edda47162752b249ccb051e94f5fb8d7bd246be9
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int rw;
128         int mirror_num;
129         unsigned long bio_flags;
130         /*
131          * bio_offset is optional, can be used if the pages in the bio
132          * can't tell us where in the file the bio should go
133          */
134         u64 bio_offset;
135         struct btrfs_work work;
136         int error;
137 };
138
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168         u64                     id;             /* root objectid */
169         const char              *name_stem;     /* lock name stem */
170         char                    names[BTRFS_MAX_LEVEL + 1][20];
171         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
174         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
175         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
176         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
177         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
178         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
179         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
180         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
181         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
182         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
183         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
184         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185         { .id = 0,                              .name_stem = "tree"     },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190         int i, j;
191
192         /* initialize lockdep class names */
193         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197                         snprintf(ks->names[j], sizeof(ks->names[j]),
198                                  "btrfs-%s-%02d", ks->name_stem, j);
199         }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203                                     int level)
204 {
205         struct btrfs_lockdep_keyset *ks;
206
207         BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209         /* find the matching keyset, id 0 is the default entry */
210         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211                 if (ks->id == objectid)
212                         break;
213
214         lockdep_set_class_and_name(&eb->lock,
215                                    &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225                 struct page *page, size_t pg_offset, u64 start, u64 len,
226                 int create)
227 {
228         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229         struct extent_map *em;
230         int ret;
231
232         read_lock(&em_tree->lock);
233         em = lookup_extent_mapping(em_tree, start, len);
234         if (em) {
235                 em->bdev =
236                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237                 read_unlock(&em_tree->lock);
238                 goto out;
239         }
240         read_unlock(&em_tree->lock);
241
242         em = alloc_extent_map();
243         if (!em) {
244                 em = ERR_PTR(-ENOMEM);
245                 goto out;
246         }
247         em->start = 0;
248         em->len = (u64)-1;
249         em->block_len = (u64)-1;
250         em->block_start = 0;
251         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253         write_lock(&em_tree->lock);
254         ret = add_extent_mapping(em_tree, em, 0);
255         if (ret == -EEXIST) {
256                 free_extent_map(em);
257                 em = lookup_extent_mapping(em_tree, start, len);
258                 if (!em)
259                         em = ERR_PTR(-EIO);
260         } else if (ret) {
261                 free_extent_map(em);
262                 em = ERR_PTR(ret);
263         }
264         write_unlock(&em_tree->lock);
265
266 out:
267         return em;
268 }
269
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272         return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277         put_unaligned_le32(~crc, result);
278 }
279
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285                            struct extent_buffer *buf,
286                            int verify)
287 {
288         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289         char *result = NULL;
290         unsigned long len;
291         unsigned long cur_len;
292         unsigned long offset = BTRFS_CSUM_SIZE;
293         char *kaddr;
294         unsigned long map_start;
295         unsigned long map_len;
296         int err;
297         u32 crc = ~(u32)0;
298         unsigned long inline_result;
299
300         len = buf->len - offset;
301         while (len > 0) {
302                 err = map_private_extent_buffer(buf, offset, 32,
303                                         &kaddr, &map_start, &map_len);
304                 if (err)
305                         return err;
306                 cur_len = min(len, map_len - (offset - map_start));
307                 crc = btrfs_csum_data(kaddr + offset - map_start,
308                                       crc, cur_len);
309                 len -= cur_len;
310                 offset += cur_len;
311         }
312         if (csum_size > sizeof(inline_result)) {
313                 result = kzalloc(csum_size, GFP_NOFS);
314                 if (!result)
315                         return -ENOMEM;
316         } else {
317                 result = (char *)&inline_result;
318         }
319
320         btrfs_csum_final(crc, result);
321
322         if (verify) {
323                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324                         u32 val;
325                         u32 found = 0;
326                         memcpy(&found, result, csum_size);
327
328                         read_extent_buffer(buf, &val, 0, csum_size);
329                         btrfs_warn_rl(fs_info,
330                                 "%s checksum verify failed on %llu wanted %X found %X "
331                                 "level %d",
332                                 fs_info->sb->s_id, buf->start,
333                                 val, found, btrfs_header_level(buf));
334                         if (result != (char *)&inline_result)
335                                 kfree(result);
336                         return -EUCLEAN;
337                 }
338         } else {
339                 write_extent_buffer(buf, result, 0, csum_size);
340         }
341         if (result != (char *)&inline_result)
342                 kfree(result);
343         return 0;
344 }
345
346 /*
347  * we can't consider a given block up to date unless the transid of the
348  * block matches the transid in the parent node's pointer.  This is how we
349  * detect blocks that either didn't get written at all or got written
350  * in the wrong place.
