usb: xhci: lock mutex on xhci_stop
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
150         return ret;
151 }
152
153 /*
154  * Reset a halted HC.
155  *
156  * This resets pipelines, timers, counters, state machines, etc.
157  * Transactions will be terminated immediately, and operational registers
158  * will be set to their defaults.
159  */
160 int xhci_reset(struct xhci_hcd *xhci)
161 {
162         u32 command;
163         u32 state;
164         int ret, i;
165
166         state = readl(&xhci->op_regs->status);
167         if ((state & STS_HALT) == 0) {
168                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
169                 return 0;
170         }
171
172         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
173         command = readl(&xhci->op_regs->command);
174         command |= CMD_RESET;
175         writel(command, &xhci->op_regs->command);
176
177         ret = xhci_handshake(&xhci->op_regs->command,
178                         CMD_RESET, 0, 10 * 1000 * 1000);
179         if (ret)
180                 return ret;
181
182         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
183                          "Wait for controller to be ready for doorbell rings");
184         /*
185          * xHCI cannot write to any doorbells or operational registers other
186          * than status until the "Controller Not Ready" flag is cleared.
187          */
188         ret = xhci_handshake(&xhci->op_regs->status,
189                         STS_CNR, 0, 10 * 1000 * 1000);
190
191         for (i = 0; i < 2; ++i) {
192                 xhci->bus_state[i].port_c_suspend = 0;
193                 xhci->bus_state[i].suspended_ports = 0;
194                 xhci->bus_state[i].resuming_ports = 0;
195         }
196
197         return ret;
198 }
199
200 #ifdef CONFIG_PCI
201 static int xhci_free_msi(struct xhci_hcd *xhci)
202 {
203         int i;
204
205         if (!xhci->msix_entries)
206                 return -EINVAL;
207
208         for (i = 0; i < xhci->msix_count; i++)
209                 if (xhci->msix_entries[i].vector)
210                         free_irq(xhci->msix_entries[i].vector,
211                                         xhci_to_hcd(xhci));
212         return 0;
213 }
214
215 /*
216  * Set up MSI
217  */
218 static int xhci_setup_msi(struct xhci_hcd *xhci)
219 {
220         int ret;
221         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
222
223         ret = pci_enable_msi(pdev);
224         if (ret) {
225                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
226                                 "failed to allocate MSI entry");
227                 return ret;
228         }
229
230         ret = request_irq(pdev->irq, xhci_msi_irq,
231                                 0, "xhci_hcd", xhci_to_hcd(xhci));
232         if (ret) {
233                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
234                                 "disable MSI interrupt");
235                 pci_disable_msi(pdev);
236         }
237
238         return ret;
239 }
240
241 /*
242  * Free IRQs
243  * free all IRQs request
244  */
245 static void xhci_free_irq(struct xhci_hcd *xhci)
246 {
247         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
248         int ret;
249
250         /* return if using legacy interrupt */
251         if (xhci_to_hcd(xhci)->irq > 0)
252                 return;
253
254         ret = xhci_free_msi(xhci);
255         if (!ret)
256                 return;
257         if (pdev->irq > 0)
258                 free_irq(pdev->irq, xhci_to_hcd(xhci));
259
260         return;
261 }
262
263 /*
264  * Set up MSI-X
265  */
266 static int xhci_setup_msix(struct xhci_hcd *xhci)
267 {
268         int i, ret = 0;
269         struct usb_hcd *hcd = xhci_to_hcd(xhci);
270         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
271
272         /*
273          * calculate number of msi-x vectors supported.
274          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
275          *   with max number of interrupters based on the xhci HCSPARAMS1.
276          * - num_online_cpus: maximum msi-x vectors per CPUs core.
277          *   Add additional 1 vector to ensure always available interrupt.
278          */
279         xhci->msix_count = min(num_online_cpus() + 1,
280                                 HCS_MAX_INTRS(xhci->hcs_params1));
281
282         xhci->msix_entries =
283                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
284                                 GFP_KERNEL);
285         if (!xhci->msix_entries) {
286                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
287                 return -ENOMEM;
288         }
289
290         for (i = 0; i < xhci->msix_count; i++) {
291                 xhci->msix_entries[i].entry = i;
292                 xhci->msix_entries[i].vector = 0;
293         }
294
295         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
296         if (ret) {
297                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
298                                 "Failed to enable MSI-X");
299                 goto free_entries;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 ret = request_irq(xhci->msix_entries[i].vector,
304                                 xhci_msi_irq,
305                                 0, "xhci_hcd", xhci_to_hcd(xhci));
306                 if (ret)
307                         goto disable_msix;
308         }
309
310         hcd->msix_enabled = 1;
311         return ret;
312
313 disable_msix:
314         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
315         xhci_free_irq(xhci);
316         pci_disable_msix(pdev);
317 free_entries:
318         kfree(xhci->msix_entries);
319         xhci->msix_entries = NULL;
320         return ret;
321 }
322
323 /* Free any IRQs and disable MSI-X */
324 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
325 {
326         struct usb_hcd *hcd = xhci_to_hcd(xhci);
327         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328
329         if (xhci->quirks & XHCI_PLAT)
330                 return;
331
332         xhci_free_irq(xhci);
333
334         if (xhci->msix_entries) {
335                 pci_disable_msix(pdev);
336                 kfree(xhci->msix_entries);
337                 xhci->msix_entries = NULL;
338         } else {
339                 pci_disable_msi(pdev);
340         }
341
342         hcd->msix_enabled = 0;
343         return;
344 }
345
346 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
347 {
348         int i;
349
350         if (xhci->msix_entries) {
351                 for (i = 0; i < xhci->msix_count; i++)
352                         synchronize_irq(xhci->msix_entries[i].vector);
353         }
354 }
355
356 static int xhci_try_enable_msi(struct usb_hcd *hcd)
357 {
358         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
359         struct pci_dev  *pdev;
360         int ret;
361
362         /* The xhci platform device has set up IRQs through usb_add_hcd. */
363         if (xhci->quirks & XHCI_PLAT)
364                 return 0;
365
366         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
367         /*
368          * Some Fresco Logic host controllers advertise MSI, but fail to
369          * generate interrupts.  Don't even try to enable MSI.
370          */
371         if (xhci->quirks & XHCI_BROKEN_MSI)
372                 goto legacy_irq;
373
374         /* unregister the legacy interrupt */
375         if (hcd->irq)
376                 free_irq(hcd->irq, hcd);
377         hcd->irq = 0;
378
379         ret = xhci_setup_msix(xhci);
380         if (ret)
381                 /* fall back to msi*/
382                 ret = xhci_setup_msi(xhci);
383
384         if (!ret)
385                 /* hcd->irq is 0, we have MSI */
386                 return 0;
387
388         if (!pdev->irq) {
389                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
390                 return -EINVAL;
391         }
392
393  legacy_irq:
394         if (!strlen(hcd->irq_descr))
395                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
396                          hcd->driver->description, hcd->self.busnum);
397
398         /* fall back to legacy interrupt*/
399         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
400                         hcd->irq_descr, hcd);
401         if (ret) {
402                 xhci_err(xhci, "request interrupt %d failed\n",
403                                 pdev->irq);
404                 return ret;
405         }
406         hcd->irq = pdev->irq;
407         return 0;
408 }
409
410 #else
411
412 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
413 {
414         return 0;
415 }
416
417 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
418 {
419 }
420
421 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
422 {
423 }
424
425 #endif
426
427 static void compliance_mode_recovery(unsigned long arg)
428 {
429         struct xhci_hcd *xhci;
430         struct usb_hcd *hcd;
431         u32 temp;
432         int i;
433
434         xhci = (struct xhci_hcd *)arg;
435
436         for (i = 0; i < xhci->num_usb3_ports; i++) {
437                 temp = readl(xhci->usb3_ports[i]);
438                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
439                         /*
440                          * Compliance Mode Detected. Letting USB Core
441                          * handle the Warm Reset
442                          */
443                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
444                                         "Compliance mode detected->port %d",
445                                         i + 1);
446                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
447                                         "Attempting compliance mode recovery");
448                         hcd = xhci->shared_hcd;
449
450                         if (hcd->state == HC_STATE_SUSPENDED)
451                                 usb_hcd_resume_root_hub(hcd);
452
453                         usb_hcd_poll_rh_status(hcd);
454                 }
455         }
456
457         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
458                 mod_timer(&xhci->comp_mode_recovery_timer,
459                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
460 }
461
462 /*
463  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
464  * that causes ports behind that hardware to enter compliance mode sometimes.
465  * The quirk creates a timer that polls every 2 seconds the link state of
466  * each host controller's port and recovers it by issuing a Warm reset
467  * if Compliance mode is detected, otherwise the port will become "dead" (no
468  * device connections or disconnections will be detected anymore). Becasue no
469  * status event is generated when entering compliance mode (per xhci spec),
470  * this quirk is needed on systems that have the failing hardware installed.
471  */
472 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
473 {
474         xhci->port_status_u0 = 0;
475         setup_timer(&xhci->comp_mode_recovery_timer,
476                     compliance_mode_recovery, (unsigned long)xhci);
477         xhci->comp_mode_recovery_timer.expires = jiffies +
478                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
479
480         set_timer_slack(&xhci->comp_mode_recovery_timer,
481                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
482         add_timer(&xhci->comp_mode_recovery_timer);
483         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
484                         "Compliance mode recovery timer initialized");
485 }
486
487 /*
488  * This function identifies the systems that have installed the SN65LVPE502CP
489  * USB3.0 re-driver and that need the Compliance Mode Quirk.
490  * Systems:
491  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
492  */
493 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
494 {
495         const char *dmi_product_name, *dmi_sys_vendor;
496
497         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
498         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
499         if (!dmi_product_name || !dmi_sys_vendor)
500                 return false;
501
502         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
503                 return false;
504
505         if (strstr(dmi_product_name, "Z420") ||
506                         strstr(dmi_product_name, "Z620") ||
507                         strstr(dmi_product_name, "Z820") ||
508                         strstr(dmi_product_name, "Z1 Workstation"))
509                 return true;
510
511         return false;
512 }
513
514 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
515 {
516         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
517 }
518
519
520 /*
521  * Initialize memory for HCD and xHC (one-time init).
522  *
523  * Program the PAGESIZE register, initialize the device context array, create
524  * device contexts (?), set up a command ring segment (or two?), create event
525  * ring (one for now).
526  */
527 int xhci_init(struct usb_hcd *hcd)
528 {
529         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
530         int retval = 0;
531
532         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
533         spin_lock_init(&xhci->lock);
534         if (xhci->hci_version == 0x95 && link_quirk) {
535                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536                                 "QUIRK: Not clearing Link TRB chain bits.");
537                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
538         } else {
539                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540                                 "xHCI doesn't need link TRB QUIRK");
541         }
542         retval = xhci_mem_init(xhci, GFP_KERNEL);
543         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
544
545         /* Initializing Compliance Mode Recovery Data If Needed */
546         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
547                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
548                 compliance_mode_recovery_timer_init(xhci);
549         }
550
551         return retval;
552 }
553
554 /*-------------------------------------------------------------------------*/
555
556
557 static int xhci_run_finished(struct xhci_hcd *xhci)
558 {
559         if (xhci_start(xhci)) {
560                 xhci_halt(xhci);
561                 return -ENODEV;
562         }
563         xhci->shared_hcd->state = HC_STATE_RUNNING;
564         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
565
566         if (xhci->quirks & XHCI_NEC_HOST)
567                 xhci_ring_cmd_db(xhci);
568
569         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
570                         "Finished xhci_run for USB3 roothub");
571         return 0;
572 }
573
574 /*
575  * Start the HC after it was halted.
576  *
577  * This function is called by the USB core when the HC driver is added.
578  * Its opposite is xhci_stop().
579  *
580  * xhci_init() must be called once before this function can be called.
581  * Reset the HC, enable device slot contexts, program DCBAAP, and
582  * set command ring pointer and event ring pointer.
583  *
584  * Setup MSI-X vectors and enable interrupts.
585  */
586 int xhci_run(struct usb_hcd *hcd)
587 {
588         u32 temp;
589         u64 temp_64;
590         int ret;
591         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
592
593         /* Start the xHCI host controller running only after the USB 2.0 roothub
594          * is setup.
595          */
596
597         hcd->uses_new_polling = 1;
598         if (!usb_hcd_is_primary_hcd(hcd))
599                 return xhci_run_finished(xhci);
600
601         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
602
603         ret = xhci_try_enable_msi(hcd);
604         if (ret)
605                 return ret;
606
607         xhci_dbg(xhci, "Command ring memory map follows:\n");
608         xhci_debug_ring(xhci, xhci->cmd_ring);
609         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
610         xhci_dbg_cmd_ptrs(xhci);
611
612         xhci_dbg(xhci, "ERST memory map follows:\n");
613         xhci_dbg_erst(xhci, &xhci->erst);
614         xhci_dbg(xhci, "Event ring:\n");
615         xhci_debug_ring(xhci, xhci->event_ring);
616         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
617         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
618         temp_64 &= ~ERST_PTR_MASK;
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
621
622         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623                         "// Set the interrupt modulation register");
624         temp = readl(&xhci->ir_set->irq_control);
625         temp &= ~ER_IRQ_INTERVAL_MASK;
626         temp |= (u32) 160;
627         writel(temp, &xhci->ir_set->irq_control);
628
629         /* Set the HCD state before we enable the irqs */
630         temp = readl(&xhci->op_regs->command);
631         temp |= (CMD_EIE);
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "// Enable interrupts, cmd = 0x%x.", temp);
634         writel(temp, &xhci->op_regs->command);
635
636         temp = readl(&xhci->ir_set->irq_pending);
637         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
639                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
640         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
641         xhci_print_ir_set(xhci, 0);
642
643         if (xhci->quirks & XHCI_NEC_HOST) {
644                 struct xhci_command *command;
645                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
646                 if (!command)
647                         return -ENOMEM;
648                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
649                                 TRB_TYPE(TRB_NEC_GET_FW));
650         }
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "Finished xhci_run for USB2 roothub");
653         return 0;
654 }
655 EXPORT_SYMBOL_GPL(xhci_run);
656
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660
661         spin_lock_irq(&xhci->lock);
662         xhci_halt(xhci);
663         spin_unlock_irq(&xhci->lock);
664 }
665
666 /*
667  * Stop xHCI driver.
668  *
669  * This function is called by the USB core when the HC driver is removed.
670  * Its opposite is xhci_run().
671  *
672  * Disable device contexts, disable IRQs, and quiesce the HC.
673  * Reset the HC, finish any completed transactions, and cleanup memory.
674  */
675 void xhci_stop(struct usb_hcd *hcd)
676 {
677         u32 temp;
678         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
679
680         mutex_lock(&xhci->mutex);
681
682         if (!usb_hcd_is_primary_hcd(hcd)) {
683                 xhci_only_stop_hcd(xhci->shared_hcd);
684                 mutex_unlock(&xhci->mutex);
685                 return;
686         }
687
688         spin_lock_irq(&xhci->lock);
689         /* Make sure the xHC is halted for a USB3 roothub
690          * (xhci_stop() could be called as part of failed init).
691          */
692         xhci_halt(xhci);
693         xhci_reset(xhci);
694         spin_unlock_irq(&xhci->lock);
695
696         xhci_cleanup_msix(xhci);
697
698         /* Deleting Compliance Mode Recovery Timer */
699         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
700                         (!(xhci_all_ports_seen_u0(xhci)))) {
701                 del_timer_sync(&xhci->comp_mode_recovery_timer);
702                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
703                                 "%s: compliance mode recovery timer deleted",
704                                 __func__);
705         }
706
707         if (xhci->quirks & XHCI_AMD_PLL_FIX)
708                 usb_amd_dev_put();
709
710         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711                         "// Disabling event ring interrupts");
712         temp = readl(&xhci->op_regs->status);
713         writel(temp & ~STS_EINT, &xhci->op_regs->status);
714         temp = readl(&xhci->ir_set->irq_pending);
715         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
716         xhci_print_ir_set(xhci, 0);
717
718         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
719         xhci_mem_cleanup(xhci);
720         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
721                         "xhci_stop completed - status = %x",
722                         readl(&xhci->op_regs->status));
723         mutex_unlock(&xhci->mutex);
724 }
725
726 /*
727  * Shutdown HC (not bus-specific)
728  *
729  * This is called when the machine is rebooting or halting.  We assume that the
730  * machine will be powered off, and the HC's internal state will be reset.
731  * Don't bother to free memory.
732  *
733  * This will only ever be called with the main usb_hcd (the USB3 roothub).
734  */
735 void xhci_shutdown(struct usb_hcd *hcd)
736 {
737         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
738
739         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
740                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
741
742         spin_lock_irq(&xhci->lock);
743         xhci_halt(xhci);
744         /* Workaround for spurious wakeups at shutdown with HSW */
745         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
746                 xhci_reset(xhci);
747         spin_unlock_irq(&xhci->lock);
748
749         xhci_cleanup_msix(xhci);
750
751         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752                         "xhci_shutdown completed - status = %x",
753                         readl(&xhci->op_regs->status));
754
755         /* Yet another workaround for spurious wakeups at shutdown with HSW */
756         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
758 }
759
760 #ifdef CONFIG_PM
761 static void xhci_save_registers(struct xhci_hcd *xhci)
762 {
763         xhci->s3.command = readl(&xhci->op_regs->command);
764         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
765         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
766         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
767         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
768         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
769         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
770         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
771         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
772 }
773
774 static void xhci_restore_registers(struct xhci_hcd *xhci)
775 {
776         writel(xhci->s3.command, &xhci->op_regs->command);
777         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
778         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
779         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
780         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
781         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
782         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
783         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
784         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
785 }
786
787 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
788 {
789         u64     val_64;
790
791         /* step 2: initialize command ring buffer */
792         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
793         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
794                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
795                                       xhci->cmd_ring->dequeue) &
796                  (u64) ~CMD_RING_RSVD_BITS) |
797                 xhci->cmd_ring->cycle_state;
798         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
799                         "// Setting command ring address to 0x%llx",
800                         (long unsigned long) val_64);
801         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
802 }
803
804 /*
805  * The whole command ring must be cleared to zero when we suspend the host.
806  *
807  * The host doesn't save the command ring pointer in the suspend well, so we
808  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
809  * aligned, because of the reserved bits in the command ring dequeue pointer
810  * register.  Therefore, we can't just set the dequeue pointer back in the
811  * middle of the ring (TRBs are 16-byte aligned).
