a38298589db865a7c57c137275c7044b12ac661f
[cascardo/linux.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
21
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30  * The following flags are used by dm-raid.c to set up the array state.
31  * They must be cleared before md_run is called.
32  */
33 #define FirstUse 10             /* rdev flag */
34
35 struct raid_dev {
36         /*
37          * Two DM devices, one to hold metadata and one to hold the
38          * actual data/parity.  The reason for this is to not confuse
39          * ti->len and give more flexibility in altering size and
40          * characteristics.
41          *
42          * While it is possible for this device to be associated
43          * with a different physical device than the data_dev, it
44          * is intended for it to be the same.
45          *    |--------- Physical Device ---------|
46          *    |- meta_dev -|------ data_dev ------|
47          */
48         struct dm_dev *meta_dev;
49         struct dm_dev *data_dev;
50         struct md_rdev rdev;
51 };
52
53 /*
54  * Bits for establishing rs->ctr_flags
55  *
56  * 1 = no flag value
57  * 2 = flag with value
58  */
59 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77  * Flags for rs->ctr_flags field.
78  */
79 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96  * Definitions of various constructor flags to
97  * be used in checks of valid / invalid flags
98  * per raid level.
99  */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
105                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109                                   CTR_FLAG_WRITE_MOSTLY | \
110                                   CTR_FLAG_DAEMON_SLEEP | \
111                                   CTR_FLAG_MIN_RECOVERY_RATE | \
112                                   CTR_FLAG_MAX_RECOVERY_RATE | \
113                                   CTR_FLAG_MAX_WRITE_BEHIND | \
114                                   CTR_FLAG_STRIPE_CACHE | \
115                                   CTR_FLAG_REGION_SIZE | \
116                                   CTR_FLAG_RAID10_COPIES | \
117                                   CTR_FLAG_RAID10_FORMAT | \
118                                   CTR_FLAG_DELTA_DISKS | \
119                                   CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
128                                  CTR_FLAG_REBUILD | \
129                                  CTR_FLAG_WRITE_MOSTLY | \
130                                  CTR_FLAG_DAEMON_SLEEP | \
131                                  CTR_FLAG_MIN_RECOVERY_RATE | \
132                                  CTR_FLAG_MAX_RECOVERY_RATE | \
133                                  CTR_FLAG_MAX_WRITE_BEHIND | \
134                                  CTR_FLAG_REGION_SIZE | \
135                                  CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
139                                  CTR_FLAG_REBUILD | \
140                                  CTR_FLAG_DAEMON_SLEEP | \
141                                  CTR_FLAG_MIN_RECOVERY_RATE | \
142                                  CTR_FLAG_MAX_RECOVERY_RATE | \
143                                  CTR_FLAG_REGION_SIZE | \
144                                  CTR_FLAG_RAID10_COPIES | \
145                                  CTR_FLAG_RAID10_FORMAT | \
146                                  CTR_FLAG_DELTA_DISKS | \
147                                  CTR_FLAG_DATA_OFFSET | \
148                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151  * "raid4/5/6" do not accept any raid1 or raid10 specific options
152  *
153  * "raid6" does not accept "nosync", because it is not guaranteed
154  * that both parity and q-syndrome are being written properly with
155  * any writes
156  */
157 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
158                                  CTR_FLAG_REBUILD | \
159                                  CTR_FLAG_DAEMON_SLEEP | \
160                                  CTR_FLAG_MIN_RECOVERY_RATE | \
161                                  CTR_FLAG_MAX_RECOVERY_RATE | \
162                                  CTR_FLAG_MAX_WRITE_BEHIND | \
163                                  CTR_FLAG_STRIPE_CACHE | \
164                                  CTR_FLAG_REGION_SIZE | \
165                                  CTR_FLAG_DELTA_DISKS | \
166                                  CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
169                                  CTR_FLAG_REBUILD | \
170                                  CTR_FLAG_DAEMON_SLEEP | \
171                                  CTR_FLAG_MIN_RECOVERY_RATE | \
172                                  CTR_FLAG_MAX_RECOVERY_RATE | \
173                                  CTR_FLAG_MAX_WRITE_BEHIND | \
174                                  CTR_FLAG_STRIPE_CACHE | \
175                                  CTR_FLAG_REGION_SIZE | \
176                                  CTR_FLAG_DELTA_DISKS | \
177                                  CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181  * Flags for rs->runtime_flags field
182  * (RT_FLAG prefix meaning "runtime flag")
183  *
184  * These are all internal and used to define runtime state,
185  * e.g. to prevent another resume from preresume processing
186  * the raid set all over again.
187  */
188 #define RT_FLAG_RS_PRERESUMED           0
189 #define RT_FLAG_RS_RESUMED              1
190 #define RT_FLAG_RS_BITMAP_LOADED        2
191 #define RT_FLAG_UPDATE_SBS              3
192 #define RT_FLAG_RESHAPE_RS              4
193 #define RT_FLAG_KEEP_RS_FROZEN          5
194
195 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199  * raid set level, layout and chunk sectors backup/restore
200  */
201 struct rs_layout {
202         int new_level;
203         int new_layout;
204         int new_chunk_sectors;
205 };
206
207 struct raid_set {
208         struct dm_target *ti;
209
210         uint32_t bitmap_loaded;
211         uint32_t stripe_cache_entries;
212         unsigned long ctr_flags;
213         unsigned long runtime_flags;
214
215         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217         int raid_disks;
218         int delta_disks;
219         int data_offset;
220         int raid10_copies;
221         int requested_bitmap_chunk_sectors;
222
223         struct mddev md;
224         struct raid_type *raid_type;
225         struct dm_target_callbacks callbacks;
226
227         struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232         struct mddev *mddev = &rs->md;
233
234         l->new_level = mddev->new_level;
235         l->new_layout = mddev->new_layout;
236         l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241         struct mddev *mddev = &rs->md;
242
243         mddev->new_level = l->new_level;
244         mddev->new_layout = l->new_layout;
245         mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT        0
250 #define ALGORITHM_RAID10_NEAR           1
251 #define ALGORITHM_RAID10_OFFSET         2
252 #define ALGORITHM_RAID10_FAR            3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256         const char *name;               /* RAID algorithm. */
257         const char *descr;              /* Descriptor text for logging. */
258         const unsigned parity_devs;     /* # of parity devices. */
259         const unsigned minimal_devs;    /* minimal # of devices in set. */
260         const unsigned level;           /* RAID level. */
261         const unsigned algorithm;       /* RAID algorithm. */
262 } raid_types[] = {
263         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
264         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
265         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
266         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
267         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
268         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269         {"raid4",         "raid4 (dedicated last parity disk)",     1, 2, 4,  ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
271         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
272         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
273         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
274         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
275         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
276         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
277         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
278         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
279         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
280         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
281         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
282         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288         return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293         const unsigned long flag;
294         const char *name;
295 } __arg_name_flags[] = {
296         { CTR_FLAG_SYNC, "sync"},
297         { CTR_FLAG_NOSYNC, "nosync"},
298         { CTR_FLAG_REBUILD, "rebuild"},
299         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303         { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
304         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305         { CTR_FLAG_REGION_SIZE, "region_size"},
306         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308         { CTR_FLAG_DATA_OFFSET, "data_offset"},
309         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316         if (hweight32(flag) == 1) {
317                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319                 while (anf-- > __arg_name_flags)
320                         if (flag & anf->flag)
321                                 return anf->name;
322
323         } else
324                 DMERR("%s called with more than one flag!", __func__);
325
326         return NULL;
327 }
328
329 /*
330  * bool helpers to test for various raid levels of a raid set,
331  * is. it's level as reported by the superblock rather than
332  * the requested raid_type passed to the constructor.
333  */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337         return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343         return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349         return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 4, 5 or 6 */
353 static bool rs_is_raid456(struct raid_set *rs)
354 {
355         return __within_range(rs->md.level, 4, 6);
356 }
357
358 /* Return true, if raid set in @rs is reshapable */
359 static unsigned int __is_raid10_far(int layout);
360 static bool rs_is_reshapable(struct raid_set *rs)
361 {
362         return rs_is_raid456(rs) ||
363                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
364 }
365
366 /* Return true, if raid set in @rs is recovering */
367 static bool rs_is_recovering(struct raid_set *rs)
368 {
369         return rs->md.recovery_cp != MaxSector;
370 }
371
372 /* Return true, if raid set in @rs is reshaping */
373 static bool rs_is_reshaping(struct raid_set *rs)
374 {
375         return rs->md.reshape_position != MaxSector;
376 }
377
378 /*
379  * bool helpers to test for various raid levels of a raid type
380  */
381
382 /* Return true, if raid type in @rt is raid0 */
383 static bool rt_is_raid0(struct raid_type *rt)
384 {
385         return !rt->level;
386 }
387
388 /* Return true, if raid type in @rt is raid1 */
389 static bool rt_is_raid1(struct raid_type *rt)
390 {
391         return rt->level == 1;
392 }
393
394 /* Return true, if raid type in @rt is raid10 */
395 static bool rt_is_raid10(struct raid_type *rt)
396 {
397         return rt->level == 10;
398 }
399
400 /* Return true, if raid type in @rt is raid4/5 */
401 static bool rt_is_raid45(struct raid_type *rt)
402 {
403         return __within_range(rt->level, 4, 5);
404 }
405
406 /* Return true, if raid type in @rt is raid6 */
407 static bool rt_is_raid6(struct raid_type *rt)
408 {
409         return rt->level == 6;
410 }
411
412 /* Return true, if raid type in @rt is raid4/5/6 */
413 static bool rt_is_raid456(struct raid_type *rt)
414 {
415         return __within_range(rt->level, 4, 6);
416 }
417 /* END: raid level bools */
418
419 /* Return valid ctr flags for the raid level of @rs */
420 static unsigned long __valid_flags(struct raid_set *rs)
421 {
422         if (rt_is_raid0(rs->raid_type))
423                 return RAID0_VALID_FLAGS;
424         else if (rt_is_raid1(rs->raid_type))
425                 return RAID1_VALID_FLAGS;
426         else if (rt_is_raid10(rs->raid_type))
427                 return RAID10_VALID_FLAGS;
428         else if (rt_is_raid45(rs->raid_type))
429                 return RAID45_VALID_FLAGS;
430         else if (rt_is_raid6(rs->raid_type))
431                 return RAID6_VALID_FLAGS;
432
433         return ~0;
434 }
435
436 /*
437  * Check for valid flags set on @rs
438  *
439  * Has to be called after parsing of the ctr flags!
440  */
441 static int rs_check_for_valid_flags(struct raid_set *rs)
442 {
443         if (rs->ctr_flags & ~__valid_flags(rs)) {
444                 rs->ti->error = "Invalid flags combination";
445                 return -EINVAL;
446         }
447
448         return 0;
449 }
450
451 /* MD raid10 bit definitions and helpers */
452 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
453 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
454 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
455 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
456
457 /* Return md raid10 near copies for @layout */
458 static unsigned int __raid10_near_copies(int layout)
459 {
460         return layout & 0xFF;
461 }
462
463 /* Return md raid10 far copies for @layout */
464 static unsigned int __raid10_far_copies(int layout)
465 {
466         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
467 }
468
469 /* Return true if md raid10 offset for @layout */
470 static unsigned int __is_raid10_offset(int layout)
471 {
472         return layout & RAID10_OFFSET;
473 }
474
475 /* Return true if md raid10 near for @layout */
476 static unsigned int __is_raid10_near(int layout)
477 {
478         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
479 }
480
481 /* Return true if md raid10 far for @layout */
482 static unsigned int __is_raid10_far(int layout)
483 {
484         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
485 }
486
487 /* Return md raid10 layout string for @layout */
488 static const char *raid10_md_layout_to_format(int layout)
489 {
490         /*
491          * Bit 16 stands for "offset"
492          * (i.e. adjacent stripes hold copies)
493          *
494          * Refer to MD's raid10.c for details
495          */
496         if (__is_raid10_offset(layout))
497                 return "offset";
498
499         if (__raid10_near_copies(layout) > 1)
500                 return "near";
501
502         WARN_ON(__raid10_far_copies(layout) < 2);
503
504         return "far";
505 }
506
507 /* Return md raid10 algorithm for @name */
508 static int raid10_name_to_format(const char *name)
509 {
510         if (!strcasecmp(name, "near"))
511                 return ALGORITHM_RAID10_NEAR;
512         else if (!strcasecmp(name, "offset"))
513                 return ALGORITHM_RAID10_OFFSET;
514         else if (!strcasecmp(name, "far"))
515                 return ALGORITHM_RAID10_FAR;
516
517         return -EINVAL;
518 }
519
520 /* Return md raid10 copies for @layout */
521 static unsigned int raid10_md_layout_to_copies(int layout)
522 {
523         return __raid10_near_copies(layout) > 1 ?
