043         ilk_compute_wm_config(dev, &config);
4044
4045         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4046         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4047
4048         /* 5/6 split only in single pipe config on IVB+ */
4049         if (INTEL_INFO(dev)->gen >= 7 &&
4050             config.num_pipes_active == 1 && config.sprites_enabled) {
4051                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4052                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4053
4054                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4055         } else {
4056                 best_lp_wm = &lp_wm_1_2;
4057         }
4058
4059         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4060                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4061
4062         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4063
4064         ilk_write_wm_values(dev_priv, &results);
4065 }
4066
4067 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4068 {
4069         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4070         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4071
4072         mutex_lock(&dev_priv->wm.wm_mutex);
4073         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4074         ilk_program_watermarks(dev_priv);
4075         mutex_unlock(&dev_priv->wm.wm_mutex);
4076 }
4077
4078 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4079 {
4080         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4081         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4082
4083         mutex_lock(&dev_priv->wm.wm_mutex);
4084         if (cstate->wm.need_postvbl_update) {
4085                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4086                 ilk_program_watermarks(dev_priv);
4087         }
4088         mutex_unlock(&dev_priv->wm.wm_mutex);
4089 }
4090
4091 static void skl_pipe_wm_active_state(uint32_t val,
4092                                      struct skl_pipe_wm *active,
4093                                      bool is_transwm,
4094                                      bool is_cursor,
4095                                      int i,
4096                                      int level)
4097 {
4098         bool is_enabled = (val & PLANE_WM_EN) != 0;
4099
4100         if (!is_transwm) {
4101                 if (!is_cursor) {
4102                         active->wm[level].plane_en[i] = is_enabled;
4103                         active->wm[level].plane_res_b[i] =
4104                                         val & PLANE_WM_BLOCKS_MASK;
4105                         active->wm[level].plane_res_l[i] =
4106                                         (val >> PLANE_WM_LINES_SHIFT) &
4107                                                 PLANE_WM_LINES_MASK;
4108                 } else {
4109                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4110                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4111                                         val & PLANE_WM_BLOCKS_MASK;
4112                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4113                                         (val >> PLANE_WM_LINES_SHIFT) &
4114                                                 PLANE_WM_LINES_MASK;
4115                 }
4116         } else {
4117                 if (!is_cursor) {
4118                         active->trans_wm.plane_en[i] = is_enabled;
4119                         active->trans_wm.plane_res_b[i] =
4120                                         val & PLANE_WM_BLOCKS_MASK;
4121                         active->trans_wm.plane_res_l[i] =
4122                                         (val >> PLANE_WM_LINES_SHIFT) &
4123                                                 PLANE_WM_LINES_MASK;
4124                 } else {
4125                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4126                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4127                                         val & PLANE_WM_BLOCKS_MASK;
4128                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4129                                         (val >> PLANE_WM_LINES_SHIFT) &
4130                                                 PLANE_WM_LINES_MASK;
4131                 }
4132         }
4133 }
4134
4135 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4136 {
4137         struct drm_device *dev = crtc->dev;
4138         struct drm_i915_private *dev_priv = dev->dev_private;
4139         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4141         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4142         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4143         enum pipe pipe = intel_crtc->pipe;
4144         int level, i, max_level;
4145         uint32_t temp;
4146
4147         max_level = ilk_wm_max_level(dev);
4148
4149         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4150
4151         for (level = 0; level <= max_level; level++) {
4152                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4153                         hw->plane[pipe][i][level] =
4154                                         I915_READ(PLANE_WM(pipe, i, level));
4155                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4156         }
4157
4158         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4159                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4160         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4161
4162         if (!intel_crtc->active)
4163                 return;
4164
4165         hw->dirty_pipes |= drm_crtc_mask(crtc);
4166
4167         active->linetime = hw->wm_linetime[pipe];
4168
4169         for (level = 0; level <= max_level; level++) {
4170                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4171                         temp = hw->plane[pipe][i][level];
4172                         skl_pipe_wm_active_state(temp, active, false,
4173                                                 false, i, level);
4174                 }
4175                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4176                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4177         }
4178
4179         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4180                 temp = hw->plane_trans[pipe][i];
4181                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4182         }
4183
4184         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4185         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4186
4187         intel_crtc->wm.active.skl = *active;
4188 }
4189
4190 void skl_wm_get_hw_state(struct drm_device *dev)
4191 {
4192         struct drm_i915_private *dev_priv = dev->dev_private;
4193         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4194         struct drm_crtc *crtc;
4195
4196         skl_ddb_get_hw_state(dev_priv, ddb);
4197         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4198                 skl_pipe_wm_get_hw_state(crtc);
4199
4200         if (dev_priv->active_crtcs) {
4201                 /* Fully recompute DDB on first atomic commit */
4202                 dev_priv->wm.distrust_bios_wm = true;
4203         } else {
4204                 /* Easy/common case; just sanitize DDB now if everything off */
4205                 memset(ddb, 0, sizeof(*ddb));
4206         }
4207 }
4208
4209 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4210 {
4211         struct drm_device *dev = crtc->dev;
4212         struct drm_i915_private *dev_priv = dev->dev_private;
4213         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4215         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4216         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4217         enum pipe pipe = intel_crtc->pipe;
4218         static const i915_reg_t wm0_pipe_reg[] = {
4219                 [PIPE_A] = WM0_PIPEA_ILK,
4220                 [PIPE_B] = WM0_PIPEB_ILK,
4221                 [PIPE_C] = WM0_PIPEC_IVB,
4222         };
4223
4224         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4225         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4226                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4227
4228         memset(active, 0, sizeof(*active));
4229
4230         active->pipe_enabled = intel_crtc->active;
4231
4232         if (active->pipe_enabled) {
4233                 u32 tmp = hw->wm_pipe[pipe];
4234
4235                 /*
4236                  * For active pipes LP0 watermark is marked as
4237                  * enabled, and LP1+ watermaks as disabled since
4238                  * we can't really reverse compute them in case
4239                  * multiple pipes are active.
4240                  */
4241                 active->wm[0].enable = true;
4242                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4243                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4244                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4245                 active->linetime = hw->wm_linetime[pipe];
4246         } else {
4247                 int level, max_level = ilk_wm_max_level(dev);
4248
4249                 /*
4250                  * For inactive pipes, all watermark levels
4251                  * should be marked as enabled but zeroed,
4252                  * which is what we'd compute them to.
4253                  */
4254                 for (level = 0; level <= max_level; level++)
4255                         active->wm[level].enable = true;
4256         }
4257
4258         intel_crtc->wm.active.ilk = *active;
4259 }
4260
4261 #define _FW_WM(value, plane) \
4262         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4263 #define _FW_WM_VLV(value, plane) \
4264         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4265
4266 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4267                                struct vlv_wm_values *wm)
4268 {
4269         enum pipe pipe;
4270         uint32_t tmp;
4271
4272         for_each_pipe(dev_priv, pipe) {
4273                 tmp = I915_READ(VLV_DDL(pipe));
4274
4275                 wm->ddl[pipe].primary =
4276                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4277                 wm->ddl[pipe].cursor =
4278                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4279                 wm->ddl[pipe].sprite[0] =
4280                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4281                 wm->ddl[pipe].sprite[1] =
4282                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4283         }
4284
4285         tmp = I915_READ(DSPFW1);
4286         wm->sr.plane = _FW_WM(tmp, SR);
4287         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4288         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4289         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4290
4291         tmp = I915_READ(DSPFW2);
4292         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4293         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4294         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4295
4296         tmp = I915_READ(DSPFW3);
4297         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4298
4299         if (IS_CHERRYVIEW(dev_priv)) {
4300                 tmp = I915_READ(DSPFW7_CHV);
4301                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4302                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4303
4304                 tmp = I915_READ(DSPFW8_CHV);
4305                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4306                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4307
4308                 tmp = I915_READ(DSPFW9_CHV);
4309                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4310                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4311
4312                 tmp = I915_READ(DSPHOWM);
4313                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4314                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4315                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4316                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4317                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4318                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4319                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4320                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4321                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4322                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4323         } else {
4324                 tmp = I915_READ(DSPFW7);
4325                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4326                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4327
4328                 tmp = I915_READ(DSPHOWM);
4329                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4330                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4331                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4332                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4333                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4334                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4335                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4336         }
4337 }
4338
4339 #undef _FW_WM
4340 #undef _FW_WM_VLV
4341
4342 void vlv_wm_get_hw_state(struct drm_device *dev)
4343 {
4344         struct drm_i915_private *dev_priv = to_i915(dev);
4345         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4346         struct intel_plane *plane;
4347         enum pipe pipe;
4348         u32 val;
4349
4350         vlv_read_wm_values(dev_priv, wm);
4351
4352         for_each_intel_plane(dev, plane) {
4353                 switch (plane->base.type) {
4354                         int sprite;
4355                 case DRM_PLANE_TYPE_CURSOR:
4356                         plane->wm.fifo_size = 63;
4357                         break;
4358                 case DRM_PLANE_TYPE_PRIMARY:
4359                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4360                         break;
4361                 case DRM_PLANE_TYPE_OVERLAY:
4362                         sprite = plane->plane;
4363                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4364                         break;
4365                 }
4366         }
4367
4368         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4369         wm->level = VLV_WM_LEVEL_PM2;
4370
4371         if (IS_CHERRYVIEW(dev_priv)) {
4372                 mutex_lock(&dev_priv->rps.hw_lock);
4373
4374                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4375                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4376                         wm->level = VLV_WM_LEVEL_PM5;
4377
4378                 /*
4379                  * If DDR DVFS is disabled in the BIOS, Punit
4380                  * will never ack the request. So if that happens
4381                  * assume we don't have to enable/disable DDR DVFS
4382                  * dynamically. To test that just set the REQ_ACK
4383                  * bit to poke the Punit, but don't change the
4384                  * HIGH/LOW bits so that we don't actually change
4385                  * the current state.
4386                  */
4387                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4388                 val |= FORCE_DDR_FREQ_REQ_ACK;
4389                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4390
4391                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4392                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4393                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4394                                       "assuming DDR DVFS is disabled\n");
4395                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4396                 } else {
4397                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4398                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4399                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4400                 }
4401
4402                 mutex_unlock(&dev_priv->rps.hw_lock);
4403         }
4404
4405         for_each_pipe(dev_priv, pipe)
4406                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4407                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4408                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4409
4410         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4411                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4412 }
4413
4414 void ilk_wm_get_hw_state(struct drm_device *dev)
4415 {
4416         struct drm_i915_private *dev_priv = dev->dev_private;
4417         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4418         struct drm_crtc *crtc;
4419
4420         for_each_crtc(dev, crtc)
4421                 ilk_pipe_wm_get_hw_state(crtc);
4422
4423         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4424         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4425         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4426
4427         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4428         if (INTEL_INFO(dev)->gen >= 7) {
4429                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4430                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4431         }
4432
4433         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4434                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4435                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4436         else if (IS_IVYBRIDGE(dev))
4437                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4438                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4439
4440         hw->enable_fbc_wm =
4441                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4442 }
4443
4444 /**
4445  * intel_update_watermarks - update FIFO watermark values based on current modes
4446  *
4447  * Calculate watermark values for the various WM regs based on current mode
4448  * and plane configuration.
4449  *
4450  * There are several cases to deal with here:
4451  *   - normal (i.e. non-self-refresh)
4452  *   - self-refresh (SR) mode
4453  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4454  *   - lines are small relative to FIFO size (buffer can hold more than 2
4455  *     lines), so need to account for TLB latency
4456  *
4457  *   The normal calculation is:
4458  *     watermark = dotclock * bytes per pixel * latency
4459  *   where latency is platform & configuration dependent (we assume pessimal
4460  *   values here).
4461  *
4462  *   The SR calculation is:
4463  *     watermark = (trunc(latency/line time)+1) * surface width *
4464  *       bytes per pixel
4465  *   where
4466  *     line time = htotal / dotclock
4467  *     surface width = hdisplay for normal plane and 64 for cursor
4468  *   and latency is assumed to be high, as above.
4469  *
4470  * The final value programmed to the register should always be rounded up,
4471  * and include an extra 2 entries to account for clock crossings.
4472  *
4473  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4474  * to set the non-SR watermarks to 8.