812  */
813 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
814 {
815         struct xhci_ring *ring;
816         struct xhci_segment *seg;
817
818         ring = xhci->cmd_ring;
819         seg = ring->deq_seg;
820         do {
821                 memset(seg->trbs, 0,
822                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
823                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
824                         cpu_to_le32(~TRB_CYCLE);
825                 seg = seg->next;
826         } while (seg != ring->deq_seg);
827
828         /* Reset the software enqueue and dequeue pointers */
829         ring->deq_seg = ring->first_seg;
830         ring->dequeue = ring->first_seg->trbs;
831         ring->enq_seg = ring->deq_seg;
832         ring->enqueue = ring->dequeue;
833
834         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
835         /*
836          * Ring is now zeroed, so the HW should look for change of ownership
837          * when the cycle bit is set to 1.
838          */
839         ring->cycle_state = 1;
840
841         /*
842          * Reset the hardware dequeue pointer.
843          * Yes, this will need to be re-written after resume, but we're paranoid
844          * and want to make sure the hardware doesn't access bogus memory
845          * because, say, the BIOS or an SMI started the host without changing
846          * the command ring pointers.
847          */
848         xhci_set_cmd_ring_deq(xhci);
849 }
850
851 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
852 {
853         int port_index;
854         __le32 __iomem **port_array;
855         unsigned long flags;
856         u32 t1, t2;
857
858         spin_lock_irqsave(&xhci->lock, flags);
859
860         /* disble usb3 ports Wake bits*/
861         port_index = xhci->num_usb3_ports;
862         port_array = xhci->usb3_ports;
863         while (port_index--) {
864                 t1 = readl(port_array[port_index]);
865                 t1 = xhci_port_state_to_neutral(t1);
866                 t2 = t1 & ~PORT_WAKE_BITS;
867                 if (t1 != t2)
868                         writel(t2, port_array[port_index]);
869         }
870
871         /* disble usb2 ports Wake bits*/
872         port_index = xhci->num_usb2_ports;
873         port_array = xhci->usb2_ports;
874         while (port_index--) {
875                 t1 = readl(port_array[port_index]);
876                 t1 = xhci_port_state_to_neutral(t1);
877                 t2 = t1 & ~PORT_WAKE_BITS;
878                 if (t1 != t2)
879                         writel(t2, port_array[port_index]);
880         }
881
882         spin_unlock_irqrestore(&xhci->lock, flags);
883 }
884
885 /*
886  * Stop HC (not bus-specific)
887  *
888  * This is called when the machine transition into S3/S4 mode.
889  *
890  */
891 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
892 {
893         int                     rc = 0;
894         unsigned int            delay = XHCI_MAX_HALT_USEC;
895         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
896         u32                     command;
897
898         if (!hcd->state)
899                 return 0;
900
901         if (hcd->state != HC_STATE_SUSPENDED ||
902                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
903                 return -EINVAL;
904
905         /* Clear root port wake on bits if wakeup not allowed. */
906         if (!do_wakeup)
907                 xhci_disable_port_wake_on_bits(xhci);
908
909         /* Don't poll the roothubs on bus suspend. */
910         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
911         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
912         del_timer_sync(&hcd->rh_timer);
913         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
914         del_timer_sync(&xhci->shared_hcd->rh_timer);
915
916         spin_lock_irq(&xhci->lock);
917         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
918         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
919         /* step 1: stop endpoint */
920         /* skipped assuming that port suspend has done */
921
922         /* step 2: clear Run/Stop bit */
923         command = readl(&xhci->op_regs->command);
924         command &= ~CMD_RUN;
925         writel(command, &xhci->op_regs->command);
926
927         /* Some chips from Fresco Logic need an extraordinary delay */
928         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
929
930         if (xhci_handshake(&xhci->op_regs->status,
931                       STS_HALT, STS_HALT, delay)) {
932                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
933                 spin_unlock_irq(&xhci->lock);
934                 return -ETIMEDOUT;
935         }
936         xhci_clear_command_ring(xhci);
937
938         /* step 3: save registers */
939         xhci_save_registers(xhci);
940
941         /* step 4: set CSS flag */
942         command = readl(&xhci->op_regs->command);
943         command |= CMD_CSS;
944         writel(command, &xhci->op_regs->command);
945         if (xhci_handshake(&xhci->op_regs->status,
946                                 STS_SAVE, 0, 10 * 1000)) {
947                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
948                 spin_unlock_irq(&xhci->lock);
949                 return -ETIMEDOUT;
950         }
951         spin_unlock_irq(&xhci->lock);
952
953         /*
954          * Deleting Compliance Mode Recovery Timer because the xHCI Host
955          * is about to be suspended.
956          */
957         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
958                         (!(xhci_all_ports_seen_u0(xhci)))) {
959                 del_timer_sync(&xhci->comp_mode_recovery_timer);
960                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
961                                 "%s: compliance mode recovery timer deleted",
962                                 __func__);
963         }
964
965         /* step 5: remove core well power */
966         /* synchronize irq when using MSI-X */
967         xhci_msix_sync_irqs(xhci);
968
969         return rc;
970 }
971 EXPORT_SYMBOL_GPL(xhci_suspend);
972
973 /*
974  * start xHC (not bus-specific)
975  *
976  * This is called when the machine transition from S3/S4 mode.
977  *
978  */
979 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
980 {
981         u32                     command, temp = 0, status;
982         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
983         struct usb_hcd          *secondary_hcd;
984         int                     retval = 0;
985         bool                    comp_timer_running = false;
986
987         if (!hcd->state)
988                 return 0;
989
990         /* Wait a bit if either of the roothubs need to settle from the
991          * transition into bus suspend.
992          */
993         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
994                         time_before(jiffies,
995                                 xhci->bus_state[1].next_statechange))
996                 msleep(100);
997
998         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
999         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000
1001         spin_lock_irq(&xhci->lock);
1002         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1003                 hibernated = true;
1004
1005         if (!hibernated) {
1006                 /* step 1: restore register */
1007                 xhci_restore_registers(xhci);
1008                 /* step 2: initialize command ring buffer */
1009                 xhci_set_cmd_ring_deq(xhci);
1010                 /* step 3: restore state and start state*/
1011                 /* step 3: set CRS flag */
1012                 command = readl(&xhci->op_regs->command);
1013                 command |= CMD_CRS;
1014                 writel(command, &xhci->op_regs->command);
1015                 if (xhci_handshake(&xhci->op_regs->status,
1016                               STS_RESTORE, 0, 10 * 1000)) {
1017                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1018                         spin_unlock_irq(&xhci->lock);
1019                         return -ETIMEDOUT;
1020                 }
1021                 temp = readl(&xhci->op_regs->status);
1022         }
1023
1024         /* If restore operation fails, re-initialize the HC during resume */
1025         if ((temp & STS_SRE) || hibernated) {
1026
1027                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1028                                 !(xhci_all_ports_seen_u0(xhci))) {
1029                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1030                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1031                                 "Compliance Mode Recovery Timer deleted!");
1032                 }
1033
1034                 /* Let the USB core know _both_ roothubs lost power. */
1035                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1036                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1037
1038                 xhci_dbg(xhci, "Stop HCD\n");
1039                 xhci_halt(xhci);
1040                 xhci_reset(xhci);
1041                 spin_unlock_irq(&xhci->lock);
1042                 xhci_cleanup_msix(xhci);
1043
1044                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1045                 temp = readl(&xhci->op_regs->status);
1046                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1047                 temp = readl(&xhci->ir_set->irq_pending);
1048                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1049                 xhci_print_ir_set(xhci, 0);
1050
1051                 xhci_dbg(xhci, "cleaning up memory\n");
1052                 xhci_mem_cleanup(xhci);
1053                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1054                             readl(&xhci->op_regs->status));
1055
1056                 /* USB core calls the PCI reinit and start functions twice:
1057                  * first with the primary HCD, and then with the secondary HCD.
1058                  * If we don't do the same, the host will never be started.
1059                  */
1060                 if (!usb_hcd_is_primary_hcd(hcd))
1061                         secondary_hcd = hcd;
1062                 else
1063                         secondary_hcd = xhci->shared_hcd;
1064
1065                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1066                 retval = xhci_init(hcd->primary_hcd);
1067                 if (retval)
1068                         return retval;
1069                 comp_timer_running = true;
1070
1071                 xhci_dbg(xhci, "Start the primary HCD\n");
1072                 retval = xhci_run(hcd->primary_hcd);
1073                 if (!retval) {
1074                         xhci_dbg(xhci, "Start the secondary HCD\n");
1075                         retval = xhci_run(secondary_hcd);
1076                 }
1077                 hcd->state = HC_STATE_SUSPENDED;
1078                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1079                 goto done;
1080         }
1081
1082         /* step 4: set Run/Stop bit */
1083         command = readl(&xhci->op_regs->command);
1084         command |= CMD_RUN;
1085         writel(command, &xhci->op_regs->command);
1086         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1087                   0, 250 * 1000);
1088
1089         /* step 5: walk topology and initialize portsc,
1090          * portpmsc and portli
1091          */
1092         /* this is done in bus_resume */
1093
1094         /* step 6: restart each of the previously
1095          * Running endpoints by ringing their doorbells
1096          */
1097
1098         spin_unlock_irq(&xhci->lock);
1099
1100  done:
1101         if (retval == 0) {
1102                 /* Resume root hubs only when have pending events. */
1103                 status = readl(&xhci->op_regs->status);
1104                 if (status & STS_EINT) {
1105                         usb_hcd_resume_root_hub(hcd);
1106                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1107                 }
1108         }
1109
1110         /*
1111          * If system is subject to the Quirk, Compliance Mode Timer needs to
1112          * be re-initialized Always after a system resume. Ports are subject
1113          * to suffer the Compliance Mode issue again. It doesn't matter if
1114          * ports have entered previously to U0 before system's suspension.
1115          */
1116         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1117                 compliance_mode_recovery_timer_init(xhci);
1118
1119         /* Re-enable port polling. */
1120         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1121         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1122         usb_hcd_poll_rh_status(hcd);
1123         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1124         usb_hcd_poll_rh_status(xhci->shared_hcd);
1125
1126         return retval;
1127 }
1128 EXPORT_SYMBOL_GPL(xhci_resume);
1129 #endif  /* CONFIG_PM */
1130
1131 /*-------------------------------------------------------------------------*/
1132
1133 /**
1134  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1135  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1136  * value to right shift 1 for the bitmask.
1137  *
1138  * Index  = (epnum * 2) + direction - 1,
1139  * where direction = 0 for OUT, 1 for IN.
1140  * For control endpoints, the IN index is used (OUT index is unused), so
1141  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1142  */
1143 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1144 {
1145         unsigned int index;
1146         if (usb_endpoint_xfer_control(desc))
1147                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1148         else
1149                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1150                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1151         return index;
1152 }
1153
1154 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1155  * address from the XHCI endpoint index.
1156  */
1157 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1158 {
1159         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1160         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1161         return direction | number;
1162 }
1163
1164 /* Find the flag for this endpoint (for use in the control context).  Use the
1165  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1166  * bit 1, etc.
1167  */
1168 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1169 {
1170         return 1 << (xhci_get_endpoint_index(desc) + 1);
1171 }
1172
1173 /* Find the flag for this endpoint (for use in the control context).  Use the
1174  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1175  * bit 1, etc.
1176  */
1177 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1178 {
1179         return 1 << (ep_index + 1);
1180 }
1181
1182 /* Compute the last valid endpoint context index.  Basically, this is the
1183  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1184  * we find the most significant bit set in the added contexts flags.
1185  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1186  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1187  */
1188 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1189 {
1190         return fls(added_ctxs) - 1;
1191 }
1192
1193 /* Returns 1 if the arguments are OK;
1194  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1195  */
1196 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1197                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1198                 const char *func) {
1199         struct xhci_hcd *xhci;
1200         struct xhci_virt_device *virt_dev;
1201
1202         if (!hcd || (check_ep && !ep) || !udev) {
1203                 pr_debug("xHCI %s called with invalid args\n", func);
1204                 return -EINVAL;
1205         }
1206         if (!udev->parent) {
1207                 pr_debug("xHCI %s called for root hub\n", func);
1208                 return 0;
1209         }
1210
1211         xhci = hcd_to_xhci(hcd);
1212         if (check_virt_dev) {
1213                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1214                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1215                                         func);
1216                         return -EINVAL;
1217                 }
1218
1219                 virt_dev = xhci->devs[udev->slot_id];
1220                 if (virt_dev->udev != udev) {
1221                         xhci_dbg(xhci, "xHCI %s called with udev and "
1222                                           "virt_dev does not match\n", func);
1223                         return -EINVAL;
1224                 }
1225         }
1226
1227         if (xhci->xhc_state & XHCI_STATE_HALTED)
1228                 return -ENODEV;
1229
1230         return 1;
1231 }
1232
1233 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1234                 struct usb_device *udev, struct xhci_command *command,
1235                 bool ctx_change, bool must_succeed);
1236
1237 /*
1238  * Full speed devices may have a max packet size greater than 8 bytes, but the
1239  * USB core doesn't know that until it reads the first 8 bytes of the
1240  * descriptor.  If the usb_device's max packet size changes after that point,
1241  * we need to issue an evaluate context command and wait on it.
1242  */
1243 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1244                 unsigned int ep_index, struct urb *urb)
1245 {
1246         struct xhci_container_ctx *out_ctx;
1247         struct xhci_input_control_ctx *ctrl_ctx;
1248         struct xhci_ep_ctx *ep_ctx;
1249         struct xhci_command *command;
1250         int max_packet_size;
1251         int hw_max_packet_size;
1252         int ret = 0;
1253
1254         out_ctx = xhci->devs[slot_id]->out_ctx;
1255         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1256         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1257         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1258         if (hw_max_packet_size != max_packet_size) {
1259                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1260                                 "Max Packet Size for ep 0 changed.");
1261                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1262                                 "Max packet size in usb_device = %d",
1263                                 max_packet_size);
1264                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1265                                 "Max packet size in xHCI HW = %d",
1266                                 hw_max_packet_size);
1267                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268                                 "Issuing evaluate context command.");
1269
1270                 /* Set up the input context flags for the command */
1271                 /* FIXME: This won't work if a non-default control endpoint
1272                  * changes max packet sizes.
1273                  */
1274
1275                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1276                 if (!command)
1277                         return -ENOMEM;
1278
1279                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1280                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1281                 if (!ctrl_ctx) {
1282                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1283                                         __func__);
1284                         ret = -ENOMEM;
1285                         goto command_cleanup;
1286                 }
1287                 /* Set up the modified control endpoint 0 */
1288                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1289                                 xhci->devs[slot_id]->out_ctx, ep_index);
1290
1291                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1292                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1293                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1294
1295                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1296                 ctrl_ctx->drop_flags = 0;
1297
1298                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1299                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1300                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1301                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1302
1303                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1304                                 true, false);
1305
1306                 /* Clean up the input context for later use by bandwidth
1307                  * functions.
1308                  */
1309                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1310 command_cleanup:
1311                 kfree(command->completion);
1312                 kfree(command);
1313         }
1314         return ret;
1315 }
1316
1317 /*
1318  * non-error returns are a promise to giveback() the urb later
1319  * we drop ownership so next owner (or urb unlink) can get it
1320  */
1321 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1322 {
1323         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1324         struct xhci_td *buffer;
1325         unsigned long flags;
1326         int ret = 0;
1327         unsigned int slot_id, ep_index;
1328         struct urb_priv *urb_priv;
1329         int size, i;
1330
1331         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1332                                         true, true, __func__) <= 0)
1333                 return -EINVAL;
1334
1335         slot_id = urb->dev->slot_id;
1336         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1337
1338         if (!HCD_HW_ACCESSIBLE(hcd)) {
1339                 if (!in_interrupt())
1340                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1341                 ret = -ESHUTDOWN;
1342                 goto exit;
1343         }
1344
1345         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1346                 size = urb->number_of_packets;
1347         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1348             urb->transfer_buffer_length > 0 &&
1349             urb->transfer_flags & URB_ZERO_PACKET &&
1350             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1351                 size = 2;
1352         else
1353                 size = 1;
1354
1355         urb_priv = kzalloc(sizeof(struct urb_priv) +
1356                                   size * sizeof(struct xhci_td *), mem_flags);
1357         if (!urb_priv)
1358                 return -ENOMEM;
1359
1360         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1361         if (!buffer) {
1362                 kfree(urb_priv);
1363                 return -ENOMEM;
1364         }
1365
1366         for (i = 0; i < size; i++) {
1367                 urb_priv->td[i] = buffer;
1368                 buffer++;
1369         }
1370
1371         urb_priv->length = size;
1372         urb_priv->td_cnt = 0;
1373         urb->hcpriv = urb_priv;
1374
1375         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1376                 /* Check to see if the max packet size for the default control
1377                  * endpoint changed during FS device enumeration
1378                  */
1379                 if (urb->dev->speed == USB_SPEED_FULL) {
1380                         ret = xhci_check_maxpacket(xhci, slot_id,
1381                                         ep_index, urb);
1382                         if (ret < 0) {
1383                                 xhci_urb_free_priv(urb_priv);
1384                                 urb->hcpriv = NULL;
1385                                 return ret;
1386                         }
1387                 }
1388
1389                 /* We have a spinlock and interrupts disabled, so we must pass
1390                  * atomic context to this function, which may allocate memory.
1391                  */
1392                 spin_lock_irqsave(&xhci->lock, flags);
1393                 if (xhci->xhc_state & XHCI_STATE_DYING)
1394                         goto dying;
1395                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1396                                 slot_id, ep_index);
1397                 if (ret)
1398                         goto free_priv;
1399                 spin_unlock_irqrestore(&xhci->lock, flags);
1400         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1401                 spin_lock_irqsave(&xhci->lock, flags);
1402                 if (xhci->xhc_state & XHCI_STATE_DYING)
1403                         goto dying;
1404                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1405                                 EP_GETTING_STREAMS) {
1406                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1407                                         "is transitioning to using streams.\n");
1408                         ret = -EINVAL;
1409                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1410                                 EP_GETTING_NO_STREAMS) {
1411                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1412                                         "is transitioning to "
1413                                         "not having streams.\n");
1414                         ret = -EINVAL;
1415                 } else {
1416                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1417                                         slot_id, ep_index);
1418                 }
1419                 if (ret)
1420                         goto free_priv;
1421                 spin_unlock_irqrestore(&xhci->lock, flags);
1422         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1423                 spin_lock_irqsave(&xhci->lock, flags);
1424                 if (xhci->xhc_state & XHCI_STATE_DYING)
1425                         goto dying;
1426                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1427                                 slot_id, ep_index);
1428                 if (ret)
1429                         goto free_priv;
1430                 spin_unlock_irqrestore(&xhci->lock, flags);
1431         } else {
1432                 spin_lock_irqsave(&xhci->lock, flags);
1433                 if (xhci->xhc_state & XHCI_STATE_DYING)
1434                         goto dying;
1435                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1436                                 slot_id, ep_index);
1437                 if (ret)
1438                         goto free_priv;
1439                 spin_unlock_irqrestore(&xhci->lock, flags);
1440         }
1441 exit:
1442         return ret;
1443 dying:
1444         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1445                         "non-responsive xHCI host.\n",
1446                         urb->ep->desc.bEndpointAddress, urb);
1447         ret = -ESHUTDOWN;
1448 free_priv:
1449         xhci_urb_free_priv(urb_priv);
1450         urb->hcpriv = NULL;
1451         spin_unlock_irqrestore(&xhci->lock, flags);
1452         return ret;
1453 }
1454
1455 /* Get the right ring for the given URB.