524                 __raid10_near_copies(layout) : __raid10_far_copies(layout);
525 }
526
527 /* Return md raid10 format id for @format string */
528 static int raid10_format_to_md_layout(struct raid_set *rs,
529                                       unsigned int algorithm,
530                                       unsigned int copies)
531 {
532         unsigned int n = 1, f = 1, r = 0;
533
534         /*
535          * MD resilienece flaw:
536          *
537          * enabling use_far_sets for far/offset formats causes copies
538          * to be colocated on the same devs together with their origins!
539          *
540          * -> disable it for now in the definition above
541          */
542         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
543             algorithm == ALGORITHM_RAID10_NEAR)
544                 n = copies;
545
546         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
547                 f = copies;
548                 r = RAID10_OFFSET;
549                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
550                         r |= RAID10_USE_FAR_SETS;
551
552         } else if (algorithm == ALGORITHM_RAID10_FAR) {
553                 f = copies;
554                 r = !RAID10_OFFSET;
555                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556                         r |= RAID10_USE_FAR_SETS;
557
558         } else
559                 return -EINVAL;
560
561         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
562 }
563 /* END: MD raid10 bit definitions and helpers */
564
565 /* Check for any of the raid10 algorithms */
566 static int __got_raid10(struct raid_type *rtp, const int layout)
567 {
568         if (rtp->level == 10) {
569                 switch (rtp->algorithm) {
570                 case ALGORITHM_RAID10_DEFAULT:
571                 case ALGORITHM_RAID10_NEAR:
572                         return __is_raid10_near(layout);
573                 case ALGORITHM_RAID10_OFFSET:
574                         return __is_raid10_offset(layout);
575                 case ALGORITHM_RAID10_FAR:
576                         return __is_raid10_far(layout);
577                 default:
578                         break;
579                 }
580         }
581
582         return 0;
583 }
584
585 /* Return raid_type for @name */
586 static struct raid_type *get_raid_type(const char *name)
587 {
588         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
589
590         while (rtp-- > raid_types)
591                 if (!strcasecmp(rtp->name, name))
592                         return rtp;
593
594         return NULL;
595 }
596
597 /* Return raid_type for @name based derived from @level and @layout */
598 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
599 {
600         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
601
602         while (rtp-- > raid_types) {
603                 /* RAID10 special checks based on @layout flags/properties */
604                 if (rtp->level == level &&
605                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
606                         return rtp;
607         }
608
609         return NULL;
610 }
611
612 /*
613  * Conditionally change bdev capacity of @rs
614  * in case of a disk add/remove reshape
615  */
616 static void rs_set_capacity(struct raid_set *rs)
617 {
618         struct mddev *mddev = &rs->md;
619
620         /* Make sure we access most actual mddev properties */
621         smp_rmb();
622         if (rs->ti->len != mddev->array_sectors && !rs_is_reshaping(rs)) {
623                 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
624
625                 set_capacity(gendisk, mddev->array_sectors);
626                 revalidate_disk(gendisk);
627         }
628 }
629
630 /*
631  * Set the mddev properties in @rs to the current
632  * ones retrieved from the freshest superblock
633  */
634 static void rs_set_cur(struct raid_set *rs)
635 {
636         struct mddev *mddev = &rs->md;
637
638         mddev->new_level = mddev->level;
639         mddev->new_layout = mddev->layout;
640         mddev->new_chunk_sectors = mddev->chunk_sectors;
641 }
642
643 /*
644  * Set the mddev properties in @rs to the new
645  * ones requested by the ctr
646  */
647 static void rs_set_new(struct raid_set *rs)
648 {
649         struct mddev *mddev = &rs->md;
650
651         mddev->level = mddev->new_level;
652         mddev->layout = mddev->new_layout;
653         mddev->chunk_sectors = mddev->new_chunk_sectors;
654         mddev->raid_disks = rs->raid_disks;
655         mddev->delta_disks = 0;
656 }
657
658 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
659                                        unsigned raid_devs)
660 {
661         unsigned i;
662         struct raid_set *rs;
663
664         if (raid_devs <= raid_type->parity_devs) {
665                 ti->error = "Insufficient number of devices";
666                 return ERR_PTR(-EINVAL);
667         }
668
669         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
670         if (!rs) {
671                 ti->error = "Cannot allocate raid context";
672                 return ERR_PTR(-ENOMEM);
673         }
674
675         mddev_init(&rs->md);
676
677         rs->raid_disks = raid_devs;
678         rs->delta_disks = 0;
679
680         rs->ti = ti;
681         rs->raid_type = raid_type;
682         rs->stripe_cache_entries = 256;
683         rs->md.raid_disks = raid_devs;
684         rs->md.level = raid_type->level;
685         rs->md.new_level = rs->md.level;
686         rs->md.layout = raid_type->algorithm;
687         rs->md.new_layout = rs->md.layout;
688         rs->md.delta_disks = 0;
689         rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0;
690
691         for (i = 0; i < raid_devs; i++)
692                 md_rdev_init(&rs->dev[i].rdev);
693
694         /*
695          * Remaining items to be initialized by further RAID params:
696          *  rs->md.persistent
697          *  rs->md.external
698          *  rs->md.chunk_sectors
699          *  rs->md.new_chunk_sectors
700          *  rs->md.dev_sectors
701          */
702
703         return rs;
704 }
705
706 static void raid_set_free(struct raid_set *rs)
707 {
708         int i;
709
710         for (i = 0; i < rs->md.raid_disks; i++) {
711                 if (rs->dev[i].meta_dev)
712                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
713                 md_rdev_clear(&rs->dev[i].rdev);
714                 if (rs->dev[i].data_dev)
715                         dm_put_device(rs->ti, rs->dev[i].data_dev);
716         }
717
718         kfree(rs);
719 }
720
721 /*
722  * For every device we have two words
723  *  <meta_dev>: meta device name or '-' if missing
724  *  <data_dev>: data device name or '-' if missing
725  *
726  * The following are permitted:
727  *    - -
728  *    - <data_dev>
729  *    <meta_dev> <data_dev>
730  *
731  * The following is not allowed:
732  *    <meta_dev> -
733  *
734  * This code parses those words.  If there is a failure,
735  * the caller must use raid_set_free() to unwind the operations.
736  */
737 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
738 {
739         int i;
740         int rebuild = 0;
741         int metadata_available = 0;
742         int r = 0;
743         const char *arg;
744
745         /* Put off the number of raid devices argument to get to dev pairs */
746         arg = dm_shift_arg(as);
747         if (!arg)
748                 return -EINVAL;
749
750         for (i = 0; i < rs->md.raid_disks; i++) {
751                 rs->dev[i].rdev.raid_disk = i;
752
753                 rs->dev[i].meta_dev = NULL;
754                 rs->dev[i].data_dev = NULL;
755
756                 /*
757                  * There are no offsets, since there is a separate device
758                  * for data and metadata.
759                  */
760                 rs->dev[i].rdev.data_offset = 0;
761                 rs->dev[i].rdev.mddev = &rs->md;
762
763                 arg = dm_shift_arg(as);
764                 if (!arg)
765                         return -EINVAL;
766
767                 if (strcmp(arg, "-")) {
768                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
769                                           &rs->dev[i].meta_dev);
770                         if (r) {
771                                 rs->ti->error = "RAID metadata device lookup failure";
772                                 return r;
773                         }
774
775                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
776                         if (!rs->dev[i].rdev.sb_page) {
777                                 rs->ti->error = "Failed to allocate superblock page";
778                                 return -ENOMEM;
779                         }
780                 }
781
782                 arg = dm_shift_arg(as);
783                 if (!arg)
784                         return -EINVAL;
785
786                 if (!strcmp(arg, "-")) {
787                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
788                             (!rs->dev[i].rdev.recovery_offset)) {
789                                 rs->ti->error = "Drive designated for rebuild not specified";
790                                 return -EINVAL;
791                         }
792
793                         if (rs->dev[i].meta_dev) {
794                                 rs->ti->error = "No data device supplied with metadata device";
795                                 return -EINVAL;
796                         }
797
798                         continue;
799                 }
800
801                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
802                                   &rs->dev[i].data_dev);
803                 if (r) {
804                         rs->ti->error = "RAID device lookup failure";
805                         return r;
806                 }
807
808                 if (rs->dev[i].meta_dev) {
809                         metadata_available = 1;
810                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
811                 }
812                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
813                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
814                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
815                         rebuild++;
816         }
817
818         if (metadata_available) {
819                 rs->md.external = 0;
820                 rs->md.persistent = 1;
821                 rs->md.major_version = 2;
822         } else if (rebuild && !rs->md.recovery_cp) {
823                 /*
824                  * Without metadata, we will not be able to tell if the array
825                  * is in-sync or not - we must assume it is not.  Therefore,
826                  * it is impossible to rebuild a drive.
827                  *
828                  * Even if there is metadata, the on-disk information may
829                  * indicate that the array is not in-sync and it will then
830                  * fail at that time.
831                  *
832                  * User could specify 'nosync' option if desperate.
833                  */
834                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
835                 return -EINVAL;
836         }
837
838         return 0;
839 }
840
841 /*
842  * validate_region_size
843  * @rs
844  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
845  *
846  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
847  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
848  *
849  * Returns: 0 on success, -EINVAL on failure.
850  */
851 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
852 {
853         unsigned long min_region_size = rs->ti->len / (1 << 21);
854
855         if (!region_size) {
856                 /*
857                  * Choose a reasonable default.  All figures in sectors.
858                  */
859                 if (min_region_size > (1 << 13)) {
860                         /* If not a power of 2, make it the next power of 2 */
861                         region_size = roundup_pow_of_two(min_region_size);
862                         DMINFO("Choosing default region size of %lu sectors",
863                                region_size);
864                 } else {
865                         DMINFO("Choosing default region size of 4MiB");
866                         region_size = 1 << 13; /* sectors */
867                 }
868         } else {
869                 /*
870                  * Validate user-supplied value.
871                  */
872                 if (region_size > rs->ti->len) {
873                         rs->ti->error = "Supplied region size is too large";
874                         return -EINVAL;
875                 }
876
877                 if (region_size < min_region_size) {
878                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
879                               region_size, min_region_size);
880                         rs->ti->error = "Supplied region size is too small";
881                         return -EINVAL;
882                 }
883
884                 if (!is_power_of_2(region_size)) {
885                         rs->ti->error = "Region size is not a power of 2";
886                         return -EINVAL;
887                 }
888
889                 if (region_size < rs->md.chunk_sectors) {
890                         rs->ti->error = "Region size is smaller than the chunk size";
891                         return -EINVAL;
892                 }
893         }
894
895         /*
896          * Convert sectors to bytes.
897          */
898         rs->md.bitmap_info.chunksize = (region_size << 9);
899
900         return 0;
901 }
902
903 /*
904  * validate_raid_redundancy
905  * @rs
906  *
907  * Determine if there are enough devices in the array that haven't
908  * failed (or are being rebuilt) to form a usable array.
909  *
910  * Returns: 0 on success, -EINVAL on failure.
911  */
912 static int validate_raid_redundancy(struct raid_set *rs)
913 {
914         unsigned i, rebuild_cnt = 0;
915         unsigned rebuilds_per_group = 0, copies;
916         unsigned group_size, last_group_start;
917
918         for (i = 0; i < rs->md.raid_disks; i++)
919                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
920                     !rs->dev[i].rdev.sb_page)
921                         rebuild_cnt++;
922
923         switch (rs->raid_type->level) {
924         case 1:
925                 if (rebuild_cnt >= rs->md.raid_disks)
926                         goto too_many;
927                 break;
928         case 4:
929         case 5:
930         case 6:
931                 if (rebuild_cnt > rs->raid_type->parity_devs)
932                         goto too_many;
933                 break;
934         case 10:
935                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
936                 if (rebuild_cnt < copies)
937                         break;
938
939                 /*
940                  * It is possible to have a higher rebuild count for RAID10,
941                  * as long as the failed devices occur in different mirror
942                  * groups (i.e. different stripes).
943                  *
944                  * When checking "near" format, make sure no adjacent devices
945                  * have failed beyond what can be handled.  In addition to the
946                  * simple case where the number of devices is a multiple of the
947                  * number of copies, we must also handle cases where the number
948                  * of devices is not a multiple of the number of copies.
949                  * E.g.    dev1 dev2 dev3 dev4 dev5
950                  *          A    A    B    B    C
951                  *          C    D    D    E    E
952                  */
953                 if (__is_raid10_near(rs->md.new_layout)) {
954                         for (i = 0; i < rs->raid_disks; i++) {
955                                 if (!(i % copies))
956                                         rebuilds_per_group = 0;
957                                 if ((!rs->dev[i].rdev.sb_page ||
958                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
959                                     (++rebuilds_per_group >= copies))
960                                         goto too_many;
961                         }
962                         break;
963                 }
964
965                 /*
966                  * When checking "far" and "offset" formats, we need to ensure
967                  * that the device that holds its copy is not also dead or
968                  * being rebuilt.  (Note that "far" and "offset" formats only
969                  * support two copies right now.  These formats also only ever
970                  * use the 'use_far_sets' variant.)