4475  */
4476 void intel_update_watermarks(struct drm_crtc *crtc)
4477 {
4478         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4479
4480         if (dev_priv->display.update_wm)
4481                 dev_priv->display.update_wm(crtc);
4482 }
4483
4484 /*
4485  * Lock protecting IPS related data structures
4486  */
4487 DEFINE_SPINLOCK(mchdev_lock);
4488
4489 /* Global for IPS driver to get at the current i915 device. Protected by
4490  * mchdev_lock. */
4491 static struct drm_i915_private *i915_mch_dev;
4492
4493 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4494 {
4495         u16 rgvswctl;
4496
4497         assert_spin_locked(&mchdev_lock);
4498
4499         rgvswctl = I915_READ16(MEMSWCTL);
4500         if (rgvswctl & MEMCTL_CMD_STS) {
4501                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4502                 return false; /* still busy with another command */
4503         }
4504
4505         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4506                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4507         I915_WRITE16(MEMSWCTL, rgvswctl);
4508         POSTING_READ16(MEMSWCTL);
4509
4510         rgvswctl |= MEMCTL_CMD_STS;
4511         I915_WRITE16(MEMSWCTL, rgvswctl);
4512
4513         return true;
4514 }
4515
4516 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4517 {
4518         u32 rgvmodectl;
4519         u8 fmax, fmin, fstart, vstart;
4520
4521         spin_lock_irq(&mchdev_lock);
4522
4523         rgvmodectl = I915_READ(MEMMODECTL);
4524
4525         /* Enable temp reporting */
4526         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4527         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4528
4529         /* 100ms RC evaluation intervals */
4530         I915_WRITE(RCUPEI, 100000);
4531         I915_WRITE(RCDNEI, 100000);
4532
4533         /* Set max/min thresholds to 90ms and 80ms respectively */
4534         I915_WRITE(RCBMAXAVG, 90000);
4535         I915_WRITE(RCBMINAVG, 80000);
4536
4537         I915_WRITE(MEMIHYST, 1);
4538
4539         /* Set up min, max, and cur for interrupt handling */
4540         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4541         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4542         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4543                 MEMMODE_FSTART_SHIFT;
4544
4545         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4546                 PXVFREQ_PX_SHIFT;
4547
4548         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4549         dev_priv->ips.fstart = fstart;
4550
4551         dev_priv->ips.max_delay = fstart;
4552         dev_priv->ips.min_delay = fmin;
4553         dev_priv->ips.cur_delay = fstart;
4554
4555         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4556                          fmax, fmin, fstart);
4557
4558         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4559
4560         /*
4561          * Interrupts will be enabled in ironlake_irq_postinstall
4562          */
4563
4564         I915_WRITE(VIDSTART, vstart);
4565         POSTING_READ(VIDSTART);
4566
4567         rgvmodectl |= MEMMODE_SWMODE_EN;
4568         I915_WRITE(MEMMODECTL, rgvmodectl);
4569
4570         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4571                 DRM_ERROR("stuck trying to change perf mode\n");
4572         mdelay(1);
4573
4574         ironlake_set_drps(dev_priv, fstart);
4575
4576         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4577                 I915_READ(DDREC) + I915_READ(CSIEC);
4578         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4579         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4580         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4581
4582         spin_unlock_irq(&mchdev_lock);
4583 }
4584
4585 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4586 {
4587         u16 rgvswctl;
4588
4589         spin_lock_irq(&mchdev_lock);
4590
4591         rgvswctl = I915_READ16(MEMSWCTL);
4592
4593         /* Ack interrupts, disable EFC interrupt */
4594         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4595         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4596         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4597         I915_WRITE(DEIIR, DE_PCU_EVENT);
4598         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4599
4600         /* Go back to the starting frequency */
4601         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4602         mdelay(1);
4603         rgvswctl |= MEMCTL_CMD_STS;
4604         I915_WRITE(MEMSWCTL, rgvswctl);
4605         mdelay(1);
4606
4607         spin_unlock_irq(&mchdev_lock);
4608 }
4609
4610 /* There's a funny hw issue where the hw returns all 0 when reading from
4611  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4612  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4613  * all limits and the gpu stuck at whatever frequency it is at atm).
4614  */
4615 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4616 {
4617         u32 limits;
4618
4619         /* Only set the down limit when we've reached the lowest level to avoid
4620          * getting more interrupts, otherwise leave this clear. This prevents a
4621          * race in the hw when coming out of rc6: There's a tiny window where
4622          * the hw runs at the minimal clock before selecting the desired
4623          * frequency, if the down threshold expires in that window we will not
4624          * receive a down interrupt. */
4625         if (IS_GEN9(dev_priv)) {
4626                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4627                 if (val <= dev_priv->rps.min_freq_softlimit)
4628                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4629         } else {
4630                 limits = dev_priv->rps.max_freq_softlimit << 24;
4631                 if (val <= dev_priv->rps.min_freq_softlimit)
4632                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4633         }
4634
4635         return limits;
4636 }
4637
4638 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4639 {
4640         int new_power;
4641         u32 threshold_up = 0, threshold_down = 0; /* in % */
4642         u32 ei_up = 0, ei_down = 0;
4643
4644         new_power = dev_priv->rps.power;
4645         switch (dev_priv->rps.power) {
4646         case LOW_POWER:
4647                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4648                         new_power = BETWEEN;
4649                 break;
4650
4651         case BETWEEN:
4652                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4653                         new_power = LOW_POWER;
4654                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4655                         new_power = HIGH_POWER;
4656                 break;
4657
4658         case HIGH_POWER:
4659                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4660                         new_power = BETWEEN;
4661                 break;
4662         }
4663         /* Max/min bins are special */
4664         if (val <= dev_priv->rps.min_freq_softlimit)
4665                 new_power = LOW_POWER;
4666         if (val >= dev_priv->rps.max_freq_softlimit)
4667                 new_power = HIGH_POWER;
4668         if (new_power == dev_priv->rps.power)
4669                 return;
4670
4671         /* Note the units here are not exactly 1us, but 1280ns. */
4672         switch (new_power) {
4673         case LOW_POWER:
4674                 /* Upclock if more than 95% busy over 16ms */
4675                 ei_up = 16000;
4676                 threshold_up = 95;
4677
4678                 /* Downclock if less than 85% busy over 32ms */
4679                 ei_down = 32000;
4680                 threshold_down = 85;
4681                 break;
4682
4683         case BETWEEN:
4684                 /* Upclock if more than 90% busy over 13ms */
4685                 ei_up = 13000;
4686                 threshold_up = 90;
4687
4688                 /* Downclock if less than 75% busy over 32ms */
4689                 ei_down = 32000;
4690                 threshold_down = 75;
4691                 break;
4692
4693         case HIGH_POWER:
4694                 /* Upclock if more than 85% busy over 10ms */
4695                 ei_up = 10000;
4696                 threshold_up = 85;
4697
4698                 /* Downclock if less than 60% busy over 32ms */
4699                 ei_down = 32000;
4700                 threshold_down = 60;
4701                 break;
4702         }
4703
4704         I915_WRITE(GEN6_RP_UP_EI,
4705                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4706         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4707                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4708
4709         I915_WRITE(GEN6_RP_DOWN_EI,
4710                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4711         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4712                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4713
4714          I915_WRITE(GEN6_RP_CONTROL,
4715                     GEN6_RP_MEDIA_TURBO |
4716                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4717                     GEN6_RP_MEDIA_IS_GFX |
4718                     GEN6_RP_ENABLE |
4719                     GEN6_RP_UP_BUSY_AVG |
4720                     GEN6_RP_DOWN_IDLE_AVG);
4721
4722         dev_priv->rps.power = new_power;
4723         dev_priv->rps.up_threshold = threshold_up;
4724         dev_priv->rps.down_threshold = threshold_down;
4725         dev_priv->rps.last_adj = 0;
4726 }
4727
4728 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4729 {
4730         u32 mask = 0;
4731
4732         if (val > dev_priv->rps.min_freq_softlimit)
4733                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4734         if (val < dev_priv->rps.max_freq_softlimit)
4735                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4736
4737         mask &= dev_priv->pm_rps_events;
4738
4739         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4740 }
4741
4742 /* gen6_set_rps is called to update the frequency request, but should also be
4743  * called when the range (min_delay and max_delay) is modified so that we can
4744  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4745 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4746 {
4747         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4748         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4749                 return;
4750
4751         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4752         WARN_ON(val > dev_priv->rps.max_freq);
4753         WARN_ON(val < dev_priv->rps.min_freq);
4754
4755         /* min/max delay may still have been modified so be sure to
4756          * write the limits value.
4757          */
4758         if (val != dev_priv->rps.cur_freq) {
4759                 gen6_set_rps_thresholds(dev_priv, val);
4760
4761                 if (IS_GEN9(dev_priv))
4762                         I915_WRITE(GEN6_RPNSWREQ,
4763                                    GEN9_FREQUENCY(val));
4764                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4765                         I915_WRITE(GEN6_RPNSWREQ,
4766                                    HSW_FREQUENCY(val));
4767                 else
4768                         I915_WRITE(GEN6_RPNSWREQ,
4769                                    GEN6_FREQUENCY(val) |
4770                                    GEN6_OFFSET(0) |
4771                                    GEN6_AGGRESSIVE_TURBO);
4772         }
4773
4774         /* Make sure we continue to get interrupts
4775          * until we hit the minimum or maximum frequencies.
4776          */
4777         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4778         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4779
4780         POSTING_READ(GEN6_RPNSWREQ);
4781
4782         dev_priv->rps.cur_freq = val;
4783         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4784 }
4785
4786 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4787 {
4788         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4789         WARN_ON(val > dev_priv->rps.max_freq);
4790         WARN_ON(val < dev_priv->rps.min_freq);
4791
4792         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4793                       "Odd GPU freq value\n"))
4794                 val &= ~1;
4795
4796         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4797
4798         if (val != dev_priv->rps.cur_freq) {
4799                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4800                 if (!IS_CHERRYVIEW(dev_priv))
4801                         gen6_set_rps_thresholds(dev_priv, val);
4802         }
4803
4804         dev_priv->rps.cur_freq = val;
4805         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4806 }
4807
4808 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4809  *
4810  * * If Gfx is Idle, then
4811  * 1. Forcewake Media well.
4812  * 2. Request idle freq.
4813  * 3. Release Forcewake of Media well.
4814 */
4815 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4816 {
4817         u32 val = dev_priv->rps.idle_freq;
4818
4819         if (dev_priv->rps.cur_freq <= val)
4820                 return;
4821
4822         /* Wake up the media well, as that takes a lot less
4823          * power than the Render well. */
4824         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4825         valleyview_set_rps(dev_priv, val);
4826         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4827 }
4828
4829 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4830 {
4831         mutex_lock(&dev_priv->rps.hw_lock);
4832         if (dev_priv->rps.enabled) {
4833                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4834                         gen6_rps_reset_ei(dev_priv);
4835                 I915_WRITE(GEN6_PMINTRMSK,
4836                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4837         }
4838         mutex_unlock(&dev_priv->rps.hw_lock);
4839 }
4840
4841 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4842 {
4843         mutex_lock(&dev_priv->rps.hw_lock);
4844         if (dev_priv->rps.enabled) {
4845                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4846                         vlv_set_rps_idle(dev_priv);
4847                 else
4848                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4849                 dev_priv->rps.last_adj = 0;
4850                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4851         }
4852         mutex_unlock(&dev_priv->rps.hw_lock);
4853
4854         spin_lock(&dev_priv->rps.client_lock);
4855         while (!list_empty(&dev_priv->rps.clients))
4856                 list_del_init(dev_priv->rps.clients.next);
4857         spin_unlock(&dev_priv->rps.client_lock);
4858 }
4859
4860 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4861                     struct intel_rps_client *rps,
4862                     unsigned long submitted)
4863 {
4864         /* This is intentionally racy! We peek at the state here, then
4865          * validate inside the RPS worker.
4866          */
4867         if (!(dev_priv->mm.busy &&
4868               dev_priv->rps.enabled &&
4869               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4870                 return;
4871
4872         /* Force a RPS boost (and don't count it against the client) if
4873          * the GPU is severely congested.
4874          */
4875         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4876                 rps = NULL;
4877
4878         spin_lock(&dev_priv->rps.client_lock);
4879         if (rps == NULL || list_empty(&rps->link)) {
4880                 spin_lock_irq(&dev_priv->irq_lock);
4881                 if (dev_priv->rps.interrupts_enabled) {
4882                         dev_priv->rps.client_boost = true;
4883                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4884                 }
4885                 spin_unlock_irq(&dev_priv->irq_lock);
4886
4887                 if (rps != NULL) {
4888                         list_add(&rps->link, &dev_priv->rps.clients);
4889                         rps->boosts++;
4890                 } else
4891                         dev_priv->rps.boosts++;
4892         }
4893         spin_unlock(&dev_priv->rps.client_lock);
4894 }
4895
4896 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4897 {
4898         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4899                 valleyview_set_rps(dev_priv, val);
4900         else
4901                 gen6_set_rps(dev_priv, val);
4902 }
4903
4904 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4905 {
4906         I915_WRITE(GEN6_RC_CONTROL, 0);
4907         I915_WRITE(GEN9_PG_ENABLE, 0);
4908 }
4909
4910 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4911 {
4912         I915_WRITE(GEN6_RP_CONTROL, 0);
4913 }
4914
4915 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4916 {
4917         I915_WRITE(GEN6_RC_CONTROL, 0);
4918         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4919         I915_WRITE(GEN6_RP_CONTROL, 0);
4920 }
4921
4922 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4923 {
4924         I915_WRITE(GEN6_RC_CONTROL, 0);
4925 }
4926
4927 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4928 {
4929         /* we're doing forcewake before Disabling RC6,
4930          * This what the BIOS expects when going into suspend */
4931         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4932
4933         I915_WRITE(GEN6_RC_CONTROL, 0);
4934
4935         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4936 }
4937
4938 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4939 {
4940         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4941                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4942                         mode = GEN6_RC_CTL_RC6_ENABLE;
4943                 else
4944                         mode = 0;
4945         }
4946         if (HAS_RC6p(dev_priv))
4947                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4948                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4949                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4950                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4951
4952         else
4953                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4954                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4955 }
4956
4957 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4958 {
4959         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4960         bool enable_rc6 = true;
4961         unsigned long rc6_ctx_base;
4962
4963         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4964                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4965                 enable_rc6 = false;
4966         }
4967
4968         /*
4969          * The exact context size is not known for BXT, so assume a page size
4970          * for this check.