1456  * If the endpoint supports streams, boundary check the URB's stream ID.
1457  * If the endpoint doesn't support streams, return the singular endpoint ring.
1458  */
1459 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1460                 struct urb *urb)
1461 {
1462         unsigned int slot_id;
1463         unsigned int ep_index;
1464         unsigned int stream_id;
1465         struct xhci_virt_ep *ep;
1466
1467         slot_id = urb->dev->slot_id;
1468         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1469         stream_id = urb->stream_id;
1470         ep = &xhci->devs[slot_id]->eps[ep_index];
1471         /* Common case: no streams */
1472         if (!(ep->ep_state & EP_HAS_STREAMS))
1473                 return ep->ring;
1474
1475         if (stream_id == 0) {
1476                 xhci_warn(xhci,
1477                                 "WARN: Slot ID %u, ep index %u has streams, "
1478                                 "but URB has no stream ID.\n",
1479                                 slot_id, ep_index);
1480                 return NULL;
1481         }
1482
1483         if (stream_id < ep->stream_info->num_streams)
1484                 return ep->stream_info->stream_rings[stream_id];
1485
1486         xhci_warn(xhci,
1487                         "WARN: Slot ID %u, ep index %u has "
1488                         "stream IDs 1 to %u allocated, "
1489                         "but stream ID %u is requested.\n",
1490                         slot_id, ep_index,
1491                         ep->stream_info->num_streams - 1,
1492                         stream_id);
1493         return NULL;
1494 }
1495
1496 /*
1497  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1498  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1499  * should pick up where it left off in the TD, unless a Set Transfer Ring
1500  * Dequeue Pointer is issued.
1501  *
1502  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1503  * the ring.  Since the ring is a contiguous structure, they can't be physically
1504  * removed.  Instead, there are two options:
1505  *
1506  *  1) If the HC is in the middle of processing the URB to be canceled, we
1507  *     simply move the ring's dequeue pointer past those TRBs using the Set
1508  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1509  *     when drivers timeout on the last submitted URB and attempt to cancel.
1510  *
1511  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1512  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1513  *     HC will need to invalidate the any TRBs it has cached after the stop
1514  *     endpoint command, as noted in the xHCI 0.95 errata.
1515  *
1516  *  3) The TD may have completed by the time the Stop Endpoint Command
1517  *     completes, so software needs to handle that case too.
1518  *
1519  * This function should protect against the TD enqueueing code ringing the
1520  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1521  * It also needs to account for multiple cancellations on happening at the same
1522  * time for the same endpoint.
1523  *
1524  * Note that this function can be called in any context, or so says
1525  * usb_hcd_unlink_urb()
1526  */
1527 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1528 {
1529         unsigned long flags;
1530         int ret, i;
1531         u32 temp;
1532         struct xhci_hcd *xhci;
1533         struct urb_priv *urb_priv;
1534         struct xhci_td *td;
1535         unsigned int ep_index;
1536         struct xhci_ring *ep_ring;
1537         struct xhci_virt_ep *ep;
1538         struct xhci_command *command;
1539
1540         xhci = hcd_to_xhci(hcd);
1541         spin_lock_irqsave(&xhci->lock, flags);
1542         /* Make sure the URB hasn't completed or been unlinked already */
1543         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1544         if (ret || !urb->hcpriv)
1545                 goto done;
1546         temp = readl(&xhci->op_regs->status);
1547         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1548                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1549                                 "HW died, freeing TD.");
1550                 urb_priv = urb->hcpriv;
1551                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1552                         td = urb_priv->td[i];
1553                         if (!list_empty(&td->td_list))
1554                                 list_del_init(&td->td_list);
1555                         if (!list_empty(&td->cancelled_td_list))
1556                                 list_del_init(&td->cancelled_td_list);
1557                 }
1558
1559                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1560                 spin_unlock_irqrestore(&xhci->lock, flags);
1561                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1562                 xhci_urb_free_priv(urb_priv);
1563                 return ret;
1564         }
1565         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1566                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1567                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1568                                 "Ep 0x%x: URB %p to be canceled on "
1569                                 "non-responsive xHCI host.",
1570                                 urb->ep->desc.bEndpointAddress, urb);
1571                 /* Let the stop endpoint command watchdog timer (which set this
1572                  * state) finish cleaning up the endpoint TD lists.  We must
1573                  * have caught it in the middle of dropping a lock and giving
1574                  * back an URB.
1575                  */
1576                 goto done;
1577         }
1578
1579         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1580         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1581         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1582         if (!ep_ring) {
1583                 ret = -EINVAL;
1584                 goto done;
1585         }
1586
1587         urb_priv = urb->hcpriv;
1588         i = urb_priv->td_cnt;
1589         if (i < urb_priv->length)
1590                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1591                                 "Cancel URB %p, dev %s, ep 0x%x, "
1592                                 "starting at offset 0x%llx",
1593                                 urb, urb->dev->devpath,
1594                                 urb->ep->desc.bEndpointAddress,
1595                                 (unsigned long long) xhci_trb_virt_to_dma(
1596                                         urb_priv->td[i]->start_seg,
1597                                         urb_priv->td[i]->first_trb));
1598
1599         for (; i < urb_priv->length; i++) {
1600                 td = urb_priv->td[i];
1601                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1602         }
1603
1604         /* Queue a stop endpoint command, but only if this is
1605          * the first cancellation to be handled.
1606          */
1607         if (!(ep->ep_state & EP_HALT_PENDING)) {
1608                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1609                 if (!command) {
1610                         ret = -ENOMEM;
1611                         goto done;
1612                 }
1613                 ep->ep_state |= EP_HALT_PENDING;
1614                 ep->stop_cmds_pending++;
1615                 ep->stop_cmd_timer.expires = jiffies +
1616                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1617                 add_timer(&ep->stop_cmd_timer);
1618                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1619                                          ep_index, 0);
1620                 xhci_ring_cmd_db(xhci);
1621         }
1622 done:
1623         spin_unlock_irqrestore(&xhci->lock, flags);
1624         return ret;
1625 }
1626
1627 /* Drop an endpoint from a new bandwidth configuration for this device.
1628  * Only one call to this function is allowed per endpoint before
1629  * check_bandwidth() or reset_bandwidth() must be called.
1630  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1631  * add the endpoint to the schedule with possibly new parameters denoted by a
1632  * different endpoint descriptor in usb_host_endpoint.
1633  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1634  * not allowed.
1635  *
1636  * The USB core will not allow URBs to be queued to an endpoint that is being
1637  * disabled, so there's no need for mutual exclusion to protect
1638  * the xhci->devs[slot_id] structure.
1639  */
1640 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1641                 struct usb_host_endpoint *ep)
1642 {
1643         struct xhci_hcd *xhci;
1644         struct xhci_container_ctx *in_ctx, *out_ctx;
1645         struct xhci_input_control_ctx *ctrl_ctx;
1646         unsigned int ep_index;
1647         struct xhci_ep_ctx *ep_ctx;
1648         u32 drop_flag;
1649         u32 new_add_flags, new_drop_flags;
1650         int ret;
1651
1652         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1653         if (ret <= 0)
1654                 return ret;
1655         xhci = hcd_to_xhci(hcd);
1656         if (xhci->xhc_state & XHCI_STATE_DYING)
1657                 return -ENODEV;
1658
1659         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1660         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1661         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1662                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1663                                 __func__, drop_flag);
1664                 return 0;
1665         }
1666
1667         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1668         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1669         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1670         if (!ctrl_ctx) {
1671                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1672                                 __func__);
1673                 return 0;
1674         }
1675
1676         ep_index = xhci_get_endpoint_index(&ep->desc);
1677         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1678         /* If the HC already knows the endpoint is disabled,
1679          * or the HCD has noted it is disabled, ignore this request
1680          */
1681         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1682              cpu_to_le32(EP_STATE_DISABLED)) ||
1683             le32_to_cpu(ctrl_ctx->drop_flags) &
1684             xhci_get_endpoint_flag(&ep->desc)) {
1685                 /* Do not warn when called after a usb_device_reset */
1686                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1687                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1688                                   __func__, ep);
1689                 return 0;
1690         }
1691
1692         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1693         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1694
1695         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1696         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1697
1698         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1699
1700         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1701                         (unsigned int) ep->desc.bEndpointAddress,
1702                         udev->slot_id,
1703                         (unsigned int) new_drop_flags,
1704                         (unsigned int) new_add_flags);
1705         return 0;
1706 }
1707
1708 /* Add an endpoint to a new possible bandwidth configuration for this device.
1709  * Only one call to this function is allowed per endpoint before
1710  * check_bandwidth() or reset_bandwidth() must be called.
1711  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1712  * add the endpoint to the schedule with possibly new parameters denoted by a
1713  * different endpoint descriptor in usb_host_endpoint.
1714  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1715  * not allowed.
1716  *
1717  * The USB core will not allow URBs to be queued to an endpoint until the
1718  * configuration or alt setting is installed in the device, so there's no need
1719  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1720  */
1721 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1722                 struct usb_host_endpoint *ep)
1723 {
1724         struct xhci_hcd *xhci;
1725         struct xhci_container_ctx *in_ctx;
1726         unsigned int ep_index;
1727         struct xhci_input_control_ctx *ctrl_ctx;
1728         u32 added_ctxs;
1729         u32 new_add_flags, new_drop_flags;
1730         struct xhci_virt_device *virt_dev;
1731         int ret = 0;
1732
1733         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1734         if (ret <= 0) {
1735                 /* So we won't queue a reset ep command for a root hub */
1736                 ep->hcpriv = NULL;
1737                 return ret;
1738         }
1739         xhci = hcd_to_xhci(hcd);
1740         if (xhci->xhc_state & XHCI_STATE_DYING)
1741                 return -ENODEV;
1742
1743         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1744         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1745                 /* FIXME when we have to issue an evaluate endpoint command to
1746                  * deal with ep0 max packet size changing once we get the
1747                  * descriptors
1748                  */
1749                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1750                                 __func__, added_ctxs);
1751                 return 0;
1752         }
1753
1754         virt_dev = xhci->devs[udev->slot_id];
1755         in_ctx = virt_dev->in_ctx;
1756         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1757         if (!ctrl_ctx) {
1758                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1759                                 __func__);
1760                 return 0;
1761         }
1762
1763         ep_index = xhci_get_endpoint_index(&ep->desc);
1764         /* If this endpoint is already in use, and the upper layers are trying
1765          * to add it again without dropping it, reject the addition.
1766          */
1767         if (virt_dev->eps[ep_index].ring &&
1768                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1769                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1770                                 "without dropping it.\n",
1771                                 (unsigned int) ep->desc.bEndpointAddress);
1772                 return -EINVAL;
1773         }
1774
1775         /* If the HCD has already noted the endpoint is enabled,
1776          * ignore this request.
1777          */
1778         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1779                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1780                                 __func__, ep);
1781                 return 0;
1782         }
1783
1784         /*
1785          * Configuration and alternate setting changes must be done in
1786          * process context, not interrupt context (or so documenation
1787          * for usb_set_interface() and usb_set_configuration() claim).
1788          */
1789         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1790                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1791                                 __func__, ep->desc.bEndpointAddress);
1792                 return -ENOMEM;
1793         }
1794
1795         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1796         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1797
1798         /* If xhci_endpoint_disable() was called for this endpoint, but the
1799          * xHC hasn't been notified yet through the check_bandwidth() call,
1800          * this re-adds a new state for the endpoint from the new endpoint
1801          * descriptors.  We must drop and re-add this endpoint, so we leave the
1802          * drop flags alone.
1803          */
1804         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1805
1806         /* Store the usb_device pointer for later use */
1807         ep->hcpriv = udev;
1808
1809         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1810                         (unsigned int) ep->desc.bEndpointAddress,
1811                         udev->slot_id,
1812                         (unsigned int) new_drop_flags,
1813                         (unsigned int) new_add_flags);
1814         return 0;
1815 }
1816
1817 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1818 {
1819         struct xhci_input_control_ctx *ctrl_ctx;
1820         struct xhci_ep_ctx *ep_ctx;
1821         struct xhci_slot_ctx *slot_ctx;
1822         int i;
1823
1824         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1825         if (!ctrl_ctx) {
1826                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1827                                 __func__);
1828                 return;
1829         }
1830
1831         /* When a device's add flag and drop flag are zero, any subsequent
1832          * configure endpoint command will leave that endpoint's state
1833          * untouched.  Make sure we don't leave any old state in the input
1834          * endpoint contexts.
1835          */
1836         ctrl_ctx->drop_flags = 0;
1837         ctrl_ctx->add_flags = 0;
1838         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1839         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1840         /* Endpoint 0 is always valid */
1841         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1842         for (i = 1; i < 31; ++i) {
1843                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1844                 ep_ctx->ep_info = 0;
1845                 ep_ctx->ep_info2 = 0;
1846                 ep_ctx->deq = 0;
1847                 ep_ctx->tx_info = 0;
1848         }
1849 }
1850
1851 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1852                 struct usb_device *udev, u32 *cmd_status)
1853 {
1854         int ret;
1855
1856         switch (*cmd_status) {
1857         case COMP_CMD_ABORT:
1858         case COMP_CMD_STOP:
1859                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1860                 ret = -ETIME;
1861                 break;
1862         case COMP_ENOMEM:
1863                 dev_warn(&udev->dev,
1864                          "Not enough host controller resources for new device state.\n");
1865                 ret = -ENOMEM;
1866                 /* FIXME: can we allocate more resources for the HC? */
1867                 break;
1868         case COMP_BW_ERR:
1869         case COMP_2ND_BW_ERR:
1870                 dev_warn(&udev->dev,
1871                          "Not enough bandwidth for new device state.\n");
1872                 ret = -ENOSPC;
1873                 /* FIXME: can we go back to the old state? */
1874                 break;
1875         case COMP_TRB_ERR:
1876                 /* the HCD set up something wrong */
1877                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1878                                 "add flag = 1, "
1879                                 "and endpoint is not disabled.\n");
1880                 ret = -EINVAL;
1881                 break;
1882         case COMP_DEV_ERR:
1883                 dev_warn(&udev->dev,
1884                          "ERROR: Incompatible device for endpoint configure command.\n");
1885                 ret = -ENODEV;
1886                 break;
1887         case COMP_SUCCESS:
1888                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1889                                 "Successful Endpoint Configure command");
1890                 ret = 0;
1891                 break;
1892         default:
1893                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1894                                 *cmd_status);
1895                 ret = -EINVAL;
1896                 break;
1897         }
1898         return ret;
1899 }
1900
1901 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1902                 struct usb_device *udev, u32 *cmd_status)
1903 {
1904         int ret;
1905         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1906
1907         switch (*cmd_status) {
1908         case COMP_CMD_ABORT:
1909         case COMP_CMD_STOP:
1910                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1911                 ret = -ETIME;
1912                 break;
1913         case COMP_EINVAL:
1914                 dev_warn(&udev->dev,
1915                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1916                 ret = -EINVAL;
1917                 break;
1918         case COMP_EBADSLT:
1919                 dev_warn(&udev->dev,
1920                         "WARN: slot not enabled for evaluate context command.\n");
1921                 ret = -EINVAL;
1922                 break;
1923         case COMP_CTX_STATE:
1924                 dev_warn(&udev->dev,
1925                         "WARN: invalid context state for evaluate context command.\n");
1926                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1927                 ret = -EINVAL;
1928                 break;
1929         case COMP_DEV_ERR:
1930                 dev_warn(&udev->dev,
1931                         "ERROR: Incompatible device for evaluate context command.\n");
1932                 ret = -ENODEV;
1933                 break;
1934         case COMP_MEL_ERR:
1935                 /* Max Exit Latency too large error */
1936                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1937                 ret = -EINVAL;
1938                 break;
1939         case COMP_SUCCESS:
1940                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1941                                 "Successful evaluate context command");
1942                 ret = 0;
1943                 break;
1944         default:
1945                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1946                         *cmd_status);
1947                 ret = -EINVAL;
1948                 break;
1949         }
1950         return ret;
1951 }
1952
1953 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1954                 struct xhci_input_control_ctx *ctrl_ctx)
1955 {
1956         u32 valid_add_flags;
1957         u32 valid_drop_flags;
1958
1959         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1960          * (bit 1).  The default control endpoint is added during the Address
1961          * Device command and is never removed until the slot is disabled.
1962          */
1963         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1964         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1965
1966         /* Use hweight32 to count the number of ones in the add flags, or
1967          * number of endpoints added.  Don't count endpoints that are changed
1968          * (both added and dropped).
1969          */
1970         return hweight32(valid_add_flags) -
1971                 hweight32(valid_add_flags & valid_drop_flags);
1972 }
1973
1974 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1975                 struct xhci_input_control_ctx *ctrl_ctx)
1976 {
1977         u32 valid_add_flags;
1978         u32 valid_drop_flags;
1979
1980         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1981         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1982
1983         return hweight32(valid_drop_flags) -
1984                 hweight32(valid_add_flags & valid_drop_flags);
1985 }
1986
1987 /*
1988  * We need to reserve the new number of endpoints before the configure endpoint
1989  * command completes.  We can't subtract the dropped endpoints from the number
1990  * of active endpoints until the command completes because we can oversubscribe
1991  * the host in this case:
1992  *
1993  *  - the first configure endpoint command drops more endpoints than it adds
1994  *  - a second configure endpoint command that adds more endpoints is queued
1995  *  - the first configure endpoint command fails, so the config is unchanged
1996  *  - the second command may succeed, even though there isn't enough resources
1997  *
1998  * Must be called with xhci->lock held.
1999  */
2000 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2001                 struct xhci_input_control_ctx *ctrl_ctx)
2002 {
2003         u32 added_eps;
2004
2005         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2006         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2007                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2008                                 "Not enough ep ctxs: "
2009                                 "%u active, need to add %u, limit is %u.",
2010                                 xhci->num_active_eps, added_eps,
2011                                 xhci->limit_active_eps);
2012                 return -ENOMEM;
2013         }
2014         xhci->num_active_eps += added_eps;
2015         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2016                         "Adding %u ep ctxs, %u now active.", added_eps,
2017                         xhci->num_active_eps);
2018         return 0;
2019 }
2020
2021 /*
2022  * The configure endpoint was failed by the xHC for some other reason, so we
2023  * need to revert the resources that failed configuration would have used.
2024  *
2025  * Must be called with xhci->lock held.