351  */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353                                  struct extent_buffer *eb, u64 parent_transid,
354                                  int atomic)
355 {
356         struct extent_state *cached_state = NULL;
357         int ret;
358         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361                 return 0;
362
363         if (atomic)
364                 return -EAGAIN;
365
366         if (need_lock) {
367                 btrfs_tree_read_lock(eb);
368                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369         }
370
371         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372                          &cached_state);
373         if (extent_buffer_uptodate(eb) &&
374             btrfs_header_generation(eb) == parent_transid) {
375                 ret = 0;
376                 goto out;
377         }
378         btrfs_err_rl(eb->fs_info,
379                 "parent transid verify failed on %llu wanted %llu found %llu",
380                         eb->start,
381                         parent_transid, btrfs_header_generation(eb));
382         ret = 1;
383
384         /*
385          * Things reading via commit roots that don't have normal protection,
386          * like send, can have a really old block in cache that may point at a
387          * block that has been freed and re-allocated.  So don't clear uptodate
388          * if we find an eb that is under IO (dirty/writeback) because we could
389          * end up reading in the stale data and then writing it back out and
390          * making everybody very sad.
391          */
392         if (!extent_buffer_under_io(eb))
393                 clear_extent_buffer_uptodate(eb);
394 out:
395         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396                              &cached_state, GFP_NOFS);
397         if (need_lock)
398                 btrfs_tree_read_unlock_blocking(eb);
399         return ret;
400 }
401
402 /*
403  * Return 0 if the superblock checksum type matches the checksum value of that
404  * algorithm. Pass the raw disk superblock data.
405  */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408         struct btrfs_super_block *disk_sb =
409                 (struct btrfs_super_block *)raw_disk_sb;
410         u16 csum_type = btrfs_super_csum_type(disk_sb);
411         int ret = 0;
412
413         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414                 u32 crc = ~(u32)0;
415                 const int csum_size = sizeof(crc);
416                 char result[csum_size];
417
418                 /*
419                  * The super_block structure does not span the whole
420                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421                  * is filled with zeros and is included in the checksum.
422                  */
423                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425                 btrfs_csum_final(crc, result);
426
427                 if (memcmp(raw_disk_sb, result, csum_size))
428                         ret = 1;
429         }
430
431         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433                                 csum_type);
434                 ret = 1;
435         }
436
437         return ret;
438 }
439
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445                                           struct extent_buffer *eb,
446                                           u64 start, u64 parent_transid)
447 {
448         struct extent_io_tree *io_tree;
449         int failed = 0;
450         int ret;
451         int num_copies = 0;
452         int mirror_num = 0;
453         int failed_mirror = 0;
454
455         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457         while (1) {
458                 ret = read_extent_buffer_pages(io_tree, eb, start,
459                                                WAIT_COMPLETE,
460                                                btree_get_extent, mirror_num);
461                 if (!ret) {
462                         if (!verify_parent_transid(io_tree, eb,
463                                                    parent_transid, 0))
464                                 break;
465                         else
466                                 ret = -EIO;
467                 }
468
469                 /*
470                  * This buffer's crc is fine, but its contents are corrupted, so
471                  * there is no reason to read the other copies, they won't be
472                  * any less wrong.
473                  */
474                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475                         break;
476
477                 num_copies = btrfs_num_copies(root->fs_info,
478                                               eb->start, eb->len);
479                 if (num_copies == 1)
480                         break;
481
482                 if (!failed_mirror) {
483                         failed = 1;
484                         failed_mirror = eb->read_mirror;
485                 }
486
487                 mirror_num++;
488                 if (mirror_num == failed_mirror)
489                         mirror_num++;
490
491                 if (mirror_num > num_copies)
492                         break;
493         }
494
495         if (failed && !ret && failed_mirror)
496                 repair_eb_io_failure(root, eb, failed_mirror);
497
498         return ret;
499 }
500
501 /*
502  * checksum a dirty tree block before IO.  This has extra checks to make sure
503  * we only fill in the checksum field in the first page of a multi-page block
504  */
505
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508         u64 start = page_offset(page);
509         u64 found_start;
510         struct extent_buffer *eb;
511
512         eb = (struct extent_buffer *)page->private;
513         if (page != eb->pages[0])
514                 return 0;
515
516         found_start = btrfs_header_bytenr(eb);
517         /*
518          * Please do not consolidate these warnings into a single if.
