8a7e31927a3b618cdf6f4fd084af9fcff062b49f
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
150         return ret;
151 }
152
153 /*
154  * Reset a halted HC.
155  *
156  * This resets pipelines, timers, counters, state machines, etc.
157  * Transactions will be terminated immediately, and operational registers
158  * will be set to their defaults.
159  */
160 int xhci_reset(struct xhci_hcd *xhci)
161 {
162         u32 command;
163         u32 state;
164         int ret, i;
165
166         state = readl(&xhci->op_regs->status);
167         if ((state & STS_HALT) == 0) {
168                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
169                 return 0;
170         }
171
172         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
173         command = readl(&xhci->op_regs->command);
174         command |= CMD_RESET;
175         writel(command, &xhci->op_regs->command);
176
177         ret = xhci_handshake(&xhci->op_regs->command,
178                         CMD_RESET, 0, 10 * 1000 * 1000);
179         if (ret)
180                 return ret;
181
182         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
183                          "Wait for controller to be ready for doorbell rings");
184         /*
185          * xHCI cannot write to any doorbells or operational registers other
186          * than status until the "Controller Not Ready" flag is cleared.
187          */
188         ret = xhci_handshake(&xhci->op_regs->status,
189                         STS_CNR, 0, 10 * 1000 * 1000);
190
191         for (i = 0; i < 2; ++i) {
192                 xhci->bus_state[i].port_c_suspend = 0;
193                 xhci->bus_state[i].suspended_ports = 0;
194                 xhci->bus_state[i].resuming_ports = 0;
195         }
196
197         return ret;
198 }
199
200 #ifdef CONFIG_PCI
201 static int xhci_free_msi(struct xhci_hcd *xhci)
202 {
203         int i;
204
205         if (!xhci->msix_entries)
206                 return -EINVAL;
207
208         for (i = 0; i < xhci->msix_count; i++)
209                 if (xhci->msix_entries[i].vector)
210                         free_irq(xhci->msix_entries[i].vector,
211                                         xhci_to_hcd(xhci));
212         return 0;
213 }
214
215 /*
216  * Set up MSI
217  */
218 static int xhci_setup_msi(struct xhci_hcd *xhci)
219 {
220         int ret;
221         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
222
223         ret = pci_enable_msi(pdev);
224         if (ret) {
225                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
226                                 "failed to allocate MSI entry");
227                 return ret;
228         }
229
230         ret = request_irq(pdev->irq, xhci_msi_irq,
231                                 0, "xhci_hcd", xhci_to_hcd(xhci));
232         if (ret) {
233                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
234                                 "disable MSI interrupt");
235                 pci_disable_msi(pdev);
236         }
237
238         return ret;
239 }
240
241 /*
242  * Free IRQs
243  * free all IRQs request
244  */
245 static void xhci_free_irq(struct xhci_hcd *xhci)
246 {
247         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
248         int ret;
249
250         /* return if using legacy interrupt */
251         if (xhci_to_hcd(xhci)->irq > 0)
252                 return;
253
254         ret = xhci_free_msi(xhci);
255         if (!ret)
256                 return;
257         if (pdev->irq > 0)
258                 free_irq(pdev->irq, xhci_to_hcd(xhci));
259
260         return;
261 }
262
263 /*
264  * Set up MSI-X
265  */
266 static int xhci_setup_msix(struct xhci_hcd *xhci)
267 {
268         int i, ret = 0;
269         struct usb_hcd *hcd = xhci_to_hcd(xhci);
270         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
271
272         /*
273          * calculate number of msi-x vectors supported.
274          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
275          *   with max number of interrupters based on the xhci HCSPARAMS1.
276          * - num_online_cpus: maximum msi-x vectors per CPUs core.
277          *   Add additional 1 vector to ensure always available interrupt.
278          */
279         xhci->msix_count = min(num_online_cpus() + 1,
280                                 HCS_MAX_INTRS(xhci->hcs_params1));
281
282         xhci->msix_entries =
283                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
284                                 GFP_KERNEL);
285         if (!xhci->msix_entries) {
286                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
287                 return -ENOMEM;
288         }
289
290         for (i = 0; i < xhci->msix_count; i++) {
291                 xhci->msix_entries[i].entry = i;
292                 xhci->msix_entries[i].vector = 0;
293         }
294
295         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
296         if (ret) {
297                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
298                                 "Failed to enable MSI-X");
299                 goto free_entries;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 ret = request_irq(xhci->msix_entries[i].vector,
304                                 xhci_msi_irq,
305                                 0, "xhci_hcd", xhci_to_hcd(xhci));
306                 if (ret)
307                         goto disable_msix;
308         }
309
310         hcd->msix_enabled = 1;
311         return ret;
312
313 disable_msix:
314         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
315         xhci_free_irq(xhci);
316         pci_disable_msix(pdev);
317 free_entries:
318         kfree(xhci->msix_entries);
319         xhci->msix_entries = NULL;
320         return ret;
321 }
322
323 /* Free any IRQs and disable MSI-X */
324 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
325 {
326         struct usb_hcd *hcd = xhci_to_hcd(xhci);
327         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328
329         if (xhci->quirks & XHCI_PLAT)
330                 return;
331
332         xhci_free_irq(xhci);
333
334         if (xhci->msix_entries) {
335                 pci_disable_msix(pdev);
336                 kfree(xhci->msix_entries);
337                 xhci->msix_entries = NULL;
338         } else {
339                 pci_disable_msi(pdev);
340         }
341
342         hcd->msix_enabled = 0;
343         return;
344 }
345
346 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
347 {
348         int i;
349
350         if (xhci->msix_entries) {
351                 for (i = 0; i < xhci->msix_count; i++)
352                         synchronize_irq(xhci->msix_entries[i].vector);
353         }
354 }
355
356 static int xhci_try_enable_msi(struct usb_hcd *hcd)
357 {
358         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
359         struct pci_dev  *pdev;
360         int ret;
361
362         /* The xhci platform device has set up IRQs through usb_add_hcd. */
363         if (xhci->quirks & XHCI_PLAT)
364                 return 0;
365
366         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
367         /*
368          * Some Fresco Logic host controllers advertise MSI, but fail to
369          * generate interrupts.  Don't even try to enable MSI.
370          */
371         if (xhci->quirks & XHCI_BROKEN_MSI)
372                 goto legacy_irq;
373
374         /* unregister the legacy interrupt */
375         if (hcd->irq)
376                 free_irq(hcd->irq, hcd);
377         hcd->irq = 0;
378
379         ret = xhci_setup_msix(xhci);
380         if (ret)
381                 /* fall back to msi*/
382                 ret = xhci_setup_msi(xhci);
383
384         if (!ret)
385                 /* hcd->irq is 0, we have MSI */
386                 return 0;
387
388         if (!pdev->irq) {
389                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
390                 return -EINVAL;
391         }
392
393  legacy_irq:
394         if (!strlen(hcd->irq_descr))
395                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
396                          hcd->driver->description, hcd->self.busnum);
397
398         /* fall back to legacy interrupt*/
399         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
400                         hcd->irq_descr, hcd);
401         if (ret) {
402                 xhci_err(xhci, "request interrupt %d failed\n",
403                                 pdev->irq);
404                 return ret;
405         }
406         hcd->irq = pdev->irq;
407         return 0;
408 }
409
410 #else
411
412 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
413 {
414         return 0;
415 }
416
417 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
418 {
419 }
420
421 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
422 {
423 }
424
425 #endif
426
427 static void compliance_mode_recovery(unsigned long arg)
428 {
429         struct xhci_hcd *xhci;
430         struct usb_hcd *hcd;
431         u32 temp;
432         int i;
433
434         xhci = (struct xhci_hcd *)arg;
435
436         for (i = 0; i < xhci->num_usb3_ports; i++) {
437                 temp = readl(xhci->usb3_ports[i]);
438                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
439                         /*
440                          * Compliance Mode Detected. Letting USB Core
441                          * handle the Warm Reset
442                          */
443                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
444                                         "Compliance mode detected->port %d",
445                                         i + 1);
446                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
447                                         "Attempting compliance mode recovery");
448                         hcd = xhci->shared_hcd;
449
450                         if (hcd->state == HC_STATE_SUSPENDED)
451                                 usb_hcd_resume_root_hub(hcd);
452
453                         usb_hcd_poll_rh_status(hcd);
454                 }
455         }
456
457         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
458                 mod_timer(&xhci->comp_mode_recovery_timer,
459                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
460 }
461
462 /*
463  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
464  * that causes ports behind that hardware to enter compliance mode sometimes.
465  * The quirk creates a timer that polls every 2 seconds the link state of
466  * each host controller's port and recovers it by issuing a Warm reset
467  * if Compliance mode is detected, otherwise the port will become "dead" (no
468  * device connections or disconnections will be detected anymore). Becasue no
469  * status event is generated when entering compliance mode (per xhci spec),
470  * this quirk is needed on systems that have the failing hardware installed.
471  */
472 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
473 {
474         xhci->port_status_u0 = 0;
475         setup_timer(&xhci->comp_mode_recovery_timer,
476                     compliance_mode_recovery, (unsigned long)xhci);
477         xhci->comp_mode_recovery_timer.expires = jiffies +
478                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
479
480         set_timer_slack(&xhci->comp_mode_recovery_timer,
481                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
482         add_timer(&xhci->comp_mode_recovery_timer);
483         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
484                         "Compliance mode recovery timer initialized");
485 }
486
487 /*
488  * This function identifies the systems that have installed the SN65LVPE502CP
489  * USB3.0 re-driver and that need the Compliance Mode Quirk.
490  * Systems:
491  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
492  */
493 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
494 {
495         const char *dmi_product_name, *dmi_sys_vendor;
496
497         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
498         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
499         if (!dmi_product_name || !dmi_sys_vendor)
500                 return false;
501
502         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
503                 return false;
504
505         if (strstr(dmi_product_name, "Z420") ||
506                         strstr(dmi_product_name, "Z620") ||
507                         strstr(dmi_product_name, "Z820") ||
508                         strstr(dmi_product_name, "Z1 Workstation"))
509                 return true;
510
511         return false;
512 }
513
514 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
515 {
516         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
517 }
518
519
520 /*
521  * Initialize memory for HCD and xHC (one-time init).
522  *
523  * Program the PAGESIZE register, initialize the device context array, create
524  * device contexts (?), set up a command ring segment (or two?), create event
525  * ring (one for now).
526  */
527 int xhci_init(struct usb_hcd *hcd)
528 {
529         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
530         int retval = 0;
531
532         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
533         spin_lock_init(&xhci->lock);
534         if (xhci->hci_version == 0x95 && link_quirk) {
535                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536                                 "QUIRK: Not clearing Link TRB chain bits.");
537                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
538         } else {
539                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540                                 "xHCI doesn't need link TRB QUIRK");
541         }
542         retval = xhci_mem_init(xhci, GFP_KERNEL);
543         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
544
545         /* Initializing Compliance Mode Recovery Data If Needed */
546         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
547                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
548                 compliance_mode_recovery_timer_init(xhci);
549         }
550
551         return retval;
552 }
553
554 /*-------------------------------------------------------------------------*/
555
556
557 static int xhci_run_finished(struct xhci_hcd *xhci)
558 {
559         if (xhci_start(xhci)) {
560                 xhci_halt(xhci);
561                 return -ENODEV;
562         }
563         xhci->shared_hcd->state = HC_STATE_RUNNING;
564         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
565
566         if (xhci->quirks & XHCI_NEC_HOST)
567                 xhci_ring_cmd_db(xhci);
568
569         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
570                         "Finished xhci_run for USB3 roothub");
571         return 0;
572 }
573
574 /*
575  * Start the HC after it was halted.
576  *
577  * This function is called by the USB core when the HC driver is added.
578  * Its opposite is xhci_stop().
579  *
580  * xhci_init() must be called once before this function can be called.
581  * Reset the HC, enable device slot contexts, program DCBAAP, and
582  * set command ring pointer and event ring pointer.
583  *
584  * Setup MSI-X vectors and enable interrupts.
585  */
586 int xhci_run(struct usb_hcd *hcd)
587 {
588         u32 temp;
589         u64 temp_64;
590         int ret;
591         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
592
593         /* Start the xHCI host controller running only after the USB 2.0 roothub
594          * is setup.
595          */
596
597         hcd->uses_new_polling = 1;
598         if (!usb_hcd_is_primary_hcd(hcd))
599                 return xhci_run_finished(xhci);
600
601         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
602
603         ret = xhci_try_enable_msi(hcd);
604         if (ret)
605                 return ret;
606
607         xhci_dbg(xhci, "Command ring memory map follows:\n");
608         xhci_debug_ring(xhci, xhci->cmd_ring);
609         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
610         xhci_dbg_cmd_ptrs(xhci);
611
612         xhci_dbg(xhci, "ERST memory map follows:\n");
613         xhci_dbg_erst(xhci, &xhci->erst);
614         xhci_dbg(xhci, "Event ring:\n");
615         xhci_debug_ring(xhci, xhci->event_ring);
616         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
617         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
618         temp_64 &= ~ERST_PTR_MASK;
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
621
622         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623                         "// Set the interrupt modulation register");
624         temp = readl(&xhci->ir_set->irq_control);
625         temp &= ~ER_IRQ_INTERVAL_MASK;
626         temp |= (u32) 160;
627         writel(temp, &xhci->ir_set->irq_control);
628
629         /* Set the HCD state before we enable the irqs */
630         temp = readl(&xhci->op_regs->command);
631         temp |= (CMD_EIE);
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "// Enable interrupts, cmd = 0x%x.", temp);
634         writel(temp, &xhci->op_regs->command);
635
636         temp = readl(&xhci->ir_set->irq_pending);
637         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
639                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
640         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
641         xhci_print_ir_set(xhci, 0);
642
643         if (xhci->quirks & XHCI_NEC_HOST) {
644                 struct xhci_command *command;
645                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
646                 if (!command)
647                         return -ENOMEM;
648                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
649                                 TRB_TYPE(TRB_NEC_GET_FW));
650         }
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "Finished xhci_run for USB2 roothub");
653         return 0;
654 }
655 EXPORT_SYMBOL_GPL(xhci_run);
656
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660
661         spin_lock_irq(&xhci->lock);
662         xhci_halt(xhci);
663         spin_unlock_irq(&xhci->lock);
664 }
665
666 /*
667  * Stop xHCI driver.
668  *
669  * This function is called by the USB core when the HC driver is removed.
670  * Its opposite is xhci_run().
671  *
672  * Disable device contexts, disable IRQs, and quiesce the HC.
673  * Reset the HC, finish any completed transactions, and cleanup memory.
674  */
675 void xhci_stop(struct usb_hcd *hcd)
676 {
677         u32 temp;
678         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
679
680         if (!usb_hcd_is_primary_hcd(hcd)) {
681                 xhci_only_stop_hcd(xhci->shared_hcd);
682                 return;
683         }
684
685         spin_lock_irq(&xhci->lock);
686         /* Make sure the xHC is halted for a USB3 roothub
687          * (xhci_stop() could be called as part of failed init).
688          */
689         xhci_halt(xhci);
690         xhci_reset(xhci);
691         spin_unlock_irq(&xhci->lock);
692
693         xhci_cleanup_msix(xhci);
694
695         /* Deleting Compliance Mode Recovery Timer */
696         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
697                         (!(xhci_all_ports_seen_u0(xhci)))) {
698                 del_timer_sync(&xhci->comp_mode_recovery_timer);
699                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
700                                 "%s: compliance mode recovery timer deleted",
701                                 __func__);
702         }
703
704         if (xhci->quirks & XHCI_AMD_PLL_FIX)
705                 usb_amd_dev_put();
706
707         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708                         "// Disabling event ring interrupts");
709         temp = readl(&xhci->op_regs->status);
710         writel(temp & ~STS_EINT, &xhci->op_regs->status);
711         temp = readl(&xhci->ir_set->irq_pending);
712         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
713         xhci_print_ir_set(xhci, 0);
714
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
716         xhci_mem_cleanup(xhci);
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "xhci_stop completed - status = %x",
719                         readl(&xhci->op_regs->status));
720 }
721
722 /*
723  * Shutdown HC (not bus-specific)
724  *
725  * This is called when the machine is rebooting or halting.  We assume that the
726  * machine will be powered off, and the HC's internal state will be reset.
727  * Don't bother to free memory.
728  *
729  * This will only ever be called with the main usb_hcd (the USB3 roothub).
730  */
731 void xhci_shutdown(struct usb_hcd *hcd)
732 {
733         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
734
735         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
736                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
737
738         spin_lock_irq(&xhci->lock);
739         xhci_halt(xhci);
740         /* Workaround for spurious wakeups at shutdown with HSW */
741         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
742                 xhci_reset(xhci);
743         spin_unlock_irq(&xhci->lock);
744
745         xhci_cleanup_msix(xhci);
746
747         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
748                         "xhci_shutdown completed - status = %x",
749                         readl(&xhci->op_regs->status));
750
751         /* Yet another workaround for spurious wakeups at shutdown with HSW */
752         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
754 }
755
756 #ifdef CONFIG_PM
757 static void xhci_save_registers(struct xhci_hcd *xhci)
758 {
759         xhci->s3.command = readl(&xhci->op_regs->command);
760         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
761         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
762         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
763         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
764         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
765         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
766         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
767         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
768 }
769
770 static void xhci_restore_registers(struct xhci_hcd *xhci)
771 {
772         writel(xhci->s3.command, &xhci->op_regs->command);
773         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
774         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
775         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
776         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
777         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
778         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
779         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
780         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
781 }
782
783 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
784 {
785         u64     val_64;
786
787         /* step 2: initialize command ring buffer */
788         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
789         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
790                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
791                                       xhci->cmd_ring->dequeue) &
792                  (u64) ~CMD_RING_RSVD_BITS) |
793                 xhci->cmd_ring->cycle_state;
794         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
795                         "// Setting command ring address to 0x%llx",
796                         (long unsigned long) val_64);
797         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
798 }
799
800 /*
801  * The whole command ring must be cleared to zero when we suspend the host.
802  *
803  * The host doesn't save the command ring pointer in the suspend well, so we
804  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
805  * aligned, because of the reserved bits in the command ring dequeue pointer
806  * register.  Therefore, we can't just set the dequeue pointer back in the
807  * middle of the ring (TRBs are 16-byte aligned).