2026  */
2027 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2028                 struct xhci_input_control_ctx *ctrl_ctx)
2029 {
2030         u32 num_failed_eps;
2031
2032         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2033         xhci->num_active_eps -= num_failed_eps;
2034         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2035                         "Removing %u failed ep ctxs, %u now active.",
2036                         num_failed_eps,
2037                         xhci->num_active_eps);
2038 }
2039
2040 /*
2041  * Now that the command has completed, clean up the active endpoint count by
2042  * subtracting out the endpoints that were dropped (but not changed).
2043  *
2044  * Must be called with xhci->lock held.
2045  */
2046 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2047                 struct xhci_input_control_ctx *ctrl_ctx)
2048 {
2049         u32 num_dropped_eps;
2050
2051         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2052         xhci->num_active_eps -= num_dropped_eps;
2053         if (num_dropped_eps)
2054                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2055                                 "Removing %u dropped ep ctxs, %u now active.",
2056                                 num_dropped_eps,
2057                                 xhci->num_active_eps);
2058 }
2059
2060 static unsigned int xhci_get_block_size(struct usb_device *udev)
2061 {
2062         switch (udev->speed) {
2063         case USB_SPEED_LOW:
2064         case USB_SPEED_FULL:
2065                 return FS_BLOCK;
2066         case USB_SPEED_HIGH:
2067                 return HS_BLOCK;
2068         case USB_SPEED_SUPER:
2069                 return SS_BLOCK;
2070         case USB_SPEED_UNKNOWN:
2071         case USB_SPEED_WIRELESS:
2072         default:
2073                 /* Should never happen */
2074                 return 1;
2075         }
2076 }
2077
2078 static unsigned int
2079 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2080 {
2081         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2082                 return LS_OVERHEAD;
2083         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2084                 return FS_OVERHEAD;
2085         return HS_OVERHEAD;
2086 }
2087
2088 /* If we are changing a LS/FS device under a HS hub,
2089  * make sure (if we are activating a new TT) that the HS bus has enough
2090  * bandwidth for this new TT.
2091  */
2092 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2093                 struct xhci_virt_device *virt_dev,
2094                 int old_active_eps)
2095 {
2096         struct xhci_interval_bw_table *bw_table;
2097         struct xhci_tt_bw_info *tt_info;
2098
2099         /* Find the bandwidth table for the root port this TT is attached to. */
2100         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2101         tt_info = virt_dev->tt_info;
2102         /* If this TT already had active endpoints, the bandwidth for this TT
2103          * has already been added.  Removing all periodic endpoints (and thus
2104          * making the TT enactive) will only decrease the bandwidth used.
2105          */
2106         if (old_active_eps)
2107                 return 0;
2108         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2109                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2110                         return -ENOMEM;
2111                 return 0;
2112         }
2113         /* Not sure why we would have no new active endpoints...
2114          *
2115          * Maybe because of an Evaluate Context change for a hub update or a
2116          * control endpoint 0 max packet size change?
2117          * FIXME: skip the bandwidth calculation in that case.
2118          */
2119         return 0;
2120 }
2121
2122 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2123                 struct xhci_virt_device *virt_dev)
2124 {
2125         unsigned int bw_reserved;
2126
2127         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2128         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2129                 return -ENOMEM;
2130
2131         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2132         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2133                 return -ENOMEM;
2134
2135         return 0;
2136 }
2137
2138 /*
2139  * This algorithm is a very conservative estimate of the worst-case scheduling
2140  * scenario for any one interval.  The hardware dynamically schedules the
2141  * packets, so we can't tell which microframe could be the limiting factor in
2142  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2143  *
2144  * Obviously, we can't solve an NP complete problem to find the minimum worst
2145  * case scenario.  Instead, we come up with an estimate that is no less than
2146  * the worst case bandwidth used for any one microframe, but may be an
2147  * over-estimate.
2148  *
2149  * We walk the requirements for each endpoint by interval, starting with the
2150  * smallest interval, and place packets in the schedule where there is only one
2151  * possible way to schedule packets for that interval.  In order to simplify
2152  * this algorithm, we record the largest max packet size for each interval, and
2153  * assume all packets will be that size.
2154  *
2155  * For interval 0, we obviously must schedule all packets for each interval.
2156  * The bandwidth for interval 0 is just the amount of data to be transmitted
2157  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2158  * the number of packets).
2159  *
2160  * For interval 1, we have two possible microframes to schedule those packets
2161  * in.  For this algorithm, if we can schedule the same number of packets for
2162  * each possible scheduling opportunity (each microframe), we will do so.  The
2163  * remaining number of packets will be saved to be transmitted in the gaps in
2164  * the next interval's scheduling sequence.
2165  *
2166  * As we move those remaining packets to be scheduled with interval 2 packets,
2167  * we have to double the number of remaining packets to transmit.  This is
2168  * because the intervals are actually powers of 2, and we would be transmitting
2169  * the previous interval's packets twice in this interval.  We also have to be
2170  * sure that when we look at the largest max packet size for this interval, we
2171  * also look at the largest max packet size for the remaining packets and take
2172  * the greater of the two.
2173  *
2174  * The algorithm continues to evenly distribute packets in each scheduling
2175  * opportunity, and push the remaining packets out, until we get to the last
2176  * interval.  Then those packets and their associated overhead are just added
2177  * to the bandwidth used.
2178  */
2179 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2180                 struct xhci_virt_device *virt_dev,
2181                 int old_active_eps)
2182 {
2183         unsigned int bw_reserved;
2184         unsigned int max_bandwidth;
2185         unsigned int bw_used;
2186         unsigned int block_size;
2187         struct xhci_interval_bw_table *bw_table;
2188         unsigned int packet_size = 0;
2189         unsigned int overhead = 0;
2190         unsigned int packets_transmitted = 0;
2191         unsigned int packets_remaining = 0;
2192         unsigned int i;
2193
2194         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2195                 return xhci_check_ss_bw(xhci, virt_dev);
2196
2197         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2198                 max_bandwidth = HS_BW_LIMIT;
2199                 /* Convert percent of bus BW reserved to blocks reserved */
2200                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2201         } else {
2202                 max_bandwidth = FS_BW_LIMIT;
2203                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2204         }
2205
2206         bw_table = virt_dev->bw_table;
2207         /* We need to translate the max packet size and max ESIT payloads into
2208          * the units the hardware uses.
2209          */
2210         block_size = xhci_get_block_size(virt_dev->udev);
2211
2212         /* If we are manipulating a LS/FS device under a HS hub, double check
2213          * that the HS bus has enough bandwidth if we are activing a new TT.
2214          */
2215         if (virt_dev->tt_info) {
2216                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2217                                 "Recalculating BW for rootport %u",
2218                                 virt_dev->real_port);
2219                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2220                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2221                                         "newly activated TT.\n");
2222                         return -ENOMEM;
2223                 }
2224                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2225                                 "Recalculating BW for TT slot %u port %u",
2226                                 virt_dev->tt_info->slot_id,
2227                                 virt_dev->tt_info->ttport);
2228         } else {
2229                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2230                                 "Recalculating BW for rootport %u",
2231                                 virt_dev->real_port);
2232         }
2233
2234         /* Add in how much bandwidth will be used for interval zero, or the
2235          * rounded max ESIT payload + number of packets * largest overhead.
2236          */
2237         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2238                 bw_table->interval_bw[0].num_packets *
2239                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2240
2241         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2242                 unsigned int bw_added;
2243                 unsigned int largest_mps;
2244                 unsigned int interval_overhead;
2245
2246                 /*
2247                  * How many packets could we transmit in this interval?
2248                  * If packets didn't fit in the previous interval, we will need
2249                  * to transmit that many packets twice within this interval.
2250                  */
2251                 packets_remaining = 2 * packets_remaining +
2252                         bw_table->interval_bw[i].num_packets;
2253
2254                 /* Find the largest max packet size of this or the previous
2255                  * interval.
2256                  */
2257                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2258                         largest_mps = 0;
2259                 else {
2260                         struct xhci_virt_ep *virt_ep;
2261                         struct list_head *ep_entry;
2262
2263                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2264                         virt_ep = list_entry(ep_entry,
2265                                         struct xhci_virt_ep, bw_endpoint_list);
2266                         /* Convert to blocks, rounding up */
2267                         largest_mps = DIV_ROUND_UP(
2268                                         virt_ep->bw_info.max_packet_size,
2269                                         block_size);
2270                 }
2271                 if (largest_mps > packet_size)
2272                         packet_size = largest_mps;
2273
2274                 /* Use the larger overhead of this or the previous interval. */
2275                 interval_overhead = xhci_get_largest_overhead(
2276                                 &bw_table->interval_bw[i]);
2277                 if (interval_overhead > overhead)
2278                         overhead = interval_overhead;
2279
2280                 /* How many packets can we evenly distribute across
2281                  * (1 << (i + 1)) possible scheduling opportunities?
2282                  */
2283                 packets_transmitted = packets_remaining >> (i + 1);
2284
2285                 /* Add in the bandwidth used for those scheduled packets */
2286                 bw_added = packets_transmitted * (overhead + packet_size);
2287
2288                 /* How many packets do we have remaining to transmit? */
2289                 packets_remaining = packets_remaining % (1 << (i + 1));
2290
2291                 /* What largest max packet size should those packets have? */
2292                 /* If we've transmitted all packets, don't carry over the
2293                  * largest packet size.
2294                  */
2295                 if (packets_remaining == 0) {
2296                         packet_size = 0;
2297                         overhead = 0;
2298                 } else if (packets_transmitted > 0) {
2299                         /* Otherwise if we do have remaining packets, and we've
2300                          * scheduled some packets in this interval, take the
2301                          * largest max packet size from endpoints with this
2302                          * interval.
2303                          */
2304                         packet_size = largest_mps;
2305                         overhead = interval_overhead;
2306                 }
2307                 /* Otherwise carry over packet_size and overhead from the last
2308                  * time we had a remainder.
2309                  */
2310                 bw_used += bw_added;
2311                 if (bw_used > max_bandwidth) {
2312                         xhci_warn(xhci, "Not enough bandwidth. "
2313                                         "Proposed: %u, Max: %u\n",
2314                                 bw_used, max_bandwidth);
2315                         return -ENOMEM;
2316                 }
2317         }
2318         /*
2319          * Ok, we know we have some packets left over after even-handedly
2320          * scheduling interval 15.  We don't know which microframes they will
2321          * fit into, so we over-schedule and say they will be scheduled every
2322          * microframe.
2323          */
2324         if (packets_remaining > 0)
2325                 bw_used += overhead + packet_size;
2326
2327         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2328                 unsigned int port_index = virt_dev->real_port - 1;
2329
2330                 /* OK, we're manipulating a HS device attached to a
2331                  * root port bandwidth domain.  Include the number of active TTs
2332                  * in the bandwidth used.
2333                  */
2334                 bw_used += TT_HS_OVERHEAD *
2335                         xhci->rh_bw[port_index].num_active_tts;
2336         }
2337
2338         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2339                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2340                 "Available: %u " "percent",
2341                 bw_used, max_bandwidth, bw_reserved,
2342                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2343                 max_bandwidth);
2344
2345         bw_used += bw_reserved;
2346         if (bw_used > max_bandwidth) {
2347                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2348                                 bw_used, max_bandwidth);
2349                 return -ENOMEM;
2350         }
2351
2352         bw_table->bw_used = bw_used;
2353         return 0;
2354 }
2355
2356 static bool xhci_is_async_ep(unsigned int ep_type)
2357 {
2358         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2359                                         ep_type != ISOC_IN_EP &&
2360                                         ep_type != INT_IN_EP);
2361 }
2362
2363 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2364 {
2365         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2366 }
2367
2368 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2369 {
2370         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2371
2372         if (ep_bw->ep_interval == 0)
2373                 return SS_OVERHEAD_BURST +
2374                         (ep_bw->mult * ep_bw->num_packets *
2375                                         (SS_OVERHEAD + mps));
2376         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2377                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2378                                 1 << ep_bw->ep_interval);
2379
2380 }
2381
2382 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2383                 struct xhci_bw_info *ep_bw,
2384                 struct xhci_interval_bw_table *bw_table,
2385                 struct usb_device *udev,
2386                 struct xhci_virt_ep *virt_ep,
2387                 struct xhci_tt_bw_info *tt_info)
2388 {
2389         struct xhci_interval_bw *interval_bw;
2390         int normalized_interval;
2391
2392         if (xhci_is_async_ep(ep_bw->type))
2393                 return;
2394
2395         if (udev->speed == USB_SPEED_SUPER) {
2396                 if (xhci_is_sync_in_ep(ep_bw->type))
2397                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2398                                 xhci_get_ss_bw_consumed(ep_bw);
2399                 else
2400                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2401                                 xhci_get_ss_bw_consumed(ep_bw);
2402                 return;
2403         }
2404
2405         /* SuperSpeed endpoints never get added to intervals in the table, so
2406          * this check is only valid for HS/FS/LS devices.
2407          */
2408         if (list_empty(&virt_ep->bw_endpoint_list))
2409                 return;
2410         /* For LS/FS devices, we need to translate the interval expressed in
2411          * microframes to frames.
2412          */
2413         if (udev->speed == USB_SPEED_HIGH)
2414                 normalized_interval = ep_bw->ep_interval;
2415         else
2416                 normalized_interval = ep_bw->ep_interval - 3;
2417
2418         if (normalized_interval == 0)
2419                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2420         interval_bw = &bw_table->interval_bw[normalized_interval];
2421         interval_bw->num_packets -= ep_bw->num_packets;
2422         switch (udev->speed) {
2423         case USB_SPEED_LOW:
2424                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2425                 break;
2426         case USB_SPEED_FULL:
2427                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2428                 break;
2429         case USB_SPEED_HIGH:
2430                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2431                 break;
2432         case USB_SPEED_SUPER:
2433         case USB_SPEED_UNKNOWN:
2434         case USB_SPEED_WIRELESS:
2435                 /* Should never happen because only LS/FS/HS endpoints will get
2436                  * added to the endpoint list.
2437                  */
2438                 return;
2439         }
2440         if (tt_info)
2441                 tt_info->active_eps -= 1;
2442         list_del_init(&virt_ep->bw_endpoint_list);
2443 }
2444
2445 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2446                 struct xhci_bw_info *ep_bw,
2447                 struct xhci_interval_bw_table *bw_table,
2448                 struct usb_device *udev,
2449                 struct xhci_virt_ep *virt_ep,
2450                 struct xhci_tt_bw_info *tt_info)
2451 {
2452         struct xhci_interval_bw *interval_bw;
2453         struct xhci_virt_ep *smaller_ep;
2454         int normalized_interval;
2455
2456         if (xhci_is_async_ep(ep_bw->type))
2457                 return;
2458
2459         if (udev->speed == USB_SPEED_SUPER) {
2460                 if (xhci_is_sync_in_ep(ep_bw->type))
2461                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2462                                 xhci_get_ss_bw_consumed(ep_bw);
2463                 else
2464                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2465                                 xhci_get_ss_bw_consumed(ep_bw);
2466                 return;
2467         }
2468
2469         /* For LS/FS devices, we need to translate the interval expressed in
2470          * microframes to frames.
2471          */
2472         if (udev->speed == USB_SPEED_HIGH)
2473                 normalized_interval = ep_bw->ep_interval;
2474         else
2475                 normalized_interval = ep_bw->ep_interval - 3;
2476
2477         if (normalized_interval == 0)
2478                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2479         interval_bw = &bw_table->interval_bw[normalized_interval];
2480         interval_bw->num_packets += ep_bw->num_packets;
2481         switch (udev->speed) {
2482         case USB_SPEED_LOW:
2483                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2484                 break;
2485         case USB_SPEED_FULL:
2486                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2487                 break;
2488         case USB_SPEED_HIGH:
2489                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2490                 break;
2491         case USB_SPEED_SUPER:
2492         case USB_SPEED_UNKNOWN:
2493         case USB_SPEED_WIRELESS:
2494                 /* Should never happen because only LS/FS/HS endpoints will get
2495                  * added to the endpoint list.
2496                  */
2497                 return;
2498         }
2499
2500         if (tt_info)
2501                 tt_info->active_eps += 1;
2502         /* Insert the endpoint into the list, largest max packet size first. */
2503         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2504                         bw_endpoint_list) {
2505                 if (ep_bw->max_packet_size >=
2506                                 smaller_ep->bw_info.max_packet_size) {
2507                         /* Add the new ep before the smaller endpoint */
2508                         list_add_tail(&virt_ep->bw_endpoint_list,
2509                                         &smaller_ep->bw_endpoint_list);
2510                         return;
2511                 }
2512         }
2513         /* Add the new endpoint at the end of the list. */
2514         list_add_tail(&virt_ep->bw_endpoint_list,
2515                         &interval_bw->endpoints);
2516 }
2517
2518 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2519                 struct xhci_virt_device *virt_dev,
2520                 int old_active_eps)
2521 {
2522         struct xhci_root_port_bw_info *rh_bw_info;
2523         if (!virt_dev->tt_info)
2524                 return;
2525
2526         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2527         if (old_active_eps == 0 &&
2528                                 virt_dev->tt_info->active_eps != 0) {
2529                 rh_bw_info->num_active_tts += 1;
2530                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2531         } else if (old_active_eps != 0 &&
2532                                 virt_dev->tt_info->active_eps == 0) {
2533                 rh_bw_info->num_active_tts -= 1;
2534                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2535         }
2536 }
2537
2538 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2539                 struct xhci_virt_device *virt_dev,
2540                 struct xhci_container_ctx *in_ctx)
2541 {
2542         struct xhci_bw_info ep_bw_info[31];
2543         int i;
2544         struct xhci_input_control_ctx *ctrl_ctx;
2545         int old_active_eps = 0;
2546
2547         if (virt_dev->tt_info)
2548                 old_active_eps = virt_dev->tt_info->active_eps;
2549
2550         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2551         if (!ctrl_ctx) {
2552                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2553                                 __func__);
2554                 return -ENOMEM;
2555         }
2556
2557         for (i = 0; i < 31; i++) {
2558                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2559                         continue;
2560
2561                 /* Make a copy of the BW info in case we need to revert this */
2562                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2563                                 sizeof(ep_bw_info[i]));
2564                 /* Drop the endpoint from the interval table if the endpoint is
2565                  * being dropped or changed.
2566                  */
2567                 if (EP_IS_DROPPED(ctrl_ctx, i))
2568                         xhci_drop_ep_from_interval_table(xhci,
2569                                         &virt_dev->eps[i].bw_info,
2570                                         virt_dev->bw_table,
2571                                         virt_dev->udev,
2572                                         &virt_dev->eps[i],
2573                                         virt_dev->tt_info);
2574         }
2575         /* Overwrite the information stored in the endpoints' bw_info */
2576         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2577         for (i = 0; i < 31; i++) {
2578                 /* Add any changed or added endpoints to the interval table */
2579                 if (EP_IS_ADDED(ctrl_ctx, i))
2580                         xhci_add_ep_to_interval_table(xhci,
2581                                         &virt_dev->eps[i].bw_info,
2582                                         virt_dev->bw_table,
2583                                         virt_dev->udev,
2584                                         &virt_dev->eps[i],
2585                                         virt_dev->tt_info);
2586         }
2587
2588         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2589                 /* Ok, this fits in the bandwidth we have.