519          * It is useful to know what went wrong.
520          */
521         if (WARN_ON(found_start != start))
522                 return -EUCLEAN;
523         if (WARN_ON(!PageUptodate(page)))
524                 return -EUCLEAN;
525
526         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529         return csum_tree_block(fs_info, eb, 0);
530 }
531
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533                                  struct extent_buffer *eb)
534 {
535         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536         u8 fsid[BTRFS_UUID_SIZE];
537         int ret = 1;
538
539         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540         while (fs_devices) {
541                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542                         ret = 0;
543                         break;
544                 }
545                 fs_devices = fs_devices->seed;
546         }
547         return ret;
548 }
549
550 #define CORRUPT(reason, eb, root, slot)                         \
551         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
552                    "root=%llu, slot=%d", reason,                        \
553                btrfs_header_bytenr(eb), root->objectid, slot)
554
555 static noinline int check_leaf(struct btrfs_root *root,
556                                struct extent_buffer *leaf)
557 {
558         struct btrfs_key key;
559         struct btrfs_key leaf_key;
560         u32 nritems = btrfs_header_nritems(leaf);
561         int slot;
562
563         if (nritems == 0)
564                 return 0;
565
566         /* Check the 0 item */
567         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568             BTRFS_LEAF_DATA_SIZE(root)) {
569                 CORRUPT("invalid item offset size pair", leaf, root, 0);
570                 return -EIO;
571         }
572
573         /*
574          * Check to make sure each items keys are in the correct order and their
575          * offsets make sense.  We only have to loop through nritems-1 because
576          * we check the current slot against the next slot, which verifies the
577          * next slot's offset+size makes sense and that the current's slot
578          * offset is correct.
579          */
580         for (slot = 0; slot < nritems - 1; slot++) {
581                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584                 /* Make sure the keys are in the right order */
585                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586                         CORRUPT("bad key order", leaf, root, slot);
587                         return -EIO;
588                 }
589
590                 /*
591                  * Make sure the offset and ends are right, remember that the
592                  * item data starts at the end of the leaf and grows towards the
593                  * front.
594                  */
595                 if (btrfs_item_offset_nr(leaf, slot) !=
596                         btrfs_item_end_nr(leaf, slot + 1)) {
597                         CORRUPT("slot offset bad", leaf, root, slot);
598                         return -EIO;
599                 }
600
601                 /*
602                  * Check to make sure that we don't point outside of the leaf,
603                  * just in case all the items are consistent to each other, but
604                  * all point outside of the leaf.
605                  */
606                 if (btrfs_item_end_nr(leaf, slot) >
607                     BTRFS_LEAF_DATA_SIZE(root)) {
608                         CORRUPT("slot end outside of leaf", leaf, root, slot);
609                         return -EIO;
610                 }
611         }
612
613         return 0;
614 }
615
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617                                       u64 phy_offset, struct page *page,
618                                       u64 start, u64 end, int mirror)
619 {
620         u64 found_start;
621         int found_level;
622         struct extent_buffer *eb;
623         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624         struct btrfs_fs_info *fs_info = root->fs_info;
625         int ret = 0;
626         int reads_done;
627
628         if (!page->private)
629                 goto out;
630
631         eb = (struct extent_buffer *)page->private;
632
633         /* the pending IO might have been the only thing that kept this buffer
634          * in memory.  Make sure we have a ref for all this other checks
635          */
636         extent_buffer_get(eb);
637
638         reads_done = atomic_dec_and_test(&eb->io_pages);
639         if (!reads_done)
640                 goto err;
641
642         eb->read_mirror = mirror;
643         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644                 ret = -EIO;
645                 goto err;
646         }
647
648         found_start = btrfs_header_bytenr(eb);
649         if (found_start != eb->start) {
650                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651                              found_start, eb->start);
652                 ret = -EIO;
653                 goto err;
654         }
655         if (check_tree_block_fsid(fs_info, eb)) {
656                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657                              eb->start);
658                 ret = -EIO;
659                 goto err;
660         }
661         found_level = btrfs_header_level(eb);
662         if (found_level >= BTRFS_MAX_LEVEL) {
663                 btrfs_err(fs_info, "bad tree block level %d",
664                           (int)btrfs_header_level(eb));
665                 ret = -EIO;
666                 goto err;
667         }
668
669         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670                                        eb, found_level);
671
672         ret = csum_tree_block(fs_info, eb, 1);
673         if (ret)
674                 goto err;
675
676         /*
677          * If this is a leaf block and it is corrupt, set the corrupt bit so
678          * that we don't try and read the other copies of this block, just
679          * return -EIO.