808  */
809 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
810 {
811         struct xhci_ring *ring;
812         struct xhci_segment *seg;
813
814         ring = xhci->cmd_ring;
815         seg = ring->deq_seg;
816         do {
817                 memset(seg->trbs, 0,
818                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
819                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
820                         cpu_to_le32(~TRB_CYCLE);
821                 seg = seg->next;
822         } while (seg != ring->deq_seg);
823
824         /* Reset the software enqueue and dequeue pointers */
825         ring->deq_seg = ring->first_seg;
826         ring->dequeue = ring->first_seg->trbs;
827         ring->enq_seg = ring->deq_seg;
828         ring->enqueue = ring->dequeue;
829
830         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
831         /*
832          * Ring is now zeroed, so the HW should look for change of ownership
833          * when the cycle bit is set to 1.
834          */
835         ring->cycle_state = 1;
836
837         /*
838          * Reset the hardware dequeue pointer.
839          * Yes, this will need to be re-written after resume, but we're paranoid
840          * and want to make sure the hardware doesn't access bogus memory
841          * because, say, the BIOS or an SMI started the host without changing
842          * the command ring pointers.
843          */
844         xhci_set_cmd_ring_deq(xhci);
845 }
846
847 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
848 {
849         int port_index;
850         __le32 __iomem **port_array;
851         unsigned long flags;
852         u32 t1, t2;
853
854         spin_lock_irqsave(&xhci->lock, flags);
855
856         /* disble usb3 ports Wake bits*/
857         port_index = xhci->num_usb3_ports;
858         port_array = xhci->usb3_ports;
859         while (port_index--) {
860                 t1 = readl(port_array[port_index]);
861                 t1 = xhci_port_state_to_neutral(t1);
862                 t2 = t1 & ~PORT_WAKE_BITS;
863                 if (t1 != t2)
864                         writel(t2, port_array[port_index]);
865         }
866
867         /* disble usb2 ports Wake bits*/
868         port_index = xhci->num_usb2_ports;
869         port_array = xhci->usb2_ports;
870         while (port_index--) {
871                 t1 = readl(port_array[port_index]);
872                 t1 = xhci_port_state_to_neutral(t1);
873                 t2 = t1 & ~PORT_WAKE_BITS;
874                 if (t1 != t2)
875                         writel(t2, port_array[port_index]);
876         }
877
878         spin_unlock_irqrestore(&xhci->lock, flags);
879 }
880
881 /*
882  * Stop HC (not bus-specific)
883  *
884  * This is called when the machine transition into S3/S4 mode.
885  *
886  */
887 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
888 {
889         int                     rc = 0;
890         unsigned int            delay = XHCI_MAX_HALT_USEC;
891         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
892         u32                     command;
893
894         if (hcd->state != HC_STATE_SUSPENDED ||
895                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
896                 return -EINVAL;
897
898         /* Clear root port wake on bits if wakeup not allowed. */
899         if (!do_wakeup)
900                 xhci_disable_port_wake_on_bits(xhci);
901
902         /* Don't poll the roothubs on bus suspend. */
903         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
904         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
905         del_timer_sync(&hcd->rh_timer);
906         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
907         del_timer_sync(&xhci->shared_hcd->rh_timer);
908
909         spin_lock_irq(&xhci->lock);
910         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
911         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
912         /* step 1: stop endpoint */
913         /* skipped assuming that port suspend has done */
914
915         /* step 2: clear Run/Stop bit */
916         command = readl(&xhci->op_regs->command);
917         command &= ~CMD_RUN;
918         writel(command, &xhci->op_regs->command);
919
920         /* Some chips from Fresco Logic need an extraordinary delay */
921         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
922
923         if (xhci_handshake(&xhci->op_regs->status,
924                       STS_HALT, STS_HALT, delay)) {
925                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
926                 spin_unlock_irq(&xhci->lock);
927                 return -ETIMEDOUT;
928         }
929         xhci_clear_command_ring(xhci);
930
931         /* step 3: save registers */
932         xhci_save_registers(xhci);
933
934         /* step 4: set CSS flag */
935         command = readl(&xhci->op_regs->command);
936         command |= CMD_CSS;
937         writel(command, &xhci->op_regs->command);
938         if (xhci_handshake(&xhci->op_regs->status,
939                                 STS_SAVE, 0, 10 * 1000)) {
940                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
941                 spin_unlock_irq(&xhci->lock);
942                 return -ETIMEDOUT;
943         }
944         spin_unlock_irq(&xhci->lock);
945
946         /*
947          * Deleting Compliance Mode Recovery Timer because the xHCI Host
948          * is about to be suspended.
949          */
950         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
951                         (!(xhci_all_ports_seen_u0(xhci)))) {
952                 del_timer_sync(&xhci->comp_mode_recovery_timer);
953                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
954                                 "%s: compliance mode recovery timer deleted",
955                                 __func__);
956         }
957
958         /* step 5: remove core well power */
959         /* synchronize irq when using MSI-X */
960         xhci_msix_sync_irqs(xhci);
961
962         return rc;
963 }
964 EXPORT_SYMBOL_GPL(xhci_suspend);
965
966 /*
967  * start xHC (not bus-specific)
968  *
969  * This is called when the machine transition from S3/S4 mode.
970  *
971  */
972 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
973 {
974         u32                     command, temp = 0, status;
975         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
976         struct usb_hcd          *secondary_hcd;
977         int                     retval = 0;
978         bool                    comp_timer_running = false;
979
980         /* Wait a bit if either of the roothubs need to settle from the
981          * transition into bus suspend.
982          */
983         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
984                         time_before(jiffies,
985                                 xhci->bus_state[1].next_statechange))
986                 msleep(100);
987
988         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
989         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
990
991         spin_lock_irq(&xhci->lock);
992         if (xhci->quirks & XHCI_RESET_ON_RESUME)
993                 hibernated = true;
994
995         if (!hibernated) {
996                 /* step 1: restore register */
997                 xhci_restore_registers(xhci);
998                 /* step 2: initialize command ring buffer */
999                 xhci_set_cmd_ring_deq(xhci);
1000                 /* step 3: restore state and start state*/
1001                 /* step 3: set CRS flag */
1002                 command = readl(&xhci->op_regs->command);
1003                 command |= CMD_CRS;
1004                 writel(command, &xhci->op_regs->command);
1005                 if (xhci_handshake(&xhci->op_regs->status,
1006                               STS_RESTORE, 0, 10 * 1000)) {
1007                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1008                         spin_unlock_irq(&xhci->lock);
1009                         return -ETIMEDOUT;
1010                 }
1011                 temp = readl(&xhci->op_regs->status);
1012         }
1013
1014         /* If restore operation fails, re-initialize the HC during resume */
1015         if ((temp & STS_SRE) || hibernated) {
1016
1017                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1018                                 !(xhci_all_ports_seen_u0(xhci))) {
1019                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1020                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1021                                 "Compliance Mode Recovery Timer deleted!");
1022                 }
1023
1024                 /* Let the USB core know _both_ roothubs lost power. */
1025                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1026                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1027
1028                 xhci_dbg(xhci, "Stop HCD\n");
1029                 xhci_halt(xhci);
1030                 xhci_reset(xhci);
1031                 spin_unlock_irq(&xhci->lock);
1032                 xhci_cleanup_msix(xhci);
1033
1034                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1035                 temp = readl(&xhci->op_regs->status);
1036                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1037                 temp = readl(&xhci->ir_set->irq_pending);
1038                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1039                 xhci_print_ir_set(xhci, 0);
1040
1041                 xhci_dbg(xhci, "cleaning up memory\n");
1042                 xhci_mem_cleanup(xhci);
1043                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1044                             readl(&xhci->op_regs->status));
1045
1046                 /* USB core calls the PCI reinit and start functions twice:
1047                  * first with the primary HCD, and then with the secondary HCD.
1048                  * If we don't do the same, the host will never be started.
1049                  */
1050                 if (!usb_hcd_is_primary_hcd(hcd))
1051                         secondary_hcd = hcd;
1052                 else
1053                         secondary_hcd = xhci->shared_hcd;
1054
1055                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1056                 retval = xhci_init(hcd->primary_hcd);
1057                 if (retval)
1058                         return retval;
1059                 comp_timer_running = true;
1060
1061                 xhci_dbg(xhci, "Start the primary HCD\n");
1062                 retval = xhci_run(hcd->primary_hcd);
1063                 if (!retval) {
1064                         xhci_dbg(xhci, "Start the secondary HCD\n");
1065                         retval = xhci_run(secondary_hcd);
1066                 }
1067                 hcd->state = HC_STATE_SUSPENDED;
1068                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1069                 goto done;
1070         }
1071
1072         /* step 4: set Run/Stop bit */
1073         command = readl(&xhci->op_regs->command);
1074         command |= CMD_RUN;
1075         writel(command, &xhci->op_regs->command);
1076         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1077                   0, 250 * 1000);
1078
1079         /* step 5: walk topology and initialize portsc,
1080          * portpmsc and portli
1081          */
1082         /* this is done in bus_resume */
1083
1084         /* step 6: restart each of the previously
1085          * Running endpoints by ringing their doorbells
1086          */
1087
1088         spin_unlock_irq(&xhci->lock);
1089
1090  done:
1091         if (retval == 0) {
1092                 /* Resume root hubs only when have pending events. */
1093                 status = readl(&xhci->op_regs->status);
1094                 if (status & STS_EINT) {
1095                         usb_hcd_resume_root_hub(hcd);
1096                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1097                 }
1098         }
1099
1100         /*
1101          * If system is subject to the Quirk, Compliance Mode Timer needs to
1102          * be re-initialized Always after a system resume. Ports are subject
1103          * to suffer the Compliance Mode issue again. It doesn't matter if
1104          * ports have entered previously to U0 before system's suspension.
1105          */
1106         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1107                 compliance_mode_recovery_timer_init(xhci);
1108
1109         /* Re-enable port polling. */
1110         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1111         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1112         usb_hcd_poll_rh_status(hcd);
1113         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1114         usb_hcd_poll_rh_status(xhci->shared_hcd);
1115
1116         return retval;
1117 }
1118 EXPORT_SYMBOL_GPL(xhci_resume);
1119 #endif  /* CONFIG_PM */
1120
1121 /*-------------------------------------------------------------------------*/
1122
1123 /**
1124  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1125  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1126  * value to right shift 1 for the bitmask.
1127  *
1128  * Index  = (epnum * 2) + direction - 1,
1129  * where direction = 0 for OUT, 1 for IN.
1130  * For control endpoints, the IN index is used (OUT index is unused), so
1131  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1132  */
1133 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1134 {
1135         unsigned int index;
1136         if (usb_endpoint_xfer_control(desc))
1137                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1138         else
1139                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1140                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1141         return index;
1142 }
1143
1144 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1145  * address from the XHCI endpoint index.
1146  */
1147 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1148 {
1149         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1150         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1151         return direction | number;
1152 }
1153
1154 /* Find the flag for this endpoint (for use in the control context).  Use the
1155  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1156  * bit 1, etc.
1157  */
1158 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1159 {
1160         return 1 << (xhci_get_endpoint_index(desc) + 1);
1161 }
1162
1163 /* Find the flag for this endpoint (for use in the control context).  Use the
1164  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1165  * bit 1, etc.
1166  */
1167 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1168 {
1169         return 1 << (ep_index + 1);
1170 }
1171
1172 /* Compute the last valid endpoint context index.  Basically, this is the
1173  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1174  * we find the most significant bit set in the added contexts flags.
1175  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1176  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1177  */
1178 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1179 {
1180         return fls(added_ctxs) - 1;
1181 }
1182
1183 /* Returns 1 if the arguments are OK;
1184  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1185  */
1186 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1187                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1188                 const char *func) {
1189         struct xhci_hcd *xhci;
1190         struct xhci_virt_device *virt_dev;
1191
1192         if (!hcd || (check_ep && !ep) || !udev) {
1193                 pr_debug("xHCI %s called with invalid args\n", func);
1194                 return -EINVAL;
1195         }
1196         if (!udev->parent) {
1197                 pr_debug("xHCI %s called for root hub\n", func);
1198                 return 0;
1199         }
1200
1201         xhci = hcd_to_xhci(hcd);
1202         if (check_virt_dev) {
1203                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1204                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1205                                         func);
1206                         return -EINVAL;
1207                 }
1208
1209                 virt_dev = xhci->devs[udev->slot_id];
1210                 if (virt_dev->udev != udev) {
1211                         xhci_dbg(xhci, "xHCI %s called with udev and "
1212                                           "virt_dev does not match\n", func);
1213                         return -EINVAL;
1214                 }
1215         }
1216
1217         if (xhci->xhc_state & XHCI_STATE_HALTED)
1218                 return -ENODEV;
1219
1220         return 1;
1221 }
1222
1223 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1224                 struct usb_device *udev, struct xhci_command *command,
1225                 bool ctx_change, bool must_succeed);
1226
1227 /*
1228  * Full speed devices may have a max packet size greater than 8 bytes, but the
1229  * USB core doesn't know that until it reads the first 8 bytes of the
1230  * descriptor.  If the usb_device's max packet size changes after that point,
1231  * we need to issue an evaluate context command and wait on it.
1232  */
1233 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1234                 unsigned int ep_index, struct urb *urb)
1235 {
1236         struct xhci_container_ctx *out_ctx;
1237         struct xhci_input_control_ctx *ctrl_ctx;
1238         struct xhci_ep_ctx *ep_ctx;
1239         struct xhci_command *command;
1240         int max_packet_size;
1241         int hw_max_packet_size;
1242         int ret = 0;
1243
1244         out_ctx = xhci->devs[slot_id]->out_ctx;
1245         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1246         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1247         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1248         if (hw_max_packet_size != max_packet_size) {
1249                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1250                                 "Max Packet Size for ep 0 changed.");
1251                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1252                                 "Max packet size in usb_device = %d",
1253                                 max_packet_size);
1254                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1255                                 "Max packet size in xHCI HW = %d",
1256                                 hw_max_packet_size);
1257                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1258                                 "Issuing evaluate context command.");
1259
1260                 /* Set up the input context flags for the command */
1261                 /* FIXME: This won't work if a non-default control endpoint
1262                  * changes max packet sizes.
1263                  */
1264
1265                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1266                 if (!command)
1267                         return -ENOMEM;
1268
1269                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1270                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1271                 if (!ctrl_ctx) {
1272                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1273                                         __func__);
1274                         ret = -ENOMEM;
1275                         goto command_cleanup;
1276                 }
1277                 /* Set up the modified control endpoint 0 */
1278                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1279                                 xhci->devs[slot_id]->out_ctx, ep_index);
1280
1281                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1282                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1283                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1284
1285                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1286                 ctrl_ctx->drop_flags = 0;
1287
1288                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1289                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1290                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1291                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1292
1293                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1294                                 true, false);
1295
1296                 /* Clean up the input context for later use by bandwidth
1297                  * functions.
1298                  */
1299                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1300 command_cleanup:
1301                 kfree(command->completion);
1302                 kfree(command);
1303         }
1304         return ret;
1305 }
1306
1307 /*
1308  * non-error returns are a promise to giveback() the urb later
1309  * we drop ownership so next owner (or urb unlink) can get it
1310  */
1311 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1312 {
1313         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1314         struct xhci_td *buffer;
1315         unsigned long flags;
1316         int ret = 0;
1317         unsigned int slot_id, ep_index;
1318         struct urb_priv *urb_priv;
1319         int size, i;
1320
1321         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1322                                         true, true, __func__) <= 0)
1323                 return -EINVAL;
1324
1325         slot_id = urb->dev->slot_id;
1326         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1327
1328         if (!HCD_HW_ACCESSIBLE(hcd)) {
1329                 if (!in_interrupt())
1330                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1331                 ret = -ESHUTDOWN;
1332                 goto exit;
1333         }
1334
1335         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1336                 size = urb->number_of_packets;
1337         else
1338                 size = 1;
1339
1340         urb_priv = kzalloc(sizeof(struct urb_priv) +
1341                                   size * sizeof(struct xhci_td *), mem_flags);
1342         if (!urb_priv)
1343                 return -ENOMEM;
1344
1345         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1346         if (!buffer) {
1347                 kfree(urb_priv);
1348                 return -ENOMEM;
1349         }
1350
1351         for (i = 0; i < size; i++) {
1352                 urb_priv->td[i] = buffer;
1353                 buffer++;
1354         }
1355
1356         urb_priv->length = size;
1357         urb_priv->td_cnt = 0;
1358         urb->hcpriv = urb_priv;
1359
1360         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1361                 /* Check to see if the max packet size for the default control
1362                  * endpoint changed during FS device enumeration
1363                  */
1364                 if (urb->dev->speed == USB_SPEED_FULL) {
1365                         ret = xhci_check_maxpacket(xhci, slot_id,
1366                                         ep_index, urb);
1367                         if (ret < 0) {
1368                                 xhci_urb_free_priv(urb_priv);
1369                                 urb->hcpriv = NULL;
1370                                 return ret;
1371                         }
1372                 }
1373
1374                 /* We have a spinlock and interrupts disabled, so we must pass
1375                  * atomic context to this function, which may allocate memory.
1376                  */
1377                 spin_lock_irqsave(&xhci->lock, flags);
1378                 if (xhci->xhc_state & XHCI_STATE_DYING)
1379                         goto dying;
1380                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1381                                 slot_id, ep_index);
1382                 if (ret)
1383                         goto free_priv;
1384                 spin_unlock_irqrestore(&xhci->lock, flags);
1385         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1386                 spin_lock_irqsave(&xhci->lock, flags);
1387                 if (xhci->xhc_state & XHCI_STATE_DYING)
1388                         goto dying;
1389                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1390                                 EP_GETTING_STREAMS) {
1391                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1392                                         "is transitioning to using streams.\n");
1393                         ret = -EINVAL;
1394                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1395                                 EP_GETTING_NO_STREAMS) {
1396                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1397                                         "is transitioning to "
1398                                         "not having streams.\n");
1399                         ret = -EINVAL;
1400                 } else {
1401                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1402                                         slot_id, ep_index);
1403                 }
1404                 if (ret)
1405                         goto free_priv;
1406                 spin_unlock_irqrestore(&xhci->lock, flags);
1407         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1408                 spin_lock_irqsave(&xhci->lock, flags);
1409                 if (xhci->xhc_state & XHCI_STATE_DYING)
1410                         goto dying;
1411                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1412                                 slot_id, ep_index);
1413                 if (ret)
1414                         goto free_priv;
1415                 spin_unlock_irqrestore(&xhci->lock, flags);
1416         } else {
1417                 spin_lock_irqsave(&xhci->lock, flags);
1418                 if (xhci->xhc_state & XHCI_STATE_DYING)
1419                         goto dying;
1420                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1421                                 slot_id, ep_index);
1422                 if (ret)
1423                         goto free_priv;
1424                 spin_unlock_irqrestore(&xhci->lock, flags);
1425         }
1426 exit:
1427         return ret;
1428 dying:
1429         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1430                         "non-responsive xHCI host.\n",
1431                         urb->ep->desc.bEndpointAddress, urb);
1432         ret = -ESHUTDOWN;
1433 free_priv:
1434         xhci_urb_free_priv(urb_priv);
1435         urb->hcpriv = NULL;
1436         spin_unlock_irqrestore(&xhci->lock, flags);
1437         return ret;
1438 }
1439
1440 /* Get the right ring for the given URB.