2590                  * Update the number of active TTs.
2591                  */
2592                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2593                 return 0;
2594         }
2595
2596         /* We don't have enough bandwidth for this, revert the stored info. */
2597         for (i = 0; i < 31; i++) {
2598                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2599                         continue;
2600
2601                 /* Drop the new copies of any added or changed endpoints from
2602                  * the interval table.
2603                  */
2604                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2605                         xhci_drop_ep_from_interval_table(xhci,
2606                                         &virt_dev->eps[i].bw_info,
2607                                         virt_dev->bw_table,
2608                                         virt_dev->udev,
2609                                         &virt_dev->eps[i],
2610                                         virt_dev->tt_info);
2611                 }
2612                 /* Revert the endpoint back to its old information */
2613                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2614                                 sizeof(ep_bw_info[i]));
2615                 /* Add any changed or dropped endpoints back into the table */
2616                 if (EP_IS_DROPPED(ctrl_ctx, i))
2617                         xhci_add_ep_to_interval_table(xhci,
2618                                         &virt_dev->eps[i].bw_info,
2619                                         virt_dev->bw_table,
2620                                         virt_dev->udev,
2621                                         &virt_dev->eps[i],
2622                                         virt_dev->tt_info);
2623         }
2624         return -ENOMEM;
2625 }
2626
2627
2628 /* Issue a configure endpoint command or evaluate context command
2629  * and wait for it to finish.
2630  */
2631 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2632                 struct usb_device *udev,
2633                 struct xhci_command *command,
2634                 bool ctx_change, bool must_succeed)
2635 {
2636         int ret;
2637         unsigned long flags;
2638         struct xhci_input_control_ctx *ctrl_ctx;
2639         struct xhci_virt_device *virt_dev;
2640
2641         if (!command)
2642                 return -EINVAL;
2643
2644         spin_lock_irqsave(&xhci->lock, flags);
2645         virt_dev = xhci->devs[udev->slot_id];
2646
2647         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2648         if (!ctrl_ctx) {
2649                 spin_unlock_irqrestore(&xhci->lock, flags);
2650                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2651                                 __func__);
2652                 return -ENOMEM;
2653         }
2654
2655         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2656                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2657                 spin_unlock_irqrestore(&xhci->lock, flags);
2658                 xhci_warn(xhci, "Not enough host resources, "
2659                                 "active endpoint contexts = %u\n",
2660                                 xhci->num_active_eps);
2661                 return -ENOMEM;
2662         }
2663         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2664             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2665                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2666                         xhci_free_host_resources(xhci, ctrl_ctx);
2667                 spin_unlock_irqrestore(&xhci->lock, flags);
2668                 xhci_warn(xhci, "Not enough bandwidth\n");
2669                 return -ENOMEM;
2670         }
2671
2672         if (!ctx_change)
2673                 ret = xhci_queue_configure_endpoint(xhci, command,
2674                                 command->in_ctx->dma,
2675                                 udev->slot_id, must_succeed);
2676         else
2677                 ret = xhci_queue_evaluate_context(xhci, command,
2678                                 command->in_ctx->dma,
2679                                 udev->slot_id, must_succeed);
2680         if (ret < 0) {
2681                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2682                         xhci_free_host_resources(xhci, ctrl_ctx);
2683                 spin_unlock_irqrestore(&xhci->lock, flags);
2684                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2685                                 "FIXME allocate a new ring segment");
2686                 return -ENOMEM;
2687         }
2688         xhci_ring_cmd_db(xhci);
2689         spin_unlock_irqrestore(&xhci->lock, flags);
2690
2691         /* Wait for the configure endpoint command to complete */
2692         wait_for_completion(command->completion);
2693
2694         if (!ctx_change)
2695                 ret = xhci_configure_endpoint_result(xhci, udev,
2696                                                      &command->status);
2697         else
2698                 ret = xhci_evaluate_context_result(xhci, udev,
2699                                                    &command->status);
2700
2701         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2702                 spin_lock_irqsave(&xhci->lock, flags);
2703                 /* If the command failed, remove the reserved resources.
2704                  * Otherwise, clean up the estimate to include dropped eps.
2705                  */
2706                 if (ret)
2707                         xhci_free_host_resources(xhci, ctrl_ctx);
2708                 else
2709                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2710                 spin_unlock_irqrestore(&xhci->lock, flags);
2711         }
2712         return ret;
2713 }
2714
2715 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2716         struct xhci_virt_device *vdev, int i)
2717 {
2718         struct xhci_virt_ep *ep = &vdev->eps[i];
2719
2720         if (ep->ep_state & EP_HAS_STREAMS) {
2721                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2722                                 xhci_get_endpoint_address(i));
2723                 xhci_free_stream_info(xhci, ep->stream_info);
2724                 ep->stream_info = NULL;
2725                 ep->ep_state &= ~EP_HAS_STREAMS;
2726         }
2727 }
2728
2729 /* Called after one or more calls to xhci_add_endpoint() or
2730  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2731  * to call xhci_reset_bandwidth().
2732  *
2733  * Since we are in the middle of changing either configuration or
2734  * installing a new alt setting, the USB core won't allow URBs to be
2735  * enqueued for any endpoint on the old config or interface.  Nothing
2736  * else should be touching the xhci->devs[slot_id] structure, so we
2737  * don't need to take the xhci->lock for manipulating that.
2738  */
2739 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2740 {
2741         int i;
2742         int ret = 0;
2743         struct xhci_hcd *xhci;
2744         struct xhci_virt_device *virt_dev;
2745         struct xhci_input_control_ctx *ctrl_ctx;
2746         struct xhci_slot_ctx *slot_ctx;
2747         struct xhci_command *command;
2748
2749         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2750         if (ret <= 0)
2751                 return ret;
2752         xhci = hcd_to_xhci(hcd);
2753         if (xhci->xhc_state & XHCI_STATE_DYING)
2754                 return -ENODEV;
2755
2756         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2757         virt_dev = xhci->devs[udev->slot_id];
2758
2759         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2760         if (!command)
2761                 return -ENOMEM;
2762
2763         command->in_ctx = virt_dev->in_ctx;
2764
2765         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2766         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767         if (!ctrl_ctx) {
2768                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2769                                 __func__);
2770                 ret = -ENOMEM;
2771                 goto command_cleanup;
2772         }
2773         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2774         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2775         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2776
2777         /* Don't issue the command if there's no endpoints to update. */
2778         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2779             ctrl_ctx->drop_flags == 0) {
2780                 ret = 0;
2781                 goto command_cleanup;
2782         }
2783         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2784         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2785         for (i = 31; i >= 1; i--) {
2786                 __le32 le32 = cpu_to_le32(BIT(i));
2787
2788                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2789                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2790                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2791                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2792                         break;
2793                 }
2794         }
2795         xhci_dbg(xhci, "New Input Control Context:\n");
2796         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2797                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2798
2799         ret = xhci_configure_endpoint(xhci, udev, command,
2800                         false, false);
2801         if (ret)
2802                 /* Callee should call reset_bandwidth() */
2803                 goto command_cleanup;
2804
2805         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2806         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2807                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2808
2809         /* Free any rings that were dropped, but not changed. */
2810         for (i = 1; i < 31; ++i) {
2811                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2812                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2813                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2814                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2815                 }
2816         }
2817         xhci_zero_in_ctx(xhci, virt_dev);
2818         /*
2819          * Install any rings for completely new endpoints or changed endpoints,
2820          * and free or cache any old rings from changed endpoints.
2821          */
2822         for (i = 1; i < 31; ++i) {
2823                 if (!virt_dev->eps[i].new_ring)
2824                         continue;
2825                 /* Only cache or free the old ring if it exists.
2826                  * It may not if this is the first add of an endpoint.
2827                  */
2828                 if (virt_dev->eps[i].ring) {
2829                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2830                 }
2831                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2832                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2833                 virt_dev->eps[i].new_ring = NULL;
2834         }
2835 command_cleanup:
2836         kfree(command->completion);
2837         kfree(command);
2838
2839         return ret;
2840 }
2841
2842 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2843 {
2844         struct xhci_hcd *xhci;
2845         struct xhci_virt_device *virt_dev;
2846         int i, ret;
2847
2848         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2849         if (ret <= 0)
2850                 return;
2851         xhci = hcd_to_xhci(hcd);
2852
2853         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2854         virt_dev = xhci->devs[udev->slot_id];
2855         /* Free any rings allocated for added endpoints */
2856         for (i = 0; i < 31; ++i) {
2857                 if (virt_dev->eps[i].new_ring) {
2858                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2859                         virt_dev->eps[i].new_ring = NULL;
2860                 }
2861         }
2862         xhci_zero_in_ctx(xhci, virt_dev);
2863 }
2864
2865 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2866                 struct xhci_container_ctx *in_ctx,
2867                 struct xhci_container_ctx *out_ctx,
2868                 struct xhci_input_control_ctx *ctrl_ctx,
2869                 u32 add_flags, u32 drop_flags)
2870 {
2871         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2872         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2873         xhci_slot_copy(xhci, in_ctx, out_ctx);
2874         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2875
2876         xhci_dbg(xhci, "Input Context:\n");
2877         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2878 }
2879
2880 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2881                 unsigned int slot_id, unsigned int ep_index,
2882                 struct xhci_dequeue_state *deq_state)
2883 {
2884         struct xhci_input_control_ctx *ctrl_ctx;
2885         struct xhci_container_ctx *in_ctx;
2886         struct xhci_ep_ctx *ep_ctx;
2887         u32 added_ctxs;
2888         dma_addr_t addr;
2889
2890         in_ctx = xhci->devs[slot_id]->in_ctx;
2891         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2892         if (!ctrl_ctx) {
2893                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894                                 __func__);
2895                 return;
2896         }
2897
2898         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2899                         xhci->devs[slot_id]->out_ctx, ep_index);
2900         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2901         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2902                         deq_state->new_deq_ptr);
2903         if (addr == 0) {
2904                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2905                                 "reset ep command\n");
2906                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2907                                 deq_state->new_deq_seg,
2908                                 deq_state->new_deq_ptr);
2909                 return;
2910         }
2911         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2912
2913         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2914         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2915                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2916                         added_ctxs, added_ctxs);
2917 }
2918
2919 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2920                         unsigned int ep_index, struct xhci_td *td)
2921 {
2922         struct xhci_dequeue_state deq_state;
2923         struct xhci_virt_ep *ep;
2924         struct usb_device *udev = td->urb->dev;
2925
2926         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2927                         "Cleaning up stalled endpoint ring");
2928         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2929         /* We need to move the HW's dequeue pointer past this TD,
2930          * or it will attempt to resend it on the next doorbell ring.
2931          */
2932         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2933                         ep_index, ep->stopped_stream, td, &deq_state);
2934
2935         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2936                 return;
2937
2938         /* HW with the reset endpoint quirk will use the saved dequeue state to
2939          * issue a configure endpoint command later.
2940          */
2941         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2942                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943                                 "Queueing new dequeue state");
2944                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2945                                 ep_index, ep->stopped_stream, &deq_state);
2946         } else {
2947                 /* Better hope no one uses the input context between now and the
2948                  * reset endpoint completion!
2949                  * XXX: No idea how this hardware will react when stream rings
2950                  * are enabled.
2951                  */
2952                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2953                                 "Setting up input context for "
2954                                 "configure endpoint command");
2955                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2956                                 ep_index, &deq_state);
2957         }
2958 }
2959
2960 /* Called when clearing halted device. The core should have sent the control
2961  * message to clear the device halt condition. The host side of the halt should
2962  * already be cleared with a reset endpoint command issued when the STALL tx
2963  * event was received.
2964  *
2965  * Context: in_interrupt
2966  */
2967
2968 void xhci_endpoint_reset(struct usb_hcd *hcd,
2969                 struct usb_host_endpoint *ep)
2970 {
2971         struct xhci_hcd *xhci;
2972
2973         xhci = hcd_to_xhci(hcd);
2974
2975         /*
2976          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2977          * The Reset Endpoint Command may only be issued to endpoints in the
2978          * Halted state. If software wishes reset the Data Toggle or Sequence
2979          * Number of an endpoint that isn't in the Halted state, then software
2980          * may issue a Configure Endpoint Command with the Drop and Add bits set
2981          * for the target endpoint. that is in the Stopped state.
2982          */
2983
2984         /* For now just print debug to follow the situation */
2985         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2986                  ep->desc.bEndpointAddress);
2987 }
2988
2989 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2990                 struct usb_device *udev, struct usb_host_endpoint *ep,
2991                 unsigned int slot_id)
2992 {
2993         int ret;
2994         unsigned int ep_index;
2995         unsigned int ep_state;
2996
2997         if (!ep)
2998                 return -EINVAL;
2999         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3000         if (ret <= 0)
3001                 return -EINVAL;
3002         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3003                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3004                                 " descriptor for ep 0x%x does not support streams\n",
3005                                 ep->desc.bEndpointAddress);
3006                 return -EINVAL;
3007         }
3008
3009         ep_index = xhci_get_endpoint_index(&ep->desc);
3010         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3011         if (ep_state & EP_HAS_STREAMS ||
3012                         ep_state & EP_GETTING_STREAMS) {
3013                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3014                                 "already has streams set up.\n",
3015                                 ep->desc.bEndpointAddress);
3016                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3017                                 "dynamic stream context array reallocation.\n");
3018                 return -EINVAL;
3019         }
3020         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3021                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3022                                 "endpoint 0x%x; URBs are pending.\n",
3023                                 ep->desc.bEndpointAddress);
3024                 return -EINVAL;
3025         }
3026         return 0;
3027 }
3028
3029 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3030                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3031 {
3032         unsigned int max_streams;
3033
3034         /* The stream context array size must be a power of two */
3035         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3036         /*
3037          * Find out how many primary stream array entries the host controller
3038          * supports.  Later we may use secondary stream arrays (similar to 2nd
3039          * level page entries), but that's an optional feature for xHCI host
3040          * controllers. xHCs must support at least 4 stream IDs.
3041          */
3042         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3043         if (*num_stream_ctxs > max_streams) {
3044                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3045                                 max_streams);
3046                 *num_stream_ctxs = max_streams;
3047                 *num_streams = max_streams;
3048         }
3049 }
3050
3051 /* Returns an error code if one of the endpoint already has streams.
3052  * This does not change any data structures, it only checks and gathers
3053  * information.
3054  */
3055 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3056                 struct usb_device *udev,
3057                 struct usb_host_endpoint **eps, unsigned int num_eps,
3058                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3059 {
3060         unsigned int max_streams;
3061         unsigned int endpoint_flag;
3062         int i;
3063         int ret;
3064
3065         for (i = 0; i < num_eps; i++) {
3066                 ret = xhci_check_streams_endpoint(xhci, udev,
3067                                 eps[i], udev->slot_id);
3068                 if (ret < 0)
3069                         return ret;
3070
3071                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3072                 if (max_streams < (*num_streams - 1)) {
3073                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3074                                         eps[i]->desc.bEndpointAddress,
3075                                         max_streams);
3076                         *num_streams = max_streams+1;
3077                 }
3078
3079                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3080                 if (*changed_ep_bitmask & endpoint_flag)
3081                         return -EINVAL;
3082                 *changed_ep_bitmask |= endpoint_flag;
3083         }
3084         return 0;
3085 }
3086
3087 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3088                 struct usb_device *udev,
3089                 struct usb_host_endpoint **eps, unsigned int num_eps)
3090 {
3091         u32 changed_ep_bitmask = 0;
3092         unsigned int slot_id;
3093         unsigned int ep_index;
3094         unsigned int ep_state;
3095         int i;
3096
3097         slot_id = udev->slot_id;
3098         if (!xhci->devs[slot_id])
3099                 return 0;
3100
3101         for (i = 0; i < num_eps; i++) {
3102                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3103                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3104                 /* Are streams already being freed for the endpoint? */
3105                 if (ep_state & EP_GETTING_NO_STREAMS) {
3106                         xhci_warn(xhci, "WARN Can't disable streams for "
3107                                         "endpoint 0x%x, "
3108                                         "streams are being disabled already\n",
3109                                         eps[i]->desc.bEndpointAddress);
3110                         return 0;
3111                 }
3112                 /* Are there actually any streams to free? */
3113                 if (!(ep_state & EP_HAS_STREAMS) &&
3114                                 !(ep_state & EP_GETTING_STREAMS)) {
3115                         xhci_warn(xhci, "WARN Can't disable streams for "
3116                                         "endpoint 0x%x, "
3117                                         "streams are already disabled!\n",
3118                                         eps[i]->desc.bEndpointAddress);
3119                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3120                                         "with non-streams endpoint\n");
3121                         return 0;
3122                 }
3123                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3124         }
3125         return changed_ep_bitmask;
3126 }
3127
3128 /*
3129  * The USB device drivers use this function (through the HCD interface in USB
3130  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3131  * coordinate mass storage command queueing across multiple endpoints (basically
3132  * a stream ID == a task ID).
3133  *
3134  * Setting up streams involves allocating the same size stream context array
3135  * for each endpoint and issuing a configure endpoint command for all endpoints.
3136  *
3137  * Don't allow the call to succeed if one endpoint only supports one stream
3138  * (which means it doesn't support streams at all).
3139  *
3140  * Drivers may get less stream IDs than they asked for, if the host controller
3141  * hardware or endpoints claim they can't support the number of requested
3142  * stream IDs.
3143  */
3144 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3145                 struct usb_host_endpoint **eps, unsigned int num_eps,
3146                 unsigned int num_streams, gfp_t mem_flags)
3147 {
3148         int i, ret;
3149         struct xhci_hcd *xhci;
3150         struct xhci_virt_device *vdev;
3151         struct xhci_command *config_cmd;
3152         struct xhci_input_control_ctx *ctrl_ctx;
3153         unsigned int ep_index;
3154         unsigned int num_stream_ctxs;
3155         unsigned long flags;
3156         u32 changed_ep_bitmask = 0;
3157
3158         if (!eps)
3159                 return -EINVAL;
3160
3161         /* Add one to the number of streams requested to account for
3162          * stream 0 that is reserved for xHCI usage.