971                  *
972                  * This check is somewhat complicated by the need to account
973                  * for arrays that are not a multiple of (far) copies.  This
974                  * results in the need to treat the last (potentially larger)
975                  * set differently.
976                  */
977                 group_size = (rs->md.raid_disks / copies);
978                 last_group_start = (rs->md.raid_disks / group_size) - 1;
979                 last_group_start *= group_size;
980                 for (i = 0; i < rs->md.raid_disks; i++) {
981                         if (!(i % copies) && !(i > last_group_start))
982                                 rebuilds_per_group = 0;
983                         if ((!rs->dev[i].rdev.sb_page ||
984                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
985                             (++rebuilds_per_group >= copies))
986                                         goto too_many;
987                 }
988                 break;
989         default:
990                 if (rebuild_cnt)
991                         return -EINVAL;
992         }
993
994         return 0;
995
996 too_many:
997         return -EINVAL;
998 }
999
1000 /*
1001  * Possible arguments are...
1002  *      <chunk_size> [optional_args]
1003  *
1004  * Argument definitions
1005  *    <chunk_size>                      The number of sectors per disk that
1006  *                                      will form the "stripe"
1007  *    [[no]sync]                        Force or prevent recovery of the
1008  *                                      entire array
1009  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1010  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1011  *                                      clear bits
1012  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1013  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1014  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1015  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1016  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1017  *    [region_size <sectors>]           Defines granularity of bitmap
1018  *
1019  * RAID10-only options:
1020  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1021  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1022  */
1023 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1024                              unsigned num_raid_params)
1025 {
1026         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1027         unsigned raid10_copies = 2;
1028         unsigned i, write_mostly = 0;
1029         unsigned region_size = 0;
1030         sector_t max_io_len;
1031         const char *arg, *key;
1032         struct raid_dev *rd;
1033         struct raid_type *rt = rs->raid_type;
1034
1035         arg = dm_shift_arg(as);
1036         num_raid_params--; /* Account for chunk_size argument */
1037
1038         if (kstrtoint(arg, 10, &value) < 0) {
1039                 rs->ti->error = "Bad numerical argument given for chunk_size";
1040                 return -EINVAL;
1041         }
1042
1043         /*
1044          * First, parse the in-order required arguments
1045          * "chunk_size" is the only argument of this type.
1046          */
1047         if (rt_is_raid1(rt)) {
1048                 if (value)
1049                         DMERR("Ignoring chunk size parameter for RAID 1");
1050                 value = 0;
1051         } else if (!is_power_of_2(value)) {
1052                 rs->ti->error = "Chunk size must be a power of 2";
1053                 return -EINVAL;
1054         } else if (value < 8) {
1055                 rs->ti->error = "Chunk size value is too small";
1056                 return -EINVAL;
1057         }
1058
1059         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1060
1061         /*
1062          * We set each individual device as In_sync with a completed
1063          * 'recovery_offset'.  If there has been a device failure or
1064          * replacement then one of the following cases applies:
1065          *
1066          *   1) User specifies 'rebuild'.
1067          *      - Device is reset when param is read.
1068          *   2) A new device is supplied.
1069          *      - No matching superblock found, resets device.
1070          *   3) Device failure was transient and returns on reload.
1071          *      - Failure noticed, resets device for bitmap replay.
1072          *   4) Device hadn't completed recovery after previous failure.
1073          *      - Superblock is read and overrides recovery_offset.
1074          *
1075          * What is found in the superblocks of the devices is always
1076          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1077          */
1078         for (i = 0; i < rs->md.raid_disks; i++) {
1079                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1080                 rs->dev[i].rdev.recovery_offset = MaxSector;
1081         }
1082
1083         /*
1084          * Second, parse the unordered optional arguments
1085          */
1086         for (i = 0; i < num_raid_params; i++) {
1087                 key = dm_shift_arg(as);
1088                 if (!key) {
1089                         rs->ti->error = "Not enough raid parameters given";
1090                         return -EINVAL;
1091                 }
1092
1093                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1094                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1095                                 rs->ti->error = "Only one 'nosync' argument allowed";
1096                                 return -EINVAL;
1097                         }
1098                         rs->md.recovery_cp = MaxSector;
1099                         continue;
1100                 }
1101                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1102                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1103                                 rs->ti->error = "Only one 'sync' argument allowed";
1104                                 return -EINVAL;
1105                         }
1106                         rs->md.recovery_cp = 0;
1107                         continue;
1108                 }
1109                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1110                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1111                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1112                                 return -EINVAL;
1113                         }
1114                         continue;
1115                 }
1116
1117                 arg = dm_shift_arg(as);
1118                 i++; /* Account for the argument pairs */
1119                 if (!arg) {
1120                         rs->ti->error = "Wrong number of raid parameters given";
1121                         return -EINVAL;
1122                 }
1123
1124                 /*
1125                  * Parameters that take a string value are checked here.
1126                  */
1127
1128                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1129                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1130                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1131                                 return -EINVAL;
1132                         }
1133                         if (!rt_is_raid10(rt)) {
1134                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1135                                 return -EINVAL;
1136                         }
1137                         raid10_format = raid10_name_to_format(arg);
1138                         if (raid10_format < 0) {
1139                                 rs->ti->error = "Invalid 'raid10_format' value given";
1140                                 return raid10_format;
1141                         }
1142                         continue;
1143                 }
1144
1145                 if (kstrtoint(arg, 10, &value) < 0) {
1146                         rs->ti->error = "Bad numerical argument given in raid params";
1147                         return -EINVAL;
1148                 }
1149
1150                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1151                         /*
1152                          * "rebuild" is being passed in by userspace to provide
1153                          * indexes of replaced devices and to set up additional
1154                          * devices on raid level takeover.
1155                          */
1156                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1157                                 rs->ti->error = "Invalid rebuild index given";
1158                                 return -EINVAL;
1159                         }
1160
1161                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1162                                 rs->ti->error = "rebuild for this index already given";
1163                                 return -EINVAL;
1164                         }
1165
1166                         rd = rs->dev + value;
1167                         clear_bit(In_sync, &rd->rdev.flags);
1168                         clear_bit(Faulty, &rd->rdev.flags);
1169                         rd->rdev.recovery_offset = 0;
1170                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1171                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1172                         if (!rt_is_raid1(rt)) {
1173                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1174                                 return -EINVAL;
1175                         }
1176
1177                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1178                                 rs->ti->error = "Invalid write_mostly index given";
1179                                 return -EINVAL;
1180                         }
1181
1182                         write_mostly++;
1183                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1184                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1185                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1186                         if (!rt_is_raid1(rt)) {
1187                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1188                                 return -EINVAL;
1189                         }
1190
1191                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1192                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1193                                 return -EINVAL;
1194                         }
1195
1196                         /*
1197                          * In device-mapper, we specify things in sectors, but
1198                          * MD records this value in kB
1199                          */
1200                         value /= 2;
1201                         if (value > COUNTER_MAX) {
1202                                 rs->ti->error = "Max write-behind limit out of range";
1203                                 return -EINVAL;
1204                         }
1205
1206                         rs->md.bitmap_info.max_write_behind = value;
1207                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1208                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1209                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1210                                 return -EINVAL;
1211                         }
1212                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1213                                 rs->ti->error = "daemon sleep period out of range";
1214                                 return -EINVAL;
1215                         }
1216                         rs->md.bitmap_info.daemon_sleep = value;
1217                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1218                         /* Userspace passes new data_offset after having extended the the data image LV */
1219                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1220                                 rs->ti->error = "Only one data_offset argument pair allowed";
1221                                 return -EINVAL;
1222                         }
1223                         /* Ensure sensible data offset */
1224                         if (value < 0) {
1225                                 rs->ti->error = "Bogus data_offset value";
1226                                 return -EINVAL;
1227                         }
1228                         rs->data_offset = value;
1229                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1230                         /* Define the +/-# of disks to add to/remove from the given raid set */
1231                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1232                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1233                                 return -EINVAL;
1234                         }
1235                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1236                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1237                                 rs->ti->error = "Too many delta_disk requested";
1238                                 return -EINVAL;
1239                         }
1240
1241                         rs->delta_disks = value;
1242                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1243                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1244                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1245                                 return -EINVAL;
1246                         }
1247
1248                         if (!rt_is_raid456(rt)) {
1249                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1250                                 return -EINVAL;
1251                         }
1252
1253                         rs->stripe_cache_entries = value;
1254                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1255                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1256                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1257                                 return -EINVAL;
1258                         }
1259                         if (value > INT_MAX) {
1260                                 rs->ti->error = "min_recovery_rate out of range";
1261                                 return -EINVAL;
1262                         }
1263                         rs->md.sync_speed_min = (int)value;
1264                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1265                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1266                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1267                                 return -EINVAL;
1268                         }
1269                         if (value > INT_MAX) {
1270                                 rs->ti->error = "max_recovery_rate out of range";
1271                                 return -EINVAL;
1272                         }
1273                         rs->md.sync_speed_max = (int)value;
1274                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1275                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1276                                 rs->ti->error = "Only one region_size argument pair allowed";
1277                                 return -EINVAL;
1278                         }
1279
1280                         region_size = value;
1281                         rs->requested_bitmap_chunk_sectors = value;
1282                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1283                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1284                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1285                                 return -EINVAL;
1286                         }
1287
1288                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1289                                 rs->ti->error = "Bad value for 'raid10_copies'";
1290                                 return -EINVAL;
1291                         }
1292
1293                         raid10_copies = value;
1294                 } else {
1295                         DMERR("Unable to parse RAID parameter: %s", key);
1296                         rs->ti->error = "Unable to parse RAID parameter";
1297                         return -EINVAL;
1298                 }
1299         }
1300
1301         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1302             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1303                 rs->ti->error = "sync and nosync are mutually exclusive";
1304                 return -EINVAL;
1305         }
1306
1307         if (write_mostly >= rs->md.raid_disks) {
1308                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1309                 return -EINVAL;
1310         }
1311
1312         if (validate_region_size(rs, region_size))
1313                 return -EINVAL;
1314
1315         if (rs->md.chunk_sectors)
1316                 max_io_len = rs->md.chunk_sectors;
1317         else
1318                 max_io_len = region_size;
1319
1320         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1321                 return -EINVAL;
1322
1323         if (rt_is_raid10(rt)) {
1324                 if (raid10_copies > rs->md.raid_disks) {
1325                         rs->ti->error = "Not enough devices to satisfy specification";
1326                         return -EINVAL;
1327                 }
1328
1329                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1330                 if (rs->md.new_layout < 0) {
1331                         rs->ti->error = "Error getting raid10 format";
1332                         return rs->md.new_layout;
1333                 }
1334
1335                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1336                 if (!rt) {
1337                         rs->ti->error = "Failed to recognize new raid10 layout";
1338                         return -EINVAL;
1339                 }
1340
1341                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1342                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1343                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1344                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1345                         return -EINVAL;
1346                 }
1347         }
1348
1349         rs->raid10_copies = raid10_copies;
1350
1351         /* Assume there are no metadata devices until the drives are parsed */
1352         rs->md.persistent = 0;
1353         rs->md.external = 1;
1354
1355         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1356         return rs_check_for_valid_flags(rs);
1357 }
1358
1359 /* Set raid4/5/6 cache size */
1360 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1361 {
1362         int r;
1363         struct r5conf *conf;
1364         struct mddev *mddev = &rs->md;
1365         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1366         uint32_t nr_stripes = rs->stripe_cache_entries;
1367
1368         if (!rt_is_raid456(rs->raid_type)) {
1369                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1370                 return -EINVAL;
1371         }
1372
1373         if (nr_stripes < min_stripes) {
1374                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1375                        nr_stripes, min_stripes);
1376                 nr_stripes = min_stripes;
1377         }
1378
1379         conf = mddev->private;
1380         if (!conf) {
1381                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1382                 return -EINVAL;
1383         }
1384
1385         /* Try setting number of stripes in raid456 stripe cache */
1386         if (conf->min_nr_stripes != nr_stripes) {
1387                 r = raid5_set_cache_size(mddev, nr_stripes);
1388                 if (r) {
1389                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1390                         return r;
1391                 }
1392
1393                 DMINFO("%u stripe cache entries", nr_stripes);
1394         }
1395
1396         return 0;
1397 }
1398
1399 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1400 static unsigned int mddev_data_stripes(struct raid_set *rs)
1401 {
1402         return rs->md.raid_disks - rs->raid_type->parity_devs;
1403 }
1404
1405 /* Return # of data stripes of @rs (i.e. as of ctr) */
1406 static unsigned int rs_data_stripes(struct raid_set *rs)
1407 {
1408         return rs->raid_disks - rs->raid_type->parity_devs;
1409 }
1410
1411 /* Calculate the sectors per device and per array used for @rs */
1412 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1413 {
1414         int delta_disks;
1415         unsigned int data_stripes;
1416         struct mddev *mddev = &rs->md;
1417         struct md_rdev *rdev;
1418         sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1419         sector_t cur_dev_sectors = rs->dev[0].rdev.sectors;
1420
1421         if (use_mddev) {
1422                 delta_disks = mddev->delta_disks;
1423                 data_stripes = mddev_data_stripes(rs);
1424         } else {
1425                 delta_disks = rs->delta_disks;
1426                 data_stripes = rs_data_stripes(rs);
1427         }
1428
1429         /* Special raid1 case w/o delta_disks support (yet) */
1430         if (rt_is_raid1(rs->raid_type))
1431                 ;
1432         else if (rt_is_raid10(rs->raid_type)) {
1433                 if (rs->raid10_copies < 2 ||
1434                     delta_disks < 0) {
1435                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1436                         return EINVAL;
1437                 }
1438
1439                 dev_sectors *= rs->raid10_copies;
1440                 if (sector_div(dev_sectors, data_stripes))
1441                         goto bad;
1442
1443                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1444                 if (sector_div(array_sectors, rs->raid10_copies))
1445                         goto bad;
1446
1447         } else if (sector_div(dev_sectors, data_stripes))
1448                 goto bad;
1449
1450         else
1451                 /* Striped layouts */
1452                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1453
1454         rdev_for_each(rdev, mddev)
1455                 rdev->sectors = dev_sectors;
1456
1457         mddev->array_sectors = array_sectors;
1458         mddev->dev_sectors = dev_sectors;
1459
1460         if (!rs_is_raid0(rs) && dev_sectors > cur_dev_sectors)
1461                 mddev->recovery_cp = dev_sectors;
1462
1463         return 0;
1464 bad:
1465         rs->ti->error = "Target length not divisible by number of data devices";
1466         return EINVAL;
1467 }
1468
1469 static void do_table_event(struct work_struct *ws)
1470 {
1471         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1472
1473         rs_set_capacity(rs);
1474         dm_table_event(rs->ti->table);
1475 }
1476
1477 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1478 {
1479         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1480
1481         return mddev_congested(&rs->md, bits);
1482 }
1483
1484 /*
1485  * Make sure a valid takover (level switch) is being requested on @rs
1486  *
1487  * Conversions of raid sets from one MD personality to another
1488  * have to conform to restrictions which are enforced here.