4971          */
4972         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4973         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4974               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4975                                         ggtt->stolen_reserved_size))) {
4976                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4977                 enable_rc6 = false;
4978         }
4979
4980         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4981               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4982               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4983               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4984                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4985                 enable_rc6 = false;
4986         }
4987
4988         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4989                                             GEN6_RC_CTL_HW_ENABLE)) &&
4990             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4991              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4992                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4993                 enable_rc6 = false;
4994         }
4995
4996         return enable_rc6;
4997 }
4998
4999 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5000 {
5001         /* No RC6 before Ironlake and code is gone for ilk. */
5002         if (INTEL_INFO(dev_priv)->gen < 6)
5003                 return 0;
5004
5005         if (!enable_rc6)
5006                 return 0;
5007
5008         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5009                 DRM_INFO("RC6 disabled by BIOS\n");
5010                 return 0;
5011         }
5012
5013         /* Respect the kernel parameter if it is set */
5014         if (enable_rc6 >= 0) {
5015                 int mask;
5016
5017                 if (HAS_RC6p(dev_priv))
5018                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5019                                INTEL_RC6pp_ENABLE;
5020                 else
5021                         mask = INTEL_RC6_ENABLE;
5022
5023                 if ((enable_rc6 & mask) != enable_rc6)
5024                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
5025                                       enable_rc6 & mask, enable_rc6, mask);
5026
5027                 return enable_rc6 & mask;
5028         }
5029
5030         if (IS_IVYBRIDGE(dev_priv))
5031                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5032
5033         return INTEL_RC6_ENABLE;
5034 }
5035
5036 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5037 {
5038         uint32_t rp_state_cap;
5039         u32 ddcc_status = 0;
5040         int ret;
5041
5042         /* All of these values are in units of 50MHz */
5043         dev_priv->rps.cur_freq          = 0;
5044         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5045         if (IS_BROXTON(dev_priv)) {
5046                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5047                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5048                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5049                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5050         } else {
5051                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5052                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5053                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5054                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5055         }
5056
5057         /* hw_max = RP0 until we check for overclocking */
5058         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
5059
5060         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5061         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5062             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5063                 ret = sandybridge_pcode_read(dev_priv,
5064                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5065                                         &ddcc_status);
5066                 if (0 == ret)
5067                         dev_priv->rps.efficient_freq =
5068                                 clamp_t(u8,
5069                                         ((ddcc_status >> 8) & 0xff),
5070                                         dev_priv->rps.min_freq,
5071                                         dev_priv->rps.max_freq);
5072         }
5073
5074         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5075                 /* Store the frequency values in 16.66 MHZ units, which is
5076                    the natural hardware unit for SKL */
5077                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5078                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5079                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5080                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5081                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5082         }
5083
5084         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5085
5086         /* Preserve min/max settings in case of re-init */
5087         if (dev_priv->rps.max_freq_softlimit == 0)
5088                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5089
5090         if (dev_priv->rps.min_freq_softlimit == 0) {
5091                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5092                         dev_priv->rps.min_freq_softlimit =
5093                                 max_t(int, dev_priv->rps.efficient_freq,
5094                                       intel_freq_opcode(dev_priv, 450));
5095                 else
5096                         dev_priv->rps.min_freq_softlimit =
5097                                 dev_priv->rps.min_freq;
5098         }
5099 }
5100
5101 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5102 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5103 {
5104         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5105
5106         gen6_init_rps_frequencies(dev_priv);
5107
5108         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5109         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5110                 /*
5111                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5112                  * clear out the Control register just to avoid inconsitency
5113                  * with debugfs interface, which will show  Turbo as enabled
5114                  * only and that is not expected by the User after adding the
5115                  * WaGsvDisableTurbo. Apart from this there is no problem even
5116                  * if the Turbo is left enabled in the Control register, as the
5117                  * Up/Down interrupts would remain masked.
5118                  */
5119                 gen9_disable_rps(dev_priv);
5120                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5121                 return;
5122         }
5123
5124         /* Program defaults and thresholds for RPS*/
5125         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5126                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5127
5128         /* 1 second timeout*/
5129         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5130                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5131
5132         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5133
5134         /* Leaning on the below call to gen6_set_rps to program/setup the
5135          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5136          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5137         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5138         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5139
5140         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5141 }
5142
5143 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5144 {
5145         struct intel_engine_cs *engine;
5146         uint32_t rc6_mask = 0;
5147
5148         /* 1a: Software RC state - RC0 */
5149         I915_WRITE(GEN6_RC_STATE, 0);
5150
5151         /* 1b: Get forcewake during program sequence. Although the driver
5152          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5153         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5154
5155         /* 2a: Disable RC states. */
5156         I915_WRITE(GEN6_RC_CONTROL, 0);
5157
5158         /* 2b: Program RC6 thresholds.*/
5159
5160         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5161         if (IS_SKYLAKE(dev_priv))
5162                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5163         else
5164                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5165         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5166         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5167         for_each_engine(engine, dev_priv)
5168                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5169
5170         if (HAS_GUC(dev_priv))
5171                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5172
5173         I915_WRITE(GEN6_RC_SLEEP, 0);
5174
5175         /* 2c: Program Coarse Power Gating Policies. */
5176         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5177         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5178
5179         /* 3a: Enable RC6 */
5180         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5181                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5182         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5183         /* WaRsUseTimeoutMode */
5184         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5185             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5186                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5187                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5188                            GEN7_RC_CTL_TO_MODE |
5189                            rc6_mask);
5190         } else {
5191                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5192                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5193                            GEN6_RC_CTL_EI_MODE(1) |
5194                            rc6_mask);
5195         }
5196
5197         /*
5198          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5199          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5200          */
5201         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5202                 I915_WRITE(GEN9_PG_ENABLE, 0);
5203         else
5204                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5205                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5206
5207         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5208 }
5209
5210 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5211 {
5212         struct intel_engine_cs *engine;
5213         uint32_t rc6_mask = 0;
5214
5215         /* 1a: Software RC state - RC0 */
5216         I915_WRITE(GEN6_RC_STATE, 0);
5217
5218         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5219          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5220         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5221
5222         /* 2a: Disable RC states. */
5223         I915_WRITE(GEN6_RC_CONTROL, 0);
5224
5225         /* Initialize rps frequencies */
5226         gen6_init_rps_frequencies(dev_priv);
5227
5228         /* 2b: Program RC6 thresholds.*/
5229         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5230         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5231         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5232         for_each_engine(engine, dev_priv)
5233                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5234         I915_WRITE(GEN6_RC_SLEEP, 0);
5235         if (IS_BROADWELL(dev_priv))
5236                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5237         else
5238                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5239
5240         /* 3: Enable RC6 */
5241         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5242                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5243         intel_print_rc6_info(dev_priv, rc6_mask);
5244         if (IS_BROADWELL(dev_priv))
5245                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5246                                 GEN7_RC_CTL_TO_MODE |
5247                                 rc6_mask);
5248         else
5249                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5250                                 GEN6_RC_CTL_EI_MODE(1) |
5251                                 rc6_mask);
5252
5253         /* 4 Program defaults and thresholds for RPS*/
5254         I915_WRITE(GEN6_RPNSWREQ,
5255                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5256         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5257                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5258         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5259         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5260
5261         /* Docs recommend 900MHz, and 300 MHz respectively */
5262         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5263                    dev_priv->rps.max_freq_softlimit << 24 |
5264                    dev_priv->rps.min_freq_softlimit << 16);
5265
5266         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5267         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5268         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5269         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5270
5271         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5272
5273         /* 5: Enable RPS */
5274         I915_WRITE(GEN6_RP_CONTROL,
5275                    GEN6_RP_MEDIA_TURBO |
5276                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5277                    GEN6_RP_MEDIA_IS_GFX |
5278                    GEN6_RP_ENABLE |
5279                    GEN6_RP_UP_BUSY_AVG |
5280                    GEN6_RP_DOWN_IDLE_AVG);
5281
5282         /* 6: Ring frequency + overclocking (our driver does this later */
5283
5284         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5285         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5286
5287         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5288 }
5289
5290 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5291 {
5292         struct intel_engine_cs *engine;
5293         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5294         u32 gtfifodbg;
5295         int rc6_mode;
5296         int ret;
5297
5298         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5299
5300         /* Here begins a magic sequence of register writes to enable
5301          * auto-downclocking.
5302          *
5303          * Perhaps there might be some value in exposing these to
5304          * userspace...
5305          */
5306         I915_WRITE(GEN6_RC_STATE, 0);
5307
5308         /* Clear the DBG now so we don't confuse earlier errors */
5309         gtfifodbg = I915_READ(GTFIFODBG);
5310         if (gtfifodbg) {
5311                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5312                 I915_WRITE(GTFIFODBG, gtfifodbg);
5313         }
5314
5315         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5316
5317         /* Initialize rps frequencies */
5318         gen6_init_rps_frequencies(dev_priv);
5319
5320         /* disable the counters and set deterministic thresholds */
5321         I915_WRITE(GEN6_RC_CONTROL, 0);
5322
5323         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5324         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5325         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5326         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5327         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5328
5329         for_each_engine(engine, dev_priv)
5330                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5331
5332         I915_WRITE(GEN6_RC_SLEEP, 0);
5333         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5334         if (IS_IVYBRIDGE(dev_priv))
5335                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5336         else
5337                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5338         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5339         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5340
5341         /* Check if we are enabling RC6 */
5342         rc6_mode = intel_enable_rc6();
5343         if (rc6_mode & INTEL_RC6_ENABLE)
5344                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5345
5346         /* We don't use those on Haswell */
5347         if (!IS_HASWELL(dev_priv)) {
5348                 if (rc6_mode & INTEL_RC6p_ENABLE)
5349                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5350
5351                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5352                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5353         }
5354
5355         intel_print_rc6_info(dev_priv, rc6_mask);
5356
5357         I915_WRITE(GEN6_RC_CONTROL,
5358                    rc6_mask |
5359                    GEN6_RC_CTL_EI_MODE(1) |
5360                    GEN6_RC_CTL_HW_ENABLE);
5361
5362         /* Power down if completely idle for over 50ms */
5363         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5364         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5365
5366         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5367         if (ret)
5368                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5369
5370         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5371         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5372                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5373                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5374                                  (pcu_mbox & 0xff) * 50);
5375                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5376         }
5377
5378         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5379         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5380
5381         rc6vids = 0;
5382         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5383         if (IS_GEN6(dev_priv) && ret) {
5384                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5385         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5386                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5387                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5388                 rc6vids &= 0xffff00;
5389                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5390                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5391                 if (ret)
5392                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5393         }
5394
5395         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5396 }
5397
5398 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5399 {
5400         int min_freq = 15;
5401         unsigned int gpu_freq;
5402         unsigned int max_ia_freq, min_ring_freq;
5403         unsigned int max_gpu_freq, min_gpu_freq;
5404         int scaling_factor = 180;
5405         struct cpufreq_policy *policy;
5406
5407         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5408
5409         policy = cpufreq_cpu_get(0);
5410         if (policy) {
5411                 max_ia_freq = policy->cpuinfo.max_freq;
5412                 cpufreq_cpu_put(policy);
5413         } else {
5414                 /*
5415                  * Default to measured freq if none found, PCU will ensure we
5416                  * don't go over
5417                  */
5418                 max_ia_freq = tsc_khz;
5419         }
5420
5421         /* Convert from kHz to MHz */
5422         max_ia_freq /= 1000;
5423
5424         min_ring_freq = I915_READ(DCLK) & 0xf;
5425         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5426         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5427
5428         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5429                 /* Convert GT frequency to 50 HZ units */
5430                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5431                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5432         } else {
5433                 min_gpu_freq = dev_priv->rps.min_freq;
5434                 max_gpu_freq = dev_priv->rps.max_freq;
5435         }
5436
5437         /*
5438          * For each potential GPU frequency, load a ring frequency we'd like
5439          * to use for memory access.  We do this by specifying the IA frequency
5440          * the PCU should use as a reference to determine the ring frequency.
5441          */
5442         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5443                 int diff = max_gpu_freq - gpu_freq;
5444                 unsigned int ia_freq = 0, ring_freq = 0;
5445
5446                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5447                         /*
5448                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5449                          * No floor required for ring frequency on SKL.
5450                          */
5451                         ring_freq = gpu_freq;
5452                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5453                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5454                         ring_freq = max(min_ring_freq, gpu_freq);
5455                 } else if (IS_HASWELL(dev_priv)) {
5456                         ring_freq = mult_frac(gpu_freq, 5, 4);
5457                         ring_freq = max(min_ring_freq, ring_freq);
5458                         /* leave ia_freq as the default, chosen by cpufreq */
5459                 } else {
5460                         /* On older processors, there is no separate ring
5461                          * clock domain, so in order to boost the bandwidth
5462                          * of the ring, we need to upclock the CPU (ia_freq).