1441  * If the endpoint supports streams, boundary check the URB's stream ID.
1442  * If the endpoint doesn't support streams, return the singular endpoint ring.
1443  */
1444 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1445                 struct urb *urb)
1446 {
1447         unsigned int slot_id;
1448         unsigned int ep_index;
1449         unsigned int stream_id;
1450         struct xhci_virt_ep *ep;
1451
1452         slot_id = urb->dev->slot_id;
1453         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1454         stream_id = urb->stream_id;
1455         ep = &xhci->devs[slot_id]->eps[ep_index];
1456         /* Common case: no streams */
1457         if (!(ep->ep_state & EP_HAS_STREAMS))
1458                 return ep->ring;
1459
1460         if (stream_id == 0) {
1461                 xhci_warn(xhci,
1462                                 "WARN: Slot ID %u, ep index %u has streams, "
1463                                 "but URB has no stream ID.\n",
1464                                 slot_id, ep_index);
1465                 return NULL;
1466         }
1467
1468         if (stream_id < ep->stream_info->num_streams)
1469                 return ep->stream_info->stream_rings[stream_id];
1470
1471         xhci_warn(xhci,
1472                         "WARN: Slot ID %u, ep index %u has "
1473                         "stream IDs 1 to %u allocated, "
1474                         "but stream ID %u is requested.\n",
1475                         slot_id, ep_index,
1476                         ep->stream_info->num_streams - 1,
1477                         stream_id);
1478         return NULL;
1479 }
1480
1481 /*
1482  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1483  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1484  * should pick up where it left off in the TD, unless a Set Transfer Ring
1485  * Dequeue Pointer is issued.
1486  *
1487  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1488  * the ring.  Since the ring is a contiguous structure, they can't be physically
1489  * removed.  Instead, there are two options:
1490  *
1491  *  1) If the HC is in the middle of processing the URB to be canceled, we
1492  *     simply move the ring's dequeue pointer past those TRBs using the Set
1493  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1494  *     when drivers timeout on the last submitted URB and attempt to cancel.
1495  *
1496  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1497  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1498  *     HC will need to invalidate the any TRBs it has cached after the stop
1499  *     endpoint command, as noted in the xHCI 0.95 errata.
1500  *
1501  *  3) The TD may have completed by the time the Stop Endpoint Command
1502  *     completes, so software needs to handle that case too.
1503  *
1504  * This function should protect against the TD enqueueing code ringing the
1505  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1506  * It also needs to account for multiple cancellations on happening at the same
1507  * time for the same endpoint.
1508  *
1509  * Note that this function can be called in any context, or so says
1510  * usb_hcd_unlink_urb()
1511  */
1512 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1513 {
1514         unsigned long flags;
1515         int ret, i;
1516         u32 temp;
1517         struct xhci_hcd *xhci;
1518         struct urb_priv *urb_priv;
1519         struct xhci_td *td;
1520         unsigned int ep_index;
1521         struct xhci_ring *ep_ring;
1522         struct xhci_virt_ep *ep;
1523         struct xhci_command *command;
1524
1525         xhci = hcd_to_xhci(hcd);
1526         spin_lock_irqsave(&xhci->lock, flags);
1527         /* Make sure the URB hasn't completed or been unlinked already */
1528         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1529         if (ret || !urb->hcpriv)
1530                 goto done;
1531         temp = readl(&xhci->op_regs->status);
1532         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1533                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1534                                 "HW died, freeing TD.");
1535                 urb_priv = urb->hcpriv;
1536                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1537                         td = urb_priv->td[i];
1538                         if (!list_empty(&td->td_list))
1539                                 list_del_init(&td->td_list);
1540                         if (!list_empty(&td->cancelled_td_list))
1541                                 list_del_init(&td->cancelled_td_list);
1542                 }
1543
1544                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1545                 spin_unlock_irqrestore(&xhci->lock, flags);
1546                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1547                 xhci_urb_free_priv(urb_priv);
1548                 return ret;
1549         }
1550         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1551                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1552                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1553                                 "Ep 0x%x: URB %p to be canceled on "
1554                                 "non-responsive xHCI host.",
1555                                 urb->ep->desc.bEndpointAddress, urb);
1556                 /* Let the stop endpoint command watchdog timer (which set this
1557                  * state) finish cleaning up the endpoint TD lists.  We must
1558                  * have caught it in the middle of dropping a lock and giving
1559                  * back an URB.
1560                  */
1561                 goto done;
1562         }
1563
1564         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1565         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1566         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1567         if (!ep_ring) {
1568                 ret = -EINVAL;
1569                 goto done;
1570         }
1571
1572         urb_priv = urb->hcpriv;
1573         i = urb_priv->td_cnt;
1574         if (i < urb_priv->length)
1575                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1576                                 "Cancel URB %p, dev %s, ep 0x%x, "
1577                                 "starting at offset 0x%llx",
1578                                 urb, urb->dev->devpath,
1579                                 urb->ep->desc.bEndpointAddress,
1580                                 (unsigned long long) xhci_trb_virt_to_dma(
1581                                         urb_priv->td[i]->start_seg,
1582                                         urb_priv->td[i]->first_trb));
1583
1584         for (; i < urb_priv->length; i++) {
1585                 td = urb_priv->td[i];
1586                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1587         }
1588
1589         /* Queue a stop endpoint command, but only if this is
1590          * the first cancellation to be handled.
1591          */
1592         if (!(ep->ep_state & EP_HALT_PENDING)) {
1593                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1594                 if (!command) {
1595                         ret = -ENOMEM;
1596                         goto done;
1597                 }
1598                 ep->ep_state |= EP_HALT_PENDING;
1599                 ep->stop_cmds_pending++;
1600                 ep->stop_cmd_timer.expires = jiffies +
1601                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1602                 add_timer(&ep->stop_cmd_timer);
1603                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1604                                          ep_index, 0);
1605                 xhci_ring_cmd_db(xhci);
1606         }
1607 done:
1608         spin_unlock_irqrestore(&xhci->lock, flags);
1609         return ret;
1610 }
1611
1612 /* Drop an endpoint from a new bandwidth configuration for this device.
1613  * Only one call to this function is allowed per endpoint before
1614  * check_bandwidth() or reset_bandwidth() must be called.
1615  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1616  * add the endpoint to the schedule with possibly new parameters denoted by a
1617  * different endpoint descriptor in usb_host_endpoint.
1618  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1619  * not allowed.
1620  *
1621  * The USB core will not allow URBs to be queued to an endpoint that is being
1622  * disabled, so there's no need for mutual exclusion to protect
1623  * the xhci->devs[slot_id] structure.
1624  */
1625 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1626                 struct usb_host_endpoint *ep)
1627 {
1628         struct xhci_hcd *xhci;
1629         struct xhci_container_ctx *in_ctx, *out_ctx;
1630         struct xhci_input_control_ctx *ctrl_ctx;
1631         unsigned int ep_index;
1632         struct xhci_ep_ctx *ep_ctx;
1633         u32 drop_flag;
1634         u32 new_add_flags, new_drop_flags;
1635         int ret;
1636
1637         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1638         if (ret <= 0)
1639                 return ret;
1640         xhci = hcd_to_xhci(hcd);
1641         if (xhci->xhc_state & XHCI_STATE_DYING)
1642                 return -ENODEV;
1643
1644         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1645         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1646         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1647                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1648                                 __func__, drop_flag);
1649                 return 0;
1650         }
1651
1652         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1653         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1654         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1655         if (!ctrl_ctx) {
1656                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1657                                 __func__);
1658                 return 0;
1659         }
1660
1661         ep_index = xhci_get_endpoint_index(&ep->desc);
1662         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1663         /* If the HC already knows the endpoint is disabled,
1664          * or the HCD has noted it is disabled, ignore this request
1665          */
1666         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1667              cpu_to_le32(EP_STATE_DISABLED)) ||
1668             le32_to_cpu(ctrl_ctx->drop_flags) &
1669             xhci_get_endpoint_flag(&ep->desc)) {
1670                 /* Do not warn when called after a usb_device_reset */
1671                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1672                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1673                                   __func__, ep);
1674                 return 0;
1675         }
1676
1677         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1678         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1679
1680         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1681         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1682
1683         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1684
1685         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1686                         (unsigned int) ep->desc.bEndpointAddress,
1687                         udev->slot_id,
1688                         (unsigned int) new_drop_flags,
1689                         (unsigned int) new_add_flags);
1690         return 0;
1691 }
1692
1693 /* Add an endpoint to a new possible bandwidth configuration for this device.
1694  * Only one call to this function is allowed per endpoint before
1695  * check_bandwidth() or reset_bandwidth() must be called.
1696  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1697  * add the endpoint to the schedule with possibly new parameters denoted by a
1698  * different endpoint descriptor in usb_host_endpoint.
1699  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1700  * not allowed.
1701  *
1702  * The USB core will not allow URBs to be queued to an endpoint until the
1703  * configuration or alt setting is installed in the device, so there's no need
1704  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1705  */
1706 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1707                 struct usb_host_endpoint *ep)
1708 {
1709         struct xhci_hcd *xhci;
1710         struct xhci_container_ctx *in_ctx;
1711         unsigned int ep_index;
1712         struct xhci_input_control_ctx *ctrl_ctx;
1713         u32 added_ctxs;
1714         u32 new_add_flags, new_drop_flags;
1715         struct xhci_virt_device *virt_dev;
1716         int ret = 0;
1717
1718         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1719         if (ret <= 0) {
1720                 /* So we won't queue a reset ep command for a root hub */
1721                 ep->hcpriv = NULL;
1722                 return ret;
1723         }
1724         xhci = hcd_to_xhci(hcd);
1725         if (xhci->xhc_state & XHCI_STATE_DYING)
1726                 return -ENODEV;
1727
1728         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1729         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1730                 /* FIXME when we have to issue an evaluate endpoint command to
1731                  * deal with ep0 max packet size changing once we get the
1732                  * descriptors
1733                  */
1734                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1735                                 __func__, added_ctxs);
1736                 return 0;
1737         }
1738
1739         virt_dev = xhci->devs[udev->slot_id];
1740         in_ctx = virt_dev->in_ctx;
1741         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1742         if (!ctrl_ctx) {
1743                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1744                                 __func__);
1745                 return 0;
1746         }
1747
1748         ep_index = xhci_get_endpoint_index(&ep->desc);
1749         /* If this endpoint is already in use, and the upper layers are trying
1750          * to add it again without dropping it, reject the addition.
1751          */
1752         if (virt_dev->eps[ep_index].ring &&
1753                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1754                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1755                                 "without dropping it.\n",
1756                                 (unsigned int) ep->desc.bEndpointAddress);
1757                 return -EINVAL;
1758         }
1759
1760         /* If the HCD has already noted the endpoint is enabled,
1761          * ignore this request.
1762          */
1763         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1764                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1765                                 __func__, ep);
1766                 return 0;
1767         }
1768
1769         /*
1770          * Configuration and alternate setting changes must be done in
1771          * process context, not interrupt context (or so documenation
1772          * for usb_set_interface() and usb_set_configuration() claim).
1773          */
1774         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1775                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1776                                 __func__, ep->desc.bEndpointAddress);
1777                 return -ENOMEM;
1778         }
1779
1780         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1781         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1782
1783         /* If xhci_endpoint_disable() was called for this endpoint, but the
1784          * xHC hasn't been notified yet through the check_bandwidth() call,
1785          * this re-adds a new state for the endpoint from the new endpoint
1786          * descriptors.  We must drop and re-add this endpoint, so we leave the
1787          * drop flags alone.
1788          */
1789         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1790
1791         /* Store the usb_device pointer for later use */
1792         ep->hcpriv = udev;
1793
1794         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1795                         (unsigned int) ep->desc.bEndpointAddress,
1796                         udev->slot_id,
1797                         (unsigned int) new_drop_flags,
1798                         (unsigned int) new_add_flags);
1799         return 0;
1800 }
1801
1802 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1803 {
1804         struct xhci_input_control_ctx *ctrl_ctx;
1805         struct xhci_ep_ctx *ep_ctx;
1806         struct xhci_slot_ctx *slot_ctx;
1807         int i;
1808
1809         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1810         if (!ctrl_ctx) {
1811                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1812                                 __func__);
1813                 return;
1814         }
1815
1816         /* When a device's add flag and drop flag are zero, any subsequent
1817          * configure endpoint command will leave that endpoint's state
1818          * untouched.  Make sure we don't leave any old state in the input
1819          * endpoint contexts.
1820          */
1821         ctrl_ctx->drop_flags = 0;
1822         ctrl_ctx->add_flags = 0;
1823         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1824         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1825         /* Endpoint 0 is always valid */
1826         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1827         for (i = 1; i < 31; ++i) {
1828                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1829                 ep_ctx->ep_info = 0;
1830                 ep_ctx->ep_info2 = 0;
1831                 ep_ctx->deq = 0;
1832                 ep_ctx->tx_info = 0;
1833         }
1834 }
1835
1836 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1837                 struct usb_device *udev, u32 *cmd_status)
1838 {
1839         int ret;
1840
1841         switch (*cmd_status) {
1842         case COMP_CMD_ABORT:
1843         case COMP_CMD_STOP:
1844                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1845                 ret = -ETIME;
1846                 break;
1847         case COMP_ENOMEM:
1848                 dev_warn(&udev->dev,
1849                          "Not enough host controller resources for new device state.\n");
1850                 ret = -ENOMEM;
1851                 /* FIXME: can we allocate more resources for the HC? */
1852                 break;
1853         case COMP_BW_ERR:
1854         case COMP_2ND_BW_ERR:
1855                 dev_warn(&udev->dev,
1856                          "Not enough bandwidth for new device state.\n");
1857                 ret = -ENOSPC;
1858                 /* FIXME: can we go back to the old state? */
1859                 break;
1860         case COMP_TRB_ERR:
1861                 /* the HCD set up something wrong */
1862                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1863                                 "add flag = 1, "
1864                                 "and endpoint is not disabled.\n");
1865                 ret = -EINVAL;
1866                 break;
1867         case COMP_DEV_ERR:
1868                 dev_warn(&udev->dev,
1869                          "ERROR: Incompatible device for endpoint configure command.\n");
1870                 ret = -ENODEV;
1871                 break;
1872         case COMP_SUCCESS:
1873                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1874                                 "Successful Endpoint Configure command");
1875                 ret = 0;
1876                 break;
1877         default:
1878                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1879                                 *cmd_status);
1880                 ret = -EINVAL;
1881                 break;
1882         }
1883         return ret;
1884 }
1885
1886 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1887                 struct usb_device *udev, u32 *cmd_status)
1888 {
1889         int ret;
1890         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1891
1892         switch (*cmd_status) {
1893         case COMP_CMD_ABORT:
1894         case COMP_CMD_STOP:
1895                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1896                 ret = -ETIME;
1897                 break;
1898         case COMP_EINVAL:
1899                 dev_warn(&udev->dev,
1900                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1901                 ret = -EINVAL;
1902                 break;
1903         case COMP_EBADSLT:
1904                 dev_warn(&udev->dev,
1905                         "WARN: slot not enabled for evaluate context command.\n");
1906                 ret = -EINVAL;
1907                 break;
1908         case COMP_CTX_STATE:
1909                 dev_warn(&udev->dev,
1910                         "WARN: invalid context state for evaluate context command.\n");
1911                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1912                 ret = -EINVAL;
1913                 break;
1914         case COMP_DEV_ERR:
1915                 dev_warn(&udev->dev,
1916                         "ERROR: Incompatible device for evaluate context command.\n");
1917                 ret = -ENODEV;
1918                 break;
1919         case COMP_MEL_ERR:
1920                 /* Max Exit Latency too large error */
1921                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1922                 ret = -EINVAL;
1923                 break;
1924         case COMP_SUCCESS:
1925                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1926                                 "Successful evaluate context command");
1927                 ret = 0;
1928                 break;
1929         default:
1930                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1931                         *cmd_status);
1932                 ret = -EINVAL;
1933                 break;
1934         }
1935         return ret;
1936 }
1937
1938 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1939                 struct xhci_input_control_ctx *ctrl_ctx)
1940 {
1941         u32 valid_add_flags;
1942         u32 valid_drop_flags;
1943
1944         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1945          * (bit 1).  The default control endpoint is added during the Address
1946          * Device command and is never removed until the slot is disabled.
1947          */
1948         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1949         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1950
1951         /* Use hweight32 to count the number of ones in the add flags, or
1952          * number of endpoints added.  Don't count endpoints that are changed
1953          * (both added and dropped).
1954          */
1955         return hweight32(valid_add_flags) -
1956                 hweight32(valid_add_flags & valid_drop_flags);
1957 }
1958
1959 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1960                 struct xhci_input_control_ctx *ctrl_ctx)
1961 {
1962         u32 valid_add_flags;
1963         u32 valid_drop_flags;
1964
1965         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1966         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1967
1968         return hweight32(valid_drop_flags) -
1969                 hweight32(valid_add_flags & valid_drop_flags);
1970 }
1971
1972 /*
1973  * We need to reserve the new number of endpoints before the configure endpoint
1974  * command completes.  We can't subtract the dropped endpoints from the number
1975  * of active endpoints until the command completes because we can oversubscribe
1976  * the host in this case:
1977  *
1978  *  - the first configure endpoint command drops more endpoints than it adds
1979  *  - a second configure endpoint command that adds more endpoints is queued
1980  *  - the first configure endpoint command fails, so the config is unchanged
1981  *  - the second command may succeed, even though there isn't enough resources
1982  *
1983  * Must be called with xhci->lock held.
1984  */
1985 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1986                 struct xhci_input_control_ctx *ctrl_ctx)
1987 {
1988         u32 added_eps;
1989
1990         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1991         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1992                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1993                                 "Not enough ep ctxs: "
1994                                 "%u active, need to add %u, limit is %u.",
1995                                 xhci->num_active_eps, added_eps,
1996                                 xhci->limit_active_eps);
1997                 return -ENOMEM;
1998         }
1999         xhci->num_active_eps += added_eps;
2000         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2001                         "Adding %u ep ctxs, %u now active.", added_eps,
2002                         xhci->num_active_eps);
2003         return 0;
2004 }
2005
2006 /*
2007  * The configure endpoint was failed by the xHC for some other reason, so we
2008  * need to revert the resources that failed configuration would have used.
2009  *
2010  * Must be called with xhci->lock held.