1489  *
1490  * Degration is already checked for in rs_check_conversion() below.
1491  */
1492 static int rs_check_takeover(struct raid_set *rs)
1493 {
1494         struct mddev *mddev = &rs->md;
1495         unsigned int near_copies;
1496
1497         if (rs->md.degraded) {
1498                 rs->ti->error = "Can't takeover degraded raid set";
1499                 return -EPERM;
1500         }
1501
1502         if (rs_is_reshaping(rs)) {
1503                 rs->ti->error = "Can't takeover reshaping raid set";
1504                 return -EPERM;
1505         }
1506
1507         switch (mddev->level) {
1508         case 0:
1509                 /* raid0 -> raid1/5 with one disk */
1510                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1511                     mddev->raid_disks == 1)
1512                         return 0;
1513
1514                 /* raid0 -> raid10 */
1515                 if (mddev->new_level == 10 &&
1516                     !(rs->raid_disks % mddev->raid_disks))
1517                         return 0;
1518
1519                 /* raid0 with multiple disks -> raid4/5/6 */
1520                 if (__within_range(mddev->new_level, 4, 6) &&
1521                     mddev->new_layout == ALGORITHM_PARITY_N &&
1522                     mddev->raid_disks > 1)
1523                         return 0;
1524
1525                 break;
1526
1527         case 10:
1528                 /* Can't takeover raid10_offset! */
1529                 if (__is_raid10_offset(mddev->layout))
1530                         break;
1531
1532                 near_copies = __raid10_near_copies(mddev->layout);
1533
1534                 /* raid10* -> raid0 */
1535                 if (mddev->new_level == 0) {
1536                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1537                         if (near_copies > 1 &&
1538                             !(mddev->raid_disks % near_copies)) {
1539                                 mddev->raid_disks /= near_copies;
1540                                 mddev->delta_disks = mddev->raid_disks;
1541                                 return 0;
1542                         }
1543
1544                         /* Can takeover raid10_far */
1545                         if (near_copies == 1 &&
1546                             __raid10_far_copies(mddev->layout) > 1)
1547                                 return 0;
1548
1549                         break;
1550                 }
1551
1552                 /* raid10_{near,far} -> raid1 */
1553                 if (mddev->new_level == 1 &&
1554                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1555                         return 0;
1556
1557                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1558                 if (__within_range(mddev->new_level, 4, 5) &&
1559                     mddev->raid_disks == 2)
1560                         return 0;
1561                 break;
1562
1563         case 1:
1564                 /* raid1 with 2 disks -> raid4/5 */
1565                 if (__within_range(mddev->new_level, 4, 5) &&
1566                     mddev->raid_disks == 2) {
1567                         mddev->degraded = 1;
1568                         return 0;
1569                 }
1570
1571                 /* raid1 -> raid0 */
1572                 if (mddev->new_level == 0 &&
1573                     mddev->raid_disks == 1)
1574                         return 0;
1575
1576                 /* raid1 -> raid10 */
1577                 if (mddev->new_level == 10)
1578                         return 0;
1579
1580                 break;
1581
1582         case 4:
1583                 /* raid4 -> raid0 */
1584                 if (mddev->new_level == 0)
1585                         return 0;
1586
1587                 /* raid4 -> raid1/5 with 2 disks */
1588                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1589                     mddev->raid_disks == 2)
1590                         return 0;
1591
1592                 /* raid4 -> raid5/6 with parity N */
1593                 if (__within_range(mddev->new_level, 5, 6) &&
1594                     mddev->layout == ALGORITHM_PARITY_N)
1595                         return 0;
1596                 break;
1597
1598         case 5:
1599                 /* raid5 with parity N -> raid0 */
1600                 if (mddev->new_level == 0 &&
1601                     mddev->layout == ALGORITHM_PARITY_N)
1602                         return 0;
1603
1604                 /* raid5 with parity N -> raid4 */
1605                 if (mddev->new_level == 4 &&
1606                     mddev->layout == ALGORITHM_PARITY_N)
1607                         return 0;
1608
1609                 /* raid5 with 2 disks -> raid1/4/10 */
1610                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1611                     mddev->raid_disks == 2)
1612                         return 0;
1613
1614                 /* raid5 with parity N -> raid6 with parity N */
1615                 if (mddev->new_level == 6 &&
1616                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1617                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1618                         return 0;
1619                 break;
1620
1621         case 6:
1622                 /* raid6 with parity N -> raid0 */
1623                 if (mddev->new_level == 0 &&
1624                     mddev->layout == ALGORITHM_PARITY_N)
1625                         return 0;
1626
1627                 /* raid6 with parity N -> raid4 */
1628                 if (mddev->new_level == 4 &&
1629                     mddev->layout == ALGORITHM_PARITY_N)
1630                         return 0;
1631
1632                 /* raid6_*_n with parity N -> raid5_* */
1633                 if (mddev->new_level == 5 &&
1634                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1635                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1636                         return 0;
1637
1638         default:
1639                 break;
1640         }
1641
1642         rs->ti->error = "takeover not possible";
1643         return -EINVAL;
1644 }
1645
1646 /* True if @rs requested to be taken over */
1647 static bool rs_takeover_requested(struct raid_set *rs)
1648 {
1649         return rs->md.new_level != rs->md.level;
1650 }
1651
1652 /* True if @rs is requested to reshape by ctr */
1653 static bool rs_reshape_requested(struct raid_set *rs)
1654 {
1655         struct mddev *mddev = &rs->md;
1656
1657         if (!mddev->level)
1658                 return false;
1659
1660         return !__is_raid10_far(mddev->new_layout) &&
1661                mddev->new_level == mddev->level &&
1662                (mddev->new_layout != mddev->layout ||
1663                 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1664                 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1665 }
1666
1667 /*  Features */
1668 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1669
1670 /* State flags for sb->flags */
1671 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1672 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1673
1674 /*
1675  * This structure is never routinely used by userspace, unlike md superblocks.
1676  * Devices with this superblock should only ever be accessed via device-mapper.
1677  */
1678 #define DM_RAID_MAGIC 0x64526D44
1679 struct dm_raid_superblock {
1680         __le32 magic;           /* "DmRd" */
1681         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1682
1683         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1684         __le32 array_position;  /* The position of this drive in the raid set */
1685
1686         __le64 events;          /* Incremented by md when superblock updated */
1687         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1688                                 /* indicate failures (see extension below) */
1689
1690         /*
1691          * This offset tracks the progress of the repair or replacement of
1692          * an individual drive.
1693          */
1694         __le64 disk_recovery_offset;
1695
1696         /*
1697          * This offset tracks the progress of the initial raid set
1698          * synchronisation/parity calculation.
1699          */
1700         __le64 array_resync_offset;
1701
1702         /*
1703          * raid characteristics
1704          */
1705         __le32 level;
1706         __le32 layout;
1707         __le32 stripe_sectors;
1708
1709         /********************************************************************
1710          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1711          *
1712          * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1713          */
1714
1715         __le32 flags; /* Flags defining array states for reshaping */
1716
1717         /*
1718          * This offset tracks the progress of a raid
1719          * set reshape in order to be able to restart it
1720          */
1721         __le64 reshape_position;
1722
1723         /*
1724          * These define the properties of the array in case of an interrupted reshape
1725          */
1726         __le32 new_level;
1727         __le32 new_layout;
1728         __le32 new_stripe_sectors;
1729         __le32 delta_disks;
1730
1731         __le64 array_sectors; /* Array size in sectors */
1732
1733         /*
1734          * Sector offsets to data on devices (reshaping).
1735          * Needed to support out of place reshaping, thus
1736          * not writing over any stripes whilst converting
1737          * them from old to new layout
1738          */
1739         __le64 data_offset;
1740         __le64 new_data_offset;
1741
1742         __le64 sectors; /* Used device size in sectors */
1743
1744         /*
1745          * Additonal Bit field of devices indicating failures to support
1746          * up to 256 devices with the 1.9.0 on-disk metadata format
1747          */
1748         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1749
1750         __le32 incompat_features;       /* Used to indicate any incompatible features */
1751
1752         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1753 } __packed;
1754
1755 /*
1756  * Check for reshape constraints on raid set @rs:
1757  *
1758  * - reshape function non-existent
1759  * - degraded set
1760  * - ongoing recovery
1761  * - ongoing reshape
1762  *
1763  * Returns 0 if none or -EPERM if given constraint
1764  * and error message reference in @errmsg
1765  */
1766 static int rs_check_reshape(struct raid_set *rs)
1767 {
1768         struct mddev *mddev = &rs->md;
1769
1770         if (!mddev->pers || !mddev->pers->check_reshape)
1771                 rs->ti->error = "Reshape not supported";
1772         else if (mddev->degraded)
1773                 rs->ti->error = "Can't reshape degraded raid set";
1774         else if (rs_is_recovering(rs))
1775                 rs->ti->error = "Convert request on recovering raid set prohibited";
1776         else if (mddev->reshape_position && rs_is_reshaping(rs))
1777                 rs->ti->error = "raid set already reshaping!";
1778         else if (!(rs_is_raid10(rs) || rs_is_raid456(rs)))
1779                 rs->ti->error = "Reshaping only supported for raid4/5/6/10";
1780         else
1781                 return 0;
1782
1783         return -EPERM;
1784 }
1785
1786 static int read_disk_sb(struct md_rdev *rdev, int size)
1787 {
1788         BUG_ON(!rdev->sb_page);
1789
1790         if (rdev->sb_loaded)
1791                 return 0;
1792
1793         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1794                 DMERR("Failed to read superblock of device at position %d",
1795                       rdev->raid_disk);
1796                 md_error(rdev->mddev, rdev);
1797                 return -EINVAL;
1798         }
1799
1800         rdev->sb_loaded = 1;
1801
1802         return 0;
1803 }
1804
1805 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1806 {
1807         failed_devices[0] = le64_to_cpu(sb->failed_devices);
1808         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1809
1810         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1811                 int i = ARRAY_SIZE(sb->extended_failed_devices);
1812
1813                 while (i--)
1814                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1815         }
1816 }
1817
1818 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1819 {
1820         int i = ARRAY_SIZE(sb->extended_failed_devices);
1821
1822         sb->failed_devices = cpu_to_le64(failed_devices[0]);
1823         while (i--)
1824                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1825 }
1826
1827 /*
1828  * Synchronize the superblock members with the raid set properties
1829  *
1830  * All superblock data is little endian.