5463                          *
5464                          * For GPU frequencies less than 750MHz,
5465                          * just use the lowest ring freq.
5466                          */
5467                         if (gpu_freq < min_freq)
5468                                 ia_freq = 800;
5469                         else
5470                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5471                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5472                 }
5473
5474                 sandybridge_pcode_write(dev_priv,
5475                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5476                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5477                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5478                                         gpu_freq);
5479         }
5480 }
5481
5482 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5483 {
5484         if (!HAS_CORE_RING_FREQ(dev_priv))
5485                 return;
5486
5487         mutex_lock(&dev_priv->rps.hw_lock);
5488         __gen6_update_ring_freq(dev_priv);
5489         mutex_unlock(&dev_priv->rps.hw_lock);
5490 }
5491
5492 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5493 {
5494         u32 val, rp0;
5495
5496         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5497
5498         switch (INTEL_INFO(dev_priv)->eu_total) {
5499         case 8:
5500                 /* (2 * 4) config */
5501                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5502                 break;
5503         case 12:
5504                 /* (2 * 6) config */
5505                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5506                 break;
5507         case 16:
5508                 /* (2 * 8) config */
5509         default:
5510                 /* Setting (2 * 8) Min RP0 for any other combination */
5511                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5512                 break;
5513         }
5514
5515         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5516
5517         return rp0;
5518 }
5519
5520 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5521 {
5522         u32 val, rpe;
5523
5524         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5525         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5526
5527         return rpe;
5528 }
5529
5530 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5531 {
5532         u32 val, rp1;
5533
5534         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5535         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5536
5537         return rp1;
5538 }
5539
5540 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5541 {
5542         u32 val, rp1;
5543
5544         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5545
5546         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5547
5548         return rp1;
5549 }
5550
5551 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5552 {
5553         u32 val, rp0;
5554
5555         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5556
5557         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5558         /* Clamp to max */
5559         rp0 = min_t(u32, rp0, 0xea);
5560
5561         return rp0;
5562 }
5563
5564 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5565 {
5566         u32 val, rpe;
5567
5568         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5569         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5570         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5571         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5572
5573         return rpe;
5574 }
5575
5576 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5577 {
5578         u32 val;
5579
5580         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5581         /*
5582          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5583          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5584          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5585          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5586          * to make sure it matches what Punit accepts.
5587          */
5588         return max_t(u32, val, 0xc0);
5589 }
5590
5591 /* Check that the pctx buffer wasn't move under us. */
5592 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5593 {
5594         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5595
5596         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5597                              dev_priv->vlv_pctx->stolen->start);
5598 }
5599
5600
5601 /* Check that the pcbr address is not empty. */
5602 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5603 {
5604         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5605
5606         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5607 }
5608
5609 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5610 {
5611         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5612         unsigned long pctx_paddr, paddr;
5613         u32 pcbr;
5614         int pctx_size = 32*1024;
5615
5616         pcbr = I915_READ(VLV_PCBR);
5617         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5618                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5619                 paddr = (dev_priv->mm.stolen_base +
5620                          (ggtt->stolen_size - pctx_size));
5621
5622                 pctx_paddr = (paddr & (~4095));
5623                 I915_WRITE(VLV_PCBR, pctx_paddr);
5624         }
5625
5626         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5627 }
5628
5629 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5630 {
5631         struct drm_i915_gem_object *pctx;
5632         unsigned long pctx_paddr;
5633         u32 pcbr;
5634         int pctx_size = 24*1024;
5635
5636         mutex_lock(&dev_priv->dev->struct_mutex);
5637
5638         pcbr = I915_READ(VLV_PCBR);
5639         if (pcbr) {
5640                 /* BIOS set it up already, grab the pre-alloc'd space */
5641                 int pcbr_offset;
5642
5643                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5644                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5645                                                                       pcbr_offset,
5646                                                                       I915_GTT_OFFSET_NONE,
5647                                                                       pctx_size);
5648                 goto out;
5649         }
5650
5651         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5652
5653         /*
5654          * From the Gunit register HAS:
5655          * The Gfx driver is expected to program this register and ensure
5656          * proper allocation within Gfx stolen memory.  For example, this
5657          * register should be programmed such than the PCBR range does not
5658          * overlap with other ranges, such as the frame buffer, protected
5659          * memory, or any other relevant ranges.
5660          */
5661         pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5662         if (!pctx) {
5663                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5664                 goto out;
5665         }
5666
5667         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5668         I915_WRITE(VLV_PCBR, pctx_paddr);
5669
5670 out:
5671         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5672         dev_priv->vlv_pctx = pctx;
5673         mutex_unlock(&dev_priv->dev->struct_mutex);
5674 }
5675
5676 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5677 {
5678         if (WARN_ON(!dev_priv->vlv_pctx))
5679                 return;
5680
5681         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5682         dev_priv->vlv_pctx = NULL;
5683 }
5684
5685 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5686 {
5687         dev_priv->rps.gpll_ref_freq =
5688                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5689                                   CCK_GPLL_CLOCK_CONTROL,
5690                                   dev_priv->czclk_freq);
5691
5692         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5693                          dev_priv->rps.gpll_ref_freq);
5694 }
5695
5696 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5697 {
5698         u32 val;
5699
5700         valleyview_setup_pctx(dev_priv);
5701
5702         vlv_init_gpll_ref_freq(dev_priv);
5703
5704         mutex_lock(&dev_priv->rps.hw_lock);
5705
5706         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5707         switch ((val >> 6) & 3) {
5708         case 0:
5709         case 1:
5710                 dev_priv->mem_freq = 800;
5711                 break;
5712         case 2:
5713                 dev_priv->mem_freq = 1066;
5714                 break;
5715         case 3:
5716                 dev_priv->mem_freq = 1333;
5717                 break;
5718         }
5719         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5720
5721         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5722         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5723         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5724                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5725                          dev_priv->rps.max_freq);
5726
5727         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5728         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5729                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5730                          dev_priv->rps.efficient_freq);
5731
5732         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5733         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5734                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5735                          dev_priv->rps.rp1_freq);
5736
5737         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5738         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5739                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5740                          dev_priv->rps.min_freq);
5741
5742         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5743
5744         /* Preserve min/max settings in case of re-init */
5745         if (dev_priv->rps.max_freq_softlimit == 0)
5746                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5747
5748         if (dev_priv->rps.min_freq_softlimit == 0)
5749                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5750
5751         mutex_unlock(&dev_priv->rps.hw_lock);
5752 }
5753
5754 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5755 {
5756         u32 val;
5757
5758         cherryview_setup_pctx(dev_priv);
5759
5760         vlv_init_gpll_ref_freq(dev_priv);
5761
5762         mutex_lock(&dev_priv->rps.hw_lock);
5763
5764         mutex_lock(&dev_priv->sb_lock);
5765         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5766         mutex_unlock(&dev_priv->sb_lock);
5767
5768         switch ((val >> 2) & 0x7) {
5769         case 3:
5770                 dev_priv->mem_freq = 2000;
5771                 break;
5772         default:
5773                 dev_priv->mem_freq = 1600;
5774                 break;
5775         }
5776         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5777
5778         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5779         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5780         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5781                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5782                          dev_priv->rps.max_freq);
5783
5784         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5785         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5786                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5787                          dev_priv->rps.efficient_freq);
5788
5789         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5790         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5791                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5792                          dev_priv->rps.rp1_freq);
5793
5794         /* PUnit validated range is only [RPe, RP0] */
5795         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5796         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5797                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5798                          dev_priv->rps.min_freq);
5799
5800         WARN_ONCE((dev_priv->rps.max_freq |
5801                    dev_priv->rps.efficient_freq |
5802                    dev_priv->rps.rp1_freq |
5803                    dev_priv->rps.min_freq) & 1,
5804                   "Odd GPU freq values\n");
5805
5806         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5807
5808         /* Preserve min/max settings in case of re-init */
5809         if (dev_priv->rps.max_freq_softlimit == 0)
5810                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5811
5812         if (dev_priv->rps.min_freq_softlimit == 0)
5813                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5814
5815         mutex_unlock(&dev_priv->rps.hw_lock);
5816 }
5817
5818 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5819 {
5820         valleyview_cleanup_pctx(dev_priv);
5821 }
5822
5823 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5824 {
5825         struct intel_engine_cs *engine;
5826         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5827
5828         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5829
5830         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5831                                              GT_FIFO_FREE_ENTRIES_CHV);
5832         if (gtfifodbg) {
5833                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5834                                  gtfifodbg);
5835                 I915_WRITE(GTFIFODBG, gtfifodbg);
5836         }
5837
5838         cherryview_check_pctx(dev_priv);
5839
5840         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5841          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5842         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5843
5844         /*  Disable RC states. */
5845         I915_WRITE(GEN6_RC_CONTROL, 0);
5846
5847         /* 2a: Program RC6 thresholds.*/
5848         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5849         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5850         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5851
5852         for_each_engine(engine, dev_priv)
5853                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5854         I915_WRITE(GEN6_RC_SLEEP, 0);
5855
5856         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5857         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5858
5859         /* allows RC6 residency counter to work */
5860         I915_WRITE(VLV_COUNTER_CONTROL,
5861                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5862                                       VLV_MEDIA_RC6_COUNT_EN |
5863                                       VLV_RENDER_RC6_COUNT_EN));
5864
5865         /* For now we assume BIOS is allocating and populating the PCBR  */
5866         pcbr = I915_READ(VLV_PCBR);
5867
5868         /* 3: Enable RC6 */
5869         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5870             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5871                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5872
5873         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5874
5875         /* 4 Program defaults and thresholds for RPS*/
5876         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5877         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5878         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5879         I915_WRITE(GEN6_RP_UP_EI, 66000);
5880         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5881
5882         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5883
5884         /* 5: Enable RPS */
5885         I915_WRITE(GEN6_RP_CONTROL,
5886                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5887                    GEN6_RP_MEDIA_IS_GFX |
5888                    GEN6_RP_ENABLE |
5889                    GEN6_RP_UP_BUSY_AVG |
5890                    GEN6_RP_DOWN_IDLE_AVG);
5891
5892         /* Setting Fixed Bias */
5893         val = VLV_OVERRIDE_EN |
5894                   VLV_SOC_TDP_EN |
5895                   CHV_BIAS_CPU_50_SOC_50;
5896         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5897
5898         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5899
5900         /* RPS code assumes GPLL is used */
5901         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5902
5903         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5904         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5905
5906         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5907         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5908                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5909                          dev_priv->rps.cur_freq);
5910
5911         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5912                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5913                          dev_priv->rps.idle_freq);
5914
5915         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5916
5917         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5918 }
5919
5920 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5921 {
5922         struct intel_engine_cs *engine;
5923         u32 gtfifodbg, val, rc6_mode = 0;
5924
5925         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5926
5927         valleyview_check_pctx(dev_priv);
5928
5929         gtfifodbg = I915_READ(GTFIFODBG);
5930         if (gtfifodbg) {
5931                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5932                                  gtfifodbg);
5933                 I915_WRITE(GTFIFODBG, gtfifodbg);
5934         }
5935
5936         /* If VLV, Forcewake all wells, else re-direct to regular path */
5937         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5938
5939         /*  Disable RC states. */
5940         I915_WRITE(GEN6_RC_CONTROL, 0);
5941
5942         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5943         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5944         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5945         I915_WRITE(GEN6_RP_UP_EI, 66000);
5946         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5947
5948         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5949
5950         I915_WRITE(GEN6_RP_CONTROL,
5951                    GEN6_RP_MEDIA_TURBO |
5952                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5953                    GEN6_RP_MEDIA_IS_GFX |
5954                    GEN6_RP_ENABLE |
5955                    GEN6_RP_UP_BUSY_AVG |
5956                    GEN6_RP_DOWN_IDLE_CONT);
5957
5958         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5959         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5960         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5961
5962         for_each_engine(engine, dev_priv)
5963                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5964
5965         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5966
5967         /* allows RC6 residency counter to work */
5968         I915_WRITE(VLV_COUNTER_CONTROL,
5969                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5970                                       VLV_RENDER_RC0_COUNT_EN |
5971                                       VLV_MEDIA_RC6_COUNT_EN |
5972                                       VLV_RENDER_RC6_COUNT_EN));
5973
5974         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5975                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5976
5977         intel_print_rc6_info(dev_priv, rc6_mode);
5978
5979         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5980
5981         /* Setting Fixed Bias */
5982         val = VLV_OVERRIDE_EN |
5983                   VLV_SOC_TDP_EN |
5984                   VLV_BIAS_CPU_125_SOC_875;
5985         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5986
5987         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5988
5989         /* RPS code assumes GPLL is used */
5990         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5991
5992         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5993         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5994
5995         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5996         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5997                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5998                          dev_priv->rps.cur_freq);
5999
6000         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6001                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6002                          dev_priv->rps.idle_freq);
6003
6004         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6005
6006         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6007 }
6008
6009 static unsigned long intel_pxfreq(u32 vidfreq)
6010 {
6011         unsigned long freq;
6012         int div = (vidfreq & 0x3f0000) >> 16;
6013         int post = (vidfreq & 0x3000) >> 12;
6014         int pre = (vidfreq & 0x7);
6015
6016         if (!pre)
6017                 return 0;
6018
6019         freq = ((div * 133333) / ((1<<post) * pre));
6020
6021         return freq;
6022 }
6023
6024 static const struct cparams {
6025         u16 i;
6026         u16 t;
6027         u16 m;
6028         u16 c;
6029 } cparams[] = {
6030         { 1, 1333, 301, 28664 },
6031         { 1, 1066, 294, 24460 },
6032         { 1, 800, 294, 25192 },
6033         { 0, 1333, 276, 27605 },
6034         { 0, 1066, 276, 27605 },
6035         { 0, 800, 231, 23784 },
6036 };
6037
6038 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6039 {
6040         u64 total_count, diff, ret;
6041         u32 count1, count2, count3, m = 0, c = 0;
6042         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6043         int i;
6044
6045         assert_spin_locked(&mchdev_lock);
6046
6047         diff1 = now - dev_priv->ips.last_time1;
6048
6049         /* Prevent division-by-zero if we are asking too fast.