2011  */
2012 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2013                 struct xhci_input_control_ctx *ctrl_ctx)
2014 {
2015         u32 num_failed_eps;
2016
2017         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2018         xhci->num_active_eps -= num_failed_eps;
2019         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2020                         "Removing %u failed ep ctxs, %u now active.",
2021                         num_failed_eps,
2022                         xhci->num_active_eps);
2023 }
2024
2025 /*
2026  * Now that the command has completed, clean up the active endpoint count by
2027  * subtracting out the endpoints that were dropped (but not changed).
2028  *
2029  * Must be called with xhci->lock held.
2030  */
2031 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2032                 struct xhci_input_control_ctx *ctrl_ctx)
2033 {
2034         u32 num_dropped_eps;
2035
2036         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2037         xhci->num_active_eps -= num_dropped_eps;
2038         if (num_dropped_eps)
2039                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2040                                 "Removing %u dropped ep ctxs, %u now active.",
2041                                 num_dropped_eps,
2042                                 xhci->num_active_eps);
2043 }
2044
2045 static unsigned int xhci_get_block_size(struct usb_device *udev)
2046 {
2047         switch (udev->speed) {
2048         case USB_SPEED_LOW:
2049         case USB_SPEED_FULL:
2050                 return FS_BLOCK;
2051         case USB_SPEED_HIGH:
2052                 return HS_BLOCK;
2053         case USB_SPEED_SUPER:
2054                 return SS_BLOCK;
2055         case USB_SPEED_UNKNOWN:
2056         case USB_SPEED_WIRELESS:
2057         default:
2058                 /* Should never happen */
2059                 return 1;
2060         }
2061 }
2062
2063 static unsigned int
2064 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2065 {
2066         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2067                 return LS_OVERHEAD;
2068         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2069                 return FS_OVERHEAD;
2070         return HS_OVERHEAD;
2071 }
2072
2073 /* If we are changing a LS/FS device under a HS hub,
2074  * make sure (if we are activating a new TT) that the HS bus has enough
2075  * bandwidth for this new TT.
2076  */
2077 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2078                 struct xhci_virt_device *virt_dev,
2079                 int old_active_eps)
2080 {
2081         struct xhci_interval_bw_table *bw_table;
2082         struct xhci_tt_bw_info *tt_info;
2083
2084         /* Find the bandwidth table for the root port this TT is attached to. */
2085         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2086         tt_info = virt_dev->tt_info;
2087         /* If this TT already had active endpoints, the bandwidth for this TT
2088          * has already been added.  Removing all periodic endpoints (and thus
2089          * making the TT enactive) will only decrease the bandwidth used.
2090          */
2091         if (old_active_eps)
2092                 return 0;
2093         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2094                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2095                         return -ENOMEM;
2096                 return 0;
2097         }
2098         /* Not sure why we would have no new active endpoints...
2099          *
2100          * Maybe because of an Evaluate Context change for a hub update or a
2101          * control endpoint 0 max packet size change?
2102          * FIXME: skip the bandwidth calculation in that case.
2103          */
2104         return 0;
2105 }
2106
2107 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2108                 struct xhci_virt_device *virt_dev)
2109 {
2110         unsigned int bw_reserved;
2111
2112         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2113         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2114                 return -ENOMEM;
2115
2116         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2117         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2118                 return -ENOMEM;
2119
2120         return 0;
2121 }
2122
2123 /*
2124  * This algorithm is a very conservative estimate of the worst-case scheduling
2125  * scenario for any one interval.  The hardware dynamically schedules the
2126  * packets, so we can't tell which microframe could be the limiting factor in
2127  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2128  *
2129  * Obviously, we can't solve an NP complete problem to find the minimum worst
2130  * case scenario.  Instead, we come up with an estimate that is no less than
2131  * the worst case bandwidth used for any one microframe, but may be an
2132  * over-estimate.
2133  *
2134  * We walk the requirements for each endpoint by interval, starting with the
2135  * smallest interval, and place packets in the schedule where there is only one
2136  * possible way to schedule packets for that interval.  In order to simplify
2137  * this algorithm, we record the largest max packet size for each interval, and
2138  * assume all packets will be that size.
2139  *
2140  * For interval 0, we obviously must schedule all packets for each interval.
2141  * The bandwidth for interval 0 is just the amount of data to be transmitted
2142  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2143  * the number of packets).
2144  *
2145  * For interval 1, we have two possible microframes to schedule those packets
2146  * in.  For this algorithm, if we can schedule the same number of packets for
2147  * each possible scheduling opportunity (each microframe), we will do so.  The
2148  * remaining number of packets will be saved to be transmitted in the gaps in
2149  * the next interval's scheduling sequence.
2150  *
2151  * As we move those remaining packets to be scheduled with interval 2 packets,
2152  * we have to double the number of remaining packets to transmit.  This is
2153  * because the intervals are actually powers of 2, and we would be transmitting
2154  * the previous interval's packets twice in this interval.  We also have to be
2155  * sure that when we look at the largest max packet size for this interval, we
2156  * also look at the largest max packet size for the remaining packets and take
2157  * the greater of the two.
2158  *
2159  * The algorithm continues to evenly distribute packets in each scheduling
2160  * opportunity, and push the remaining packets out, until we get to the last
2161  * interval.  Then those packets and their associated overhead are just added
2162  * to the bandwidth used.
2163  */
2164 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2165                 struct xhci_virt_device *virt_dev,
2166                 int old_active_eps)
2167 {
2168         unsigned int bw_reserved;
2169         unsigned int max_bandwidth;
2170         unsigned int bw_used;
2171         unsigned int block_size;
2172         struct xhci_interval_bw_table *bw_table;
2173         unsigned int packet_size = 0;
2174         unsigned int overhead = 0;
2175         unsigned int packets_transmitted = 0;
2176         unsigned int packets_remaining = 0;
2177         unsigned int i;
2178
2179         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2180                 return xhci_check_ss_bw(xhci, virt_dev);
2181
2182         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2183                 max_bandwidth = HS_BW_LIMIT;
2184                 /* Convert percent of bus BW reserved to blocks reserved */
2185                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2186         } else {
2187                 max_bandwidth = FS_BW_LIMIT;
2188                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2189         }
2190
2191         bw_table = virt_dev->bw_table;
2192         /* We need to translate the max packet size and max ESIT payloads into
2193          * the units the hardware uses.
2194          */
2195         block_size = xhci_get_block_size(virt_dev->udev);
2196
2197         /* If we are manipulating a LS/FS device under a HS hub, double check
2198          * that the HS bus has enough bandwidth if we are activing a new TT.
2199          */
2200         if (virt_dev->tt_info) {
2201                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2202                                 "Recalculating BW for rootport %u",
2203                                 virt_dev->real_port);
2204                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2205                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2206                                         "newly activated TT.\n");
2207                         return -ENOMEM;
2208                 }
2209                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2210                                 "Recalculating BW for TT slot %u port %u",
2211                                 virt_dev->tt_info->slot_id,
2212                                 virt_dev->tt_info->ttport);
2213         } else {
2214                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2215                                 "Recalculating BW for rootport %u",
2216                                 virt_dev->real_port);
2217         }
2218
2219         /* Add in how much bandwidth will be used for interval zero, or the
2220          * rounded max ESIT payload + number of packets * largest overhead.
2221          */
2222         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2223                 bw_table->interval_bw[0].num_packets *
2224                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2225
2226         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2227                 unsigned int bw_added;
2228                 unsigned int largest_mps;
2229                 unsigned int interval_overhead;
2230
2231                 /*
2232                  * How many packets could we transmit in this interval?
2233                  * If packets didn't fit in the previous interval, we will need
2234                  * to transmit that many packets twice within this interval.
2235                  */
2236                 packets_remaining = 2 * packets_remaining +
2237                         bw_table->interval_bw[i].num_packets;
2238
2239                 /* Find the largest max packet size of this or the previous
2240                  * interval.
2241                  */
2242                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2243                         largest_mps = 0;
2244                 else {
2245                         struct xhci_virt_ep *virt_ep;
2246                         struct list_head *ep_entry;
2247
2248                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2249                         virt_ep = list_entry(ep_entry,
2250                                         struct xhci_virt_ep, bw_endpoint_list);
2251                         /* Convert to blocks, rounding up */
2252                         largest_mps = DIV_ROUND_UP(
2253                                         virt_ep->bw_info.max_packet_size,
2254                                         block_size);
2255                 }
2256                 if (largest_mps > packet_size)
2257                         packet_size = largest_mps;
2258
2259                 /* Use the larger overhead of this or the previous interval. */
2260                 interval_overhead = xhci_get_largest_overhead(
2261                                 &bw_table->interval_bw[i]);
2262                 if (interval_overhead > overhead)
2263                         overhead = interval_overhead;
2264
2265                 /* How many packets can we evenly distribute across
2266                  * (1 << (i + 1)) possible scheduling opportunities?
2267                  */
2268                 packets_transmitted = packets_remaining >> (i + 1);
2269
2270                 /* Add in the bandwidth used for those scheduled packets */
2271                 bw_added = packets_transmitted * (overhead + packet_size);
2272
2273                 /* How many packets do we have remaining to transmit? */
2274                 packets_remaining = packets_remaining % (1 << (i + 1));
2275
2276                 /* What largest max packet size should those packets have? */
2277                 /* If we've transmitted all packets, don't carry over the
2278                  * largest packet size.
2279                  */
2280                 if (packets_remaining == 0) {
2281                         packet_size = 0;
2282                         overhead = 0;
2283                 } else if (packets_transmitted > 0) {
2284                         /* Otherwise if we do have remaining packets, and we've
2285                          * scheduled some packets in this interval, take the
2286                          * largest max packet size from endpoints with this
2287                          * interval.
2288                          */
2289                         packet_size = largest_mps;
2290                         overhead = interval_overhead;
2291                 }
2292                 /* Otherwise carry over packet_size and overhead from the last
2293                  * time we had a remainder.
2294                  */
2295                 bw_used += bw_added;
2296                 if (bw_used > max_bandwidth) {
2297                         xhci_warn(xhci, "Not enough bandwidth. "
2298                                         "Proposed: %u, Max: %u\n",
2299                                 bw_used, max_bandwidth);
2300                         return -ENOMEM;
2301                 }
2302         }
2303         /*
2304          * Ok, we know we have some packets left over after even-handedly
2305          * scheduling interval 15.  We don't know which microframes they will
2306          * fit into, so we over-schedule and say they will be scheduled every
2307          * microframe.
2308          */
2309         if (packets_remaining > 0)
2310                 bw_used += overhead + packet_size;
2311
2312         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2313                 unsigned int port_index = virt_dev->real_port - 1;
2314
2315                 /* OK, we're manipulating a HS device attached to a
2316                  * root port bandwidth domain.  Include the number of active TTs
2317                  * in the bandwidth used.
2318                  */
2319                 bw_used += TT_HS_OVERHEAD *
2320                         xhci->rh_bw[port_index].num_active_tts;
2321         }
2322
2323         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2324                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2325                 "Available: %u " "percent",
2326                 bw_used, max_bandwidth, bw_reserved,
2327                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2328                 max_bandwidth);
2329
2330         bw_used += bw_reserved;
2331         if (bw_used > max_bandwidth) {
2332                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2333                                 bw_used, max_bandwidth);
2334                 return -ENOMEM;
2335         }
2336
2337         bw_table->bw_used = bw_used;
2338         return 0;
2339 }
2340
2341 static bool xhci_is_async_ep(unsigned int ep_type)
2342 {
2343         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2344                                         ep_type != ISOC_IN_EP &&
2345                                         ep_type != INT_IN_EP);
2346 }
2347
2348 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2349 {
2350         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2351 }
2352
2353 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2354 {
2355         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2356
2357         if (ep_bw->ep_interval == 0)
2358                 return SS_OVERHEAD_BURST +
2359                         (ep_bw->mult * ep_bw->num_packets *
2360                                         (SS_OVERHEAD + mps));
2361         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2362                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2363                                 1 << ep_bw->ep_interval);
2364
2365 }
2366
2367 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2368                 struct xhci_bw_info *ep_bw,
2369                 struct xhci_interval_bw_table *bw_table,
2370                 struct usb_device *udev,
2371                 struct xhci_virt_ep *virt_ep,
2372                 struct xhci_tt_bw_info *tt_info)
2373 {
2374         struct xhci_interval_bw *interval_bw;
2375         int normalized_interval;
2376
2377         if (xhci_is_async_ep(ep_bw->type))
2378                 return;
2379
2380         if (udev->speed == USB_SPEED_SUPER) {
2381                 if (xhci_is_sync_in_ep(ep_bw->type))
2382                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2383                                 xhci_get_ss_bw_consumed(ep_bw);
2384                 else
2385                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2386                                 xhci_get_ss_bw_consumed(ep_bw);
2387                 return;
2388         }
2389
2390         /* SuperSpeed endpoints never get added to intervals in the table, so
2391          * this check is only valid for HS/FS/LS devices.
2392          */
2393         if (list_empty(&virt_ep->bw_endpoint_list))
2394                 return;
2395         /* For LS/FS devices, we need to translate the interval expressed in
2396          * microframes to frames.
2397          */
2398         if (udev->speed == USB_SPEED_HIGH)
2399                 normalized_interval = ep_bw->ep_interval;
2400         else
2401                 normalized_interval = ep_bw->ep_interval - 3;
2402
2403         if (normalized_interval == 0)
2404                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2405         interval_bw = &bw_table->interval_bw[normalized_interval];
2406         interval_bw->num_packets -= ep_bw->num_packets;
2407         switch (udev->speed) {
2408         case USB_SPEED_LOW:
2409                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2410                 break;
2411         case USB_SPEED_FULL:
2412                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2413                 break;
2414         case USB_SPEED_HIGH:
2415                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2416                 break;
2417         case USB_SPEED_SUPER:
2418         case USB_SPEED_UNKNOWN:
2419         case USB_SPEED_WIRELESS:
2420                 /* Should never happen because only LS/FS/HS endpoints will get
2421                  * added to the endpoint list.
2422                  */
2423                 return;
2424         }
2425         if (tt_info)
2426                 tt_info->active_eps -= 1;
2427         list_del_init(&virt_ep->bw_endpoint_list);
2428 }
2429
2430 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2431                 struct xhci_bw_info *ep_bw,
2432                 struct xhci_interval_bw_table *bw_table,
2433                 struct usb_device *udev,
2434                 struct xhci_virt_ep *virt_ep,
2435                 struct xhci_tt_bw_info *tt_info)
2436 {
2437         struct xhci_interval_bw *interval_bw;
2438         struct xhci_virt_ep *smaller_ep;
2439         int normalized_interval;
2440
2441         if (xhci_is_async_ep(ep_bw->type))
2442                 return;
2443
2444         if (udev->speed == USB_SPEED_SUPER) {
2445                 if (xhci_is_sync_in_ep(ep_bw->type))
2446                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2447                                 xhci_get_ss_bw_consumed(ep_bw);
2448                 else
2449                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2450                                 xhci_get_ss_bw_consumed(ep_bw);
2451                 return;
2452         }
2453
2454         /* For LS/FS devices, we need to translate the interval expressed in
2455          * microframes to frames.
2456          */
2457         if (udev->speed == USB_SPEED_HIGH)
2458                 normalized_interval = ep_bw->ep_interval;
2459         else
2460                 normalized_interval = ep_bw->ep_interval - 3;
2461
2462         if (normalized_interval == 0)
2463                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2464         interval_bw = &bw_table->interval_bw[normalized_interval];
2465         interval_bw->num_packets += ep_bw->num_packets;
2466         switch (udev->speed) {
2467         case USB_SPEED_LOW:
2468                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2469                 break;
2470         case USB_SPEED_FULL:
2471                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2472                 break;
2473         case USB_SPEED_HIGH:
2474                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2475                 break;
2476         case USB_SPEED_SUPER:
2477         case USB_SPEED_UNKNOWN:
2478         case USB_SPEED_WIRELESS:
2479                 /* Should never happen because only LS/FS/HS endpoints will get
2480                  * added to the endpoint list.
2481                  */
2482                 return;
2483         }
2484
2485         if (tt_info)
2486                 tt_info->active_eps += 1;
2487         /* Insert the endpoint into the list, largest max packet size first. */
2488         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2489                         bw_endpoint_list) {
2490                 if (ep_bw->max_packet_size >=
2491                                 smaller_ep->bw_info.max_packet_size) {
2492                         /* Add the new ep before the smaller endpoint */
2493                         list_add_tail(&virt_ep->bw_endpoint_list,
2494                                         &smaller_ep->bw_endpoint_list);
2495                         return;
2496                 }
2497         }
2498         /* Add the new endpoint at the end of the list. */
2499         list_add_tail(&virt_ep->bw_endpoint_list,
2500                         &interval_bw->endpoints);
2501 }
2502
2503 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2504                 struct xhci_virt_device *virt_dev,
2505                 int old_active_eps)
2506 {
2507         struct xhci_root_port_bw_info *rh_bw_info;
2508         if (!virt_dev->tt_info)
2509                 return;
2510
2511         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2512         if (old_active_eps == 0 &&
2513                                 virt_dev->tt_info->active_eps != 0) {
2514                 rh_bw_info->num_active_tts += 1;
2515                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2516         } else if (old_active_eps != 0 &&
2517                                 virt_dev->tt_info->active_eps == 0) {
2518                 rh_bw_info->num_active_tts -= 1;
2519                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2520         }
2521 }
2522
2523 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2524                 struct xhci_virt_device *virt_dev,
2525                 struct xhci_container_ctx *in_ctx)
2526 {
2527         struct xhci_bw_info ep_bw_info[31];
2528         int i;
2529         struct xhci_input_control_ctx *ctrl_ctx;
2530         int old_active_eps = 0;
2531
2532         if (virt_dev->tt_info)
2533                 old_active_eps = virt_dev->tt_info->active_eps;
2534
2535         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2536         if (!ctrl_ctx) {
2537                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2538                                 __func__);
2539                 return -ENOMEM;
2540         }
2541
2542         for (i = 0; i < 31; i++) {
2543                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2544                         continue;
2545
2546                 /* Make a copy of the BW info in case we need to revert this */
2547                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2548                                 sizeof(ep_bw_info[i]));
2549                 /* Drop the endpoint from the interval table if the endpoint is
2550                  * being dropped or changed.