1831  */
1832 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1833 {
1834         bool update_failed_devices = false;
1835         unsigned int i;
1836         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1837         struct dm_raid_superblock *sb;
1838         struct raid_set *rs = container_of(mddev, struct raid_set, md);
1839
1840         /* No metadata device, no superblock */
1841         if (!rdev->meta_bdev)
1842                 return;
1843
1844         BUG_ON(!rdev->sb_page);
1845
1846         sb = page_address(rdev->sb_page);
1847
1848         sb_retrieve_failed_devices(sb, failed_devices);
1849
1850         for (i = 0; i < rs->raid_disks; i++)
1851                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1852                         update_failed_devices = true;
1853                         set_bit(i, (void *) failed_devices);
1854                 }
1855
1856         if (update_failed_devices)
1857                 sb_update_failed_devices(sb, failed_devices);
1858
1859         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1860         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1861
1862         sb->num_devices = cpu_to_le32(mddev->raid_disks);
1863         sb->array_position = cpu_to_le32(rdev->raid_disk);
1864
1865         sb->events = cpu_to_le64(mddev->events);
1866
1867         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1868         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1869
1870         sb->level = cpu_to_le32(mddev->level);
1871         sb->layout = cpu_to_le32(mddev->layout);
1872         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1873
1874         sb->new_level = cpu_to_le32(mddev->new_level);
1875         sb->new_layout = cpu_to_le32(mddev->new_layout);
1876         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1877
1878         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1879
1880         smp_rmb(); /* Make sure we access most recent reshape position */
1881         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1882         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1883                 /* Flag ongoing reshape */
1884                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1885
1886                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1887                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1888         } else {
1889                 /* Clear reshape flags */
1890                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1891         }
1892
1893         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1894         sb->data_offset = cpu_to_le64(rdev->data_offset);
1895         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1896         sb->sectors = cpu_to_le64(rdev->sectors);
1897
1898         /* Zero out the rest of the payload after the size of the superblock */
1899         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1900 }
1901
1902 /*
1903  * super_load
1904  *
1905  * This function creates a superblock if one is not found on the device
1906  * and will decide which superblock to use if there's a choice.
1907  *
1908  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1909  */
1910 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1911 {
1912         int r;
1913         struct dm_raid_superblock *sb;
1914         struct dm_raid_superblock *refsb;
1915         uint64_t events_sb, events_refsb;
1916
1917         rdev->sb_start = 0;
1918         rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1919         if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1920                 DMERR("superblock size of a logical block is no longer valid");
1921                 return -EINVAL;
1922         }
1923
1924         r = read_disk_sb(rdev, rdev->sb_size);
1925         if (r)
1926                 return r;
1927
1928         sb = page_address(rdev->sb_page);
1929
1930         /*
1931          * Two cases that we want to write new superblocks and rebuild:
1932          * 1) New device (no matching magic number)
1933          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1934          */
1935         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1936             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1937                 super_sync(rdev->mddev, rdev);
1938
1939                 set_bit(FirstUse, &rdev->flags);
1940                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1941
1942                 /* Force writing of superblocks to disk */
1943                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1944
1945                 /* Any superblock is better than none, choose that if given */
1946                 return refdev ? 0 : 1;
1947         }
1948
1949         if (!refdev)
1950                 return 1;
1951
1952         events_sb = le64_to_cpu(sb->events);
1953
1954         refsb = page_address(refdev->sb_page);
1955         events_refsb = le64_to_cpu(refsb->events);
1956
1957         return (events_sb > events_refsb) ? 1 : 0;
1958 }
1959
1960 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
1961 {
1962         int role;
1963         unsigned int d;
1964         struct mddev *mddev = &rs->md;
1965         uint64_t events_sb;
1966         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1967         struct dm_raid_superblock *sb;
1968         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
1969         struct md_rdev *r;
1970         struct dm_raid_superblock *sb2;
1971
1972         sb = page_address(rdev->sb_page);
1973         events_sb = le64_to_cpu(sb->events);
1974
1975         /*
1976          * Initialise to 1 if this is a new superblock.
1977          */
1978         mddev->events = events_sb ? : 1;
1979
1980         mddev->reshape_position = MaxSector;
1981
1982         /*
1983          * Reshaping is supported, e.g. reshape_position is valid
1984          * in superblock and superblock content is authoritative.
1985          */
1986         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1987                 /* Superblock is authoritative wrt given raid set layout! */
1988                 mddev->raid_disks = le32_to_cpu(sb->num_devices);
1989                 mddev->level = le32_to_cpu(sb->level);
1990                 mddev->layout = le32_to_cpu(sb->layout);
1991                 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
1992                 mddev->new_level = le32_to_cpu(sb->new_level);
1993                 mddev->new_layout = le32_to_cpu(sb->new_layout);
1994                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
1995                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1996                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
1997
1998                 /* raid was reshaping and got interrupted */
1999                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2000                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2001                                 DMERR("Reshape requested but raid set is still reshaping");
2002                                 return -EINVAL;
2003                         }
2004
2005                         if (mddev->delta_disks < 0 ||
2006                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2007                                 mddev->reshape_backwards = 1;
2008                         else
2009                                 mddev->reshape_backwards = 0;
2010
2011                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2012                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2013                 }
2014
2015         } else {
2016                 /*
2017                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2018                  */
2019                 if (le32_to_cpu(sb->level) != mddev->level) {
2020                         DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2021                         return -EINVAL;
2022                 }
2023                 if (le32_to_cpu(sb->layout) != mddev->layout) {
2024                         DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2025                         DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2026                         DMERR("  Old layout: %s w/ %d copies",
2027                               raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2028                               raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2029                         DMERR("  New layout: %s w/ %d copies",
2030                               raid10_md_layout_to_format(mddev->layout),
2031                               raid10_md_layout_to_copies(mddev->layout));
2032                         return -EINVAL;
2033                 }
2034                 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2035                         DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2036                         return -EINVAL;
2037                 }
2038
2039                 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2040                 if (!rt_is_raid1(rs->raid_type) &&
2041                     (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2042                         DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2043                               sb->num_devices, mddev->raid_disks);
2044                         return -EINVAL;
2045                 }
2046
2047                 /* Table line is checked vs. authoritative superblock */
2048                 rs_set_new(rs);
2049         }
2050
2051         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2052                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2053
2054         /*
2055          * During load, we set FirstUse if a new superblock was written.
2056          * There are two reasons we might not have a superblock:
2057          * 1) The raid set is brand new - in which case, all of the
2058          *    devices must have their In_sync bit set.  Also,
2059          *    recovery_cp must be 0, unless forced.
2060          * 2) This is a new device being added to an old raid set
2061          *    and the new device needs to be rebuilt - in which
2062          *    case the In_sync bit will /not/ be set and
2063          *    recovery_cp must be MaxSector.
2064          * 3) This is/are a new device(s) being added to an old
2065          *    raid set during takeover to a higher raid level
2066          *    to provide capacity for redundancy or during reshape
2067          *    to add capacity to grow the raid set.
2068          */
2069         d = 0;
2070         rdev_for_each(r, mddev) {
2071                 if (test_bit(FirstUse, &r->flags))
2072                         new_devs++;
2073
2074                 if (!test_bit(In_sync, &r->flags)) {
2075                         DMINFO("Device %d specified for rebuild; clearing superblock",
2076                                 r->raid_disk);
2077                         rebuilds++;
2078
2079                         if (test_bit(FirstUse, &r->flags))
2080                                 rebuild_and_new++;
2081                 }
2082
2083                 d++;
2084         }
2085
2086         if (new_devs == rs->raid_disks || !rebuilds) {
2087                 /* Replace a broken device */
2088                 if (new_devs == 1 && !rs->delta_disks)
2089                         ;
2090                 if (new_devs == rs->raid_disks) {
2091                         DMINFO("Superblocks created for new raid set");
2092                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2093                         mddev->recovery_cp = 0;
2094                 } else if (new_devs != rebuilds &&
2095                            new_devs != rs->delta_disks) {
2096                         DMERR("New device injected into existing raid set without "
2097                               "'delta_disks' or 'rebuild' parameter specified");
2098                         return -EINVAL;
2099                 }
2100         } else if (new_devs && new_devs != rebuilds) {
2101                 DMERR("%u 'rebuild' devices cannot be injected into"
2102                       " a raid set with %u other first-time devices",
2103                       rebuilds, new_devs);
2104                 return -EINVAL;
2105         } else if (rebuilds) {
2106                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2107                         DMERR("new device%s provided without 'rebuild'",
2108                               new_devs > 1 ? "s" : "");
2109                         return -EINVAL;
2110                 } else if (rs_is_recovering(rs)) {
2111                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2112                               (unsigned long long) mddev->recovery_cp);
2113                         return -EINVAL;
2114                 } else if (rs_is_reshaping(rs)) {
2115                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2116                               (unsigned long long) mddev->reshape_position);
2117                         return -EINVAL;
2118                 }
2119         }
2120
2121         /*
2122          * Now we set the Faulty bit for those devices that are
2123          * recorded in the superblock as failed.
2124          */
2125         sb_retrieve_failed_devices(sb, failed_devices);
2126         rdev_for_each(r, mddev) {
2127                 if (!r->sb_page)
2128                         continue;
2129                 sb2 = page_address(r->sb_page);
2130                 sb2->failed_devices = 0;
2131                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2132
2133                 /*
2134                  * Check for any device re-ordering.
2135                  */
2136                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2137                         role = le32_to_cpu(sb2->array_position);
2138                         if (role < 0)
2139                                 continue;
2140
2141                         if (role != r->raid_disk) {
2142                                 if (__is_raid10_near(mddev->layout)) {
2143                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2144                                             rs->raid_disks % rs->raid10_copies) {
2145                                                 rs->ti->error =
2146                                                         "Cannot change raid10 near set to odd # of devices!";
2147                                                 return -EINVAL;
2148                                         }
2149
2150                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2151
2152                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2153                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2154                                            !rt_is_raid1(rs->raid_type)) {
2155                                         rs->ti->error = "Cannot change device positions in raid set";
2156                                         return -EINVAL;
2157                                 }
2158
2159                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2160                         }
2161
2162                         /*
2163                          * Partial recovery is performed on
2164                          * returning failed devices.
2165                          */
2166                         if (test_bit(role, (void *) failed_devices))
2167                                 set_bit(Faulty, &r->flags);
2168                 }
2169         }
2170
2171         return 0;
2172 }
2173
2174 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2175 {
2176         struct mddev *mddev = &rs->md;
2177         struct dm_raid_superblock *sb;
2178
2179         if (rs_is_raid0(rs) || !rdev->sb_page)
2180                 return 0;
2181
2182         sb = page_address(rdev->sb_page);
2183
2184         /*
2185          * If mddev->events is not set, we know we have not yet initialized
2186          * the array.
2187          */
2188         if (!mddev->events && super_init_validation(rs, rdev))
2189                 return -EINVAL;
2190
2191         if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2192                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2193                 return -EINVAL;
2194         }
2195
2196         if (sb->incompat_features) {
2197                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2198                 return -EINVAL;
2199         }
2200
2201         /* Enable bitmap creation for RAID levels != 0 */
2202         mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2203         rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2204
2205         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2206                 /* Retrieve device size stored in superblock to be prepared for shrink */
2207                 rdev->sectors = le64_to_cpu(sb->sectors);
2208                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2209                 if (rdev->recovery_offset == MaxSector)
2210                         set_bit(In_sync, &rdev->flags);
2211                 /*
2212                  * If no reshape in progress -> we're recovering single
2213                  * disk(s) and have to set the device(s) to out-of-sync
2214                  */
2215                 else if (!rs_is_reshaping(rs))
2216                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2217         }
2218
2219         /*
2220          * If a device comes back, set it as not In_sync and no longer faulty.
2221          */
2222         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2223                 rdev->recovery_offset = 0;
2224                 clear_bit(In_sync, &rdev->flags);
2225                 rdev->saved_raid_disk = rdev->raid_disk;
2226         }
2227
2228         /* Reshape support -> restore repective data offsets */
2229         rdev->data_offset = le64_to_cpu(sb->data_offset);
2230         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2231
2232         return 0;
2233 }
2234
2235 /*
2236  * Analyse superblocks and select the freshest.
2237  */
2238 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2239 {
2240         int r;
2241         struct raid_dev *dev;
2242         struct md_rdev *rdev, *tmp, *freshest;
2243         struct mddev *mddev = &rs->md;
2244
2245         freshest = NULL;
2246         rdev_for_each_safe(rdev, tmp, mddev) {
2247                 /*
2248                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2249                  * the array to undergo initialization again as
2250                  * though it were new.  This is the intended effect
2251                  * of the "sync" directive.
2252                  *
2253                  * When reshaping capability is added, we must ensure
2254                  * that the "sync" directive is disallowed during the
2255                  * reshape.