3163          */
3164         num_streams += 1;
3165         xhci = hcd_to_xhci(hcd);
3166         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3167                         num_streams);
3168
3169         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3170         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3171                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3172                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3173                 return -ENOSYS;
3174         }
3175
3176         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3177         if (!config_cmd) {
3178                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3179                 return -ENOMEM;
3180         }
3181         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3182         if (!ctrl_ctx) {
3183                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3184                                 __func__);
3185                 xhci_free_command(xhci, config_cmd);
3186                 return -ENOMEM;
3187         }
3188
3189         /* Check to make sure all endpoints are not already configured for
3190          * streams.  While we're at it, find the maximum number of streams that
3191          * all the endpoints will support and check for duplicate endpoints.
3192          */
3193         spin_lock_irqsave(&xhci->lock, flags);
3194         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3195                         num_eps, &num_streams, &changed_ep_bitmask);
3196         if (ret < 0) {
3197                 xhci_free_command(xhci, config_cmd);
3198                 spin_unlock_irqrestore(&xhci->lock, flags);
3199                 return ret;
3200         }
3201         if (num_streams <= 1) {
3202                 xhci_warn(xhci, "WARN: endpoints can't handle "
3203                                 "more than one stream.\n");
3204                 xhci_free_command(xhci, config_cmd);
3205                 spin_unlock_irqrestore(&xhci->lock, flags);
3206                 return -EINVAL;
3207         }
3208         vdev = xhci->devs[udev->slot_id];
3209         /* Mark each endpoint as being in transition, so
3210          * xhci_urb_enqueue() will reject all URBs.
3211          */
3212         for (i = 0; i < num_eps; i++) {
3213                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3214                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3215         }
3216         spin_unlock_irqrestore(&xhci->lock, flags);
3217
3218         /* Setup internal data structures and allocate HW data structures for
3219          * streams (but don't install the HW structures in the input context
3220          * until we're sure all memory allocation succeeded).
3221          */
3222         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3223         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3224                         num_stream_ctxs, num_streams);
3225
3226         for (i = 0; i < num_eps; i++) {
3227                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3229                                 num_stream_ctxs,
3230                                 num_streams, mem_flags);
3231                 if (!vdev->eps[ep_index].stream_info)
3232                         goto cleanup;
3233                 /* Set maxPstreams in endpoint context and update deq ptr to
3234                  * point to stream context array. FIXME
3235                  */
3236         }
3237
3238         /* Set up the input context for a configure endpoint command. */
3239         for (i = 0; i < num_eps; i++) {
3240                 struct xhci_ep_ctx *ep_ctx;
3241
3242                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3243                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3244
3245                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3246                                 vdev->out_ctx, ep_index);
3247                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3248                                 vdev->eps[ep_index].stream_info);
3249         }
3250         /* Tell the HW to drop its old copy of the endpoint context info
3251          * and add the updated copy from the input context.
3252          */
3253         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3254                         vdev->out_ctx, ctrl_ctx,
3255                         changed_ep_bitmask, changed_ep_bitmask);
3256
3257         /* Issue and wait for the configure endpoint command */
3258         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3259                         false, false);
3260
3261         /* xHC rejected the configure endpoint command for some reason, so we
3262          * leave the old ring intact and free our internal streams data
3263          * structure.
3264          */
3265         if (ret < 0)
3266                 goto cleanup;
3267
3268         spin_lock_irqsave(&xhci->lock, flags);
3269         for (i = 0; i < num_eps; i++) {
3270                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3271                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3272                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3273                          udev->slot_id, ep_index);
3274                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3275         }
3276         xhci_free_command(xhci, config_cmd);
3277         spin_unlock_irqrestore(&xhci->lock, flags);
3278
3279         /* Subtract 1 for stream 0, which drivers can't use */
3280         return num_streams - 1;
3281
3282 cleanup:
3283         /* If it didn't work, free the streams! */
3284         for (i = 0; i < num_eps; i++) {
3285                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3286                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3287                 vdev->eps[ep_index].stream_info = NULL;
3288                 /* FIXME Unset maxPstreams in endpoint context and
3289                  * update deq ptr to point to normal string ring.
3290                  */
3291                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3292                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3293                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3294         }
3295         xhci_free_command(xhci, config_cmd);
3296         return -ENOMEM;
3297 }
3298
3299 /* Transition the endpoint from using streams to being a "normal" endpoint
3300  * without streams.
3301  *
3302  * Modify the endpoint context state, submit a configure endpoint command,
3303  * and free all endpoint rings for streams if that completes successfully.
3304  */
3305 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3306                 struct usb_host_endpoint **eps, unsigned int num_eps,
3307                 gfp_t mem_flags)
3308 {
3309         int i, ret;
3310         struct xhci_hcd *xhci;
3311         struct xhci_virt_device *vdev;
3312         struct xhci_command *command;
3313         struct xhci_input_control_ctx *ctrl_ctx;
3314         unsigned int ep_index;
3315         unsigned long flags;
3316         u32 changed_ep_bitmask;
3317
3318         xhci = hcd_to_xhci(hcd);
3319         vdev = xhci->devs[udev->slot_id];
3320
3321         /* Set up a configure endpoint command to remove the streams rings */
3322         spin_lock_irqsave(&xhci->lock, flags);
3323         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3324                         udev, eps, num_eps);
3325         if (changed_ep_bitmask == 0) {
3326                 spin_unlock_irqrestore(&xhci->lock, flags);
3327                 return -EINVAL;
3328         }
3329
3330         /* Use the xhci_command structure from the first endpoint.  We may have
3331          * allocated too many, but the driver may call xhci_free_streams() for
3332          * each endpoint it grouped into one call to xhci_alloc_streams().
3333          */
3334         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3335         command = vdev->eps[ep_index].stream_info->free_streams_command;
3336         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3337         if (!ctrl_ctx) {
3338                 spin_unlock_irqrestore(&xhci->lock, flags);
3339                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3340                                 __func__);
3341                 return -EINVAL;
3342         }
3343
3344         for (i = 0; i < num_eps; i++) {
3345                 struct xhci_ep_ctx *ep_ctx;
3346
3347                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3348                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3349                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3350                         EP_GETTING_NO_STREAMS;
3351
3352                 xhci_endpoint_copy(xhci, command->in_ctx,
3353                                 vdev->out_ctx, ep_index);
3354                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3355                                 &vdev->eps[ep_index]);
3356         }
3357         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3358                         vdev->out_ctx, ctrl_ctx,
3359                         changed_ep_bitmask, changed_ep_bitmask);
3360         spin_unlock_irqrestore(&xhci->lock, flags);
3361
3362         /* Issue and wait for the configure endpoint command,
3363          * which must succeed.
3364          */
3365         ret = xhci_configure_endpoint(xhci, udev, command,
3366                         false, true);
3367
3368         /* xHC rejected the configure endpoint command for some reason, so we
3369          * leave the streams rings intact.
3370          */
3371         if (ret < 0)
3372                 return ret;
3373
3374         spin_lock_irqsave(&xhci->lock, flags);
3375         for (i = 0; i < num_eps; i++) {
3376                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3377                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3378                 vdev->eps[ep_index].stream_info = NULL;
3379                 /* FIXME Unset maxPstreams in endpoint context and
3380                  * update deq ptr to point to normal string ring.
3381                  */
3382                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3383                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3384         }
3385         spin_unlock_irqrestore(&xhci->lock, flags);
3386
3387         return 0;
3388 }
3389
3390 /*
3391  * Deletes endpoint resources for endpoints that were active before a Reset
3392  * Device command, or a Disable Slot command.  The Reset Device command leaves
3393  * the control endpoint intact, whereas the Disable Slot command deletes it.
3394  *
3395  * Must be called with xhci->lock held.
3396  */
3397 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3398         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3399 {
3400         int i;
3401         unsigned int num_dropped_eps = 0;
3402         unsigned int drop_flags = 0;
3403
3404         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3405                 if (virt_dev->eps[i].ring) {
3406                         drop_flags |= 1 << i;
3407                         num_dropped_eps++;
3408                 }
3409         }
3410         xhci->num_active_eps -= num_dropped_eps;
3411         if (num_dropped_eps)
3412                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3413                                 "Dropped %u ep ctxs, flags = 0x%x, "
3414                                 "%u now active.",
3415                                 num_dropped_eps, drop_flags,
3416                                 xhci->num_active_eps);
3417 }
3418
3419 /*
3420  * This submits a Reset Device Command, which will set the device state to 0,
3421  * set the device address to 0, and disable all the endpoints except the default
3422  * control endpoint.  The USB core should come back and call
3423  * xhci_address_device(), and then re-set up the configuration.  If this is
3424  * called because of a usb_reset_and_verify_device(), then the old alternate
3425  * settings will be re-installed through the normal bandwidth allocation
3426  * functions.
3427  *
3428  * Wait for the Reset Device command to finish.  Remove all structures
3429  * associated with the endpoints that were disabled.  Clear the input device
3430  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3431  *
3432  * If the virt_dev to be reset does not exist or does not match the udev,
3433  * it means the device is lost, possibly due to the xHC restore error and
3434  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3435  * re-allocate the device.
3436  */
3437 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3438 {
3439         int ret, i;
3440         unsigned long flags;
3441         struct xhci_hcd *xhci;
3442         unsigned int slot_id;
3443         struct xhci_virt_device *virt_dev;
3444         struct xhci_command *reset_device_cmd;
3445         int last_freed_endpoint;
3446         struct xhci_slot_ctx *slot_ctx;
3447         int old_active_eps = 0;
3448
3449         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3450         if (ret <= 0)
3451                 return ret;
3452         xhci = hcd_to_xhci(hcd);
3453         slot_id = udev->slot_id;
3454         virt_dev = xhci->devs[slot_id];
3455         if (!virt_dev) {
3456                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3457                                 "not exist. Re-allocate the device\n", slot_id);
3458                 ret = xhci_alloc_dev(hcd, udev);
3459                 if (ret == 1)
3460                         return 0;
3461                 else
3462                         return -EINVAL;
3463         }
3464
3465         if (virt_dev->tt_info)
3466                 old_active_eps = virt_dev->tt_info->active_eps;
3467
3468         if (virt_dev->udev != udev) {
3469                 /* If the virt_dev and the udev does not match, this virt_dev
3470                  * may belong to another udev.
3471                  * Re-allocate the device.
3472                  */
3473                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3474                                 "not match the udev. Re-allocate the device\n",
3475                                 slot_id);
3476                 ret = xhci_alloc_dev(hcd, udev);
3477                 if (ret == 1)
3478                         return 0;
3479                 else
3480                         return -EINVAL;
3481         }
3482
3483         /* If device is not setup, there is no point in resetting it */
3484         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3485         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3486                                                 SLOT_STATE_DISABLED)
3487                 return 0;
3488
3489         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3490         /* Allocate the command structure that holds the struct completion.
3491          * Assume we're in process context, since the normal device reset
3492          * process has to wait for the device anyway.  Storage devices are
3493          * reset as part of error handling, so use GFP_NOIO instead of
3494          * GFP_KERNEL.
3495          */
3496         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3497         if (!reset_device_cmd) {
3498                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3499                 return -ENOMEM;
3500         }
3501
3502         /* Attempt to submit the Reset Device command to the command ring */
3503         spin_lock_irqsave(&xhci->lock, flags);
3504
3505         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3506         if (ret) {
3507                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3508                 spin_unlock_irqrestore(&xhci->lock, flags);
3509                 goto command_cleanup;
3510         }
3511         xhci_ring_cmd_db(xhci);
3512         spin_unlock_irqrestore(&xhci->lock, flags);
3513
3514         /* Wait for the Reset Device command to finish */
3515         wait_for_completion(reset_device_cmd->completion);
3516
3517         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3518          * unless we tried to reset a slot ID that wasn't enabled,
3519          * or the device wasn't in the addressed or configured state.
3520          */
3521         ret = reset_device_cmd->status;
3522         switch (ret) {
3523         case COMP_CMD_ABORT:
3524         case COMP_CMD_STOP:
3525                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3526                 ret = -ETIME;
3527                 goto command_cleanup;
3528         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3529         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3530                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3531                                 slot_id,
3532                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3533                 xhci_dbg(xhci, "Not freeing device rings.\n");
3534                 /* Don't treat this as an error.  May change my mind later. */
3535                 ret = 0;
3536                 goto command_cleanup;
3537         case COMP_SUCCESS:
3538                 xhci_dbg(xhci, "Successful reset device command.\n");
3539                 break;
3540         default:
3541                 if (xhci_is_vendor_info_code(xhci, ret))
3542                         break;
3543                 xhci_warn(xhci, "Unknown completion code %u for "
3544                                 "reset device command.\n", ret);
3545                 ret = -EINVAL;
3546                 goto command_cleanup;
3547         }
3548
3549         /* Free up host controller endpoint resources */
3550         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3551                 spin_lock_irqsave(&xhci->lock, flags);
3552                 /* Don't delete the default control endpoint resources */
3553                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3554                 spin_unlock_irqrestore(&xhci->lock, flags);
3555         }
3556
3557         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3558         last_freed_endpoint = 1;
3559         for (i = 1; i < 31; ++i) {
3560                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3561
3562                 if (ep->ep_state & EP_HAS_STREAMS) {
3563                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3564                                         xhci_get_endpoint_address(i));
3565                         xhci_free_stream_info(xhci, ep->stream_info);
3566                         ep->stream_info = NULL;
3567                         ep->ep_state &= ~EP_HAS_STREAMS;
3568                 }
3569
3570                 if (ep->ring) {
3571                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3572                         last_freed_endpoint = i;
3573                 }
3574                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3575                         xhci_drop_ep_from_interval_table(xhci,
3576                                         &virt_dev->eps[i].bw_info,
3577                                         virt_dev->bw_table,
3578                                         udev,
3579                                         &virt_dev->eps[i],
3580                                         virt_dev->tt_info);
3581                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3582         }
3583         /* If necessary, update the number of active TTs on this root port */
3584         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3585
3586         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3587         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3588         ret = 0;
3589
3590 command_cleanup:
3591         xhci_free_command(xhci, reset_device_cmd);
3592         return ret;
3593 }
3594
3595 /*
3596  * At this point, the struct usb_device is about to go away, the device has
3597  * disconnected, and all traffic has been stopped and the endpoints have been
3598  * disabled.  Free any HC data structures associated with that device.
3599  */
3600 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3601 {
3602         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3603         struct xhci_virt_device *virt_dev;
3604         unsigned long flags;
3605         u32 state;
3606         int i, ret;
3607         struct xhci_command *command;
3608
3609         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3610         if (!command)
3611                 return;
3612
3613 #ifndef CONFIG_USB_DEFAULT_PERSIST
3614         /*
3615          * We called pm_runtime_get_noresume when the device was attached.
3616          * Decrement the counter here to allow controller to runtime suspend
3617          * if no devices remain.
3618          */
3619         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3620                 pm_runtime_put_noidle(hcd->self.controller);
3621 #endif
3622
3623         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3624         /* If the host is halted due to driver unload, we still need to free the
3625          * device.
3626          */
3627         if (ret <= 0 && ret != -ENODEV) {
3628                 kfree(command);
3629                 return;
3630         }
3631
3632         virt_dev = xhci->devs[udev->slot_id];
3633
3634         /* Stop any wayward timer functions (which may grab the lock) */
3635         for (i = 0; i < 31; ++i) {
3636                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3637                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3638         }
3639
3640         spin_lock_irqsave(&xhci->lock, flags);
3641         /* Don't disable the slot if the host controller is dead. */
3642         state = readl(&xhci->op_regs->status);
3643         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3644                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3645                 xhci_free_virt_device(xhci, udev->slot_id);
3646                 spin_unlock_irqrestore(&xhci->lock, flags);
3647                 kfree(command);
3648                 return;
3649         }
3650
3651         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3652                                     udev->slot_id)) {
3653                 spin_unlock_irqrestore(&xhci->lock, flags);
3654                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3655                 return;
3656         }
3657         xhci_ring_cmd_db(xhci);
3658         spin_unlock_irqrestore(&xhci->lock, flags);
3659
3660         /*
3661          * Event command completion handler will free any data structures
3662          * associated with the slot.  XXX Can free sleep?
3663          */
3664 }
3665
3666 /*
3667  * Checks if we have enough host controller resources for the default control
3668  * endpoint.
3669  *
3670  * Must be called with xhci->lock held.
3671  */
3672 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3673 {
3674         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3675                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3676                                 "Not enough ep ctxs: "
3677                                 "%u active, need to add 1, limit is %u.",
3678                                 xhci->num_active_eps, xhci->limit_active_eps);
3679                 return -ENOMEM;
3680         }
3681         xhci->num_active_eps += 1;
3682         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3683                         "Adding 1 ep ctx, %u now active.",
3684                         xhci->num_active_eps);
3685         return 0;
3686 }
3687
3688
3689 /*
3690  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3691  * timed out, or allocating memory failed.  Returns 1 on success.
3692  */
3693 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3694 {
3695         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3696         unsigned long flags;
3697         int ret, slot_id;
3698         struct xhci_command *command;
3699
3700         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3701         if (!command)
3702                 return 0;
3703
3704         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3705         mutex_lock(&xhci->mutex);
3706         spin_lock_irqsave(&xhci->lock, flags);
3707         command->completion = &xhci->addr_dev;
3708         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3709         if (ret) {
3710                 spin_unlock_irqrestore(&xhci->lock, flags);
3711                 mutex_unlock(&xhci->mutex);
3712                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3713                 kfree(command);
3714                 return 0;
3715         }
3716         xhci_ring_cmd_db(xhci);
3717         spin_unlock_irqrestore(&xhci->lock, flags);
3718
3719         wait_for_completion(command->completion);
3720         slot_id = xhci->slot_id;
3721         mutex_unlock(&xhci->mutex);
3722
3723         if (!slot_id || command->status != COMP_SUCCESS) {
3724                 xhci_err(xhci, "Error while assigning device slot ID\n");
3725                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3726                                 HCS_MAX_SLOTS(
3727                                         readl(&xhci->cap_regs->hcs_params1)));
3728                 kfree(command);
3729                 return 0;
3730         }
3731
3732         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3733                 spin_lock_irqsave(&xhci->lock, flags);
3734                 ret = xhci_reserve_host_control_ep_resources(xhci);
3735                 if (ret) {
3736                         spin_unlock_irqrestore(&xhci->lock, flags);
3737                         xhci_warn(xhci, "Not enough host resources, "
3738                                         "active endpoint contexts = %u\n",
3739                                         xhci->num_active_eps);
3740                         goto disable_slot;
3741                 }
3742                 spin_unlock_irqrestore(&xhci->lock, flags);
3743         }
3744         /* Use GFP_NOIO, since this function can be called from
3745          * xhci_discover_or_reset_device(), which may be called as part of
3746          * mass storage driver error handling.
3747          */
3748         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3749                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3750                 goto disable_slot;
3751         }
3752         udev->slot_id = slot_id;
3753
3754 #ifndef CONFIG_USB_DEFAULT_PERSIST
3755         /*
3756          * If resetting upon resume, we can't put the controller into runtime
3757          * suspend if there is a device attached.