6050          * Also, we don't get interesting results if we are polling
6051          * faster than once in 10ms, so just return the saved value
6052          * in such cases.
6053          */
6054         if (diff1 <= 10)
6055                 return dev_priv->ips.chipset_power;
6056
6057         count1 = I915_READ(DMIEC);
6058         count2 = I915_READ(DDREC);
6059         count3 = I915_READ(CSIEC);
6060
6061         total_count = count1 + count2 + count3;
6062
6063         /* FIXME: handle per-counter overflow */
6064         if (total_count < dev_priv->ips.last_count1) {
6065                 diff = ~0UL - dev_priv->ips.last_count1;
6066                 diff += total_count;
6067         } else {
6068                 diff = total_count - dev_priv->ips.last_count1;
6069         }
6070
6071         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6072                 if (cparams[i].i == dev_priv->ips.c_m &&
6073                     cparams[i].t == dev_priv->ips.r_t) {
6074                         m = cparams[i].m;
6075                         c = cparams[i].c;
6076                         break;
6077                 }
6078         }
6079
6080         diff = div_u64(diff, diff1);
6081         ret = ((m * diff) + c);
6082         ret = div_u64(ret, 10);
6083
6084         dev_priv->ips.last_count1 = total_count;
6085         dev_priv->ips.last_time1 = now;
6086
6087         dev_priv->ips.chipset_power = ret;
6088
6089         return ret;
6090 }
6091
6092 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6093 {
6094         unsigned long val;
6095
6096         if (INTEL_INFO(dev_priv)->gen != 5)
6097                 return 0;
6098
6099         spin_lock_irq(&mchdev_lock);
6100
6101         val = __i915_chipset_val(dev_priv);
6102
6103         spin_unlock_irq(&mchdev_lock);
6104
6105         return val;
6106 }
6107
6108 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6109 {
6110         unsigned long m, x, b;
6111         u32 tsfs;
6112
6113         tsfs = I915_READ(TSFS);
6114
6115         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6116         x = I915_READ8(TR1);
6117
6118         b = tsfs & TSFS_INTR_MASK;
6119
6120         return ((m * x) / 127) - b;
6121 }
6122
6123 static int _pxvid_to_vd(u8 pxvid)
6124 {
6125         if (pxvid == 0)
6126                 return 0;
6127
6128         if (pxvid >= 8 && pxvid < 31)
6129                 pxvid = 31;
6130
6131         return (pxvid + 2) * 125;
6132 }
6133
6134 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6135 {
6136         const int vd = _pxvid_to_vd(pxvid);
6137         const int vm = vd - 1125;
6138
6139         if (INTEL_INFO(dev_priv)->is_mobile)
6140                 return vm > 0 ? vm : 0;
6141
6142         return vd;
6143 }
6144
6145 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6146 {
6147         u64 now, diff, diffms;
6148         u32 count;
6149
6150         assert_spin_locked(&mchdev_lock);
6151
6152         now = ktime_get_raw_ns();
6153         diffms = now - dev_priv->ips.last_time2;
6154         do_div(diffms, NSEC_PER_MSEC);
6155
6156         /* Don't divide by 0 */
6157         if (!diffms)
6158                 return;
6159
6160         count = I915_READ(GFXEC);
6161
6162         if (count < dev_priv->ips.last_count2) {
6163                 diff = ~0UL - dev_priv->ips.last_count2;
6164                 diff += count;
6165         } else {
6166                 diff = count - dev_priv->ips.last_count2;
6167         }
6168
6169         dev_priv->ips.last_count2 = count;
6170         dev_priv->ips.last_time2 = now;
6171
6172         /* More magic constants... */
6173         diff = diff * 1181;
6174         diff = div_u64(diff, diffms * 10);
6175         dev_priv->ips.gfx_power = diff;
6176 }
6177
6178 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6179 {
6180         if (INTEL_INFO(dev_priv)->gen != 5)
6181                 return;
6182
6183         spin_lock_irq(&mchdev_lock);
6184
6185         __i915_update_gfx_val(dev_priv);
6186
6187         spin_unlock_irq(&mchdev_lock);
6188 }
6189
6190 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6191 {
6192         unsigned long t, corr, state1, corr2, state2;
6193         u32 pxvid, ext_v;
6194
6195         assert_spin_locked(&mchdev_lock);
6196
6197         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6198         pxvid = (pxvid >> 24) & 0x7f;
6199         ext_v = pvid_to_extvid(dev_priv, pxvid);
6200
6201         state1 = ext_v;
6202
6203         t = i915_mch_val(dev_priv);
6204
6205         /* Revel in the empirically derived constants */
6206
6207         /* Correction factor in 1/100000 units */
6208         if (t > 80)
6209                 corr = ((t * 2349) + 135940);
6210         else if (t >= 50)
6211                 corr = ((t * 964) + 29317);
6212         else /* < 50 */
6213                 corr = ((t * 301) + 1004);
6214
6215         corr = corr * ((150142 * state1) / 10000 - 78642);
6216         corr /= 100000;
6217         corr2 = (corr * dev_priv->ips.corr);
6218
6219         state2 = (corr2 * state1) / 10000;
6220         state2 /= 100; /* convert to mW */
6221
6222         __i915_update_gfx_val(dev_priv);
6223
6224         return dev_priv->ips.gfx_power + state2;
6225 }
6226
6227 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6228 {
6229         unsigned long val;
6230
6231         if (INTEL_INFO(dev_priv)->gen != 5)
6232                 return 0;
6233
6234         spin_lock_irq(&mchdev_lock);
6235
6236         val = __i915_gfx_val(dev_priv);
6237
6238         spin_unlock_irq(&mchdev_lock);
6239
6240         return val;
6241 }
6242
6243 /**
6244  * i915_read_mch_val - return value for IPS use
6245  *
6246  * Calculate and return a value for the IPS driver to use when deciding whether
6247  * we have thermal and power headroom to increase CPU or GPU power budget.
6248  */
6249 unsigned long i915_read_mch_val(void)
6250 {
6251         struct drm_i915_private *dev_priv;
6252         unsigned long chipset_val, graphics_val, ret = 0;
6253
6254         spin_lock_irq(&mchdev_lock);
6255         if (!i915_mch_dev)
6256                 goto out_unlock;
6257         dev_priv = i915_mch_dev;
6258
6259         chipset_val = __i915_chipset_val(dev_priv);
6260         graphics_val = __i915_gfx_val(dev_priv);
6261
6262         ret = chipset_val + graphics_val;
6263
6264 out_unlock:
6265         spin_unlock_irq(&mchdev_lock);
6266
6267         return ret;
6268 }
6269 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6270
6271 /**
6272  * i915_gpu_raise - raise GPU frequency limit
6273  *
6274  * Raise the limit; IPS indicates we have thermal headroom.
6275  */
6276 bool i915_gpu_raise(void)
6277 {
6278         struct drm_i915_private *dev_priv;
6279         bool ret = true;
6280
6281         spin_lock_irq(&mchdev_lock);
6282         if (!i915_mch_dev) {
6283                 ret = false;
6284                 goto out_unlock;
6285         }
6286         dev_priv = i915_mch_dev;
6287
6288         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6289                 dev_priv->ips.max_delay--;
6290
6291 out_unlock:
6292         spin_unlock_irq(&mchdev_lock);
6293
6294         return ret;
6295 }
6296 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6297
6298 /**
6299  * i915_gpu_lower - lower GPU frequency limit
6300  *
6301  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6302  * frequency maximum.
6303  */
6304 bool i915_gpu_lower(void)
6305 {
6306         struct drm_i915_private *dev_priv;
6307         bool ret = true;
6308
6309         spin_lock_irq(&mchdev_lock);
6310         if (!i915_mch_dev) {
6311                 ret = false;
6312                 goto out_unlock;
6313         }
6314         dev_priv = i915_mch_dev;
6315
6316         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6317                 dev_priv->ips.max_delay++;
6318
6319 out_unlock:
6320         spin_unlock_irq(&mchdev_lock);
6321
6322         return ret;
6323 }
6324 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6325
6326 /**
6327  * i915_gpu_busy - indicate GPU business to IPS
6328  *
6329  * Tell the IPS driver whether or not the GPU is busy.
6330  */
6331 bool i915_gpu_busy(void)
6332 {
6333         struct drm_i915_private *dev_priv;
6334         struct intel_engine_cs *engine;
6335         bool ret = false;
6336
6337         spin_lock_irq(&mchdev_lock);
6338         if (!i915_mch_dev)
6339                 goto out_unlock;
6340         dev_priv = i915_mch_dev;
6341
6342         for_each_engine(engine, dev_priv)
6343                 ret |= !list_empty(&engine->request_list);
6344
6345 out_unlock:
6346         spin_unlock_irq(&mchdev_lock);
6347
6348         return ret;
6349 }
6350 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6351
6352 /**
6353  * i915_gpu_turbo_disable - disable graphics turbo
6354  *
6355  * Disable graphics turbo by resetting the max frequency and setting the
6356  * current frequency to the default.
6357  */
6358 bool i915_gpu_turbo_disable(void)
6359 {
6360         struct drm_i915_private *dev_priv;
6361         bool ret = true;
6362
6363         spin_lock_irq(&mchdev_lock);
6364         if (!i915_mch_dev) {
6365                 ret = false;
6366                 goto out_unlock;
6367         }
6368         dev_priv = i915_mch_dev;
6369
6370         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6371
6372         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6373                 ret = false;
6374
6375 out_unlock:
6376         spin_unlock_irq(&mchdev_lock);
6377
6378         return ret;
6379 }
6380 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6381
6382 /**
6383  * Tells the intel_ips driver that the i915 driver is now loaded, if
6384  * IPS got loaded first.
6385  *
6386  * This awkward dance is so that neither module has to depend on the
6387  * other in order for IPS to do the appropriate communication of
6388  * GPU turbo limits to i915.
6389  */
6390 static void
6391 ips_ping_for_i915_load(void)
6392 {
6393         void (*link)(void);
6394
6395         link = symbol_get(ips_link_to_i915_driver);
6396         if (link) {
6397                 link();
6398                 symbol_put(ips_link_to_i915_driver);
6399         }
6400 }
6401
6402 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6403 {
6404         /* We only register the i915 ips part with intel-ips once everything is
6405          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6406         spin_lock_irq(&mchdev_lock);
6407         i915_mch_dev = dev_priv;
6408         spin_unlock_irq(&mchdev_lock);
6409
6410         ips_ping_for_i915_load();
6411 }
6412
6413 void intel_gpu_ips_teardown(void)
6414 {
6415         spin_lock_irq(&mchdev_lock);
6416         i915_mch_dev = NULL;
6417         spin_unlock_irq(&mchdev_lock);
6418 }
6419
6420 static void intel_init_emon(struct drm_i915_private *dev_priv)
6421 {
6422         u32 lcfuse;
6423         u8 pxw[16];
6424         int i;
6425
6426         /* Disable to program */
6427         I915_WRITE(ECR, 0);
6428         POSTING_READ(ECR);
6429
6430         /* Program energy weights for various events */
6431         I915_WRITE(SDEW, 0x15040d00);
6432         I915_WRITE(CSIEW0, 0x007f0000);
6433         I915_WRITE(CSIEW1, 0x1e220004);
6434         I915_WRITE(CSIEW2, 0x04000004);
6435
6436         for (i = 0; i < 5; i++)
6437                 I915_WRITE(PEW(i), 0);
6438         for (i = 0; i < 3; i++)
6439                 I915_WRITE(DEW(i), 0);
6440
6441         /* Program P-state weights to account for frequency power adjustment */
6442         for (i = 0; i < 16; i++) {
6443                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6444                 unsigned long freq = intel_pxfreq(pxvidfreq);
6445                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6446                         PXVFREQ_PX_SHIFT;
6447                 unsigned long val;
6448
6449                 val = vid * vid;
6450                 val *= (freq / 1000);
6451                 val *= 255;
6452                 val /= (127*127*900);
6453                 if (val > 0xff)
6454                         DRM_ERROR("bad pxval: %ld\n", val);
6455                 pxw[i] = val;
6456         }
6457         /* Render standby states get 0 weight */
6458         pxw[14] = 0;
6459         pxw[15] = 0;
6460
6461         for (i = 0; i < 4; i++) {
6462                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6463                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6464                 I915_WRITE(PXW(i), val);
6465         }
6466
6467         /* Adjust magic regs to magic values (more experimental results) */
6468         I915_WRITE(OGW0, 0);
6469         I915_WRITE(OGW1, 0);
6470         I915_WRITE(EG0, 0x00007f00);
6471         I915_WRITE(EG1, 0x0000000e);
6472         I915_WRITE(EG2, 0x000e0000);
6473         I915_WRITE(EG3, 0x68000300);
6474         I915_WRITE(EG4, 0x42000000);
6475         I915_WRITE(EG5, 0x00140031);
6476         I915_WRITE(EG6, 0);
6477         I915_WRITE(EG7, 0);
6478
6479         for (i = 0; i < 8; i++)
6480                 I915_WRITE(PXWL(i), 0);
6481
6482         /* Enable PMON + select events */
6483         I915_WRITE(ECR, 0x80000019);
6484
6485         lcfuse = I915_READ(LCFUSE02);
6486
6487         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6488 }
6489
6490 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6491 {
6492         /*
6493          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6494          * requirement.