2256                  */
2257                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2258                         continue;
2259
2260                 if (!rdev->meta_bdev)
2261                         continue;
2262
2263                 r = super_load(rdev, freshest);
2264
2265                 switch (r) {
2266                 case 1:
2267                         freshest = rdev;
2268                         break;
2269                 case 0:
2270                         break;
2271                 default:
2272                         dev = container_of(rdev, struct raid_dev, rdev);
2273                         if (dev->meta_dev)
2274                                 dm_put_device(ti, dev->meta_dev);
2275
2276                         dev->meta_dev = NULL;
2277                         rdev->meta_bdev = NULL;
2278
2279                         if (rdev->sb_page)
2280                                 put_page(rdev->sb_page);
2281
2282                         rdev->sb_page = NULL;
2283
2284                         rdev->sb_loaded = 0;
2285
2286                         /*
2287                          * We might be able to salvage the data device
2288                          * even though the meta device has failed.  For
2289                          * now, we behave as though '- -' had been
2290                          * set for this device in the table.
2291                          */
2292                         if (dev->data_dev)
2293                                 dm_put_device(ti, dev->data_dev);
2294
2295                         dev->data_dev = NULL;
2296                         rdev->bdev = NULL;
2297
2298                         list_del(&rdev->same_set);
2299                 }
2300         }
2301
2302         if (!freshest)
2303                 return 0;
2304
2305         if (validate_raid_redundancy(rs)) {
2306                 rs->ti->error = "Insufficient redundancy to activate array";
2307                 return -EINVAL;
2308         }
2309
2310         /*
2311          * Validation of the freshest device provides the source of
2312          * validation for the remaining devices.
2313          */
2314         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2315         if (super_validate(rs, freshest))
2316                 return -EINVAL;
2317
2318         rdev_for_each(rdev, mddev)
2319                 if ((rdev != freshest) && super_validate(rs, rdev))
2320                         return -EINVAL;
2321         return 0;
2322 }
2323
2324 /*
2325  * Adjust data_offset and new_data_offset on all disk members of @rs
2326  * for out of place reshaping if requested by contructor
2327  *
2328  * We need free space at the beginning of each raid disk for forward
2329  * and at the end for backward reshapes which userspace has to provide
2330  * via remapping/reordering of space.
2331  */
2332 static int rs_adjust_data_offsets(struct raid_set *rs)
2333 {
2334         sector_t data_offset = 0, new_data_offset = 0;
2335         struct md_rdev *rdev;
2336
2337         /* Constructor did not request data offset change */
2338         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2339                 if (!rs_is_reshapable(rs))
2340                         goto out;
2341
2342                 return 0;
2343         }
2344
2345         /* HM FIXME: get InSync raid_dev? */
2346         rdev = &rs->dev[0].rdev;
2347
2348         if (rs->delta_disks < 0) {
2349                 /*
2350                  * Removing disks (reshaping backwards):
2351                  *
2352                  * - before reshape: data is at offset 0 and free space
2353                  *                   is at end of each component LV
2354                  *
2355                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2356                  */
2357                 data_offset = 0;
2358                 new_data_offset = rs->data_offset;
2359
2360         } else if (rs->delta_disks > 0) {
2361                 /*
2362                  * Adding disks (reshaping forwards):
2363                  *
2364                  * - before reshape: data is at offset rs->data_offset != 0 and
2365                  *                   free space is at begin of each component LV
2366                  *
2367                  * - after reshape: data is at offset 0 on each component LV
2368                  */
2369                 data_offset = rs->data_offset;
2370                 new_data_offset = 0;
2371
2372         } else {
2373                 /*
2374                  * User space passes in 0 for data offset after having removed reshape space
2375                  *
2376                  * - or - (data offset != 0)
2377                  *
2378                  * Changing RAID layout or chunk size -> toggle offsets
2379                  *
2380                  * - before reshape: data is at offset rs->data_offset 0 and
2381                  *                   free space is at end of each component LV
2382                  *                   -or-
2383                  *                   data is at offset rs->data_offset != 0 and
2384                  *                   free space is at begin of each component LV
2385                  *
2386                  * - after reshape: data is at offset 0 if i was at offset != 0
2387                  *                  of at offset != 0 if it was at offset 0
2388                  *                  on each component LV
2389                  *
2390                  */
2391                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2392                 new_data_offset = data_offset ? 0 : rs->data_offset;
2393                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2394         }
2395
2396         /*
2397          * Make sure we got a minimum amount of free sectors per device
2398          */
2399         if (rs->data_offset &&
2400             to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2401                 rs->ti->error = data_offset ? "No space for forward reshape" :
2402                                               "No space for backward reshape";
2403                 return -ENOSPC;
2404         }
2405 out:
2406         /* Adjust data offsets on all rdevs */
2407         rdev_for_each(rdev, &rs->md) {
2408                 rdev->data_offset = data_offset;
2409                 rdev->new_data_offset = new_data_offset;
2410         }
2411
2412         return 0;
2413 }
2414
2415 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2416 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2417 {
2418         int i = 0;
2419         struct md_rdev *rdev;
2420
2421         rdev_for_each(rdev, &rs->md) {
2422                 rdev->raid_disk = i++;
2423                 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2424         }
2425 }
2426
2427 /*
2428  * Setup @rs for takeover by a different raid level
2429  */
2430 static int rs_setup_takeover(struct raid_set *rs)
2431 {
2432         struct mddev *mddev = &rs->md;
2433         struct md_rdev *rdev;
2434         unsigned int d = mddev->raid_disks = rs->raid_disks;
2435         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2436
2437         if (rt_is_raid10(rs->raid_type)) {
2438                 if (mddev->level == 0) {
2439                         /* Userpace reordered disks -> adjust raid_disk indexes */
2440                         __reorder_raid_disk_indexes(rs);
2441
2442                         /* raid0 -> raid10_far layout */
2443                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2444                                                                    rs->raid10_copies);
2445                 } else if (mddev->level == 1)
2446                         /* raid1 -> raid10_near layout */
2447                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2448                                                                    rs->raid_disks);
2449                  else
2450                         return -EINVAL;
2451
2452         }
2453
2454         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2455         mddev->recovery_cp = MaxSector;
2456
2457         while (d--) {
2458                 rdev = &rs->dev[d].rdev;
2459
2460                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2461                         clear_bit(In_sync, &rdev->flags);
2462                         clear_bit(Faulty, &rdev->flags);
2463                         mddev->recovery_cp = rdev->recovery_offset = 0;
2464                         /* Bitmap has to be created when we do an "up" takeover */
2465                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2466                 }
2467
2468                 rdev->new_data_offset = new_data_offset;
2469         }
2470
2471         return 0;
2472 }
2473
2474 /*
2475  *
2476  * - change raid layout
2477  * - change chunk size
2478  * - add disks
2479  * - remove disks
2480  */
2481 static int rs_setup_reshape(struct raid_set *rs)
2482 {
2483         int r = 0;
2484         unsigned int cur_raid_devs, d;
2485         struct mddev *mddev = &rs->md;
2486         struct md_rdev *rdev;
2487
2488         mddev->delta_disks = rs->delta_disks;
2489         cur_raid_devs = mddev->raid_disks;
2490
2491         /* Ignore impossible layout change whilst adding/removing disks */
2492         if (mddev->delta_disks &&
2493             mddev->layout != mddev->new_layout) {
2494                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2495                 mddev->new_layout = mddev->layout;
2496         }
2497
2498         /*
2499          * Adjust array size:
2500          *
2501          * - in case of adding disks, array size has
2502          *   to grow after the disk adding reshape,
2503          *   which'll hapen in the event handler;
2504          *   reshape will happen forward, so space has to
2505          *   be available at the beginning of each disk
2506          *
2507          * - in case of removing disks, array size
2508          *   has to shrink before starting the reshape,
2509          *   which'll happen here;
2510          *   reshape will happen backward, so space has to
2511          *   be available at the end of each disk
2512          *
2513          * - data_offset and new_data_offset are
2514          *   adjusted for afreentioned out of place
2515          *   reshaping based on userspace passing in
2516          *   the "data_offset <sectors>" key/value
2517          *   pair via te constructor
2518          */
2519
2520         /* Add disk(s) */
2521         if (rs->delta_disks > 0) {
2522                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2523                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2524                         rdev = &rs->dev[d].rdev;
2525                         clear_bit(In_sync, &rdev->flags);
2526
2527                         /*
2528                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2529                          * by md, which'll store that erroneously in the superblock on reshape
2530                          */
2531                         rdev->saved_raid_disk = -1;
2532                         rdev->raid_disk = d;
2533
2534                         rdev->sectors = mddev->dev_sectors;
2535                         rdev->recovery_offset = MaxSector;
2536                 }
2537
2538                 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2539
2540         /* Remove disk(s) */
2541         } else if (rs->delta_disks < 0) {
2542                 r = rs_set_dev_and_array_sectors(rs, true);
2543                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2544
2545         /* Change layout and/or chunk size */
2546         } else {
2547                 /*
2548                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2549                  *
2550                  * keeping number of disks and do layout change ->
2551                  *
2552                  * toggle reshape_backward depending on data_offset:
2553                  *
2554                  * - free space upfront -> reshape forward
2555                  *
2556                  * - free space at the end -> reshape backward
2557                  *
2558                  *
2559                  * This utilizes free reshape space avoiding the need
2560                  * for userspace to move (parts of) LV segments in
2561                  * case of layout/chunksize change  (for disk
2562                  * adding/removing reshape space has to be at
2563                  * the proper address (see above with delta_disks):
2564                  *
2565                  * add disk(s)   -> begin
2566                  * remove disk(s)-> end
2567                  */
2568                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2569         }
2570
2571         return r;
2572 }
2573
2574 /*
2575  * Enable/disable discard support on RAID set depending on
2576  * RAID level and discard properties of underlying RAID members.
2577  */
2578 static void configure_discard_support(struct raid_set *rs)
2579 {
2580         int i;
2581         bool raid456;
2582         struct dm_target *ti = rs->ti;
2583
2584         /* Assume discards not supported until after checks below. */
2585         ti->discards_supported = false;
2586
2587         /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2588         raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2589
2590         for (i = 0; i < rs->md.raid_disks; i++) {
2591                 struct request_queue *q;
2592
2593                 if (!rs->dev[i].rdev.bdev)
2594                         continue;
2595
2596                 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2597                 if (!q || !blk_queue_discard(q))
2598                         return;
2599
2600                 if (raid456) {
2601                         if (!q->limits.discard_zeroes_data)
2602                                 return;
2603                         if (!devices_handle_discard_safely) {
2604                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2605                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2606                                 return;
2607                         }
2608                 }
2609         }
2610
2611         /* All RAID members properly support discards */
2612         ti->discards_supported = true;
2613
2614         /*
2615          * RAID1 and RAID10 personalities require bio splitting,
2616          * RAID0/4/5/6 don't and process large discard bios properly.
2617          */
2618         ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2619         ti->num_discard_bios = 1;
2620 }
2621
2622 /*
2623  * Construct a RAID0/1/10/4/5/6 mapping:
2624  * Args:
2625  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2626  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2627  *
2628  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2629  * details on possible <raid_params>.
2630  *
2631  * Userspace is free to initialize the metadata devices, hence the superblocks to
2632  * enforce recreation based on the passed in table parameters.
2633  *
2634  */
2635 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2636 {
2637         int r;
2638         struct raid_type *rt;
2639         unsigned num_raid_params, num_raid_devs;
2640         struct raid_set *rs = NULL;
2641         const char *arg;
2642         struct rs_layout rs_layout;
2643         struct dm_arg_set as = { argc, argv }, as_nrd;
2644         struct dm_arg _args[] = {
2645                 { 0, as.argc, "Cannot understand number of raid parameters" },
2646                 { 1, 254, "Cannot understand number of raid devices parameters" }
2647         };
2648
2649         /* Must have <raid_type> */
2650         arg = dm_shift_arg(&as);
2651         if (!arg) {
2652                 ti->error = "No arguments";
2653                 return -EINVAL;
2654         }
2655
2656         rt = get_raid_type(arg);
2657         if (!rt) {
2658                 ti->error = "Unrecognised raid_type";
2659                 return -EINVAL;
2660         }
2661
2662         /* Must have <#raid_params> */
2663         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2664                 return -EINVAL;
2665
2666         /* number of raid device tupples <meta_dev data_dev> */
2667         as_nrd = as;
2668         dm_consume_args(&as_nrd, num_raid_params);
2669         _args[1].max = (as_nrd.argc - 1) / 2;
2670         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2671                 return -EINVAL;
2672
2673         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2674                 ti->error = "Invalid number of supplied raid devices";
2675                 return -EINVAL;
2676         }
2677
2678         rs = raid_set_alloc(ti, rt, num_raid_devs);
2679         if (IS_ERR(rs))
2680                 return PTR_ERR(rs);
2681
2682         r = parse_raid_params(rs, &as, num_raid_params);
2683         if (r)
2684                 goto bad;
2685
2686         r = parse_dev_params(rs, &as);
2687         if (r)
2688                 goto bad;
2689
2690         rs->md.sync_super = super_sync;
2691
2692         r = rs_set_dev_and_array_sectors(rs, false);
2693         if (r)
2694                 return r;
2695
2696         /*
2697          * Backup any new raid set level, layout, ...