2551                  */
2552                 if (EP_IS_DROPPED(ctrl_ctx, i))
2553                         xhci_drop_ep_from_interval_table(xhci,
2554                                         &virt_dev->eps[i].bw_info,
2555                                         virt_dev->bw_table,
2556                                         virt_dev->udev,
2557                                         &virt_dev->eps[i],
2558                                         virt_dev->tt_info);
2559         }
2560         /* Overwrite the information stored in the endpoints' bw_info */
2561         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2562         for (i = 0; i < 31; i++) {
2563                 /* Add any changed or added endpoints to the interval table */
2564                 if (EP_IS_ADDED(ctrl_ctx, i))
2565                         xhci_add_ep_to_interval_table(xhci,
2566                                         &virt_dev->eps[i].bw_info,
2567                                         virt_dev->bw_table,
2568                                         virt_dev->udev,
2569                                         &virt_dev->eps[i],
2570                                         virt_dev->tt_info);
2571         }
2572
2573         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2574                 /* Ok, this fits in the bandwidth we have.
2575                  * Update the number of active TTs.
2576                  */
2577                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2578                 return 0;
2579         }
2580
2581         /* We don't have enough bandwidth for this, revert the stored info. */
2582         for (i = 0; i < 31; i++) {
2583                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2584                         continue;
2585
2586                 /* Drop the new copies of any added or changed endpoints from
2587                  * the interval table.
2588                  */
2589                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2590                         xhci_drop_ep_from_interval_table(xhci,
2591                                         &virt_dev->eps[i].bw_info,
2592                                         virt_dev->bw_table,
2593                                         virt_dev->udev,
2594                                         &virt_dev->eps[i],
2595                                         virt_dev->tt_info);
2596                 }
2597                 /* Revert the endpoint back to its old information */
2598                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2599                                 sizeof(ep_bw_info[i]));
2600                 /* Add any changed or dropped endpoints back into the table */
2601                 if (EP_IS_DROPPED(ctrl_ctx, i))
2602                         xhci_add_ep_to_interval_table(xhci,
2603                                         &virt_dev->eps[i].bw_info,
2604                                         virt_dev->bw_table,
2605                                         virt_dev->udev,
2606                                         &virt_dev->eps[i],
2607                                         virt_dev->tt_info);
2608         }
2609         return -ENOMEM;
2610 }
2611
2612
2613 /* Issue a configure endpoint command or evaluate context command
2614  * and wait for it to finish.
2615  */
2616 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2617                 struct usb_device *udev,
2618                 struct xhci_command *command,
2619                 bool ctx_change, bool must_succeed)
2620 {
2621         int ret;
2622         unsigned long flags;
2623         struct xhci_input_control_ctx *ctrl_ctx;
2624         struct xhci_virt_device *virt_dev;
2625
2626         if (!command)
2627                 return -EINVAL;
2628
2629         spin_lock_irqsave(&xhci->lock, flags);
2630         virt_dev = xhci->devs[udev->slot_id];
2631
2632         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2633         if (!ctrl_ctx) {
2634                 spin_unlock_irqrestore(&xhci->lock, flags);
2635                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2636                                 __func__);
2637                 return -ENOMEM;
2638         }
2639
2640         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2641                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2642                 spin_unlock_irqrestore(&xhci->lock, flags);
2643                 xhci_warn(xhci, "Not enough host resources, "
2644                                 "active endpoint contexts = %u\n",
2645                                 xhci->num_active_eps);
2646                 return -ENOMEM;
2647         }
2648         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2649             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2650                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2651                         xhci_free_host_resources(xhci, ctrl_ctx);
2652                 spin_unlock_irqrestore(&xhci->lock, flags);
2653                 xhci_warn(xhci, "Not enough bandwidth\n");
2654                 return -ENOMEM;
2655         }
2656
2657         if (!ctx_change)
2658                 ret = xhci_queue_configure_endpoint(xhci, command,
2659                                 command->in_ctx->dma,
2660                                 udev->slot_id, must_succeed);
2661         else
2662                 ret = xhci_queue_evaluate_context(xhci, command,
2663                                 command->in_ctx->dma,
2664                                 udev->slot_id, must_succeed);
2665         if (ret < 0) {
2666                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2667                         xhci_free_host_resources(xhci, ctrl_ctx);
2668                 spin_unlock_irqrestore(&xhci->lock, flags);
2669                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2670                                 "FIXME allocate a new ring segment");
2671                 return -ENOMEM;
2672         }
2673         xhci_ring_cmd_db(xhci);
2674         spin_unlock_irqrestore(&xhci->lock, flags);
2675
2676         /* Wait for the configure endpoint command to complete */
2677         wait_for_completion(command->completion);
2678
2679         if (!ctx_change)
2680                 ret = xhci_configure_endpoint_result(xhci, udev,
2681                                                      &command->status);
2682         else
2683                 ret = xhci_evaluate_context_result(xhci, udev,
2684                                                    &command->status);
2685
2686         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2687                 spin_lock_irqsave(&xhci->lock, flags);
2688                 /* If the command failed, remove the reserved resources.
2689                  * Otherwise, clean up the estimate to include dropped eps.
2690                  */
2691                 if (ret)
2692                         xhci_free_host_resources(xhci, ctrl_ctx);
2693                 else
2694                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2695                 spin_unlock_irqrestore(&xhci->lock, flags);
2696         }
2697         return ret;
2698 }
2699
2700 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2701         struct xhci_virt_device *vdev, int i)
2702 {
2703         struct xhci_virt_ep *ep = &vdev->eps[i];
2704
2705         if (ep->ep_state & EP_HAS_STREAMS) {
2706                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2707                                 xhci_get_endpoint_address(i));
2708                 xhci_free_stream_info(xhci, ep->stream_info);
2709                 ep->stream_info = NULL;
2710                 ep->ep_state &= ~EP_HAS_STREAMS;
2711         }
2712 }
2713
2714 /* Called after one or more calls to xhci_add_endpoint() or
2715  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2716  * to call xhci_reset_bandwidth().
2717  *
2718  * Since we are in the middle of changing either configuration or
2719  * installing a new alt setting, the USB core won't allow URBs to be
2720  * enqueued for any endpoint on the old config or interface.  Nothing
2721  * else should be touching the xhci->devs[slot_id] structure, so we
2722  * don't need to take the xhci->lock for manipulating that.
2723  */
2724 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2725 {
2726         int i;
2727         int ret = 0;
2728         struct xhci_hcd *xhci;
2729         struct xhci_virt_device *virt_dev;
2730         struct xhci_input_control_ctx *ctrl_ctx;
2731         struct xhci_slot_ctx *slot_ctx;
2732         struct xhci_command *command;
2733
2734         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2735         if (ret <= 0)
2736                 return ret;
2737         xhci = hcd_to_xhci(hcd);
2738         if (xhci->xhc_state & XHCI_STATE_DYING)
2739                 return -ENODEV;
2740
2741         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2742         virt_dev = xhci->devs[udev->slot_id];
2743
2744         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2745         if (!command)
2746                 return -ENOMEM;
2747
2748         command->in_ctx = virt_dev->in_ctx;
2749
2750         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2751         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2752         if (!ctrl_ctx) {
2753                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2754                                 __func__);
2755                 ret = -ENOMEM;
2756                 goto command_cleanup;
2757         }
2758         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2759         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2760         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2761
2762         /* Don't issue the command if there's no endpoints to update. */
2763         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2764             ctrl_ctx->drop_flags == 0) {
2765                 ret = 0;
2766                 goto command_cleanup;
2767         }
2768         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2769         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2770         for (i = 31; i >= 1; i--) {
2771                 __le32 le32 = cpu_to_le32(BIT(i));
2772
2773                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2774                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2775                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2776                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2777                         break;
2778                 }
2779         }
2780         xhci_dbg(xhci, "New Input Control Context:\n");
2781         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2782                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2783
2784         ret = xhci_configure_endpoint(xhci, udev, command,
2785                         false, false);
2786         if (ret)
2787                 /* Callee should call reset_bandwidth() */
2788                 goto command_cleanup;
2789
2790         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2791         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2792                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2793
2794         /* Free any rings that were dropped, but not changed. */
2795         for (i = 1; i < 31; ++i) {
2796                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2797                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2798                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2799                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2800                 }
2801         }
2802         xhci_zero_in_ctx(xhci, virt_dev);
2803         /*
2804          * Install any rings for completely new endpoints or changed endpoints,
2805          * and free or cache any old rings from changed endpoints.
2806          */
2807         for (i = 1; i < 31; ++i) {
2808                 if (!virt_dev->eps[i].new_ring)
2809                         continue;
2810                 /* Only cache or free the old ring if it exists.
2811                  * It may not if this is the first add of an endpoint.
2812                  */
2813                 if (virt_dev->eps[i].ring) {
2814                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2815                 }
2816                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2817                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2818                 virt_dev->eps[i].new_ring = NULL;
2819         }
2820 command_cleanup:
2821         kfree(command->completion);
2822         kfree(command);
2823
2824         return ret;
2825 }
2826
2827 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2828 {
2829         struct xhci_hcd *xhci;
2830         struct xhci_virt_device *virt_dev;
2831         int i, ret;
2832
2833         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2834         if (ret <= 0)
2835                 return;
2836         xhci = hcd_to_xhci(hcd);
2837
2838         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2839         virt_dev = xhci->devs[udev->slot_id];
2840         /* Free any rings allocated for added endpoints */
2841         for (i = 0; i < 31; ++i) {
2842                 if (virt_dev->eps[i].new_ring) {
2843                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2844                         virt_dev->eps[i].new_ring = NULL;
2845                 }
2846         }
2847         xhci_zero_in_ctx(xhci, virt_dev);
2848 }
2849
2850 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2851                 struct xhci_container_ctx *in_ctx,
2852                 struct xhci_container_ctx *out_ctx,
2853                 struct xhci_input_control_ctx *ctrl_ctx,
2854                 u32 add_flags, u32 drop_flags)
2855 {
2856         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2857         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2858         xhci_slot_copy(xhci, in_ctx, out_ctx);
2859         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2860
2861         xhci_dbg(xhci, "Input Context:\n");
2862         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2863 }
2864
2865 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2866                 unsigned int slot_id, unsigned int ep_index,
2867                 struct xhci_dequeue_state *deq_state)
2868 {
2869         struct xhci_input_control_ctx *ctrl_ctx;
2870         struct xhci_container_ctx *in_ctx;
2871         struct xhci_ep_ctx *ep_ctx;
2872         u32 added_ctxs;
2873         dma_addr_t addr;
2874
2875         in_ctx = xhci->devs[slot_id]->in_ctx;
2876         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2877         if (!ctrl_ctx) {
2878                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2879                                 __func__);
2880                 return;
2881         }
2882
2883         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2884                         xhci->devs[slot_id]->out_ctx, ep_index);
2885         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2886         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2887                         deq_state->new_deq_ptr);
2888         if (addr == 0) {
2889                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2890                                 "reset ep command\n");
2891                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2892                                 deq_state->new_deq_seg,
2893                                 deq_state->new_deq_ptr);
2894                 return;
2895         }
2896         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2897
2898         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2899         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2900                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2901                         added_ctxs, added_ctxs);
2902 }
2903
2904 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2905                         unsigned int ep_index, struct xhci_td *td)
2906 {
2907         struct xhci_dequeue_state deq_state;
2908         struct xhci_virt_ep *ep;
2909         struct usb_device *udev = td->urb->dev;
2910
2911         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2912                         "Cleaning up stalled endpoint ring");
2913         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2914         /* We need to move the HW's dequeue pointer past this TD,
2915          * or it will attempt to resend it on the next doorbell ring.
2916          */
2917         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2918                         ep_index, ep->stopped_stream, td, &deq_state);
2919
2920         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2921                 return;
2922
2923         /* HW with the reset endpoint quirk will use the saved dequeue state to
2924          * issue a configure endpoint command later.
2925          */
2926         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2927                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2928                                 "Queueing new dequeue state");
2929                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2930                                 ep_index, ep->stopped_stream, &deq_state);
2931         } else {
2932                 /* Better hope no one uses the input context between now and the
2933                  * reset endpoint completion!
2934                  * XXX: No idea how this hardware will react when stream rings
2935                  * are enabled.
2936                  */
2937                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2938                                 "Setting up input context for "
2939                                 "configure endpoint command");
2940                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2941                                 ep_index, &deq_state);
2942         }
2943 }
2944
2945 /* Called when clearing halted device. The core should have sent the control
2946  * message to clear the device halt condition. The host side of the halt should
2947  * already be cleared with a reset endpoint command issued when the STALL tx
2948  * event was received.
2949  *
2950  * Context: in_interrupt
2951  */
2952
2953 void xhci_endpoint_reset(struct usb_hcd *hcd,
2954                 struct usb_host_endpoint *ep)
2955 {
2956         struct xhci_hcd *xhci;
2957
2958         xhci = hcd_to_xhci(hcd);
2959
2960         /*
2961          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2962          * The Reset Endpoint Command may only be issued to endpoints in the
2963          * Halted state. If software wishes reset the Data Toggle or Sequence
2964          * Number of an endpoint that isn't in the Halted state, then software
2965          * may issue a Configure Endpoint Command with the Drop and Add bits set
2966          * for the target endpoint. that is in the Stopped state.
2967          */
2968
2969         /* For now just print debug to follow the situation */
2970         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2971                  ep->desc.bEndpointAddress);
2972 }
2973
2974 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2975                 struct usb_device *udev, struct usb_host_endpoint *ep,
2976                 unsigned int slot_id)
2977 {
2978         int ret;
2979         unsigned int ep_index;
2980         unsigned int ep_state;
2981
2982         if (!ep)
2983                 return -EINVAL;
2984         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2985         if (ret <= 0)
2986                 return -EINVAL;
2987         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2988                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2989                                 " descriptor for ep 0x%x does not support streams\n",
2990                                 ep->desc.bEndpointAddress);
2991                 return -EINVAL;
2992         }
2993
2994         ep_index = xhci_get_endpoint_index(&ep->desc);
2995         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2996         if (ep_state & EP_HAS_STREAMS ||
2997                         ep_state & EP_GETTING_STREAMS) {
2998                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2999                                 "already has streams set up.\n",
3000                                 ep->desc.bEndpointAddress);
3001                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3002                                 "dynamic stream context array reallocation.\n");
3003                 return -EINVAL;
3004         }
3005         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3006                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3007                                 "endpoint 0x%x; URBs are pending.\n",
3008                                 ep->desc.bEndpointAddress);
3009                 return -EINVAL;
3010         }
3011         return 0;
3012 }
3013
3014 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3015                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3016 {
3017         unsigned int max_streams;
3018
3019         /* The stream context array size must be a power of two */
3020         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3021         /*
3022          * Find out how many primary stream array entries the host controller
3023          * supports.  Later we may use secondary stream arrays (similar to 2nd
3024          * level page entries), but that's an optional feature for xHCI host
3025          * controllers. xHCs must support at least 4 stream IDs.
3026          */
3027         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3028         if (*num_stream_ctxs > max_streams) {
3029                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3030                                 max_streams);
3031                 *num_stream_ctxs = max_streams;
3032                 *num_streams = max_streams;
3033         }
3034 }
3035
3036 /* Returns an error code if one of the endpoint already has streams.
3037  * This does not change any data structures, it only checks and gathers
3038  * information.
3039  */
3040 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3041                 struct usb_device *udev,
3042                 struct usb_host_endpoint **eps, unsigned int num_eps,
3043                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3044 {
3045         unsigned int max_streams;
3046         unsigned int endpoint_flag;
3047         int i;
3048         int ret;
3049
3050         for (i = 0; i < num_eps; i++) {
3051                 ret = xhci_check_streams_endpoint(xhci, udev,
3052                                 eps[i], udev->slot_id);
3053                 if (ret < 0)
3054                         return ret;
3055
3056                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3057                 if (max_streams < (*num_streams - 1)) {
3058                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3059                                         eps[i]->desc.bEndpointAddress,
3060                                         max_streams);
3061                         *num_streams = max_streams+1;
3062                 }
3063
3064                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3065                 if (*changed_ep_bitmask & endpoint_flag)
3066                         return -EINVAL;
3067                 *changed_ep_bitmask |= endpoint_flag;
3068         }
3069         return 0;
3070 }
3071
3072 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3073                 struct usb_device *udev,
3074                 struct usb_host_endpoint **eps, unsigned int num_eps)
3075 {
3076         u32 changed_ep_bitmask = 0;
3077         unsigned int slot_id;
3078         unsigned int ep_index;
3079         unsigned int ep_state;
3080         int i;
3081
3082         slot_id = udev->slot_id;
3083         if (!xhci->devs[slot_id])
3084                 return 0;
3085
3086         for (i = 0; i < num_eps; i++) {
3087                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3089                 /* Are streams already being freed for the endpoint? */
3090                 if (ep_state & EP_GETTING_NO_STREAMS) {
3091                         xhci_warn(xhci, "WARN Can't disable streams for "
3092                                         "endpoint 0x%x, "
3093                                         "streams are being disabled already\n",
3094                                         eps[i]->desc.bEndpointAddress);
3095                         return 0;
3096                 }
3097                 /* Are there actually any streams to free? */
3098                 if (!(ep_state & EP_HAS_STREAMS) &&
3099                                 !(ep_state & EP_GETTING_STREAMS)) {
3100                         xhci_warn(xhci, "WARN Can't disable streams for "
3101                                         "endpoint 0x%x, "
3102                                         "streams are already disabled!\n",
3103                                         eps[i]->desc.bEndpointAddress);
3104                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3105                                         "with non-streams endpoint\n");
3106                         return 0;
3107                 }
3108                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3109         }
3110         return changed_ep_bitmask;
3111 }
3112
3113 /*
3114  * The USB device drivers use this function (though the HCD interface in USB
3115  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3116  * coordinate mass storage command queueing across multiple endpoints (basically
3117  * a stream ID == a task ID).
3118  *
3119  * Setting up streams involves allocating the same size stream context array
3120  * for each endpoint and issuing a configure endpoint command for all endpoints.
3121  *
3122  * Don't allow the call to succeed if one endpoint only supports one stream
3123  * (which means it doesn't support streams at all).
3124  *
3125  * Drivers may get less stream IDs than they asked for, if the host controller
3126  * hardware or endpoints claim they can't support the number of requested
3127  * stream IDs.
3128  */
3129 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3130                 struct usb_host_endpoint **eps, unsigned int num_eps,
3131                 unsigned int num_streams, gfp_t mem_flags)
3132 {
3133         int i, ret;
3134         struct xhci_hcd *xhci;
3135         struct xhci_virt_device *vdev;
3136         struct xhci_command *config_cmd;
3137         struct xhci_input_control_ctx *ctrl_ctx;
3138         unsigned int ep_index;
3139         unsigned int num_stream_ctxs;
3140         unsigned long flags;
3141         u32 changed_ep_bitmask = 0;
3142
3143         if (!eps)
3144                 return -EINVAL;
3145
3146         /* Add one to the number of streams requested to account for
3147          * stream 0 that is reserved for xHCI usage.