6495          */
6496         if (!i915.enable_rc6) {
6497                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6498                 intel_runtime_pm_get(dev_priv);
6499         }
6500
6501         if (IS_CHERRYVIEW(dev_priv))
6502                 cherryview_init_gt_powersave(dev_priv);
6503         else if (IS_VALLEYVIEW(dev_priv))
6504                 valleyview_init_gt_powersave(dev_priv);
6505 }
6506
6507 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6508 {
6509         if (IS_CHERRYVIEW(dev_priv))
6510                 return;
6511         else if (IS_VALLEYVIEW(dev_priv))
6512                 valleyview_cleanup_gt_powersave(dev_priv);
6513
6514         if (!i915.enable_rc6)
6515                 intel_runtime_pm_put(dev_priv);
6516 }
6517
6518 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6519 {
6520         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6521
6522         gen6_disable_rps_interrupts(dev_priv);
6523 }
6524
6525 /**
6526  * intel_suspend_gt_powersave - suspend PM work and helper threads
6527  * @dev_priv: i915 device
6528  *
6529  * We don't want to disable RC6 or other features here, we just want
6530  * to make sure any work we've queued has finished and won't bother
6531  * us while we're suspended.
6532  */
6533 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6534 {
6535         if (INTEL_GEN(dev_priv) < 6)
6536                 return;
6537
6538         gen6_suspend_rps(dev_priv);
6539
6540         /* Force GPU to min freq during suspend */
6541         gen6_rps_idle(dev_priv);
6542 }
6543
6544 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6545 {
6546         if (IS_IRONLAKE_M(dev_priv)) {
6547                 ironlake_disable_drps(dev_priv);
6548         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6549                 intel_suspend_gt_powersave(dev_priv);
6550
6551                 mutex_lock(&dev_priv->rps.hw_lock);
6552                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6553                         gen9_disable_rc6(dev_priv);
6554                         gen9_disable_rps(dev_priv);
6555                 } else if (IS_CHERRYVIEW(dev_priv))
6556                         cherryview_disable_rps(dev_priv);
6557                 else if (IS_VALLEYVIEW(dev_priv))
6558                         valleyview_disable_rps(dev_priv);
6559                 else
6560                         gen6_disable_rps(dev_priv);
6561
6562                 dev_priv->rps.enabled = false;
6563                 mutex_unlock(&dev_priv->rps.hw_lock);
6564         }
6565 }
6566
6567 static void intel_gen6_powersave_work(struct work_struct *work)
6568 {
6569         struct drm_i915_private *dev_priv =
6570                 container_of(work, struct drm_i915_private,
6571                              rps.delayed_resume_work.work);
6572
6573         mutex_lock(&dev_priv->rps.hw_lock);
6574
6575         gen6_reset_rps_interrupts(dev_priv);
6576
6577         if (IS_CHERRYVIEW(dev_priv)) {
6578                 cherryview_enable_rps(dev_priv);
6579         } else if (IS_VALLEYVIEW(dev_priv)) {
6580                 valleyview_enable_rps(dev_priv);
6581         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6582                 gen9_enable_rc6(dev_priv);
6583                 gen9_enable_rps(dev_priv);
6584                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6585                         __gen6_update_ring_freq(dev_priv);
6586         } else if (IS_BROADWELL(dev_priv)) {
6587                 gen8_enable_rps(dev_priv);
6588                 __gen6_update_ring_freq(dev_priv);
6589         } else {
6590                 gen6_enable_rps(dev_priv);
6591                 __gen6_update_ring_freq(dev_priv);
6592         }
6593
6594         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6595         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6596
6597         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6598         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6599
6600         dev_priv->rps.enabled = true;
6601
6602         gen6_enable_rps_interrupts(dev_priv);
6603
6604         mutex_unlock(&dev_priv->rps.hw_lock);
6605
6606         intel_runtime_pm_put(dev_priv);
6607 }
6608
6609 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6610 {
6611         /* Powersaving is controlled by the host when inside a VM */
6612         if (intel_vgpu_active(dev_priv))
6613                 return;
6614
6615         if (IS_IRONLAKE_M(dev_priv)) {
6616                 ironlake_enable_drps(dev_priv);
6617                 mutex_lock(&dev_priv->dev->struct_mutex);
6618                 intel_init_emon(dev_priv);
6619                 mutex_unlock(&dev_priv->dev->struct_mutex);
6620         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6621                 /*
6622                  * PCU communication is slow and this doesn't need to be
6623                  * done at any specific time, so do this out of our fast path
6624                  * to make resume and init faster.
6625                  *
6626                  * We depend on the HW RC6 power context save/restore
6627                  * mechanism when entering D3 through runtime PM suspend. So
6628                  * disable RPM until RPS/RC6 is properly setup. We can only
6629                  * get here via the driver load/system resume/runtime resume
6630                  * paths, so the _noresume version is enough (and in case of
6631                  * runtime resume it's necessary).
6632                  */
6633                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6634                                            round_jiffies_up_relative(HZ)))
6635                         intel_runtime_pm_get_noresume(dev_priv);
6636         }
6637 }
6638
6639 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6640 {
6641         if (INTEL_INFO(dev_priv)->gen < 6)
6642                 return;
6643
6644         gen6_suspend_rps(dev_priv);
6645         dev_priv->rps.enabled = false;
6646 }
6647
6648 static void ibx_init_clock_gating(struct drm_device *dev)
6649 {
6650         struct drm_i915_private *dev_priv = dev->dev_private;
6651
6652         /*
6653          * On Ibex Peak and Cougar Point, we need to disable clock
6654          * gating for the panel power sequencer or it will fail to
6655          * start up when no ports are active.
6656          */
6657         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6658 }
6659
6660 static void g4x_disable_trickle_feed(struct drm_device *dev)
6661 {
6662         struct drm_i915_private *dev_priv = dev->dev_private;
6663         enum pipe pipe;
6664
6665         for_each_pipe(dev_priv, pipe) {
6666                 I915_WRITE(DSPCNTR(pipe),
6667                            I915_READ(DSPCNTR(pipe)) |
6668                            DISPPLANE_TRICKLE_FEED_DISABLE);
6669
6670                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6671                 POSTING_READ(DSPSURF(pipe));
6672         }
6673 }
6674
6675 static void ilk_init_lp_watermarks(struct drm_device *dev)
6676 {
6677         struct drm_i915_private *dev_priv = dev->dev_private;
6678
6679         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6680         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6681         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6682
6683         /*
6684          * Don't touch WM1S_LP_EN here.
6685          * Doing so could cause underruns.
6686          */
6687 }
6688
6689 static void ironlake_init_clock_gating(struct drm_device *dev)
6690 {
6691         struct drm_i915_private *dev_priv = dev->dev_private;
6692         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6693
6694         /*
6695          * Required for FBC
6696          * WaFbcDisableDpfcClockGating:ilk
6697          */
6698         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6699                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6700                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6701
6702         I915_WRITE(PCH_3DCGDIS0,
6703                    MARIUNIT_CLOCK_GATE_DISABLE |
6704                    SVSMUNIT_CLOCK_GATE_DISABLE);
6705         I915_WRITE(PCH_3DCGDIS1,
6706                    VFMUNIT_CLOCK_GATE_DISABLE);
6707
6708         /*
6709          * According to the spec the following bits should be set in
6710          * order to enable memory self-refresh
6711          * The bit 22/21 of 0x42004
6712          * The bit 5 of 0x42020
6713          * The bit 15 of 0x45000
6714          */
6715         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6716                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6717                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6718         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6719         I915_WRITE(DISP_ARB_CTL,
6720                    (I915_READ(DISP_ARB_CTL) |
6721                     DISP_FBC_WM_DIS));
6722
6723         ilk_init_lp_watermarks(dev);
6724
6725         /*
6726          * Based on the document from hardware guys the following bits
6727          * should be set unconditionally in order to enable FBC.
6728          * The bit 22 of 0x42000
6729          * The bit 22 of 0x42004
6730          * The bit 7,8,9 of 0x42020.
6731          */
6732         if (IS_IRONLAKE_M(dev)) {
6733                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6734                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6735                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6736                            ILK_FBCQ_DIS);
6737                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6738                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6739                            ILK_DPARB_GATE);
6740         }
6741
6742         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6743
6744         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6745                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6746                    ILK_ELPIN_409_SELECT);
6747         I915_WRITE(_3D_CHICKEN2,
6748                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6749                    _3D_CHICKEN2_WM_READ_PIPELINED);
6750
6751         /* WaDisableRenderCachePipelinedFlush:ilk */
6752         I915_WRITE(CACHE_MODE_0,
6753                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6754
6755         /* WaDisable_RenderCache_OperationalFlush:ilk */
6756         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6757
6758         g4x_disable_trickle_feed(dev);
6759
6760         ibx_init_clock_gating(dev);
6761 }
6762
6763 static void cpt_init_clock_gating(struct drm_device *dev)
6764 {
6765         struct drm_i915_private *dev_priv = dev->dev_private;
6766         int pipe;
6767         uint32_t val;
6768
6769         /*
6770          * On Ibex Peak and Cougar Point, we need to disable clock
6771          * gating for the panel power sequencer or it will fail to
6772          * start up when no ports are active.
6773          */
6774         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6775                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6776                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6777         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6778                    DPLS_EDP_PPS_FIX_DIS);
6779         /* The below fixes the weird display corruption, a few pixels shifted
6780          * downward, on (only) LVDS of some HP laptops with IVY.
6781          */
6782         for_each_pipe(dev_priv, pipe) {
6783                 val = I915_READ(TRANS_CHICKEN2(pipe));
6784                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6785                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6786                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6787                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6788                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6789                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6790                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6791                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6792         }
6793         /* WADP0ClockGatingDisable */
6794         for_each_pipe(dev_priv, pipe) {
6795                 I915_WRITE(TRANS_CHICKEN1(pipe),
6796                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6797         }
6798 }
6799
6800 static void gen6_check_mch_setup(struct drm_device *dev)
6801 {
6802         struct drm_i915_private *dev_priv = dev->dev_private;
6803         uint32_t tmp;
6804
6805         tmp = I915_READ(MCH_SSKPD);
6806         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6807                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6808                               tmp);
6809 }
6810
6811 static void gen6_init_clock_gating(struct drm_device *dev)
6812 {
6813         struct drm_i915_private *dev_priv = dev->dev_private;
6814         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6815
6816         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6817
6818         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6819                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6820                    ILK_ELPIN_409_SELECT);
6821
6822         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6823         I915_WRITE(_3D_CHICKEN,
6824                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6825
6826         /* WaDisable_RenderCache_OperationalFlush:snb */
6827         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6828
6829         /*
6830          * BSpec recoomends 8x4 when MSAA is used,
6831          * however in practice 16x4 seems fastest.
6832          *
6833          * Note that PS/WM thread counts depend on the WIZ hashing
6834          * disable bit, which we don't touch here, but it's good
6835          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6836          */
6837         I915_WRITE(GEN6_GT_MODE,
6838                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6839
6840         ilk_init_lp_watermarks(dev);
6841
6842         I915_WRITE(CACHE_MODE_0,
6843                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6844
6845         I915_WRITE(GEN6_UCGCTL1,
6846                    I915_READ(GEN6_UCGCTL1) |
6847                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6848                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6849
6850         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6851          * gating disable must be set.  Failure to set it results in
6852          * flickering pixels due to Z write ordering failures after
6853          * some amount of runtime in the Mesa "fire" demo, and Unigine
6854          * Sanctuary and Tropics, and apparently anything else with
6855          * alpha test or pixel discard.
6856          *
6857          * According to the spec, bit 11 (RCCUNIT) must also be set,
6858          * but we didn't debug actual testcases to find it out.