3758          */
3759         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3760                 pm_runtime_get_noresume(hcd->self.controller);
3761 #endif
3762
3763
3764         kfree(command);
3765         /* Is this a LS or FS device under a HS hub? */
3766         /* Hub or peripherial? */
3767         return 1;
3768
3769 disable_slot:
3770         /* Disable slot, if we can do it without mem alloc */
3771         spin_lock_irqsave(&xhci->lock, flags);
3772         command->completion = NULL;
3773         command->status = 0;
3774         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3775                                      udev->slot_id))
3776                 xhci_ring_cmd_db(xhci);
3777         spin_unlock_irqrestore(&xhci->lock, flags);
3778         return 0;
3779 }
3780
3781 /*
3782  * Issue an Address Device command and optionally send a corresponding
3783  * SetAddress request to the device.
3784  */
3785 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3786                              enum xhci_setup_dev setup)
3787 {
3788         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3789         unsigned long flags;
3790         struct xhci_virt_device *virt_dev;
3791         int ret = 0;
3792         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3793         struct xhci_slot_ctx *slot_ctx;
3794         struct xhci_input_control_ctx *ctrl_ctx;
3795         u64 temp_64;
3796         struct xhci_command *command = NULL;
3797
3798         mutex_lock(&xhci->mutex);
3799
3800         if (!udev->slot_id) {
3801                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3802                                 "Bad Slot ID %d", udev->slot_id);
3803                 ret = -EINVAL;
3804                 goto out;
3805         }
3806
3807         virt_dev = xhci->devs[udev->slot_id];
3808
3809         if (WARN_ON(!virt_dev)) {
3810                 /*
3811                  * In plug/unplug torture test with an NEC controller,
3812                  * a zero-dereference was observed once due to virt_dev = 0.
3813                  * Print useful debug rather than crash if it is observed again!
3814                  */
3815                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3816                         udev->slot_id);
3817                 ret = -EINVAL;
3818                 goto out;
3819         }
3820
3821         if (setup == SETUP_CONTEXT_ONLY) {
3822                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3823                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3824                     SLOT_STATE_DEFAULT) {
3825                         xhci_dbg(xhci, "Slot already in default state\n");
3826                         goto out;
3827                 }
3828         }
3829
3830         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3831         if (!command) {
3832                 ret = -ENOMEM;
3833                 goto out;
3834         }
3835
3836         command->in_ctx = virt_dev->in_ctx;
3837         command->completion = &xhci->addr_dev;
3838
3839         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3840         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3841         if (!ctrl_ctx) {
3842                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3843                                 __func__);
3844                 ret = -EINVAL;
3845                 goto out;
3846         }
3847         /*
3848          * If this is the first Set Address since device plug-in or
3849          * virt_device realloaction after a resume with an xHCI power loss,
3850          * then set up the slot context.
3851          */
3852         if (!slot_ctx->dev_info)
3853                 xhci_setup_addressable_virt_dev(xhci, udev);
3854         /* Otherwise, update the control endpoint ring enqueue pointer. */
3855         else
3856                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3857         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3858         ctrl_ctx->drop_flags = 0;
3859
3860         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3861         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3862         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3863                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3864
3865         spin_lock_irqsave(&xhci->lock, flags);
3866         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3867                                         udev->slot_id, setup);
3868         if (ret) {
3869                 spin_unlock_irqrestore(&xhci->lock, flags);
3870                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3871                                 "FIXME: allocate a command ring segment");
3872                 goto out;
3873         }
3874         xhci_ring_cmd_db(xhci);
3875         spin_unlock_irqrestore(&xhci->lock, flags);
3876
3877         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3878         wait_for_completion(command->completion);
3879
3880         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3881          * the SetAddress() "recovery interval" required by USB and aborting the
3882          * command on a timeout.
3883          */
3884         switch (command->status) {
3885         case COMP_CMD_ABORT:
3886         case COMP_CMD_STOP:
3887                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3888                 ret = -ETIME;
3889                 break;
3890         case COMP_CTX_STATE:
3891         case COMP_EBADSLT:
3892                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3893                          act, udev->slot_id);
3894                 ret = -EINVAL;
3895                 break;
3896         case COMP_TX_ERR:
3897                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3898                 ret = -EPROTO;
3899                 break;
3900         case COMP_DEV_ERR:
3901                 dev_warn(&udev->dev,
3902                          "ERROR: Incompatible device for setup %s command\n", act);
3903                 ret = -ENODEV;
3904                 break;
3905         case COMP_SUCCESS:
3906                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3907                                "Successful setup %s command", act);
3908                 break;
3909         default:
3910                 xhci_err(xhci,
3911                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3912                          act, command->status);
3913                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3914                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3915                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3916                 ret = -EINVAL;
3917                 break;
3918         }
3919         if (ret)
3920                 goto out;
3921         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3922         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3923                         "Op regs DCBAA ptr = %#016llx", temp_64);
3924         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3925                 "Slot ID %d dcbaa entry @%p = %#016llx",
3926                 udev->slot_id,
3927                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3928                 (unsigned long long)
3929                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3930         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931                         "Output Context DMA address = %#08llx",
3932                         (unsigned long long)virt_dev->out_ctx->dma);
3933         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3934         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3935         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3936                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3937         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3938         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3939         /*
3940          * USB core uses address 1 for the roothubs, so we add one to the
3941          * address given back to us by the HC.
3942          */
3943         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3944         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3945                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3946         /* Zero the input context control for later use */
3947         ctrl_ctx->add_flags = 0;
3948         ctrl_ctx->drop_flags = 0;
3949
3950         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951                        "Internal device address = %d",
3952                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3953 out:
3954         mutex_unlock(&xhci->mutex);
3955         kfree(command);
3956         return ret;
3957 }
3958
3959 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3960 {
3961         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3962 }
3963
3964 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3965 {
3966         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3967 }
3968
3969 /*
3970  * Transfer the port index into real index in the HW port status
3971  * registers. Caculate offset between the port's PORTSC register
3972  * and port status base. Divide the number of per port register
3973  * to get the real index. The raw port number bases 1.
3974  */
3975 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3976 {
3977         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3978         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3979         __le32 __iomem *addr;
3980         int raw_port;
3981
3982         if (hcd->speed != HCD_USB3)
3983                 addr = xhci->usb2_ports[port1 - 1];
3984         else
3985                 addr = xhci->usb3_ports[port1 - 1];
3986
3987         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3988         return raw_port;
3989 }
3990
3991 /*
3992  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3993  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3994  */
3995 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3996                         struct usb_device *udev, u16 max_exit_latency)
3997 {
3998         struct xhci_virt_device *virt_dev;
3999         struct xhci_command *command;
4000         struct xhci_input_control_ctx *ctrl_ctx;
4001         struct xhci_slot_ctx *slot_ctx;
4002         unsigned long flags;
4003         int ret;
4004
4005         spin_lock_irqsave(&xhci->lock, flags);
4006
4007         virt_dev = xhci->devs[udev->slot_id];
4008
4009         /*
4010          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4011          * xHC was re-initialized. Exit latency will be set later after
4012          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4013          */
4014
4015         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4016                 spin_unlock_irqrestore(&xhci->lock, flags);
4017                 return 0;
4018         }
4019
4020         /* Attempt to issue an Evaluate Context command to change the MEL. */
4021         command = xhci->lpm_command;
4022         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4023         if (!ctrl_ctx) {
4024                 spin_unlock_irqrestore(&xhci->lock, flags);
4025                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4026                                 __func__);
4027                 return -ENOMEM;
4028         }
4029
4030         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4031         spin_unlock_irqrestore(&xhci->lock, flags);
4032
4033         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4034         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4035         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4036         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4037         slot_ctx->dev_state = 0;
4038
4039         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4040                         "Set up evaluate context for LPM MEL change.");
4041         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4042         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4043
4044         /* Issue and wait for the evaluate context command. */
4045         ret = xhci_configure_endpoint(xhci, udev, command,
4046                         true, true);
4047         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4048         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4049
4050         if (!ret) {
4051                 spin_lock_irqsave(&xhci->lock, flags);
4052                 virt_dev->current_mel = max_exit_latency;
4053                 spin_unlock_irqrestore(&xhci->lock, flags);
4054         }
4055         return ret;
4056 }
4057
4058 #ifdef CONFIG_PM
4059
4060 /* BESL to HIRD Encoding array for USB2 LPM */
4061 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4062         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4063
4064 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4065 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4066                                         struct usb_device *udev)
4067 {
4068         int u2del, besl, besl_host;
4069         int besl_device = 0;
4070         u32 field;
4071
4072         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4073         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4074
4075         if (field & USB_BESL_SUPPORT) {
4076                 for (besl_host = 0; besl_host < 16; besl_host++) {
4077                         if (xhci_besl_encoding[besl_host] >= u2del)
4078                                 break;
4079                 }
4080                 /* Use baseline BESL value as default */
4081                 if (field & USB_BESL_BASELINE_VALID)
4082                         besl_device = USB_GET_BESL_BASELINE(field);
4083                 else if (field & USB_BESL_DEEP_VALID)
4084                         besl_device = USB_GET_BESL_DEEP(field);
4085         } else {
4086                 if (u2del <= 50)
4087                         besl_host = 0;
4088                 else
4089                         besl_host = (u2del - 51) / 75 + 1;
4090         }
4091
4092         besl = besl_host + besl_device;
4093         if (besl > 15)
4094                 besl = 15;
4095
4096         return besl;
4097 }
4098
4099 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4100 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4101 {
4102         u32 field;
4103         int l1;
4104         int besld = 0;
4105         int hirdm = 0;
4106
4107         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4108
4109         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4110         l1 = udev->l1_params.timeout / 256;
4111
4112         /* device has preferred BESLD */
4113         if (field & USB_BESL_DEEP_VALID) {
4114                 besld = USB_GET_BESL_DEEP(field);
4115                 hirdm = 1;
4116         }
4117
4118         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4119 }
4120
4121 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4122                         struct usb_device *udev, int enable)
4123 {
4124         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4125         __le32 __iomem  **port_array;
4126         __le32 __iomem  *pm_addr, *hlpm_addr;
4127         u32             pm_val, hlpm_val, field;
4128         unsigned int    port_num;
4129         unsigned long   flags;
4130         int             hird, exit_latency;
4131         int             ret;
4132
4133         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4134                         !udev->lpm_capable)
4135                 return -EPERM;
4136
4137         if (!udev->parent || udev->parent->parent ||
4138                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4139                 return -EPERM;
4140
4141         if (udev->usb2_hw_lpm_capable != 1)
4142                 return -EPERM;
4143
4144         spin_lock_irqsave(&xhci->lock, flags);
4145
4146         port_array = xhci->usb2_ports;
4147         port_num = udev->portnum - 1;
4148         pm_addr = port_array[port_num] + PORTPMSC;
4149         pm_val = readl(pm_addr);
4150         hlpm_addr = port_array[port_num] + PORTHLPMC;
4151         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4152
4153         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4154                         enable ? "enable" : "disable", port_num + 1);
4155
4156         if (enable) {
4157                 /* Host supports BESL timeout instead of HIRD */
4158                 if (udev->usb2_hw_lpm_besl_capable) {
4159                         /* if device doesn't have a preferred BESL value use a
4160                          * default one which works with mixed HIRD and BESL
4161                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4162                          */
4163                         if ((field & USB_BESL_SUPPORT) &&
4164                             (field & USB_BESL_BASELINE_VALID))
4165                                 hird = USB_GET_BESL_BASELINE(field);
4166                         else
4167                                 hird = udev->l1_params.besl;
4168
4169                         exit_latency = xhci_besl_encoding[hird];
4170                         spin_unlock_irqrestore(&xhci->lock, flags);
4171
4172                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4173                          * input context for link powermanagement evaluate
4174                          * context commands. It is protected by hcd->bandwidth
4175                          * mutex and is shared by all devices. We need to set
4176                          * the max ext latency in USB 2 BESL LPM as well, so
4177                          * use the same mutex and xhci_change_max_exit_latency()
4178                          */
4179                         mutex_lock(hcd->bandwidth_mutex);
4180                         ret = xhci_change_max_exit_latency(xhci, udev,
4181                                                            exit_latency);
4182                         mutex_unlock(hcd->bandwidth_mutex);
4183
4184                         if (ret < 0)
4185                                 return ret;
4186                         spin_lock_irqsave(&xhci->lock, flags);
4187
4188                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4189                         writel(hlpm_val, hlpm_addr);
4190                         /* flush write */
4191                         readl(hlpm_addr);
4192                 } else {
4193                         hird = xhci_calculate_hird_besl(xhci, udev);
4194                 }
4195
4196                 pm_val &= ~PORT_HIRD_MASK;
4197                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4198                 writel(pm_val, pm_addr);
4199                 pm_val = readl(pm_addr);
4200                 pm_val |= PORT_HLE;
4201                 writel(pm_val, pm_addr);
4202                 /* flush write */
4203                 readl(pm_addr);
4204         } else {
4205                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4206                 writel(pm_val, pm_addr);
4207                 /* flush write */
4208                 readl(pm_addr);
4209                 if (udev->usb2_hw_lpm_besl_capable) {
4210                         spin_unlock_irqrestore(&xhci->lock, flags);
4211                         mutex_lock(hcd->bandwidth_mutex);
4212                         xhci_change_max_exit_latency(xhci, udev, 0);
4213                         mutex_unlock(hcd->bandwidth_mutex);
4214                         return 0;
4215                 }
4216         }
4217
4218         spin_unlock_irqrestore(&xhci->lock, flags);
4219         return 0;
4220 }
4221
4222 /* check if a usb2 port supports a given extened capability protocol
4223  * only USB2 ports extended protocol capability values are cached.
4224  * Return 1 if capability is supported
4225  */
4226 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4227                                            unsigned capability)
4228 {
4229         u32 port_offset, port_count;
4230         int i;
4231
4232         for (i = 0; i < xhci->num_ext_caps; i++) {
4233                 if (xhci->ext_caps[i] & capability) {
4234                         /* port offsets starts at 1 */
4235                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4236                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4237                         if (port >= port_offset &&
4238                             port < port_offset + port_count)
4239                                 return 1;
4240                 }
4241         }
4242         return 0;
4243 }
4244
4245 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4246 {
4247         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4248         int             portnum = udev->portnum - 1;
4249
4250         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4251                         !udev->lpm_capable)
4252                 return 0;
4253
4254         /* we only support lpm for non-hub device connected to root hub yet */
4255         if (!udev->parent || udev->parent->parent ||
4256                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4257                 return 0;
4258
4259         if (xhci->hw_lpm_support == 1 &&
4260                         xhci_check_usb2_port_capability(
4261                                 xhci, portnum, XHCI_HLC)) {
4262                 udev->usb2_hw_lpm_capable = 1;
4263                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4264                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4265                 if (xhci_check_usb2_port_capability(xhci, portnum,
4266                                         XHCI_BLC))
4267                         udev->usb2_hw_lpm_besl_capable = 1;
4268         }
4269
4270         return 0;
4271 }
4272
4273 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4274
4275 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4276 static unsigned long long xhci_service_interval_to_ns(
4277                 struct usb_endpoint_descriptor *desc)
4278 {
4279         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4280 }
4281
4282 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4283                 enum usb3_link_state state)
4284 {
4285         unsigned long long sel;
4286         unsigned long long pel;
4287         unsigned int max_sel_pel;
4288         char *state_name;
4289
4290         switch (state) {
4291         case USB3_LPM_U1:
4292                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4293                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4294                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4295                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4296                 state_name = "U1";
4297                 break;
4298         case USB3_LPM_U2:
4299                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4300                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4301                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4302                 state_name = "U2";
4303                 break;
4304         default:
4305                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4306                                 __func__);
4307                 return USB3_LPM_DISABLED;
4308         }
4309
4310         if (sel <= max_sel_pel && pel <= max_sel_pel)
4311                 return USB3_LPM_DEVICE_INITIATED;
4312
4313         if (sel > max_sel_pel)
4314                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4315                                 "due to long SEL %llu ms\n",
4316                                 state_name, sel);
4317         else
4318                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4319                                 "due to long PEL %llu ms\n",
4320                                 state_name, pel);
4321         return USB3_LPM_DISABLED;
4322 }
4323
4324 /* The U1 timeout should be the maximum of the following values:
4325  *  - For control endpoints, U1 system exit latency (SEL) * 3
4326  *  - For bulk endpoints, U1 SEL * 5
4327  *  - For interrupt endpoints:
4328  *    - Notification EPs, U1 SEL * 3
4329  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4330  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4331  */
4332 static unsigned long long xhci_calculate_intel_u1_timeout(
4333                 struct usb_device *udev,
4334                 struct usb_endpoint_descriptor *desc)
4335 {
4336         unsigned long long timeout_ns;
4337         int ep_type;
4338         int intr_type;
4339
4340         ep_type = usb_endpoint_type(desc);
4341         switch (ep_type) {
4342         case USB_ENDPOINT_XFER_CONTROL:
4343                 timeout_ns = udev->u1_params.sel * 3;
4344                 break;
4345         case USB_ENDPOINT_XFER_BULK:
4346                 timeout_ns = udev->u1_params.sel * 5;
4347                 break;
4348         case USB_ENDPOINT_XFER_INT:
4349                 intr_type = usb_endpoint_interrupt_type(desc);
4350                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4351                         timeout_ns = udev->u1_params.sel * 3;
4352                         break;
4353                 }
4354                 /* Otherwise the calculation is the same as isoc eps */
4355         case USB_ENDPOINT_XFER_ISOC:
4356                 timeout_ns = xhci_service_interval_to_ns(desc);
4357                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4358                 if (timeout_ns < udev->u1_params.sel * 2)
4359                         timeout_ns = udev->u1_params.sel * 2;
4360                 break;
4361         default:
4362                 return 0;
4363         }
4364
4365         return timeout_ns;
4366 }
4367
4368 /* Returns the hub-encoded U1 timeout value. */
4369 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4370                 struct usb_device *udev,
4371                 struct usb_endpoint_descriptor *desc)
4372 {
4373         unsigned long long timeout_ns;
4374
4375         if (xhci->quirks & XHCI_INTEL_HOST)
4376                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4377         else
4378                 timeout_ns = udev->u1_params.sel;
4379
4380         /* The U1 timeout is encoded in 1us intervals.
4381          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4382          */
4383         if (timeout_ns == USB3_LPM_DISABLED)
4384                 timeout_ns = 1;
4385         else
4386                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4387
4388         /* If the necessary timeout value is bigger than what we can set in the
4389          * USB 3.0 hub, we have to disable hub-initiated U1.
4390          */
4391         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4392                 return timeout_ns;
4393         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4394                         "due to long timeout %llu ms\n", timeout_ns);
4395         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4396 }
4397
4398 /* The U2 timeout should be the maximum of:
4399  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4400  *  - largest bInterval of any active periodic endpoint (to avoid going
4401  *    into lower power link states between intervals).