2698          * requested to be able to compare to superblock
2699          * members for conversion decisions.
2700          */
2701         rs_config_backup(rs, &rs_layout);
2702
2703         r = analyse_superblocks(ti, rs);
2704         if (r)
2705                 goto bad;
2706
2707         INIT_WORK(&rs->md.event_work, do_table_event);
2708         ti->private = rs;
2709         ti->num_flush_bios = 1;
2710
2711         /* Restore any requested new layout for conversion decision */
2712         rs_config_restore(rs, &rs_layout);
2713
2714         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2715                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2716                 rs_set_new(rs);
2717         } else if (rs_is_reshaping(rs))
2718                 ; /* skip rs setup */
2719         else if (rs_takeover_requested(rs)) {
2720                 if (rs_is_reshaping(rs)) {
2721                         ti->error = "Can't takeover a reshaping raid set";
2722                         return -EPERM;
2723                 }
2724
2725                 /*
2726                  * If a takeover is needed, just set the level to
2727                  * the new requested one and allow the raid set to run.
2728                  */
2729                 r = rs_check_takeover(rs);
2730                 if (r)
2731                         return r;
2732
2733                 r = rs_setup_takeover(rs);
2734                 if (r)
2735                         return r;
2736
2737                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2738                 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2739                 rs_set_new(rs);
2740         } else if (rs_reshape_requested(rs)) {
2741                 if (rs_is_reshaping(rs)) {
2742                         ti->error = "raid set already reshaping!";
2743                         return -EPERM;
2744                 }
2745
2746                 if (rs_is_raid10(rs)) {
2747                         if (rs->raid_disks != rs->md.raid_disks &&
2748                             __is_raid10_near(rs->md.layout) &&
2749                             rs->raid10_copies &&
2750                             rs->raid10_copies != __raid10_near_copies(rs->md.layout)) {
2751                                 /*
2752                                  * raid disk have to be multiple of data copies to allow this conversion,
2753                                  *
2754                                  * This is actually not a reshape it is a
2755                                  * rebuild of any additional mirrors per group
2756                                  */
2757                                 if (rs->raid_disks % rs->raid10_copies) {
2758                                         ti->error = "Can't reshape raid10 mirror groups";
2759                                         return -EINVAL;
2760                                 }
2761
2762                                 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2763                                 __reorder_raid_disk_indexes(rs);
2764                                 rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2765                                                                            rs->raid10_copies);
2766                                 rs->md.new_layout = rs->md.layout;
2767
2768                         } else
2769                                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2770
2771                 } else if (rs_is_raid456(rs))
2772                         set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2773
2774                 /*
2775                  * HM FIXME: process raid1 via delta_disks as well?
2776                  *           Would cause allocations in raid1->check_reshape
2777                  *           though, thus more issues with potential failures
2778                  */
2779                 else if (rs_is_raid1(rs)) {
2780                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2781                         rs->md.raid_disks = rs->raid_disks;
2782                 }
2783
2784                 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2785                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2786                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2787                 }
2788
2789                 if (rs->md.raid_disks < rs->raid_disks)
2790                         set_bit(MD_ARRAY_FIRST_USE, &rs->md.flags);
2791
2792                 rs_set_cur(rs);
2793         } else
2794                 rs_set_cur(rs);
2795
2796         /* If constructor requested it, change data and new_data offsets */
2797         r = rs_adjust_data_offsets(rs);
2798         if (r)
2799                 return r;
2800
2801         /* Start raid set read-only and assumed clean to change in raid_resume() */
2802         rs->md.ro = 1;
2803         rs->md.in_sync = 1;
2804         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2805
2806         /* Has to be held on running the array */
2807         mddev_lock_nointr(&rs->md);
2808         r = md_run(&rs->md);
2809         rs->md.in_sync = 0; /* Assume already marked dirty */
2810
2811         if (r) {
2812                 ti->error = "Failed to run raid array";
2813                 mddev_unlock(&rs->md);
2814                 goto bad;
2815         }
2816
2817         rs->callbacks.congested_fn = raid_is_congested;
2818         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2819
2820         mddev_suspend(&rs->md);
2821
2822         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2823         if (rs_is_raid456(rs)) {
2824                 r = rs_set_raid456_stripe_cache(rs);
2825                 if (r)
2826                         goto bad_stripe_cache;
2827         }
2828
2829         /* Now do an early reshape check */
2830         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2831                 r = rs_check_reshape(rs);
2832                 if (r)
2833                         return r;
2834
2835                 /* Restore new, ctr requested layout to perform check */
2836                 rs_config_restore(rs, &rs_layout);
2837
2838                 r = rs->md.pers->check_reshape(&rs->md);
2839                 if (r) {
2840                         ti->error = "Reshape check failed";
2841                         goto bad_check_reshape;
2842                 }
2843         }
2844
2845         mddev_unlock(&rs->md);
2846         return 0;
2847
2848 bad_stripe_cache:
2849 bad_check_reshape:
2850         md_stop(&rs->md);
2851 bad:
2852         raid_set_free(rs);
2853
2854         return r;
2855 }
2856
2857 static void raid_dtr(struct dm_target *ti)
2858 {
2859         struct raid_set *rs = ti->private;
2860
2861         list_del_init(&rs->callbacks.list);
2862         md_stop(&rs->md);
2863         raid_set_free(rs);
2864 }
2865
2866 static int raid_map(struct dm_target *ti, struct bio *bio)
2867 {
2868         struct raid_set *rs = ti->private;
2869         struct mddev *mddev = &rs->md;
2870
2871         /*
2872          * If we're reshaping to add disk(s)), ti->len and
2873          * mddev->array_sectors will differ during the process
2874          * (ti->len > mddev->array_sectors), so we have to requeue
2875          * bios with addresses > mddev->array_sectors here or
2876          * or there will occur accesses past EOD of the component
2877          * data images thus erroring the raid set.
2878          */
2879         if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
2880                 return DM_MAPIO_REQUEUE;
2881
2882         mddev->pers->make_request(mddev, bio);
2883
2884         return DM_MAPIO_SUBMITTED;
2885 }
2886
2887 /* Return string describing the current sync action of @mddev */
2888 static const char *decipher_sync_action(struct mddev *mddev)
2889 {
2890         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2891                 return "frozen";
2892
2893         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2894             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2895                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2896                         return "reshape";
2897
2898                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2899                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2900                                 return "resync";
2901                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2902                                 return "check";
2903                         return "repair";
2904                 }
2905
2906                 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2907                         return "recover";
2908         }
2909
2910         return "idle";
2911 }
2912
2913 /*
2914  * Return status string @rdev
2915  *
2916  * Status characters:
2917  *
2918  *  'D' = Dead/Failed device
2919  *  'a' = Alive but not in-sync
2920  *  'A' = Alive and in-sync
2921  */
2922 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2923 {
2924         if (test_bit(Faulty, &rdev->flags))
2925                 return "D";
2926         else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2927                 return "a";
2928         else
2929                 return "A";
2930 }
2931
2932 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
2933 static sector_t rs_get_progress(struct raid_set *rs,
2934                                 sector_t resync_max_sectors, bool *array_in_sync)
2935 {
2936         sector_t r, recovery_cp, curr_resync_completed;
2937         struct mddev *mddev = &rs->md;
2938
2939         curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2940         recovery_cp = mddev->recovery_cp;
2941         *array_in_sync = false;
2942
2943         if (rs_is_raid0(rs)) {
2944                 r = resync_max_sectors;
2945                 *array_in_sync = true;
2946
2947         } else {
2948                 r = mddev->reshape_position;
2949
2950                 /* Reshape is relative to the array size */
2951                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2952                     r != MaxSector) {
2953                         if (r == MaxSector) {
2954                                 *array_in_sync = true;
2955                                 r = resync_max_sectors;
2956                         } else {
2957                                 /* Got to reverse on backward reshape */
2958                                 if (mddev->reshape_backwards)
2959                                         r = mddev->array_sectors - r;
2960
2961                                 /* Devide by # of data stripes */
2962                                 sector_div(r, mddev_data_stripes(rs));
2963                         }
2964
2965                 /* Sync is relative to the component device size */
2966                 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2967                         r = curr_resync_completed;
2968                 else
2969                         r = recovery_cp;
2970
2971                 if (r == MaxSector) {
2972                         /*
2973                          * Sync complete.
2974                          */
2975                         *array_in_sync = true;
2976                         r = resync_max_sectors;
2977                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2978                         /*
2979                          * If "check" or "repair" is occurring, the raid set has
2980                          * undergone an initial sync and the health characters
2981                          * should not be 'a' anymore.
2982                          */
2983                         *array_in_sync = true;
2984                 } else {
2985                         struct md_rdev *rdev;
2986
2987                         /*
2988                          * The raid set may be doing an initial sync, or it may
2989                          * be rebuilding individual components.  If all the
2990                          * devices are In_sync, then it is the raid set that is
2991                          * being initialized.
2992                          */
2993                         rdev_for_each(rdev, mddev)
2994                                 if (!test_bit(In_sync, &rdev->flags))
2995                                         *array_in_sync = true;
2996 #if 0
2997                         r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
2998 #endif
2999                 }
3000         }
3001
3002         return r;
3003 }
3004
3005 /* Helper to return @dev name or "-" if !@dev */
3006 static const char *__get_dev_name(struct dm_dev *dev)
3007 {
3008         return dev ? dev->name : "-";
3009 }
3010
3011 static void raid_status(struct dm_target *ti, status_type_t type,
3012                         unsigned int status_flags, char *result, unsigned int maxlen)
3013 {
3014         struct raid_set *rs = ti->private;
3015         struct mddev *mddev = &rs->md;
3016         struct r5conf *conf = mddev->private;
3017         int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3018         bool array_in_sync;
3019         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3020         unsigned int sz = 0;
3021         unsigned int write_mostly_params = 0;
3022         sector_t progress, resync_max_sectors, resync_mismatches;
3023         const char *sync_action;
3024         struct raid_type *rt;
3025         struct md_rdev *rdev;
3026
3027         switch (type) {
3028         case STATUSTYPE_INFO:
3029                 /* *Should* always succeed */
3030                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3031                 if (!rt)
3032                         return;
3033
3034                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3035
3036                 /* Access most recent mddev properties for status output */
3037                 smp_rmb();
3038                 /* Get sensible max sectors even if raid set not yet started */
3039                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3040                                       mddev->resync_max_sectors : mddev->dev_sectors;
3041                 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3042                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3043                                     atomic64_read(&mddev->resync_mismatches) : 0;
3044                 sync_action = decipher_sync_action(&rs->md);
3045
3046                 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3047                 rdev_for_each(rdev, mddev)
3048                         DMEMIT(__raid_dev_status(rdev, array_in_sync));
3049
3050                 /*
3051                  * In-sync/Reshape ratio:
3052                  *  The in-sync ratio shows the progress of:
3053                  *   - Initializing the raid set
3054                  *   - Rebuilding a subset of devices of the raid set
3055                  *  The user can distinguish between the two by referring
3056                  *  to the status characters.
3057                  *
3058                  *  The reshape ratio shows the progress of
3059                  *  changing the raid layout or the number of
3060                  *  disks of a raid set
3061                  */
3062                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3063                                      (unsigned long long) resync_max_sectors);
3064
3065                 /*
3066                  * v1.5.0+:
3067                  *
3068                  * Sync action:
3069                  *   See Documentation/device-mapper/dm-raid.txt for
3070                  *   information on each of these states.
3071                  */
3072                 DMEMIT(" %s", sync_action);
3073
3074                 /*
3075                  * v1.5.0+:
3076                  *
3077                  * resync_mismatches/mismatch_cnt
3078                  *   This field shows the number of discrepancies found when
3079                  *   performing a "check" of the raid set.
3080                  */
3081                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3082
3083                 /*
3084                  * v1.9.0+:
3085                  *
3086                  * data_offset (needed for out of space reshaping)
3087                  *   This field shows the data offset into the data
3088                  *   image LV where the first stripes data starts.
3089                  *
3090                  * We keep data_offset equal on all raid disks of the set,
3091                  * so retrieving it from the first raid disk is sufficient.