6859          *
6860          * WaDisableRCCUnitClockGating:snb
6861          * WaDisableRCPBUnitClockGating:snb
6862          */
6863         I915_WRITE(GEN6_UCGCTL2,
6864                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6865                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6866
6867         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6868         I915_WRITE(_3D_CHICKEN3,
6869                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6870
6871         /*
6872          * Bspec says:
6873          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6874          * 3DSTATE_SF number of SF output attributes is more than 16."
6875          */
6876         I915_WRITE(_3D_CHICKEN3,
6877                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6878
6879         /*
6880          * According to the spec the following bits should be
6881          * set in order to enable memory self-refresh and fbc:
6882          * The bit21 and bit22 of 0x42000
6883          * The bit21 and bit22 of 0x42004
6884          * The bit5 and bit7 of 0x42020
6885          * The bit14 of 0x70180
6886          * The bit14 of 0x71180
6887          *
6888          * WaFbcAsynchFlipDisableFbcQueue:snb
6889          */
6890         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6891                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6892                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6893         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6894                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6895                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6896         I915_WRITE(ILK_DSPCLK_GATE_D,
6897                    I915_READ(ILK_DSPCLK_GATE_D) |
6898                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6899                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6900
6901         g4x_disable_trickle_feed(dev);
6902
6903         cpt_init_clock_gating(dev);
6904
6905         gen6_check_mch_setup(dev);
6906 }
6907
6908 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6909 {
6910         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6911
6912         /*
6913          * WaVSThreadDispatchOverride:ivb,vlv
6914          *
6915          * This actually overrides the dispatch
6916          * mode for all thread types.
6917          */
6918         reg &= ~GEN7_FF_SCHED_MASK;
6919         reg |= GEN7_FF_TS_SCHED_HW;
6920         reg |= GEN7_FF_VS_SCHED_HW;
6921         reg |= GEN7_FF_DS_SCHED_HW;
6922
6923         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6924 }
6925
6926 static void lpt_init_clock_gating(struct drm_device *dev)
6927 {
6928         struct drm_i915_private *dev_priv = dev->dev_private;
6929
6930         /*
6931          * TODO: this bit should only be enabled when really needed, then
6932          * disabled when not needed anymore in order to save power.
6933          */
6934         if (HAS_PCH_LPT_LP(dev))
6935                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6936                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6937                            PCH_LP_PARTITION_LEVEL_DISABLE);
6938
6939         /* WADPOClockGatingDisable:hsw */
6940         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6941                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6942                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6943 }
6944
6945 static void lpt_suspend_hw(struct drm_device *dev)
6946 {
6947         struct drm_i915_private *dev_priv = dev->dev_private;
6948
6949         if (HAS_PCH_LPT_LP(dev)) {
6950                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6951
6952                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6953                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6954         }
6955 }
6956
6957 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6958                                    int general_prio_credits,
6959                                    int high_prio_credits)
6960 {
6961         u32 misccpctl;
6962
6963         /* WaTempDisableDOPClkGating:bdw */
6964         misccpctl = I915_READ(GEN7_MISCCPCTL);
6965         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6966
6967         I915_WRITE(GEN8_L3SQCREG1,
6968                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
6969                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
6970
6971         /*
6972          * Wait at least 100 clocks before re-enabling clock gating.
6973          * See the definition of L3SQCREG1 in BSpec.
6974          */
6975         POSTING_READ(GEN8_L3SQCREG1);
6976         udelay(1);
6977         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6978 }
6979
6980 static void kabylake_init_clock_gating(struct drm_device *dev)
6981 {
6982         struct drm_i915_private *dev_priv = dev->dev_private;
6983
6984         gen9_init_clock_gating(dev);
6985
6986         /* WaDisableSDEUnitClockGating:kbl */
6987         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6988                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6989                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6990
6991         /* WaDisableGamClockGating:kbl */
6992         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6993                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6994                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6995 }
6996
6997 static void skylake_init_clock_gating(struct drm_device *dev)
6998 {
6999         struct drm_i915_private *dev_priv = dev->dev_private;
7000
7001         gen9_init_clock_gating(dev);
7002
7003         /* WAC6entrylatency:skl */
7004         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7005                    FBC_LLC_FULLY_OPEN);
7006 }
7007
7008 static void broadwell_init_clock_gating(struct drm_device *dev)
7009 {
7010         struct drm_i915_private *dev_priv = dev->dev_private;
7011         enum pipe pipe;
7012
7013         ilk_init_lp_watermarks(dev);
7014
7015         /* WaSwitchSolVfFArbitrationPriority:bdw */
7016         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7017
7018         /* WaPsrDPAMaskVBlankInSRD:bdw */
7019         I915_WRITE(CHICKEN_PAR1_1,
7020                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7021
7022         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7023         for_each_pipe(dev_priv, pipe) {
7024                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7025                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7026                            BDW_DPRS_MASK_VBLANK_SRD);
7027         }
7028
7029         /* WaVSRefCountFullforceMissDisable:bdw */
7030         /* WaDSRefCountFullforceMissDisable:bdw */
7031         I915_WRITE(GEN7_FF_THREAD_MODE,
7032                    I915_READ(GEN7_FF_THREAD_MODE) &
7033                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7034
7035         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7036                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7037
7038         /* WaDisableSDEUnitClockGating:bdw */
7039         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7040                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7041
7042         /* WaProgramL3SqcReg1Default:bdw */
7043         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7044
7045         /*
7046          * WaGttCachingOffByDefault:bdw
7047          * GTT cache may not work with big pages, so if those
7048          * are ever enabled GTT cache may need to be disabled.
7049          */
7050         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7051
7052         /* WaKVMNotificationOnConfigChange:bdw */
7053         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7054                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7055
7056         lpt_init_clock_gating(dev);
7057 }
7058
7059 static void haswell_init_clock_gating(struct drm_device *dev)
7060 {
7061         struct drm_i915_private *dev_priv = dev->dev_private;
7062
7063         ilk_init_lp_watermarks(dev);
7064
7065         /* L3 caching of data atomics doesn't work -- disable it. */
7066         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7067         I915_WRITE(HSW_ROW_CHICKEN3,
7068                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7069
7070         /* This is required by WaCatErrorRejectionIssue:hsw */
7071         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7072                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7073                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7074
7075         /* WaVSRefCountFullforceMissDisable:hsw */
7076         I915_WRITE(GEN7_FF_THREAD_MODE,
7077                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7078
7079         /* WaDisable_RenderCache_OperationalFlush:hsw */
7080         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7081
7082         /* enable HiZ Raw Stall Optimization */
7083         I915_WRITE(CACHE_MODE_0_GEN7,
7084                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7085
7086         /* WaDisable4x2SubspanOptimization:hsw */
7087         I915_WRITE(CACHE_MODE_1,
7088                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7089
7090         /*
7091          * BSpec recommends 8x4 when MSAA is used,
7092          * however in practice 16x4 seems fastest.
7093          *
7094          * Note that PS/WM thread counts depend on the WIZ hashing
7095          * disable bit, which we don't touch here, but it's good
7096          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7097          */
7098         I915_WRITE(GEN7_GT_MODE,
7099                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7100
7101         /* WaSampleCChickenBitEnable:hsw */
7102         I915_WRITE(HALF_SLICE_CHICKEN3,
7103                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7104
7105         /* WaSwitchSolVfFArbitrationPriority:hsw */
7106         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7107
7108         /* WaRsPkgCStateDisplayPMReq:hsw */
7109         I915_WRITE(CHICKEN_PAR1_1,
7110                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7111
7112         lpt_init_clock_gating(dev);
7113 }
7114
7115 static void ivybridge_init_clock_gating(struct drm_device *dev)
7116 {
7117         struct drm_i915_private *dev_priv = dev->dev_private;
7118         uint32_t snpcr;
7119
7120         ilk_init_lp_watermarks(dev);
7121
7122         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7123
7124         /* WaDisableEarlyCull:ivb */
7125         I915_WRITE(_3D_CHICKEN3,
7126                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7127
7128         /* WaDisableBackToBackFlipFix:ivb */
7129         I915_WRITE(IVB_CHICKEN3,
7130                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7131                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7132
7133         /* WaDisablePSDDualDispatchEnable:ivb */
7134         if (IS_IVB_GT1(dev))
7135                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7136                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7137
7138         /* WaDisable_RenderCache_OperationalFlush:ivb */
7139         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7140
7141         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7142         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7143                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7144
7145         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7146         I915_WRITE(GEN7_L3CNTLREG1,
7147                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7148         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7149                    GEN7_WA_L3_CHICKEN_MODE);
7150         if (IS_IVB_GT1(dev))
7151                 I915_WRITE(GEN7_ROW_CHICKEN2,
7152                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7153         else {
7154                 /* must write both registers */
7155                 I915_WRITE(GEN7_ROW_CHICKEN2,
7156                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7157                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7158                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7159         }
7160
7161         /* WaForceL3Serialization:ivb */
7162         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7163                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7164
7165         /*
7166          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7167          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7168          */
7169         I915_WRITE(GEN6_UCGCTL2,
7170                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7171
7172         /* This is required by WaCatErrorRejectionIssue:ivb */
7173         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7174                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7175                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7176
7177         g4x_disable_trickle_feed(dev);
7178
7179         gen7_setup_fixed_func_scheduler(dev_priv);
7180
7181         if (0) { /* causes HiZ corruption on ivb:gt1 */
7182                 /* enable HiZ Raw Stall Optimization */
7183                 I915_WRITE(CACHE_MODE_0_GEN7,
7184                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7185         }
7186
7187         /* WaDisable4x2SubspanOptimization:ivb */
7188         I915_WRITE(CACHE_MODE_1,
7189                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7190
7191         /*
7192          * BSpec recommends 8x4 when MSAA is used,
7193          * however in practice 16x4 seems fastest.
7194          *
7195          * Note that PS/WM thread counts depend on the WIZ hashing
7196          * disable bit, which we don't touch here, but it's good
7197          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7198          */
7199         I915_WRITE(GEN7_GT_MODE,
7200                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7201
7202         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7203         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7204         snpcr |= GEN6_MBC_SNPCR_MED;
7205         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7206
7207         if (!HAS_PCH_NOP(dev))
7208                 cpt_init_clock_gating(dev);
7209
7210         gen6_check_mch_setup(dev);
7211 }
7212
7213 static void valleyview_init_clock_gating(struct drm_device *dev)
7214 {
7215         struct drm_i915_private *dev_priv = dev->dev_private;
7216
7217         /* WaDisableEarlyCull:vlv */
7218         I915_WRITE(_3D_CHICKEN3,
7219                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7220
7221         /* WaDisableBackToBackFlipFix:vlv */
7222         I915_WRITE(IVB_CHICKEN3,
7223                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7224                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7225
7226         /* WaPsdDispatchEnable:vlv */
7227         /* WaDisablePSDDualDispatchEnable:vlv */
7228         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7229                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7230                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7231
7232         /* WaDisable_RenderCache_OperationalFlush:vlv */
7233         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7234
7235         /* WaForceL3Serialization:vlv */
7236         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7237                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7238
7239         /* WaDisableDopClockGating:vlv */
7240         I915_WRITE(GEN7_ROW_CHICKEN2,
7241                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7242
7243         /* This is required by WaCatErrorRejectionIssue:vlv */
7244         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7245                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7246                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7247
7248         gen7_setup_fixed_func_scheduler(dev_priv);
7249
7250         /*
7251          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7252          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7253          */
7254         I915_WRITE(GEN6_UCGCTL2,
7255                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7256
7257         /* WaDisableL3Bank2xClockGate:vlv
7258          * Disabling L3 clock gating- MMIO 940c[25] = 1
7259          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7260         I915_WRITE(GEN7_UCGCTL4,
7261                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7262
7263         /*
7264          * BSpec says this must be set, even though
7265          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7266          */
7267         I915_WRITE(CACHE_MODE_1,
7268                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7269
7270         /*
7271          * BSpec recommends 8x4 when MSAA is used,
7272          * however in practice 16x4 seems fastest.
7273          *
7274          * Note that PS/WM thread counts depend on the WIZ hashing
7275          * disable bit, which we don't touch here, but it's good
7276          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7277          */
7278         I915_WRITE(GEN7_GT_MODE,
7279                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7280
7281         /*
7282          * WaIncreaseL3CreditsForVLVB0:vlv
7283          * This is the hardware default actually.
7284          */
7285         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7286
7287         /*
7288          * WaDisableVLVClockGating_VBIIssue:vlv
7289          * Disable clock gating on th GCFG unit to prevent a delay
7290          * in the reporting of vblank events.
7291          */
7292         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7293 }
7294
7295 static void cherryview_init_clock_gating(struct drm_device *dev)
7296 {
7297         struct drm_i915_private *dev_priv = dev->dev_private;
7298
7299         /* WaVSRefCountFullforceMissDisable:chv */
7300         /* WaDSRefCountFullforceMissDisable:chv */
7301         I915_WRITE(GEN7_FF_THREAD_MODE,
7302                    I915_READ(GEN7_FF_THREAD_MODE) &
7303                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7304
7305         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7306         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7307                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7308
7309         /* WaDisableCSUnitClockGating:chv */
7310         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7311                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7312
7313         /* WaDisableSDEUnitClockGating:chv */
7314         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7315                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7316
7317         /*
7318          * WaProgramL3SqcReg1Default:chv
7319          * See gfxspecs/Related Documents/Performance Guide/
7320          * LSQC Setting Recommendations.