4402  *  - the U2 Exit Latency of the device
4403  */
4404 static unsigned long long xhci_calculate_intel_u2_timeout(
4405                 struct usb_device *udev,
4406                 struct usb_endpoint_descriptor *desc)
4407 {
4408         unsigned long long timeout_ns;
4409         unsigned long long u2_del_ns;
4410
4411         timeout_ns = 10 * 1000 * 1000;
4412
4413         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4414                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4415                 timeout_ns = xhci_service_interval_to_ns(desc);
4416
4417         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4418         if (u2_del_ns > timeout_ns)
4419                 timeout_ns = u2_del_ns;
4420
4421         return timeout_ns;
4422 }
4423
4424 /* Returns the hub-encoded U2 timeout value. */
4425 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4426                 struct usb_device *udev,
4427                 struct usb_endpoint_descriptor *desc)
4428 {
4429         unsigned long long timeout_ns;
4430
4431         if (xhci->quirks & XHCI_INTEL_HOST)
4432                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4433         else
4434                 timeout_ns = udev->u2_params.sel;
4435
4436         /* The U2 timeout is encoded in 256us intervals */
4437         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4438         /* If the necessary timeout value is bigger than what we can set in the
4439          * USB 3.0 hub, we have to disable hub-initiated U2.
4440          */
4441         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4442                 return timeout_ns;
4443         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4444                         "due to long timeout %llu ms\n", timeout_ns);
4445         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4446 }
4447
4448 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4449                 struct usb_device *udev,
4450                 struct usb_endpoint_descriptor *desc,
4451                 enum usb3_link_state state,
4452                 u16 *timeout)
4453 {
4454         if (state == USB3_LPM_U1)
4455                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4456         else if (state == USB3_LPM_U2)
4457                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4458
4459         return USB3_LPM_DISABLED;
4460 }
4461
4462 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4463                 struct usb_device *udev,
4464                 struct usb_endpoint_descriptor *desc,
4465                 enum usb3_link_state state,
4466                 u16 *timeout)
4467 {
4468         u16 alt_timeout;
4469
4470         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4471                 desc, state, timeout);
4472
4473         /* If we found we can't enable hub-initiated LPM, or
4474          * the U1 or U2 exit latency was too high to allow
4475          * device-initiated LPM as well, just stop searching.
4476          */
4477         if (alt_timeout == USB3_LPM_DISABLED ||
4478                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4479                 *timeout = alt_timeout;
4480                 return -E2BIG;
4481         }
4482         if (alt_timeout > *timeout)
4483                 *timeout = alt_timeout;
4484         return 0;
4485 }
4486
4487 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4488                 struct usb_device *udev,
4489                 struct usb_host_interface *alt,
4490                 enum usb3_link_state state,
4491                 u16 *timeout)
4492 {
4493         int j;
4494
4495         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4496                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4497                                         &alt->endpoint[j].desc, state, timeout))
4498                         return -E2BIG;
4499                 continue;
4500         }
4501         return 0;
4502 }
4503
4504 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4505                 enum usb3_link_state state)
4506 {
4507         struct usb_device *parent;
4508         unsigned int num_hubs;
4509
4510         if (state == USB3_LPM_U2)
4511                 return 0;
4512
4513         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4514         for (parent = udev->parent, num_hubs = 0; parent->parent;
4515                         parent = parent->parent)
4516                 num_hubs++;
4517
4518         if (num_hubs < 2)
4519                 return 0;
4520
4521         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4522                         " below second-tier hub.\n");
4523         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4524                         "to decrease power consumption.\n");
4525         return -E2BIG;
4526 }
4527
4528 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4529                 struct usb_device *udev,
4530                 enum usb3_link_state state)
4531 {
4532         if (xhci->quirks & XHCI_INTEL_HOST)
4533                 return xhci_check_intel_tier_policy(udev, state);
4534         else
4535                 return 0;
4536 }
4537
4538 /* Returns the U1 or U2 timeout that should be enabled.
4539  * If the tier check or timeout setting functions return with a non-zero exit
4540  * code, that means the timeout value has been finalized and we shouldn't look
4541  * at any more endpoints.
4542  */
4543 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4544                         struct usb_device *udev, enum usb3_link_state state)
4545 {
4546         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4547         struct usb_host_config *config;
4548         char *state_name;
4549         int i;
4550         u16 timeout = USB3_LPM_DISABLED;
4551
4552         if (state == USB3_LPM_U1)
4553                 state_name = "U1";
4554         else if (state == USB3_LPM_U2)
4555                 state_name = "U2";
4556         else {
4557                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4558                                 state);
4559                 return timeout;
4560         }
4561
4562         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4563                 return timeout;
4564
4565         /* Gather some information about the currently installed configuration
4566          * and alternate interface settings.
4567          */
4568         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4569                         state, &timeout))
4570                 return timeout;
4571
4572         config = udev->actconfig;
4573         if (!config)
4574                 return timeout;
4575
4576         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4577                 struct usb_driver *driver;
4578                 struct usb_interface *intf = config->interface[i];
4579
4580                 if (!intf)
4581                         continue;
4582
4583                 /* Check if any currently bound drivers want hub-initiated LPM
4584                  * disabled.
4585                  */
4586                 if (intf->dev.driver) {
4587                         driver = to_usb_driver(intf->dev.driver);
4588                         if (driver && driver->disable_hub_initiated_lpm) {
4589                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4590                                                 "at request of driver %s\n",
4591                                                 state_name, driver->name);
4592                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4593                         }
4594                 }
4595
4596                 /* Not sure how this could happen... */
4597                 if (!intf->cur_altsetting)
4598                         continue;
4599
4600                 if (xhci_update_timeout_for_interface(xhci, udev,
4601                                         intf->cur_altsetting,
4602                                         state, &timeout))
4603                         return timeout;
4604         }
4605         return timeout;
4606 }
4607
4608 static int calculate_max_exit_latency(struct usb_device *udev,
4609                 enum usb3_link_state state_changed,
4610                 u16 hub_encoded_timeout)
4611 {
4612         unsigned long long u1_mel_us = 0;
4613         unsigned long long u2_mel_us = 0;
4614         unsigned long long mel_us = 0;
4615         bool disabling_u1;
4616         bool disabling_u2;
4617         bool enabling_u1;
4618         bool enabling_u2;
4619
4620         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4621                         hub_encoded_timeout == USB3_LPM_DISABLED);
4622         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4623                         hub_encoded_timeout == USB3_LPM_DISABLED);
4624
4625         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4626                         hub_encoded_timeout != USB3_LPM_DISABLED);
4627         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4628                         hub_encoded_timeout != USB3_LPM_DISABLED);
4629
4630         /* If U1 was already enabled and we're not disabling it,
4631          * or we're going to enable U1, account for the U1 max exit latency.
4632          */
4633         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4634                         enabling_u1)
4635                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4636         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4637                         enabling_u2)
4638                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4639
4640         if (u1_mel_us > u2_mel_us)
4641                 mel_us = u1_mel_us;
4642         else
4643                 mel_us = u2_mel_us;
4644         /* xHCI host controller max exit latency field is only 16 bits wide. */
4645         if (mel_us > MAX_EXIT) {
4646                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4647                                 "is too big.\n", mel_us);
4648                 return -E2BIG;
4649         }
4650         return mel_us;
4651 }
4652
4653 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4654 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4655                         struct usb_device *udev, enum usb3_link_state state)
4656 {
4657         struct xhci_hcd *xhci;
4658         u16 hub_encoded_timeout;
4659         int mel;
4660         int ret;
4661
4662         xhci = hcd_to_xhci(hcd);
4663         /* The LPM timeout values are pretty host-controller specific, so don't
4664          * enable hub-initiated timeouts unless the vendor has provided
4665          * information about their timeout algorithm.
4666          */
4667         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4668                         !xhci->devs[udev->slot_id])
4669                 return USB3_LPM_DISABLED;
4670
4671         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4672         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4673         if (mel < 0) {
4674                 /* Max Exit Latency is too big, disable LPM. */
4675                 hub_encoded_timeout = USB3_LPM_DISABLED;
4676                 mel = 0;
4677         }
4678
4679         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4680         if (ret)
4681                 return ret;
4682         return hub_encoded_timeout;
4683 }
4684
4685 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4686                         struct usb_device *udev, enum usb3_link_state state)
4687 {
4688         struct xhci_hcd *xhci;
4689         u16 mel;
4690
4691         xhci = hcd_to_xhci(hcd);
4692         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4693                         !xhci->devs[udev->slot_id])
4694                 return 0;
4695
4696         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4697         return xhci_change_max_exit_latency(xhci, udev, mel);
4698 }
4699 #else /* CONFIG_PM */
4700
4701 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4702                                 struct usb_device *udev, int enable)
4703 {
4704         return 0;
4705 }
4706
4707 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4708 {
4709         return 0;
4710 }
4711
4712 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4713                         struct usb_device *udev, enum usb3_link_state state)
4714 {
4715         return USB3_LPM_DISABLED;
4716 }
4717
4718 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4719                         struct usb_device *udev, enum usb3_link_state state)
4720 {
4721         return 0;
4722 }
4723 #endif  /* CONFIG_PM */
4724
4725 /*-------------------------------------------------------------------------*/
4726
4727 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4728  * internal data structures for the device.
4729  */
4730 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4731                         struct usb_tt *tt, gfp_t mem_flags)
4732 {
4733         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4734         struct xhci_virt_device *vdev;
4735         struct xhci_command *config_cmd;
4736         struct xhci_input_control_ctx *ctrl_ctx;
4737         struct xhci_slot_ctx *slot_ctx;
4738         unsigned long flags;
4739         unsigned think_time;
4740         int ret;
4741
4742         /* Ignore root hubs */
4743         if (!hdev->parent)
4744                 return 0;
4745
4746         vdev = xhci->devs[hdev->slot_id];
4747         if (!vdev) {
4748                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4749                 return -EINVAL;
4750         }
4751         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4752         if (!config_cmd) {
4753                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4754                 return -ENOMEM;
4755         }
4756         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4757         if (!ctrl_ctx) {
4758                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4759                                 __func__);
4760                 xhci_free_command(xhci, config_cmd);
4761                 return -ENOMEM;
4762         }
4763
4764         spin_lock_irqsave(&xhci->lock, flags);
4765         if (hdev->speed == USB_SPEED_HIGH &&
4766                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4767                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4768                 xhci_free_command(xhci, config_cmd);
4769                 spin_unlock_irqrestore(&xhci->lock, flags);
4770                 return -ENOMEM;
4771         }
4772
4773         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4774         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4775         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4776         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4777         if (tt->multi)
4778                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4779         if (xhci->hci_version > 0x95) {
4780                 xhci_dbg(xhci, "xHCI version %x needs hub "
4781                                 "TT think time and number of ports\n",
4782                                 (unsigned int) xhci->hci_version);
4783                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4784                 /* Set TT think time - convert from ns to FS bit times.
4785                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4786                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4787                  *
4788                  * xHCI 1.0: this field shall be 0 if the device is not a
4789                  * High-spped hub.
4790                  */
4791                 think_time = tt->think_time;
4792                 if (think_time != 0)
4793                         think_time = (think_time / 666) - 1;
4794                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4795                         slot_ctx->tt_info |=
4796                                 cpu_to_le32(TT_THINK_TIME(think_time));
4797         } else {
4798                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4799                                 "TT think time or number of ports\n",
4800                                 (unsigned int) xhci->hci_version);
4801         }
4802         slot_ctx->dev_state = 0;
4803         spin_unlock_irqrestore(&xhci->lock, flags);
4804
4805         xhci_dbg(xhci, "Set up %s for hub device.\n",
4806                         (xhci->hci_version > 0x95) ?
4807                         "configure endpoint" : "evaluate context");
4808         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4809         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4810
4811         /* Issue and wait for the configure endpoint or
4812          * evaluate context command.
4813          */
4814         if (xhci->hci_version > 0x95)
4815                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4816                                 false, false);
4817         else
4818                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4819                                 true, false);
4820
4821         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4822         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4823
4824         xhci_free_command(xhci, config_cmd);
4825         return ret;
4826 }
4827
4828 int xhci_get_frame(struct usb_hcd *hcd)
4829 {
4830         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4831         /* EHCI mods by the periodic size.  Why? */
4832         return readl(&xhci->run_regs->microframe_index) >> 3;
4833 }
4834
4835 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4836 {
4837         struct xhci_hcd         *xhci;
4838         struct device           *dev = hcd->self.controller;
4839         int                     retval;
4840
4841         /* Accept arbitrarily long scatter-gather lists */
4842         hcd->self.sg_tablesize = ~0;
4843
4844         /* support to build packet from discontinuous buffers */
4845         hcd->self.no_sg_constraint = 1;
4846
4847         /* XHCI controllers don't stop the ep queue on short packets :| */
4848         hcd->self.no_stop_on_short = 1;
4849
4850         if (usb_hcd_is_primary_hcd(hcd)) {
4851                 xhci = hcd_to_xhci(hcd);
4852                 xhci->main_hcd = hcd;
4853                 /* Mark the first roothub as being USB 2.0.
4854                  * The xHCI driver will register the USB 3.0 roothub.
4855                  */
4856                 hcd->speed = HCD_USB2;
4857                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4858                 /*
4859                  * USB 2.0 roothub under xHCI has an integrated TT,
4860                  * (rate matching hub) as opposed to having an OHCI/UHCI
4861                  * companion controller.
4862                  */
4863                 hcd->has_tt = 1;
4864         } else {
4865                 /* xHCI private pointer was set in xhci_pci_probe for the second
4866                  * registered roothub.
4867                  */
4868                 return 0;
4869         }
4870
4871         mutex_init(&xhci->mutex);
4872         xhci->cap_regs = hcd->regs;
4873         xhci->op_regs = hcd->regs +
4874                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4875         xhci->run_regs = hcd->regs +
4876                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4877         /* Cache read-only capability registers */
4878         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4879         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4880         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4881         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4882         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4883         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4884         xhci_print_registers(xhci);
4885
4886         xhci->quirks = quirks;
4887
4888         get_quirks(dev, xhci);
4889
4890         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4891          * success event after a short transfer. This quirk will ignore such
4892          * spurious event.
4893          */
4894         if (xhci->hci_version > 0x96)
4895                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4896
4897         /* Make sure the HC is halted. */
4898         retval = xhci_halt(xhci);
4899         if (retval)
4900                 return retval;
4901
4902         xhci_dbg(xhci, "Resetting HCD\n");
4903         /* Reset the internal HC memory state and registers. */
4904         retval = xhci_reset(xhci);
4905         if (retval)
4906                 return retval;
4907         xhci_dbg(xhci, "Reset complete\n");
4908
4909         /* Set dma_mask and coherent_dma_mask to 64-bits,
4910          * if xHC supports 64-bit addressing */
4911         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4912                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4913                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4914                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4915         }
4916
4917         xhci_dbg(xhci, "Calling HCD init\n");
4918         /* Initialize HCD and host controller data structures. */
4919         retval = xhci_init(hcd);
4920         if (retval)
4921                 return retval;
4922         xhci_dbg(xhci, "Called HCD init\n");
4923
4924         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4925                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4926
4927         return 0;
4928 }
4929 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4930
4931 static const struct hc_driver xhci_hc_driver = {
4932         .description =          "xhci-hcd",
4933         .product_desc =         "xHCI Host Controller",
4934         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4935
4936         /*
4937          * generic hardware linkage
4938          */
4939         .irq =                  xhci_irq,
4940         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4941
4942         /*
4943          * basic lifecycle operations
4944          */
4945         .reset =                NULL, /* set in xhci_init_driver() */
4946         .start =                xhci_run,
4947         .stop =                 xhci_stop,
4948         .shutdown =             xhci_shutdown,
4949
4950         /*
4951          * managing i/o requests and associated device resources
4952          */
4953         .urb_enqueue =          xhci_urb_enqueue,
4954         .urb_dequeue =          xhci_urb_dequeue,
4955         .alloc_dev =            xhci_alloc_dev,
4956         .free_dev =             xhci_free_dev,
4957         .alloc_streams =        xhci_alloc_streams,
4958         .free_streams =         xhci_free_streams,
4959         .add_endpoint =         xhci_add_endpoint,
4960         .drop_endpoint =        xhci_drop_endpoint,
4961         .endpoint_reset =       xhci_endpoint_reset,
4962         .check_bandwidth =      xhci_check_bandwidth,
4963         .reset_bandwidth =      xhci_reset_bandwidth,
4964         .address_device =       xhci_address_device,
4965         .enable_device =        xhci_enable_device,
4966         .update_hub_device =    xhci_update_hub_device,
4967         .reset_device =         xhci_discover_or_reset_device,
4968
4969         /*
4970          * scheduling support
4971          */
4972         .get_frame_number =     xhci_get_frame,
4973
4974         /*
4975          * root hub support
4976          */
4977         .hub_control =          xhci_hub_control,
4978         .hub_status_data =      xhci_hub_status_data,
4979         .bus_suspend =          xhci_bus_suspend,
4980         .bus_resume =           xhci_bus_resume,
4981
4982         /*
4983          * call back when device connected and addressed
4984          */
4985         .update_device =        xhci_update_device,
4986         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4987         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4988         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4989         .find_raw_port_number = xhci_find_raw_port_number,
4990 };
4991
4992 void xhci_init_driver(struct hc_driver *drv,
4993                       const struct xhci_driver_overrides *over)
4994 {
4995         BUG_ON(!over);
4996
4997         /* Copy the generic table to drv then apply the overrides */
4998         *drv = xhci_hc_driver;
4999
5000         if (over) {
5001                 drv->hcd_priv_size += over->extra_priv_size;
5002                 if (over->reset)
5003                         drv->reset = over->reset;
5004                 if (over->start)
5005                         drv->start = over->start;
5006         }
5007 }
5008 EXPORT_SYMBOL_GPL(xhci_init_driver);
5009
5010 MODULE_DESCRIPTION(DRIVER_DESC);
5011 MODULE_AUTHOR(DRIVER_AUTHOR);
5012 MODULE_LICENSE("GPL");
5013
5014 static int __init xhci_hcd_init(void)
5015 {
5016         /*
5017          * Check the compiler generated sizes of structures that must be laid
5018          * out in specific ways for hardware access.
5019          */
5020         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5021         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5022         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5023         /* xhci_device_control has eight fields, and also
5024          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5025          */
5026         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5027         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5028         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5029         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5030         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5031         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5032         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5033         return 0;
5034 }
5035
5036 /*
5037  * If an init function is provided, an exit function must also be provided
5038  * to allow module unload.
5039  */
5040 static void __exit xhci_hcd_fini(void) { }
5041
5042 module_init(xhci_hcd_init);
5043 module_exit(xhci_hcd_fini);