3092                  */
3093                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3094                 break;
3095
3096         case STATUSTYPE_TABLE:
3097                 /* Report the table line string you would use to construct this raid set */
3098
3099                 /* Calculate raid parameter count */
3100                 rdev_for_each(rdev, mddev)
3101                         if (test_bit(WriteMostly, &rdev->flags))
3102                                 write_mostly_params += 2;
3103                 raid_param_cnt += memweight(rs->rebuild_disks,
3104                                             DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
3105                                   write_mostly_params +
3106                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3107                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3108                 /* Emit table line */
3109                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3110                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3111                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3112                                          raid10_md_layout_to_format(mddev->layout));
3113                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3114                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3115                                          raid10_md_layout_to_copies(mddev->layout));
3116                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3117                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3118                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3119                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3120                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3121                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3122                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3123                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3124                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3125                                            (unsigned long long) rs->data_offset);
3126                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3127                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3128                                           mddev->bitmap_info.daemon_sleep);
3129                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3130                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3131                                          mddev->delta_disks);
3132                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3133                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3134                                          max_nr_stripes);
3135                 rdev_for_each(rdev, mddev)
3136                         if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3137                                 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3138                                                  rdev->raid_disk);
3139                 rdev_for_each(rdev, mddev)
3140                         if (test_bit(WriteMostly, &rdev->flags))
3141                                 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3142                                                  rdev->raid_disk);
3143                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3144                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3145                                           mddev->bitmap_info.max_write_behind);
3146                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3147                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3148                                          mddev->sync_speed_max);
3149                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3150                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3151                                          mddev->sync_speed_min);
3152                 DMEMIT(" %d", rs->raid_disks);
3153                 rdev_for_each(rdev, mddev) {
3154                         struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
3155
3156                         DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
3157                                          __get_dev_name(rd->data_dev));
3158                 }
3159         }
3160 }
3161
3162 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
3163 {
3164         struct raid_set *rs = ti->private;
3165         struct mddev *mddev = &rs->md;
3166
3167         if (!mddev->pers || !mddev->pers->sync_request)
3168                 return -EINVAL;
3169
3170         if (!strcasecmp(argv[0], "frozen"))
3171                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3172         else
3173                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3174
3175         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3176                 if (mddev->sync_thread) {
3177                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3178                         md_reap_sync_thread(mddev);
3179                 }
3180         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3181                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3182                 return -EBUSY;
3183         else if (!strcasecmp(argv[0], "resync"))
3184                 ; /* MD_RECOVERY_NEEDED set below */
3185         else if (!strcasecmp(argv[0], "recover"))
3186                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3187         else {
3188                 if (!strcasecmp(argv[0], "check"))
3189                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3190                 else if (!!strcasecmp(argv[0], "repair"))
3191                         return -EINVAL;
3192                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3193                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3194         }
3195         if (mddev->ro == 2) {
3196                 /* A write to sync_action is enough to justify
3197                  * canceling read-auto mode
3198                  */
3199                 mddev->ro = 0;
3200                 if (!mddev->suspended && mddev->sync_thread)
3201                         md_wakeup_thread(mddev->sync_thread);
3202         }
3203         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3204         if (!mddev->suspended && mddev->thread)
3205                 md_wakeup_thread(mddev->thread);
3206
3207         return 0;
3208 }
3209
3210 static int raid_iterate_devices(struct dm_target *ti,
3211                                 iterate_devices_callout_fn fn, void *data)
3212 {
3213         struct raid_set *rs = ti->private;
3214         unsigned i;
3215         int r = 0;
3216
3217         for (i = 0; !r && i < rs->md.raid_disks; i++)
3218                 if (rs->dev[i].data_dev)
3219                         r = fn(ti,
3220                                  rs->dev[i].data_dev,
3221                                  0, /* No offset on data devs */
3222                                  rs->md.dev_sectors,
3223                                  data);
3224
3225         return r;
3226 }
3227
3228 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3229 {
3230         struct raid_set *rs = ti->private;
3231         unsigned chunk_size = rs->md.chunk_sectors << 9;
3232         struct r5conf *conf = rs->md.private;
3233
3234         blk_limits_io_min(limits, chunk_size);
3235         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
3236 }
3237
3238 static void raid_presuspend(struct dm_target *ti)
3239 {
3240         struct raid_set *rs = ti->private;
3241
3242         md_stop_writes(&rs->md);
3243 }
3244
3245 static void raid_postsuspend(struct dm_target *ti)
3246 {
3247         struct raid_set *rs = ti->private;
3248
3249         if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3250                 if (!rs->md.suspended)
3251                         mddev_suspend(&rs->md);
3252                 rs->md.ro = 1;
3253         }
3254 }
3255
3256 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3257 {
3258         int i;
3259         uint64_t failed_devices, cleared_failed_devices = 0;
3260         unsigned long flags;
3261         struct dm_raid_superblock *sb;
3262         struct md_rdev *r;
3263
3264         for (i = 0; i < rs->md.raid_disks; i++) {
3265                 r = &rs->dev[i].rdev;
3266                 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3267                     sync_page_io(r, 0, r->sb_size, r->sb_page,
3268                                  REQ_OP_READ, 0, true)) {
3269                         DMINFO("Faulty %s device #%d has readable super block."
3270                                "  Attempting to revive it.",
3271                                rs->raid_type->name, i);
3272
3273                         /*
3274                          * Faulty bit may be set, but sometimes the array can
3275                          * be suspended before the personalities can respond
3276                          * by removing the device from the array (i.e. calling
3277                          * 'hot_remove_disk').  If they haven't yet removed
3278                          * the failed device, its 'raid_disk' number will be
3279                          * '>= 0' - meaning we must call this function
3280                          * ourselves.
3281                          */
3282                         if ((r->raid_disk >= 0) &&
3283                             (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3284                                 /* Failed to revive this device, try next */
3285                                 continue;
3286
3287                         r->raid_disk = i;
3288                         r->saved_raid_disk = i;
3289                         flags = r->flags;
3290                         clear_bit(Faulty, &r->flags);
3291                         clear_bit(WriteErrorSeen, &r->flags);
3292                         clear_bit(In_sync, &r->flags);
3293                         if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3294                                 r->raid_disk = -1;
3295                                 r->saved_raid_disk = -1;
3296                                 r->flags = flags;
3297                         } else {
3298                                 r->recovery_offset = 0;
3299                                 cleared_failed_devices |= 1 << i;
3300                         }
3301                 }
3302         }
3303         if (cleared_failed_devices) {
3304                 rdev_for_each(r, &rs->md) {
3305                         sb = page_address(r->sb_page);
3306                         failed_devices = le64_to_cpu(sb->failed_devices);
3307                         failed_devices &= ~cleared_failed_devices;
3308                         sb->failed_devices = cpu_to_le64(failed_devices);
3309                 }
3310         }
3311 }
3312
3313 static int __load_dirty_region_bitmap(struct raid_set *rs)
3314 {
3315         int r = 0;
3316
3317         /* Try loading the bitmap unless "raid0", which does not have one */
3318         if (!rs_is_raid0(rs) &&
3319             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3320                 r = bitmap_load(&rs->md);
3321                 if (r)
3322                         DMERR("Failed to load bitmap");
3323         }
3324
3325         return r;
3326 }
3327
3328 /* Enforce updating all superblocks */
3329 static void rs_update_sbs(struct raid_set *rs)
3330 {
3331         struct mddev *mddev = &rs->md;
3332         int ro = mddev->ro;
3333
3334         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3335         mddev->ro = 0;
3336         md_update_sb(mddev, 1);
3337         mddev->ro = ro;
3338 }
3339
3340 /*
3341  * Reshape changes raid algorithm of @rs to new one within personality
3342  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3343  * disks from a raid set thus growing/shrinking it or resizes the set
3344  *
3345  * Call mddev_lock_nointr() before!
3346  */
3347 static int rs_start_reshape(struct raid_set *rs)
3348 {
3349         int r;
3350         struct mddev *mddev = &rs->md;
3351         struct md_personality *pers = mddev->pers;
3352
3353         r = rs_setup_reshape(rs);
3354         if (r)
3355                 return r;
3356
3357         /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3358         if (mddev->suspended)
3359                 mddev_resume(mddev);
3360
3361         /*
3362          * Check any reshape constraints enforced by the personalility
3363          *
3364          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3365          */
3366         r = pers->check_reshape(mddev);
3367         if (r) {
3368                 rs->ti->error = "pers->check_reshape() failed";
3369                 return r;
3370         }
3371
3372         /*
3373          * Personality may not provide start reshape method in which
3374          * case check_reshape above has already covered everything
3375          */
3376         if (pers->start_reshape) {
3377                 r = pers->start_reshape(mddev);
3378                 if (r) {
3379                         rs->ti->error = "pers->start_reshape() failed";
3380                         return r;
3381                 }
3382         }
3383
3384         /* Suspend because a resume will happen in raid_resume() */
3385         if (!mddev->suspended)
3386                 mddev_suspend(mddev);
3387
3388         /*
3389          * Now reshape got set up, update superblocks to
3390          * reflect the fact so that a table reload will
3391          * access proper superblock content in the ctr.
3392          */
3393         rs_update_sbs(rs);
3394
3395         return 0;
3396 }
3397
3398 static int raid_preresume(struct dm_target *ti)
3399 {
3400         int r;
3401         struct raid_set *rs = ti->private;
3402         struct mddev *mddev = &rs->md;
3403
3404         /* This is a resume after a suspend of the set -> it's already started */
3405         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3406                 return 0;
3407
3408         /*
3409          * The superblocks need to be updated on disk if the
3410          * array is new or new devices got added (thus zeroed
3411          * out by userspace) or __load_dirty_region_bitmap
3412          * will overwrite them in core with old data or fail.
3413          */
3414         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3415                 rs_update_sbs(rs);
3416
3417         /*
3418          * Disable/enable discard support on raid set after any
3419          * conversion, because devices can have been added
3420          */
3421         configure_discard_support(rs);
3422
3423         /* Load the bitmap from disk unless raid0 */
3424         r = __load_dirty_region_bitmap(rs);
3425         if (r)
3426                 return r;
3427
3428         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3429         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3430             mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3431                 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3432                                   to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3433                 if (r)
3434                         DMERR("Failed to resize bitmap");
3435         }
3436
3437         /* Check for any resize/reshape on @rs and adjust/initiate */
3438         /* Be prepared for mddev_resume() in raid_resume() */
3439         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3440         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3441                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3442                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3443                 mddev->resync_min = mddev->recovery_cp;
3444         }
3445
3446         rs_set_capacity(rs);
3447
3448         /* Check for any reshape request and region size change unless new raid set */
3449         if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3450                 /* Initiate a reshape. */
3451                 mddev_lock_nointr(mddev);
3452                 r = rs_start_reshape(rs);
3453                 mddev_unlock(mddev);
3454                 if (r)
3455                         DMWARN("Failed to check/start reshape, continuing without change");
3456                 r = 0;
3457         }
3458
3459         return r;
3460 }
3461
3462 static void raid_resume(struct dm_target *ti)
3463 {
3464         struct raid_set *rs = ti->private;
3465         struct mddev *mddev = &rs->md;
3466
3467         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3468                 /*
3469                  * A secondary resume while the device is active.
3470                  * Take this opportunity to check whether any failed
3471                  * devices are reachable again.
3472                  */
3473                 attempt_restore_of_faulty_devices(rs);
3474         } else {
3475                 mddev->ro = 0;
3476                 mddev->in_sync = 0;
3477
3478                 /*
3479                  * When passing in flags to the ctr, we expect userspace
3480                  * to reset them because they made it to the superblocks
3481                  * and reload the mapping anyway.
3482                  *
3483                  * -> only unfreeze recovery in case of a table reload or
3484                  *    we'll have a bogus recovery/reshape position
3485                  *    retrieved from the superblock by the ctr because
3486                  *    the ongoing recovery/reshape will change it after read.
3487                  */
3488                 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3489                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3490
3491                 if (mddev->suspended)
3492                         mddev_resume(mddev);
3493         }
3494 }
3495
3496 static struct target_type raid_target = {
3497         .name = "raid",
3498         .version = {1, 9, 0},
3499         .module = THIS_MODULE,
3500         .ctr = raid_ctr,
3501         .dtr = raid_dtr,
3502         .map = raid_map,
3503         .status = raid_status,
3504         .message = raid_message,
3505         .iterate_devices = raid_iterate_devices,
3506         .io_hints = raid_io_hints,
3507         .presuspend = raid_presuspend,
3508         .postsuspend = raid_postsuspend,
3509         .preresume = raid_preresume,
3510         .resume = raid_resume,
3511 };
3512
3513 static int __init dm_raid_init(void)
3514 {
3515         DMINFO("Loading target version %u.%u.%u",
3516                raid_target.version[0],
3517                raid_target.version[1],
3518                raid_target.version[2]);
3519         return dm_register_target(&raid_target);
3520 }
3521
3522 static void __exit dm_raid_exit(void)
3523 {
3524         dm_unregister_target(&raid_target);
3525 }
3526
3527 module_init(dm_raid_init);
3528 module_exit(dm_raid_exit);
3529
3530 module_param(devices_handle_discard_safely, bool, 0644);
3531 MODULE_PARM_DESC(devices_handle_discard_safely,
3532                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3533
3534 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3535 MODULE_ALIAS("dm-raid0");
3536 MODULE_ALIAS("dm-raid1");
3537 MODULE_ALIAS("dm-raid10");
3538 MODULE_ALIAS("dm-raid4");
3539 MODULE_ALIAS("dm-raid5");
3540 MODULE_ALIAS("dm-raid6");
3541 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3542 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3543 MODULE_LICENSE("GPL");