3148          */
3149         num_streams += 1;
3150         xhci = hcd_to_xhci(hcd);
3151         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3152                         num_streams);
3153
3154         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3155         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3156                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3157                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3158                 return -ENOSYS;
3159         }
3160
3161         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3162         if (!config_cmd) {
3163                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3164                 return -ENOMEM;
3165         }
3166         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3167         if (!ctrl_ctx) {
3168                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3169                                 __func__);
3170                 xhci_free_command(xhci, config_cmd);
3171                 return -ENOMEM;
3172         }
3173
3174         /* Check to make sure all endpoints are not already configured for
3175          * streams.  While we're at it, find the maximum number of streams that
3176          * all the endpoints will support and check for duplicate endpoints.
3177          */
3178         spin_lock_irqsave(&xhci->lock, flags);
3179         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3180                         num_eps, &num_streams, &changed_ep_bitmask);
3181         if (ret < 0) {
3182                 xhci_free_command(xhci, config_cmd);
3183                 spin_unlock_irqrestore(&xhci->lock, flags);
3184                 return ret;
3185         }
3186         if (num_streams <= 1) {
3187                 xhci_warn(xhci, "WARN: endpoints can't handle "
3188                                 "more than one stream.\n");
3189                 xhci_free_command(xhci, config_cmd);
3190                 spin_unlock_irqrestore(&xhci->lock, flags);
3191                 return -EINVAL;
3192         }
3193         vdev = xhci->devs[udev->slot_id];
3194         /* Mark each endpoint as being in transition, so
3195          * xhci_urb_enqueue() will reject all URBs.
3196          */
3197         for (i = 0; i < num_eps; i++) {
3198                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3199                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3200         }
3201         spin_unlock_irqrestore(&xhci->lock, flags);
3202
3203         /* Setup internal data structures and allocate HW data structures for
3204          * streams (but don't install the HW structures in the input context
3205          * until we're sure all memory allocation succeeded).
3206          */
3207         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3208         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3209                         num_stream_ctxs, num_streams);
3210
3211         for (i = 0; i < num_eps; i++) {
3212                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3213                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3214                                 num_stream_ctxs,
3215                                 num_streams, mem_flags);
3216                 if (!vdev->eps[ep_index].stream_info)
3217                         goto cleanup;
3218                 /* Set maxPstreams in endpoint context and update deq ptr to
3219                  * point to stream context array. FIXME
3220                  */
3221         }
3222
3223         /* Set up the input context for a configure endpoint command. */
3224         for (i = 0; i < num_eps; i++) {
3225                 struct xhci_ep_ctx *ep_ctx;
3226
3227                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3229
3230                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3231                                 vdev->out_ctx, ep_index);
3232                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3233                                 vdev->eps[ep_index].stream_info);
3234         }
3235         /* Tell the HW to drop its old copy of the endpoint context info
3236          * and add the updated copy from the input context.
3237          */
3238         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3239                         vdev->out_ctx, ctrl_ctx,
3240                         changed_ep_bitmask, changed_ep_bitmask);
3241
3242         /* Issue and wait for the configure endpoint command */
3243         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3244                         false, false);
3245
3246         /* xHC rejected the configure endpoint command for some reason, so we
3247          * leave the old ring intact and free our internal streams data
3248          * structure.
3249          */
3250         if (ret < 0)
3251                 goto cleanup;
3252
3253         spin_lock_irqsave(&xhci->lock, flags);
3254         for (i = 0; i < num_eps; i++) {
3255                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3256                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3257                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3258                          udev->slot_id, ep_index);
3259                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3260         }
3261         xhci_free_command(xhci, config_cmd);
3262         spin_unlock_irqrestore(&xhci->lock, flags);
3263
3264         /* Subtract 1 for stream 0, which drivers can't use */
3265         return num_streams - 1;
3266
3267 cleanup:
3268         /* If it didn't work, free the streams! */
3269         for (i = 0; i < num_eps; i++) {
3270                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3271                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3272                 vdev->eps[ep_index].stream_info = NULL;
3273                 /* FIXME Unset maxPstreams in endpoint context and
3274                  * update deq ptr to point to normal string ring.
3275                  */
3276                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3277                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3278                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3279         }
3280         xhci_free_command(xhci, config_cmd);
3281         return -ENOMEM;
3282 }
3283
3284 /* Transition the endpoint from using streams to being a "normal" endpoint
3285  * without streams.
3286  *
3287  * Modify the endpoint context state, submit a configure endpoint command,
3288  * and free all endpoint rings for streams if that completes successfully.
3289  */
3290 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3291                 struct usb_host_endpoint **eps, unsigned int num_eps,
3292                 gfp_t mem_flags)
3293 {
3294         int i, ret;
3295         struct xhci_hcd *xhci;
3296         struct xhci_virt_device *vdev;
3297         struct xhci_command *command;
3298         struct xhci_input_control_ctx *ctrl_ctx;
3299         unsigned int ep_index;
3300         unsigned long flags;
3301         u32 changed_ep_bitmask;
3302
3303         xhci = hcd_to_xhci(hcd);
3304         vdev = xhci->devs[udev->slot_id];
3305
3306         /* Set up a configure endpoint command to remove the streams rings */
3307         spin_lock_irqsave(&xhci->lock, flags);
3308         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3309                         udev, eps, num_eps);
3310         if (changed_ep_bitmask == 0) {
3311                 spin_unlock_irqrestore(&xhci->lock, flags);
3312                 return -EINVAL;
3313         }
3314
3315         /* Use the xhci_command structure from the first endpoint.  We may have
3316          * allocated too many, but the driver may call xhci_free_streams() for
3317          * each endpoint it grouped into one call to xhci_alloc_streams().
3318          */
3319         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3320         command = vdev->eps[ep_index].stream_info->free_streams_command;
3321         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3322         if (!ctrl_ctx) {
3323                 spin_unlock_irqrestore(&xhci->lock, flags);
3324                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3325                                 __func__);
3326                 return -EINVAL;
3327         }
3328
3329         for (i = 0; i < num_eps; i++) {
3330                 struct xhci_ep_ctx *ep_ctx;
3331
3332                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3333                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3334                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3335                         EP_GETTING_NO_STREAMS;
3336
3337                 xhci_endpoint_copy(xhci, command->in_ctx,
3338                                 vdev->out_ctx, ep_index);
3339                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3340                                 &vdev->eps[ep_index]);
3341         }
3342         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3343                         vdev->out_ctx, ctrl_ctx,
3344                         changed_ep_bitmask, changed_ep_bitmask);
3345         spin_unlock_irqrestore(&xhci->lock, flags);
3346
3347         /* Issue and wait for the configure endpoint command,
3348          * which must succeed.
3349          */
3350         ret = xhci_configure_endpoint(xhci, udev, command,
3351                         false, true);
3352
3353         /* xHC rejected the configure endpoint command for some reason, so we
3354          * leave the streams rings intact.
3355          */
3356         if (ret < 0)
3357                 return ret;
3358
3359         spin_lock_irqsave(&xhci->lock, flags);
3360         for (i = 0; i < num_eps; i++) {
3361                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3362                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3363                 vdev->eps[ep_index].stream_info = NULL;
3364                 /* FIXME Unset maxPstreams in endpoint context and
3365                  * update deq ptr to point to normal string ring.
3366                  */
3367                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3368                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3369         }
3370         spin_unlock_irqrestore(&xhci->lock, flags);
3371
3372         return 0;
3373 }
3374
3375 /*
3376  * Deletes endpoint resources for endpoints that were active before a Reset
3377  * Device command, or a Disable Slot command.  The Reset Device command leaves
3378  * the control endpoint intact, whereas the Disable Slot command deletes it.
3379  *
3380  * Must be called with xhci->lock held.
3381  */
3382 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3383         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3384 {
3385         int i;
3386         unsigned int num_dropped_eps = 0;
3387         unsigned int drop_flags = 0;
3388
3389         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3390                 if (virt_dev->eps[i].ring) {
3391                         drop_flags |= 1 << i;
3392                         num_dropped_eps++;
3393                 }
3394         }
3395         xhci->num_active_eps -= num_dropped_eps;
3396         if (num_dropped_eps)
3397                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3398                                 "Dropped %u ep ctxs, flags = 0x%x, "
3399                                 "%u now active.",
3400                                 num_dropped_eps, drop_flags,
3401                                 xhci->num_active_eps);
3402 }
3403
3404 /*
3405  * This submits a Reset Device Command, which will set the device state to 0,
3406  * set the device address to 0, and disable all the endpoints except the default
3407  * control endpoint.  The USB core should come back and call
3408  * xhci_address_device(), and then re-set up the configuration.  If this is
3409  * called because of a usb_reset_and_verify_device(), then the old alternate
3410  * settings will be re-installed through the normal bandwidth allocation
3411  * functions.
3412  *
3413  * Wait for the Reset Device command to finish.  Remove all structures
3414  * associated with the endpoints that were disabled.  Clear the input device
3415  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3416  *
3417  * If the virt_dev to be reset does not exist or does not match the udev,
3418  * it means the device is lost, possibly due to the xHC restore error and
3419  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3420  * re-allocate the device.
3421  */
3422 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3423 {
3424         int ret, i;
3425         unsigned long flags;
3426         struct xhci_hcd *xhci;
3427         unsigned int slot_id;
3428         struct xhci_virt_device *virt_dev;
3429         struct xhci_command *reset_device_cmd;
3430         int last_freed_endpoint;
3431         struct xhci_slot_ctx *slot_ctx;
3432         int old_active_eps = 0;
3433
3434         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3435         if (ret <= 0)
3436                 return ret;
3437         xhci = hcd_to_xhci(hcd);
3438         slot_id = udev->slot_id;
3439         virt_dev = xhci->devs[slot_id];
3440         if (!virt_dev) {
3441                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3442                                 "not exist. Re-allocate the device\n", slot_id);
3443                 ret = xhci_alloc_dev(hcd, udev);
3444                 if (ret == 1)
3445                         return 0;
3446                 else
3447                         return -EINVAL;
3448         }
3449
3450         if (virt_dev->udev != udev) {
3451                 /* If the virt_dev and the udev does not match, this virt_dev
3452                  * may belong to another udev.
3453                  * Re-allocate the device.
3454                  */
3455                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3456                                 "not match the udev. Re-allocate the device\n",
3457                                 slot_id);
3458                 ret = xhci_alloc_dev(hcd, udev);
3459                 if (ret == 1)
3460                         return 0;
3461                 else
3462                         return -EINVAL;
3463         }
3464
3465         /* If device is not setup, there is no point in resetting it */
3466         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3467         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3468                                                 SLOT_STATE_DISABLED)
3469                 return 0;
3470
3471         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3472         /* Allocate the command structure that holds the struct completion.
3473          * Assume we're in process context, since the normal device reset
3474          * process has to wait for the device anyway.  Storage devices are
3475          * reset as part of error handling, so use GFP_NOIO instead of
3476          * GFP_KERNEL.
3477          */
3478         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3479         if (!reset_device_cmd) {
3480                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3481                 return -ENOMEM;
3482         }
3483
3484         /* Attempt to submit the Reset Device command to the command ring */
3485         spin_lock_irqsave(&xhci->lock, flags);
3486
3487         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3488         if (ret) {
3489                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3490                 spin_unlock_irqrestore(&xhci->lock, flags);
3491                 goto command_cleanup;
3492         }
3493         xhci_ring_cmd_db(xhci);
3494         spin_unlock_irqrestore(&xhci->lock, flags);
3495
3496         /* Wait for the Reset Device command to finish */
3497         wait_for_completion(reset_device_cmd->completion);
3498
3499         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3500          * unless we tried to reset a slot ID that wasn't enabled,
3501          * or the device wasn't in the addressed or configured state.
3502          */
3503         ret = reset_device_cmd->status;
3504         switch (ret) {
3505         case COMP_CMD_ABORT:
3506         case COMP_CMD_STOP:
3507                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3508                 ret = -ETIME;
3509                 goto command_cleanup;
3510         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3511         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3512                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3513                                 slot_id,
3514                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3515                 xhci_dbg(xhci, "Not freeing device rings.\n");
3516                 /* Don't treat this as an error.  May change my mind later. */
3517                 ret = 0;
3518                 goto command_cleanup;
3519         case COMP_SUCCESS:
3520                 xhci_dbg(xhci, "Successful reset device command.\n");
3521                 break;
3522         default:
3523                 if (xhci_is_vendor_info_code(xhci, ret))
3524                         break;
3525                 xhci_warn(xhci, "Unknown completion code %u for "
3526                                 "reset device command.\n", ret);
3527                 ret = -EINVAL;
3528                 goto command_cleanup;
3529         }
3530
3531         /* Free up host controller endpoint resources */
3532         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3533                 spin_lock_irqsave(&xhci->lock, flags);
3534                 /* Don't delete the default control endpoint resources */
3535                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3536                 spin_unlock_irqrestore(&xhci->lock, flags);
3537         }
3538
3539         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3540         last_freed_endpoint = 1;
3541         for (i = 1; i < 31; ++i) {
3542                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3543
3544                 if (ep->ep_state & EP_HAS_STREAMS) {
3545                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3546                                         xhci_get_endpoint_address(i));
3547                         xhci_free_stream_info(xhci, ep->stream_info);
3548                         ep->stream_info = NULL;
3549                         ep->ep_state &= ~EP_HAS_STREAMS;
3550                 }
3551
3552                 if (ep->ring) {
3553                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3554                         last_freed_endpoint = i;
3555                 }
3556                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3557                         xhci_drop_ep_from_interval_table(xhci,
3558                                         &virt_dev->eps[i].bw_info,
3559                                         virt_dev->bw_table,
3560                                         udev,
3561                                         &virt_dev->eps[i],
3562                                         virt_dev->tt_info);
3563                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3564         }
3565         /* If necessary, update the number of active TTs on this root port */
3566         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3567
3568         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3569         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3570         ret = 0;
3571
3572 command_cleanup:
3573         xhci_free_command(xhci, reset_device_cmd);
3574         return ret;
3575 }
3576
3577 /*
3578  * At this point, the struct usb_device is about to go away, the device has
3579  * disconnected, and all traffic has been stopped and the endpoints have been
3580  * disabled.  Free any HC data structures associated with that device.
3581  */
3582 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3583 {
3584         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3585         struct xhci_virt_device *virt_dev;
3586         unsigned long flags;
3587         u32 state;
3588         int i, ret;
3589         struct xhci_command *command;
3590
3591         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3592         if (!command)
3593                 return;
3594
3595 #ifndef CONFIG_USB_DEFAULT_PERSIST
3596         /*
3597          * We called pm_runtime_get_noresume when the device was attached.
3598          * Decrement the counter here to allow controller to runtime suspend
3599          * if no devices remain.
3600          */
3601         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3602                 pm_runtime_put_noidle(hcd->self.controller);
3603 #endif
3604
3605         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3606         /* If the host is halted due to driver unload, we still need to free the
3607          * device.
3608          */
3609         if (ret <= 0 && ret != -ENODEV) {
3610                 kfree(command);
3611                 return;
3612         }
3613
3614         virt_dev = xhci->devs[udev->slot_id];
3615
3616         /* Stop any wayward timer functions (which may grab the lock) */
3617         for (i = 0; i < 31; ++i) {
3618                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3619                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3620         }
3621
3622         spin_lock_irqsave(&xhci->lock, flags);
3623         /* Don't disable the slot if the host controller is dead. */
3624         state = readl(&xhci->op_regs->status);
3625         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3626                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3627                 xhci_free_virt_device(xhci, udev->slot_id);
3628                 spin_unlock_irqrestore(&xhci->lock, flags);
3629                 kfree(command);
3630                 return;
3631         }
3632
3633         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3634                                     udev->slot_id)) {
3635                 spin_unlock_irqrestore(&xhci->lock, flags);
3636                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3637                 return;
3638         }
3639         xhci_ring_cmd_db(xhci);
3640         spin_unlock_irqrestore(&xhci->lock, flags);
3641
3642         /*
3643          * Event command completion handler will free any data structures
3644          * associated with the slot.  XXX Can free sleep?
3645          */
3646 }
3647
3648 /*
3649  * Checks if we have enough host controller resources for the default control
3650  * endpoint.
3651  *
3652  * Must be called with xhci->lock held.
3653  */
3654 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3655 {
3656         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3657                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3658                                 "Not enough ep ctxs: "
3659                                 "%u active, need to add 1, limit is %u.",
3660                                 xhci->num_active_eps, xhci->limit_active_eps);
3661                 return -ENOMEM;
3662         }
3663         xhci->num_active_eps += 1;
3664         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3665                         "Adding 1 ep ctx, %u now active.",
3666                         xhci->num_active_eps);
3667         return 0;
3668 }
3669
3670
3671 /*
3672  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3673  * timed out, or allocating memory failed.  Returns 1 on success.
3674  */
3675 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3676 {
3677         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3678         unsigned long flags;
3679         int ret;
3680         struct xhci_command *command;
3681
3682         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3683         if (!command)
3684                 return 0;
3685
3686         spin_lock_irqsave(&xhci->lock, flags);
3687         command->completion = &xhci->addr_dev;
3688         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3689         if (ret) {
3690                 spin_unlock_irqrestore(&xhci->lock, flags);
3691                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3692                 kfree(command);
3693                 return 0;
3694         }
3695         xhci_ring_cmd_db(xhci);
3696         spin_unlock_irqrestore(&xhci->lock, flags);
3697
3698         wait_for_completion(command->completion);
3699
3700         if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3701                 xhci_err(xhci, "Error while assigning device slot ID\n");
3702                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3703                                 HCS_MAX_SLOTS(
3704                                         readl(&xhci->cap_regs->hcs_params1)));
3705                 kfree(command);
3706                 return 0;
3707         }
3708
3709         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3710                 spin_lock_irqsave(&xhci->lock, flags);
3711                 ret = xhci_reserve_host_control_ep_resources(xhci);
3712                 if (ret) {
3713                         spin_unlock_irqrestore(&xhci->lock, flags);
3714                         xhci_warn(xhci, "Not enough host resources, "
3715                                         "active endpoint contexts = %u\n",
3716                                         xhci->num_active_eps);
3717                         goto disable_slot;
3718                 }
3719                 spin_unlock_irqrestore(&xhci->lock, flags);
3720         }
3721         /* Use GFP_NOIO, since this function can be called from
3722          * xhci_discover_or_reset_device(), which may be called as part of
3723          * mass storage driver error handling.
3724          */
3725         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3726                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3727                 goto disable_slot;
3728         }
3729         udev->slot_id = xhci->slot_id;
3730
3731 #ifndef CONFIG_USB_DEFAULT_PERSIST
3732         /*
3733          * If resetting upon resume, we can't put the controller into runtime
3734          * suspend if there is a device attached.