7321          */
7322         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7323
7324         /*
7325          * GTT cache may not work with big pages, so if those
7326          * are ever enabled GTT cache may need to be disabled.
7327          */
7328         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7329 }
7330
7331 static void g4x_init_clock_gating(struct drm_device *dev)
7332 {
7333         struct drm_i915_private *dev_priv = dev->dev_private;
7334         uint32_t dspclk_gate;
7335
7336         I915_WRITE(RENCLK_GATE_D1, 0);
7337         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7338                    GS_UNIT_CLOCK_GATE_DISABLE |
7339                    CL_UNIT_CLOCK_GATE_DISABLE);
7340         I915_WRITE(RAMCLK_GATE_D, 0);
7341         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7342                 OVRUNIT_CLOCK_GATE_DISABLE |
7343                 OVCUNIT_CLOCK_GATE_DISABLE;
7344         if (IS_GM45(dev))
7345                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7346         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7347
7348         /* WaDisableRenderCachePipelinedFlush */
7349         I915_WRITE(CACHE_MODE_0,
7350                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7351
7352         /* WaDisable_RenderCache_OperationalFlush:g4x */
7353         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7354
7355         g4x_disable_trickle_feed(dev);
7356 }
7357
7358 static void crestline_init_clock_gating(struct drm_device *dev)
7359 {
7360         struct drm_i915_private *dev_priv = dev->dev_private;
7361
7362         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7363         I915_WRITE(RENCLK_GATE_D2, 0);
7364         I915_WRITE(DSPCLK_GATE_D, 0);
7365         I915_WRITE(RAMCLK_GATE_D, 0);
7366         I915_WRITE16(DEUC, 0);
7367         I915_WRITE(MI_ARB_STATE,
7368                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7369
7370         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7371         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7372 }
7373
7374 static void broadwater_init_clock_gating(struct drm_device *dev)
7375 {
7376         struct drm_i915_private *dev_priv = dev->dev_private;
7377
7378         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7379                    I965_RCC_CLOCK_GATE_DISABLE |
7380                    I965_RCPB_CLOCK_GATE_DISABLE |
7381                    I965_ISC_CLOCK_GATE_DISABLE |
7382                    I965_FBC_CLOCK_GATE_DISABLE);
7383         I915_WRITE(RENCLK_GATE_D2, 0);
7384         I915_WRITE(MI_ARB_STATE,
7385                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7386
7387         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7388         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7389 }
7390
7391 static void gen3_init_clock_gating(struct drm_device *dev)
7392 {
7393         struct drm_i915_private *dev_priv = dev->dev_private;
7394         u32 dstate = I915_READ(D_STATE);
7395
7396         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7397                 DSTATE_DOT_CLOCK_GATING;
7398         I915_WRITE(D_STATE, dstate);
7399
7400         if (IS_PINEVIEW(dev))
7401                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7402
7403         /* IIR "flip pending" means done if this bit is set */
7404         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7405
7406         /* interrupts should cause a wake up from C3 */
7407         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7408
7409         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7410         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7411
7412         I915_WRITE(MI_ARB_STATE,
7413                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7414 }
7415
7416 static void i85x_init_clock_gating(struct drm_device *dev)
7417 {
7418         struct drm_i915_private *dev_priv = dev->dev_private;
7419
7420         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7421
7422         /* interrupts should cause a wake up from C3 */
7423         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7424                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7425
7426         I915_WRITE(MEM_MODE,
7427                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7428 }
7429
7430 static void i830_init_clock_gating(struct drm_device *dev)
7431 {
7432         struct drm_i915_private *dev_priv = dev->dev_private;
7433
7434         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7435
7436         I915_WRITE(MEM_MODE,
7437                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7438                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7439 }
7440
7441 void intel_init_clock_gating(struct drm_device *dev)
7442 {
7443         struct drm_i915_private *dev_priv = dev->dev_private;
7444
7445         dev_priv->display.init_clock_gating(dev);
7446 }
7447
7448 void intel_suspend_hw(struct drm_device *dev)
7449 {
7450         if (HAS_PCH_LPT(dev))
7451                 lpt_suspend_hw(dev);
7452 }
7453
7454 static void nop_init_clock_gating(struct drm_device *dev)
7455 {
7456         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7457 }
7458
7459 /**
7460  * intel_init_clock_gating_hooks - setup the clock gating hooks
7461  * @dev_priv: device private
7462  *
7463  * Setup the hooks that configure which clocks of a given platform can be
7464  * gated and also apply various GT and display specific workarounds for these
7465  * platforms. Note that some GT specific workarounds are applied separately
7466  * when GPU contexts or batchbuffers start their execution.
7467  */
7468 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7469 {
7470         if (IS_SKYLAKE(dev_priv))
7471                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7472         else if (IS_KABYLAKE(dev_priv))
7473                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7474         else if (IS_BROXTON(dev_priv))
7475                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7476         else if (IS_BROADWELL(dev_priv))
7477                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7478         else if (IS_CHERRYVIEW(dev_priv))
7479                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7480         else if (IS_HASWELL(dev_priv))
7481                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7482         else if (IS_IVYBRIDGE(dev_priv))
7483                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7484         else if (IS_VALLEYVIEW(dev_priv))
7485                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7486         else if (IS_GEN6(dev_priv))
7487                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7488         else if (IS_GEN5(dev_priv))
7489                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7490         else if (IS_G4X(dev_priv))
7491                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7492         else if (IS_CRESTLINE(dev_priv))
7493                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7494         else if (IS_BROADWATER(dev_priv))
7495                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7496         else if (IS_GEN3(dev_priv))
7497                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7498         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7499                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7500         else if (IS_GEN2(dev_priv))
7501                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7502         else {
7503                 MISSING_CASE(INTEL_DEVID(dev_priv));
7504                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7505         }
7506 }
7507
7508 /* Set up chip specific power management-related functions */
7509 void intel_init_pm(struct drm_device *dev)
7510 {
7511         struct drm_i915_private *dev_priv = dev->dev_private;
7512
7513         intel_fbc_init(dev_priv);
7514
7515         /* For cxsr */
7516         if (IS_PINEVIEW(dev))
7517                 i915_pineview_get_mem_freq(dev);
7518         else if (IS_GEN5(dev))
7519                 i915_ironlake_get_mem_freq(dev);
7520
7521         /* For FIFO watermark updates */
7522         if (INTEL_INFO(dev)->gen >= 9) {
7523                 skl_setup_wm_latency(dev);
7524                 dev_priv->display.update_wm = skl_update_wm;
7525                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7526         } else if (HAS_PCH_SPLIT(dev)) {
7527                 ilk_setup_wm_latency(dev);
7528
7529                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7530                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7531                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7532                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7533                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7534                         dev_priv->display.compute_intermediate_wm =
7535                                 ilk_compute_intermediate_wm;
7536                         dev_priv->display.initial_watermarks =
7537                                 ilk_initial_watermarks;
7538                         dev_priv->display.optimize_watermarks =
7539                                 ilk_optimize_watermarks;
7540                 } else {
7541                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7542                                       "Disable CxSR\n");
7543                 }
7544         } else if (IS_CHERRYVIEW(dev)) {
7545                 vlv_setup_wm_latency(dev);
7546                 dev_priv->display.update_wm = vlv_update_wm;
7547         } else if (IS_VALLEYVIEW(dev)) {
7548                 vlv_setup_wm_latency(dev);
7549                 dev_priv->display.update_wm = vlv_update_wm;
7550         } else if (IS_PINEVIEW(dev)) {
7551                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7552                                             dev_priv->is_ddr3,
7553                                             dev_priv->fsb_freq,
7554                                             dev_priv->mem_freq)) {
7555                         DRM_INFO("failed to find known CxSR latency "
7556                                  "(found ddr%s fsb freq %d, mem freq %d), "
7557                                  "disabling CxSR\n",
7558                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7559                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7560                         /* Disable CxSR and never update its watermark again */
7561                         intel_set_memory_cxsr(dev_priv, false);
7562                         dev_priv->display.update_wm = NULL;
7563                 } else
7564                         dev_priv->display.update_wm = pineview_update_wm;
7565         } else if (IS_G4X(dev)) {
7566                 dev_priv->display.update_wm = g4x_update_wm;
7567         } else if (IS_GEN4(dev)) {
7568                 dev_priv->display.update_wm = i965_update_wm;
7569         } else if (IS_GEN3(dev)) {
7570                 dev_priv->display.update_wm = i9xx_update_wm;
7571                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7572         } else if (IS_GEN2(dev)) {
7573                 if (INTEL_INFO(dev)->num_pipes == 1) {
7574                         dev_priv->display.update_wm = i845_update_wm;
7575                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7576                 } else {
7577                         dev_priv->display.update_wm = i9xx_update_wm;
7578                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7579                 }
7580         } else {
7581                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7582         }
7583 }
7584
7585 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7586 {
7587         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7588
7589         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7590                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7591                 return -EAGAIN;
7592         }
7593
7594         I915_WRITE(GEN6_PCODE_DATA, *val);
7595         I915_WRITE(GEN6_PCODE_DATA1, 0);
7596         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7597
7598         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7599                      500)) {
7600                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7601                 return -ETIMEDOUT;
7602         }
7603
7604         *val = I915_READ(GEN6_PCODE_DATA);
7605         I915_WRITE(GEN6_PCODE_DATA, 0);
7606
7607         return 0;
7608 }
7609
7610 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7611 {
7612         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7613
7614         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7615                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7616                 return -EAGAIN;
7617         }
7618
7619         I915_WRITE(GEN6_PCODE_DATA, val);
7620         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7621
7622         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7623                      500)) {
7624                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7625                 return -ETIMEDOUT;
7626         }
7627
7628         I915_WRITE(GEN6_PCODE_DATA, 0);
7629
7630         return 0;
7631 }
7632
7633 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7634 {
7635         /*
7636          * N = val - 0xb7
7637          * Slow = Fast = GPLL ref * N
7638          */
7639         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7640 }
7641
7642 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7643 {
7644         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7645 }
7646
7647 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7648 {
7649         /*
7650          * N = val / 2
7651          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7652          */
7653         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7654 }
7655
7656 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7657 {
7658         /* CHV needs even values */
7659         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7660 }
7661
7662 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7663 {
7664         if (IS_GEN9(dev_priv))
7665                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7666                                          GEN9_FREQ_SCALER);
7667         else if (IS_CHERRYVIEW(dev_priv))
7668                 return chv_gpu_freq(dev_priv, val);
7669         else if (IS_VALLEYVIEW(dev_priv))
7670                 return byt_gpu_freq(dev_priv, val);
7671         else
7672                 return val * GT_FREQUENCY_MULTIPLIER;
7673 }
7674
7675 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7676 {
7677         if (IS_GEN9(dev_priv))
7678                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7679                                          GT_FREQUENCY_MULTIPLIER);
7680         else if (IS_CHERRYVIEW(dev_priv))
7681                 return chv_freq_opcode(dev_priv, val);
7682         else if (IS_VALLEYVIEW(dev_priv))
7683                 return byt_freq_opcode(dev_priv, val);
7684         else
7685                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7686 }
7687
7688 struct request_boost {
7689         struct work_struct work;
7690         struct drm_i915_gem_request *req;
7691 };
7692
7693 static void __intel_rps_boost_work(struct work_struct *work)
7694 {
7695         struct request_boost *boost = container_of(work, struct request_boost, work);
7696         struct drm_i915_gem_request *req = boost->req;
7697
7698         if (!i915_gem_request_completed(req, true))
7699                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7700
7701         i915_gem_request_unreference(req);
7702         kfree(boost);
7703 }
7704
7705 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7706 {
7707         struct request_boost *boost;
7708
7709         if (req == NULL || INTEL_GEN(req->i915) < 6)
7710                 return;
7711
7712         if (i915_gem_request_completed(req, true))
7713                 return;
7714
7715         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7716         if (boost == NULL)
7717                 return;
7718
7719         i915_gem_request_reference(req);
7720         boost->req = req;
7721
7722         INIT_WORK(&boost->work, __intel_rps_boost_work);
7723         queue_work(req->i915->wq, &boost->work);
7724 }
7725
7726 void intel_pm_setup(struct drm_device *dev)
7727 {
7728         struct drm_i915_private *dev_priv = dev->dev_private;
7729
7730         mutex_init(&dev_priv->rps.hw_lock);
7731         spin_lock_init(&dev_priv->rps.client_lock);
7732
7733         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7734                           intel_gen6_powersave_work);
7735         INIT_LIST_HEAD(&dev_priv->rps.clients);
7736         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7737         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7738
7739         dev_priv->pm.suspended = false;
7740         atomic_set(&dev_priv->pm.wakeref_count, 0);
7741         atomic_set(&dev_priv->pm.atomic_seq, 0);
7742 }