3735          */
3736         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3737                 pm_runtime_get_noresume(hcd->self.controller);
3738 #endif
3739
3740
3741         kfree(command);
3742         /* Is this a LS or FS device under a HS hub? */
3743         /* Hub or peripherial? */
3744         return 1;
3745
3746 disable_slot:
3747         /* Disable slot, if we can do it without mem alloc */
3748         spin_lock_irqsave(&xhci->lock, flags);
3749         command->completion = NULL;
3750         command->status = 0;
3751         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3752                                      udev->slot_id))
3753                 xhci_ring_cmd_db(xhci);
3754         spin_unlock_irqrestore(&xhci->lock, flags);
3755         return 0;
3756 }
3757
3758 /*
3759  * Issue an Address Device command and optionally send a corresponding
3760  * SetAddress request to the device.
3761  * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
3762  * so we should only issue and wait on one address command at the same time.
3763  */
3764 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3765                              enum xhci_setup_dev setup)
3766 {
3767         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3768         unsigned long flags;
3769         struct xhci_virt_device *virt_dev;
3770         int ret = 0;
3771         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3772         struct xhci_slot_ctx *slot_ctx;
3773         struct xhci_input_control_ctx *ctrl_ctx;
3774         u64 temp_64;
3775         struct xhci_command *command;
3776
3777         if (!udev->slot_id) {
3778                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3779                                 "Bad Slot ID %d", udev->slot_id);
3780                 return -EINVAL;
3781         }
3782
3783         virt_dev = xhci->devs[udev->slot_id];
3784
3785         if (WARN_ON(!virt_dev)) {
3786                 /*
3787                  * In plug/unplug torture test with an NEC controller,
3788                  * a zero-dereference was observed once due to virt_dev = 0.
3789                  * Print useful debug rather than crash if it is observed again!
3790                  */
3791                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3792                         udev->slot_id);
3793                 return -EINVAL;
3794         }
3795
3796         if (setup == SETUP_CONTEXT_ONLY) {
3797                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3798                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3799                     SLOT_STATE_DEFAULT) {
3800                         xhci_dbg(xhci, "Slot already in default state\n");
3801                         return 0;
3802                 }
3803         }
3804
3805         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3806         if (!command)
3807                 return -ENOMEM;
3808
3809         command->in_ctx = virt_dev->in_ctx;
3810         command->completion = &xhci->addr_dev;
3811
3812         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3813         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3814         if (!ctrl_ctx) {
3815                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3816                                 __func__);
3817                 kfree(command);
3818                 return -EINVAL;
3819         }
3820         /*
3821          * If this is the first Set Address since device plug-in or
3822          * virt_device realloaction after a resume with an xHCI power loss,
3823          * then set up the slot context.
3824          */
3825         if (!slot_ctx->dev_info)
3826                 xhci_setup_addressable_virt_dev(xhci, udev);
3827         /* Otherwise, update the control endpoint ring enqueue pointer. */
3828         else
3829                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3830         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3831         ctrl_ctx->drop_flags = 0;
3832
3833         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3834         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3835         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3836                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3837
3838         spin_lock_irqsave(&xhci->lock, flags);
3839         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3840                                         udev->slot_id, setup);
3841         if (ret) {
3842                 spin_unlock_irqrestore(&xhci->lock, flags);
3843                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3844                                 "FIXME: allocate a command ring segment");
3845                 kfree(command);
3846                 return ret;
3847         }
3848         xhci_ring_cmd_db(xhci);
3849         spin_unlock_irqrestore(&xhci->lock, flags);
3850
3851         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3852         wait_for_completion(command->completion);
3853
3854         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3855          * the SetAddress() "recovery interval" required by USB and aborting the
3856          * command on a timeout.
3857          */
3858         switch (command->status) {
3859         case COMP_CMD_ABORT:
3860         case COMP_CMD_STOP:
3861                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3862                 ret = -ETIME;
3863                 break;
3864         case COMP_CTX_STATE:
3865         case COMP_EBADSLT:
3866                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3867                          act, udev->slot_id);
3868                 ret = -EINVAL;
3869                 break;
3870         case COMP_TX_ERR:
3871                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3872                 ret = -EPROTO;
3873                 break;
3874         case COMP_DEV_ERR:
3875                 dev_warn(&udev->dev,
3876                          "ERROR: Incompatible device for setup %s command\n", act);
3877                 ret = -ENODEV;
3878                 break;
3879         case COMP_SUCCESS:
3880                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3881                                "Successful setup %s command", act);
3882                 break;
3883         default:
3884                 xhci_err(xhci,
3885                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3886                          act, command->status);
3887                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3888                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3889                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3890                 ret = -EINVAL;
3891                 break;
3892         }
3893         if (ret) {
3894                 kfree(command);
3895                 return ret;
3896         }
3897         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3898         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3899                         "Op regs DCBAA ptr = %#016llx", temp_64);
3900         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3901                 "Slot ID %d dcbaa entry @%p = %#016llx",
3902                 udev->slot_id,
3903                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3904                 (unsigned long long)
3905                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3906         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3907                         "Output Context DMA address = %#08llx",
3908                         (unsigned long long)virt_dev->out_ctx->dma);
3909         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3910         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3911         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3912                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3913         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3914         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3915         /*
3916          * USB core uses address 1 for the roothubs, so we add one to the
3917          * address given back to us by the HC.
3918          */
3919         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3920         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3921                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3922         /* Zero the input context control for later use */
3923         ctrl_ctx->add_flags = 0;
3924         ctrl_ctx->drop_flags = 0;
3925
3926         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927                        "Internal device address = %d",
3928                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3929         kfree(command);
3930         return 0;
3931 }
3932
3933 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3934 {
3935         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3936 }
3937
3938 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3939 {
3940         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3941 }
3942
3943 /*
3944  * Transfer the port index into real index in the HW port status
3945  * registers. Caculate offset between the port's PORTSC register
3946  * and port status base. Divide the number of per port register
3947  * to get the real index. The raw port number bases 1.
3948  */
3949 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3950 {
3951         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3952         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3953         __le32 __iomem *addr;
3954         int raw_port;
3955
3956         if (hcd->speed != HCD_USB3)
3957                 addr = xhci->usb2_ports[port1 - 1];
3958         else
3959                 addr = xhci->usb3_ports[port1 - 1];
3960
3961         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3962         return raw_port;
3963 }
3964
3965 /*
3966  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3967  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3968  */
3969 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3970                         struct usb_device *udev, u16 max_exit_latency)
3971 {
3972         struct xhci_virt_device *virt_dev;
3973         struct xhci_command *command;
3974         struct xhci_input_control_ctx *ctrl_ctx;
3975         struct xhci_slot_ctx *slot_ctx;
3976         unsigned long flags;
3977         int ret;
3978
3979         spin_lock_irqsave(&xhci->lock, flags);
3980
3981         virt_dev = xhci->devs[udev->slot_id];
3982
3983         /*
3984          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3985          * xHC was re-initialized. Exit latency will be set later after
3986          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3987          */
3988
3989         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3990                 spin_unlock_irqrestore(&xhci->lock, flags);
3991                 return 0;
3992         }
3993
3994         /* Attempt to issue an Evaluate Context command to change the MEL. */
3995         command = xhci->lpm_command;
3996         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3997         if (!ctrl_ctx) {
3998                 spin_unlock_irqrestore(&xhci->lock, flags);
3999                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4000                                 __func__);
4001                 return -ENOMEM;
4002         }
4003
4004         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4005         spin_unlock_irqrestore(&xhci->lock, flags);
4006
4007         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4008         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4009         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4010         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4011         slot_ctx->dev_state = 0;
4012
4013         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4014                         "Set up evaluate context for LPM MEL change.");
4015         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4016         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4017
4018         /* Issue and wait for the evaluate context command. */
4019         ret = xhci_configure_endpoint(xhci, udev, command,
4020                         true, true);
4021         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4022         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4023
4024         if (!ret) {
4025                 spin_lock_irqsave(&xhci->lock, flags);
4026                 virt_dev->current_mel = max_exit_latency;
4027                 spin_unlock_irqrestore(&xhci->lock, flags);
4028         }
4029         return ret;
4030 }
4031
4032 #ifdef CONFIG_PM
4033
4034 /* BESL to HIRD Encoding array for USB2 LPM */
4035 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4036         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4037
4038 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4039 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4040                                         struct usb_device *udev)
4041 {
4042         int u2del, besl, besl_host;
4043         int besl_device = 0;
4044         u32 field;
4045
4046         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4047         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4048
4049         if (field & USB_BESL_SUPPORT) {
4050                 for (besl_host = 0; besl_host < 16; besl_host++) {
4051                         if (xhci_besl_encoding[besl_host] >= u2del)
4052                                 break;
4053                 }
4054                 /* Use baseline BESL value as default */
4055                 if (field & USB_BESL_BASELINE_VALID)
4056                         besl_device = USB_GET_BESL_BASELINE(field);
4057                 else if (field & USB_BESL_DEEP_VALID)
4058                         besl_device = USB_GET_BESL_DEEP(field);
4059         } else {
4060                 if (u2del <= 50)
4061                         besl_host = 0;
4062                 else
4063                         besl_host = (u2del - 51) / 75 + 1;
4064         }
4065
4066         besl = besl_host + besl_device;
4067         if (besl > 15)
4068                 besl = 15;
4069
4070         return besl;
4071 }
4072
4073 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4074 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4075 {
4076         u32 field;
4077         int l1;
4078         int besld = 0;
4079         int hirdm = 0;
4080
4081         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4082
4083         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4084         l1 = udev->l1_params.timeout / 256;
4085
4086         /* device has preferred BESLD */
4087         if (field & USB_BESL_DEEP_VALID) {
4088                 besld = USB_GET_BESL_DEEP(field);
4089                 hirdm = 1;
4090         }
4091
4092         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4093 }
4094
4095 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4096                         struct usb_device *udev, int enable)
4097 {
4098         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4099         __le32 __iomem  **port_array;
4100         __le32 __iomem  *pm_addr, *hlpm_addr;
4101         u32             pm_val, hlpm_val, field;
4102         unsigned int    port_num;
4103         unsigned long   flags;
4104         int             hird, exit_latency;
4105         int             ret;
4106
4107         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4108                         !udev->lpm_capable)
4109                 return -EPERM;
4110
4111         if (!udev->parent || udev->parent->parent ||
4112                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4113                 return -EPERM;
4114
4115         if (udev->usb2_hw_lpm_capable != 1)
4116                 return -EPERM;
4117
4118         spin_lock_irqsave(&xhci->lock, flags);
4119
4120         port_array = xhci->usb2_ports;
4121         port_num = udev->portnum - 1;
4122         pm_addr = port_array[port_num] + PORTPMSC;
4123         pm_val = readl(pm_addr);
4124         hlpm_addr = port_array[port_num] + PORTHLPMC;
4125         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4126
4127         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4128                         enable ? "enable" : "disable", port_num + 1);
4129
4130         if (enable) {
4131                 /* Host supports BESL timeout instead of HIRD */
4132                 if (udev->usb2_hw_lpm_besl_capable) {
4133                         /* if device doesn't have a preferred BESL value use a
4134                          * default one which works with mixed HIRD and BESL
4135                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4136                          */
4137                         if ((field & USB_BESL_SUPPORT) &&
4138                             (field & USB_BESL_BASELINE_VALID))
4139                                 hird = USB_GET_BESL_BASELINE(field);
4140                         else
4141                                 hird = udev->l1_params.besl;
4142
4143                         exit_latency = xhci_besl_encoding[hird];
4144                         spin_unlock_irqrestore(&xhci->lock, flags);
4145
4146                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4147                          * input context for link powermanagement evaluate
4148                          * context commands. It is protected by hcd->bandwidth
4149                          * mutex and is shared by all devices. We need to set
4150                          * the max ext latency in USB 2 BESL LPM as well, so
4151                          * use the same mutex and xhci_change_max_exit_latency()
4152                          */
4153                         mutex_lock(hcd->bandwidth_mutex);
4154                         ret = xhci_change_max_exit_latency(xhci, udev,
4155                                                            exit_latency);
4156                         mutex_unlock(hcd->bandwidth_mutex);
4157
4158                         if (ret < 0)
4159                                 return ret;
4160                         spin_lock_irqsave(&xhci->lock, flags);
4161
4162                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4163                         writel(hlpm_val, hlpm_addr);
4164                         /* flush write */
4165                         readl(hlpm_addr);
4166                 } else {
4167                         hird = xhci_calculate_hird_besl(xhci, udev);
4168                 }
4169
4170                 pm_val &= ~PORT_HIRD_MASK;
4171                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4172                 writel(pm_val, pm_addr);
4173                 pm_val = readl(pm_addr);
4174                 pm_val |= PORT_HLE;
4175                 writel(pm_val, pm_addr);
4176                 /* flush write */
4177                 readl(pm_addr);
4178         } else {
4179                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4180                 writel(pm_val, pm_addr);
4181                 /* flush write */
4182                 readl(pm_addr);
4183                 if (udev->usb2_hw_lpm_besl_capable) {
4184                         spin_unlock_irqrestore(&xhci->lock, flags);
4185                         mutex_lock(hcd->bandwidth_mutex);
4186                         xhci_change_max_exit_latency(xhci, udev, 0);
4187                         mutex_unlock(hcd->bandwidth_mutex);
4188                         return 0;
4189                 }
4190         }
4191
4192         spin_unlock_irqrestore(&xhci->lock, flags);
4193         return 0;
4194 }
4195
4196 /* check if a usb2 port supports a given extened capability protocol
4197  * only USB2 ports extended protocol capability values are cached.
4198  * Return 1 if capability is supported
4199  */
4200 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4201                                            unsigned capability)
4202 {
4203         u32 port_offset, port_count;
4204         int i;
4205
4206         for (i = 0; i < xhci->num_ext_caps; i++) {
4207                 if (xhci->ext_caps[i] & capability) {
4208                         /* port offsets starts at 1 */
4209                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4210                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4211                         if (port >= port_offset &&
4212                             port < port_offset + port_count)
4213                                 return 1;
4214                 }
4215         }
4216         return 0;
4217 }
4218
4219 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4220 {
4221         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4222         int             portnum = udev->portnum - 1;
4223
4224         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4225                         !udev->lpm_capable)
4226                 return 0;
4227
4228         /* we only support lpm for non-hub device connected to root hub yet */
4229         if (!udev->parent || udev->parent->parent ||
4230                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4231                 return 0;
4232
4233         if (xhci->hw_lpm_support == 1 &&
4234                         xhci_check_usb2_port_capability(
4235                                 xhci, portnum, XHCI_HLC)) {
4236                 udev->usb2_hw_lpm_capable = 1;
4237                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4238                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4239                 if (xhci_check_usb2_port_capability(xhci, portnum,
4240                                         XHCI_BLC))
4241                         udev->usb2_hw_lpm_besl_capable = 1;
4242         }
4243
4244         return 0;
4245 }
4246
4247 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4248
4249 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4250 static unsigned long long xhci_service_interval_to_ns(
4251                 struct usb_endpoint_descriptor *desc)
4252 {
4253         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4254 }
4255
4256 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4257                 enum usb3_link_state state)
4258 {
4259         unsigned long long sel;
4260         unsigned long long pel;
4261         unsigned int max_sel_pel;
4262         char *state_name;
4263
4264         switch (state) {
4265         case USB3_LPM_U1:
4266                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4267                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4268                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4269                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4270                 state_name = "U1";
4271                 break;
4272         case USB3_LPM_U2:
4273                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4274                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4275                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4276                 state_name = "U2";
4277                 break;
4278         default:
4279                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4280                                 __func__);
4281                 return USB3_LPM_DISABLED;
4282         }
4283
4284         if (sel <= max_sel_pel && pel <= max_sel_pel)
4285                 return USB3_LPM_DEVICE_INITIATED;
4286
4287         if (sel > max_sel_pel)
4288                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4289                                 "due to long SEL %llu ms\n",
4290                                 state_name, sel);
4291         else
4292                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4293                                 "due to long PEL %llu ms\n",
4294                                 state_name, pel);
4295         return USB3_LPM_DISABLED;
4296 }
4297
4298 /* The U1 timeout should be the maximum of the following values:
4299  *  - For control endpoints, U1 system exit latency (SEL) * 3
4300  *  - For bulk endpoints, U1 SEL * 5
4301  *  - For interrupt endpoints:
4302  *    - Notification EPs, U1 SEL * 3
4303  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4304  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4305  */
4306 static unsigned long long xhci_calculate_intel_u1_timeout(
4307                 struct usb_device *udev,
4308                 struct usb_endpoint_descriptor *desc)
4309 {
4310         unsigned long long timeout_ns;
4311         int ep_type;
4312         int intr_type;
4313
4314         ep_type = usb_endpoint_type(desc);
4315         switch (ep_type) {
4316         case USB_ENDPOINT_XFER_CONTROL:
4317                 timeout_ns = udev->u1_params.sel * 3;
4318                 break;
4319         case USB_ENDPOINT_XFER_BULK:
4320                 timeout_ns = udev->u1_params.sel * 5;
4321                 break;
4322         case USB_ENDPOINT_XFER_INT:
4323                 intr_type = usb_endpoint_interrupt_type(desc);
4324                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4325                         timeout_ns = udev->u1_params.sel * 3;
4326                         break;
4327                 }
4328                 /* Otherwise the calculation is the same as isoc eps */
4329         case USB_ENDPOINT_XFER_ISOC:
4330                 timeout_ns = xhci_service_interval_to_ns(desc);
4331                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4332                 if (timeout_ns < udev->u1_params.sel * 2)
4333                         timeout_ns = udev->u1_params.sel * 2;
4334                 break;
4335         default:
4336                 return 0;
4337         }
4338
4339         return timeout_ns;
4340 }
4341
4342 /* Returns the hub-encoded U1 timeout value. */
4343 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4344                 struct usb_device *udev,
4345                 struct usb_endpoint_descriptor *desc)
4346 {
4347         unsigned long long timeout_ns;
4348
4349         if (xhci->quirks & XHCI_INTEL_HOST)
4350                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4351         else
4352                 timeout_ns = udev->u1_params.sel;
4353
4354         /* The U1 timeout is encoded in 1us intervals.
4355          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4356          */
4357         if (timeout_ns == USB3_LPM_DISABLED)
4358                 timeout_ns = 1;
4359         else
4360                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4361
4362         /* If the necessary timeout value is bigger than what we can set in the
4363          * USB 3.0 hub, we have to disable hub-initiated U1.
4364          */
4365         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4366                 return timeout_ns;
4367         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4368                         "due to long timeout %llu ms\n", timeout_ns);
4369         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4370 }
4371
4372 /* The U2 timeout should be the maximum of:
4373  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4374  *  - largest bInterval of any active periodic endpoint (to avoid going
4375  *    into lower power link states between intervals).
4376  *  - the U2 Exit Latency of the device
4377  */
4378 static unsigned long long xhci_calculate_intel_u2_timeout(
4379                 struct usb_device *udev,
4380                 struct usb_endpoint_descriptor *desc)
4381 {
4382         unsigned long long timeout_ns;
4383         unsigned long long u2_del_ns;
4384
4385         timeout_ns = 10 * 1000 * 1000;
4386
4387         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4388                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4389                 timeout_ns = xhci_service_interval_to_ns(desc);
4390
4391         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4392         if (u2_del_ns > timeout_ns)
4393                 timeout_ns = u2_del_ns;
4394
4395         return timeout_ns;
4396 }
4397
4398 /* Returns the hub-encoded U2 timeout value. */
4399 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4400                 struct usb_device *udev,
4401                 struct usb_endpoint_descriptor *desc)
4402 {
4403         unsigned long long timeout_ns;
4404
4405         if (xhci->quirks & XHCI_INTEL_HOST)
4406                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4407         else
4408                 timeout_ns = udev->u2_params.sel;
4409
4410         /* The U2 timeout is encoded in 256us intervals */
4411         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4412         /* If the necessary timeout value is bigger than what we can set in the
4413          * USB 3.0 hub, we have to disable hub-initiated U2.
4414          */
4415         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4416                 return timeout_ns;
4417         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4418                         "due to long timeout %llu ms\n", timeout_ns);
4419         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4420 }
4421
4422 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4423                 struct usb_device *udev,
4424                 struct usb_endpoint_descriptor *desc,
4425                 enum usb3_link_state state,
4426                 u16 *timeout)
4427 {
4428         if (state == USB3_LPM_U1)
4429                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4430         else if (state == USB3_LPM_U2)
4431                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4432
4433         return USB3_LPM_DISABLED;
4434 }
4435
4436 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4437                 struct usb_device *udev,
4438                 struct usb_endpoint_descriptor *desc,
4439                 enum usb3_link_state state,
4440                 u16 *timeout)
4441 {
4442         u16 alt_timeout;
4443
4444         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4445                 desc, state, timeout);
4446
4447         /* If we found we can't enable hub-initiated LPM, or
4448          * the U1 or U2 exit latency was too high to allow
4449          * device-initiated LPM as well, just stop searching.
4450          */
4451         if (alt_timeout == USB3_LPM_DISABLED ||
4452                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4453                 *timeout = alt_timeout;
4454                 return -E2BIG;
4455         }
4456         if (alt_timeout > *timeout)
4457                 *timeout = alt_timeout;
4458         return 0;
4459 }
4460
4461 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4462                 struct usb_device *udev,
4463                 struct usb_host_interface *alt,
4464                 enum usb3_link_state state,
4465                 u16 *timeout)
4466 {
4467         int j;
4468
4469         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4470                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4471                                         &alt->endpoint[j].desc, state, timeout))
4472                         return -E2BIG;
4473                 continue;
4474         }
4475         return 0;
4476 }
4477
4478 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4479                 enum usb3_link_state state)
4480 {
4481         struct usb_device *parent;
4482         unsigned int num_hubs;
4483
4484         if (state == USB3_LPM_U2)
4485                 return 0;
4486
4487         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4488         for (parent = udev->parent, num_hubs = 0; parent->parent;
4489                         parent = parent->parent)
4490                 num_hubs++;
4491
4492         if (num_hubs < 2)
4493                 return 0;
4494
4495         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4496                         " below second-tier hub.\n");
4497         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4498                         "to decrease power consumption.\n");
4499         return -E2BIG;
4500 }
4501
4502 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4503                 struct usb_device *udev,
4504                 enum usb3_link_state state)
4505 {
4506         if (xhci->quirks & XHCI_INTEL_HOST)
4507                 return xhci_check_intel_tier_policy(udev, state);
4508         else
4509                 return 0;
4510 }
4511
4512 /* Returns the U1 or U2 timeout that should be enabled.
4513  * If the tier check or timeout setting functions return with a non-zero exit
4514  * code, that means the timeout value has been finalized and we shouldn't look
4515  * at any more endpoints.
4516  */
4517 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4518                         struct usb_device *udev, enum usb3_link_state state)
4519 {
4520         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4521         struct usb_host_config *config;
4522         char *state_name;
4523         int i;
4524         u16 timeout = USB3_LPM_DISABLED;
4525
4526         if (state == USB3_LPM_U1)
4527                 state_name = "U1";
4528         else if (state == USB3_LPM_U2)
4529                 state_name = "U2";
4530         else {
4531                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4532                                 state);
4533                 return timeout;
4534         }
4535
4536         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4537                 return timeout;
4538
4539         /* Gather some information about the currently installed configuration
4540          * and alternate interface settings.
4541          */
4542         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4543                         state, &timeout))
4544                 return timeout;
4545
4546         config = udev->actconfig;
4547         if (!config)
4548                 return timeout;
4549
4550         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4551                 struct usb_driver *driver;
4552                 struct usb_interface *intf = config->interface[i];
4553
4554                 if (!intf)
4555                         continue;
4556
4557                 /* Check if any currently bound drivers want hub-initiated LPM
4558                  * disabled.
4559                  */
4560                 if (intf->dev.driver) {
4561                         driver = to_usb_driver(intf->dev.driver);
4562                         if (driver && driver->disable_hub_initiated_lpm) {
4563                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4564                                                 "at request of driver %s\n",
4565                                                 state_name, driver->name);
4566                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4567                         }
4568                 }
4569
4570                 /* Not sure how this could happen... */
4571                 if (!intf->cur_altsetting)
4572                         continue;
4573
4574                 if (xhci_update_timeout_for_interface(xhci, udev,
4575                                         intf->cur_altsetting,
4576                                         state, &timeout))
4577                         return timeout;
4578         }
4579         return timeout;
4580 }
4581
4582 static int calculate_max_exit_latency(struct usb_device *udev,
4583                 enum usb3_link_state state_changed,
4584                 u16 hub_encoded_timeout)
4585 {
4586         unsigned long long u1_mel_us = 0;
4587         unsigned long long u2_mel_us = 0;
4588         unsigned long long mel_us = 0;
4589         bool disabling_u1;
4590         bool disabling_u2;
4591         bool enabling_u1;
4592         bool enabling_u2;
4593
4594         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4595                         hub_encoded_timeout == USB3_LPM_DISABLED);
4596         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4597                         hub_encoded_timeout == USB3_LPM_DISABLED);
4598
4599         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4600                         hub_encoded_timeout != USB3_LPM_DISABLED);
4601         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4602                         hub_encoded_timeout != USB3_LPM_DISABLED);
4603
4604         /* If U1 was already enabled and we're not disabling it,
4605          * or we're going to enable U1, account for the U1 max exit latency.
4606          */
4607         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4608                         enabling_u1)
4609                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4610         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4611                         enabling_u2)
4612                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4613
4614         if (u1_mel_us > u2_mel_us)
4615                 mel_us = u1_mel_us;
4616         else
4617                 mel_us = u2_mel_us;
4618         /* xHCI host controller max exit latency field is only 16 bits wide. */
4619         if (mel_us > MAX_EXIT) {
4620                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4621                                 "is too big.\n", mel_us);
4622                 return -E2BIG;
4623         }
4624         return mel_us;
4625 }
4626
4627 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4628 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4629                         struct usb_device *udev, enum usb3_link_state state)
4630 {
4631         struct xhci_hcd *xhci;
4632         u16 hub_encoded_timeout;
4633         int mel;
4634         int ret;
4635
4636         xhci = hcd_to_xhci(hcd);
4637         /* The LPM timeout values are pretty host-controller specific, so don't
4638          * enable hub-initiated timeouts unless the vendor has provided
4639          * information about their timeout algorithm.
4640          */
4641         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4642                         !xhci->devs[udev->slot_id])
4643                 return USB3_LPM_DISABLED;
4644
4645         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4646         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4647         if (mel < 0) {
4648                 /* Max Exit Latency is too big, disable LPM. */
4649                 hub_encoded_timeout = USB3_LPM_DISABLED;
4650                 mel = 0;
4651         }
4652
4653         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4654         if (ret)
4655                 return ret;
4656         return hub_encoded_timeout;
4657 }
4658
4659 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4660                         struct usb_device *udev, enum usb3_link_state state)
4661 {
4662         struct xhci_hcd *xhci;
4663         u16 mel;
4664         int ret;
4665
4666         xhci = hcd_to_xhci(hcd);
4667         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4668                         !xhci->devs[udev->slot_id])
4669                 return 0;
4670
4671         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4672         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4673         if (ret)
4674                 return ret;
4675         return 0;
4676 }
4677 #else /* CONFIG_PM */
4678
4679 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4680                                 struct usb_device *udev, int enable)
4681 {
4682         return 0;
4683 }
4684
4685 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4686 {
4687         return 0;
4688 }
4689
4690 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4691                         struct usb_device *udev, enum usb3_link_state state)
4692 {
4693         return USB3_LPM_DISABLED;
4694 }
4695
4696 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697                         struct usb_device *udev, enum usb3_link_state state)
4698 {
4699         return 0;
4700 }
4701 #endif  /* CONFIG_PM */
4702
4703 /*-------------------------------------------------------------------------*/
4704
4705 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4706  * internal data structures for the device.
4707  */
4708 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4709                         struct usb_tt *tt, gfp_t mem_flags)
4710 {
4711         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4712         struct xhci_virt_device *vdev;
4713         struct xhci_command *config_cmd;
4714         struct xhci_input_control_ctx *ctrl_ctx;
4715         struct xhci_slot_ctx *slot_ctx;
4716         unsigned long flags;
4717         unsigned think_time;
4718         int ret;
4719
4720         /* Ignore root hubs */
4721         if (!hdev->parent)
4722                 return 0;
4723
4724         vdev = xhci->devs[hdev->slot_id];
4725         if (!vdev) {
4726                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4727                 return -EINVAL;
4728         }
4729         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4730         if (!config_cmd) {
4731                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4732                 return -ENOMEM;
4733         }
4734         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4735         if (!ctrl_ctx) {
4736                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4737                                 __func__);
4738                 xhci_free_command(xhci, config_cmd);
4739                 return -ENOMEM;
4740         }
4741
4742         spin_lock_irqsave(&xhci->lock, flags);
4743         if (hdev->speed == USB_SPEED_HIGH &&
4744                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4745                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4746                 xhci_free_command(xhci, config_cmd);
4747                 spin_unlock_irqrestore(&xhci->lock, flags);
4748                 return -ENOMEM;
4749         }
4750
4751         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4752         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4753         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4754         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4755         if (tt->multi)
4756                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4757         if (xhci->hci_version > 0x95) {
4758                 xhci_dbg(xhci, "xHCI version %x needs hub "
4759                                 "TT think time and number of ports\n",
4760                                 (unsigned int) xhci->hci_version);
4761                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4762                 /* Set TT think time - convert from ns to FS bit times.
4763                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4764                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4765                  *
4766                  * xHCI 1.0: this field shall be 0 if the device is not a
4767                  * High-spped hub.
4768                  */
4769                 think_time = tt->think_time;
4770                 if (think_time != 0)
4771                         think_time = (think_time / 666) - 1;
4772                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4773                         slot_ctx->tt_info |=
4774                                 cpu_to_le32(TT_THINK_TIME(think_time));
4775         } else {
4776                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4777                                 "TT think time or number of ports\n",
4778                                 (unsigned int) xhci->hci_version);
4779         }
4780         slot_ctx->dev_state = 0;
4781         spin_unlock_irqrestore(&xhci->lock, flags);
4782
4783         xhci_dbg(xhci, "Set up %s for hub device.\n",
4784                         (xhci->hci_version > 0x95) ?
4785                         "configure endpoint" : "evaluate context");
4786         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4787         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4788
4789         /* Issue and wait for the configure endpoint or
4790          * evaluate context command.
4791          */
4792         if (xhci->hci_version > 0x95)
4793                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4794                                 false, false);
4795         else
4796                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4797                                 true, false);
4798
4799         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4800         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4801
4802         xhci_free_command(xhci, config_cmd);
4803         return ret;
4804 }
4805
4806 int xhci_get_frame(struct usb_hcd *hcd)
4807 {
4808         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4809         /* EHCI mods by the periodic size.  Why? */
4810         return readl(&xhci->run_regs->microframe_index) >> 3;
4811 }
4812
4813 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4814 {
4815         struct xhci_hcd         *xhci;
4816         struct device           *dev = hcd->self.controller;
4817         int                     retval;
4818
4819         /* Accept arbitrarily long scatter-gather lists */
4820         hcd->self.sg_tablesize = ~0;
4821
4822         /* support to build packet from discontinuous buffers */
4823         hcd->self.no_sg_constraint = 1;
4824
4825         /* XHCI controllers don't stop the ep queue on short packets :| */
4826         hcd->self.no_stop_on_short = 1;
4827
4828         if (usb_hcd_is_primary_hcd(hcd)) {
4829                 xhci = hcd_to_xhci(hcd);
4830                 xhci->main_hcd = hcd;
4831                 /* Mark the first roothub as being USB 2.0.
4832                  * The xHCI driver will register the USB 3.0 roothub.
4833                  */
4834                 hcd->speed = HCD_USB2;
4835                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4836                 /*
4837                  * USB 2.0 roothub under xHCI has an integrated TT,
4838                  * (rate matching hub) as opposed to having an OHCI/UHCI
4839                  * companion controller.
4840                  */
4841                 hcd->has_tt = 1;
4842         } else {
4843                 /* xHCI private pointer was set in xhci_pci_probe for the second
4844                  * registered roothub.
4845                  */
4846                 return 0;
4847         }
4848
4849         xhci->cap_regs = hcd->regs;
4850         xhci->op_regs = hcd->regs +
4851                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4852         xhci->run_regs = hcd->regs +
4853                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4854         /* Cache read-only capability registers */
4855         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4856         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4857         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4858         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4859         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4860         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4861         xhci_print_registers(xhci);
4862
4863         xhci->quirks = quirks;
4864
4865         get_quirks(dev, xhci);
4866
4867         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4868          * success event after a short transfer. This quirk will ignore such
4869          * spurious event.
4870          */
4871         if (xhci->hci_version > 0x96)
4872                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4873
4874         /* Make sure the HC is halted. */
4875         retval = xhci_halt(xhci);
4876         if (retval)
4877                 return retval;
4878
4879         xhci_dbg(xhci, "Resetting HCD\n");
4880         /* Reset the internal HC memory state and registers. */
4881         retval = xhci_reset(xhci);
4882         if (retval)
4883                 return retval;
4884         xhci_dbg(xhci, "Reset complete\n");
4885
4886         /* Set dma_mask and coherent_dma_mask to 64-bits,
4887          * if xHC supports 64-bit addressing */
4888         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4889                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4890                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4891                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4892         }
4893
4894         xhci_dbg(xhci, "Calling HCD init\n");
4895         /* Initialize HCD and host controller data structures. */
4896         retval = xhci_init(hcd);
4897         if (retval)
4898                 return retval;
4899         xhci_dbg(xhci, "Called HCD init\n");
4900
4901         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4902                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4903
4904         return 0;
4905 }
4906 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4907
4908 static const struct hc_driver xhci_hc_driver = {
4909         .description =          "xhci-hcd",
4910         .product_desc =         "xHCI Host Controller",
4911         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4912
4913         /*
4914          * generic hardware linkage
4915          */
4916         .irq =                  xhci_irq,
4917         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4918
4919         /*
4920          * basic lifecycle operations
4921          */
4922         .reset =                NULL, /* set in xhci_init_driver() */
4923         .start =                xhci_run,
4924         .stop =                 xhci_stop,
4925         .shutdown =             xhci_shutdown,
4926
4927         /*
4928          * managing i/o requests and associated device resources
4929          */
4930         .urb_enqueue =          xhci_urb_enqueue,
4931         .urb_dequeue =          xhci_urb_dequeue,
4932         .alloc_dev =            xhci_alloc_dev,
4933         .free_dev =             xhci_free_dev,
4934         .alloc_streams =        xhci_alloc_streams,
4935         .free_streams =         xhci_free_streams,
4936         .add_endpoint =         xhci_add_endpoint,
4937         .drop_endpoint =        xhci_drop_endpoint,
4938         .endpoint_reset =       xhci_endpoint_reset,
4939         .check_bandwidth =      xhci_check_bandwidth,
4940         .reset_bandwidth =      xhci_reset_bandwidth,
4941         .address_device =       xhci_address_device,
4942         .enable_device =        xhci_enable_device,
4943         .update_hub_device =    xhci_update_hub_device,
4944         .reset_device =         xhci_discover_or_reset_device,
4945
4946         /*
4947          * scheduling support
4948          */
4949         .get_frame_number =     xhci_get_frame,
4950
4951         /*
4952          * root hub support
4953          */
4954         .hub_control =          xhci_hub_control,
4955         .hub_status_data =      xhci_hub_status_data,
4956         .bus_suspend =          xhci_bus_suspend,
4957         .bus_resume =           xhci_bus_resume,
4958
4959         /*
4960          * call back when device connected and addressed
4961          */
4962         .update_device =        xhci_update_device,
4963         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4964         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4965         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4966         .find_raw_port_number = xhci_find_raw_port_number,
4967 };
4968
4969 void xhci_init_driver(struct hc_driver *drv,
4970                       const struct xhci_driver_overrides *over)
4971 {
4972         BUG_ON(!over);
4973
4974         /* Copy the generic table to drv then apply the overrides */
4975         *drv = xhci_hc_driver;
4976
4977         if (over) {
4978                 drv->hcd_priv_size += over->extra_priv_size;
4979                 if (over->reset)
4980                         drv->reset = over->reset;
4981                 if (over->start)
4982                         drv->start = over->start;
4983         }
4984 }
4985 EXPORT_SYMBOL_GPL(xhci_init_driver);
4986
4987 MODULE_DESCRIPTION(DRIVER_DESC);
4988 MODULE_AUTHOR(DRIVER_AUTHOR);
4989 MODULE_LICENSE("GPL");
4990
4991 static int __init xhci_hcd_init(void)
4992 {
4993         /*
4994          * Check the compiler generated sizes of structures that must be laid
4995          * out in specific ways for hardware access.
4996          */
4997         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4998         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4999         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5000         /* xhci_device_control has eight fields, and also
5001          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5002          */
5003         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5004         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5005         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5006         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5007         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5008         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5009         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5010         return 0;
5011 }
5012 module_init(xhci_hcd_init);