680          */
681         if (found_level == 0 && check_leaf(root, eb)) {
682                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683                 ret = -EIO;
684         }
685
686         if (!ret)
687                 set_extent_buffer_uptodate(eb);
688 err:
689         if (reads_done &&
690             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691                 btree_readahead_hook(fs_info, eb, eb->start, ret);
692
693         if (ret) {
694                 /*
695                  * our io error hook is going to dec the io pages
696                  * again, we have to make sure it has something
697                  * to decrement
698                  */
699                 atomic_inc(&eb->io_pages);
700                 clear_extent_buffer_uptodate(eb);
701         }
702         free_extent_buffer(eb);
703 out:
704         return ret;
705 }
706
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709         struct extent_buffer *eb;
710
711         eb = (struct extent_buffer *)page->private;
712         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713         eb->read_mirror = failed_mirror;
714         atomic_dec(&eb->io_pages);
715         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717         return -EIO;    /* we fixed nothing */
718 }
719
720 static void end_workqueue_bio(struct bio *bio)
721 {
722         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723         struct btrfs_fs_info *fs_info;
724         struct btrfs_workqueue *wq;
725         btrfs_work_func_t func;
726
727         fs_info = end_io_wq->info;
728         end_io_wq->error = bio->bi_error;
729
730         if (bio->bi_rw & REQ_WRITE) {
731                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732                         wq = fs_info->endio_meta_write_workers;
733                         func = btrfs_endio_meta_write_helper;
734                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735                         wq = fs_info->endio_freespace_worker;
736                         func = btrfs_freespace_write_helper;
737                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738                         wq = fs_info->endio_raid56_workers;
739                         func = btrfs_endio_raid56_helper;
740                 } else {
741                         wq = fs_info->endio_write_workers;
742                         func = btrfs_endio_write_helper;
743                 }
744         } else {
745                 if (unlikely(end_io_wq->metadata ==
746                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747                         wq = fs_info->endio_repair_workers;
748                         func = btrfs_endio_repair_helper;
749                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750                         wq = fs_info->endio_raid56_workers;
751                         func = btrfs_endio_raid56_helper;
752                 } else if (end_io_wq->metadata) {
753                         wq = fs_info->endio_meta_workers;
754                         func = btrfs_endio_meta_helper;
755                 } else {
756                         wq = fs_info->endio_workers;
757                         func = btrfs_endio_helper;
758                 }
759         }
760
761         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762         btrfs_queue_work(wq, &end_io_wq->work);
763 }
764
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766                         enum btrfs_wq_endio_type metadata)
767 {
768         struct btrfs_end_io_wq *end_io_wq;
769
770         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771         if (!end_io_wq)
772                 return -ENOMEM;
773
774         end_io_wq->private = bio->bi_private;
775         end_io_wq->end_io = bio->bi_end_io;
776         end_io_wq->info = info;
777         end_io_wq->error = 0;
778         end_io_wq->bio = bio;
779         end_io_wq->metadata = metadata;
780
781         bio->bi_private = end_io_wq;
782         bio->bi_end_io = end_workqueue_bio;
783         return 0;
784 }
785
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788         unsigned long limit = min_t(unsigned long,
789                                     info->thread_pool_size,
790                                     info->fs_devices->open_devices);
791         return 256 * limit;
792 }
793
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796         struct async_submit_bio *async;
797         int ret;
798
799         async = container_of(work, struct  async_submit_bio, work);
800         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801                                       async->mirror_num, async->bio_flags,
802                                       async->bio_offset);
803         if (ret)
804                 async->error = ret;
805 }
806
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809         struct btrfs_fs_info *fs_info;
810         struct async_submit_bio *async;
811         int limit;
812
813         async = container_of(work, struct  async_submit_bio, work);
814         fs_info = BTRFS_I(async->inode)->root->fs_info;
815
816         limit = btrfs_async_submit_limit(fs_info);
817         limit = limit * 2 / 3;
818
819         /*
820          * atomic_dec_return implies a barrier for waitqueue_active
821          */
822         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823             waitqueue_active(&fs_info->async_submit_wait))
824                 wake_up(&fs_info->async_submit_wait);
825
826         /* If an error occurred we just want to clean up the bio and move on */
827         if (async->error) {
828                 async->bio->bi_error = async->error;
829                 bio_endio(async->bio);
830                 return;
831         }
832
833         async->submit_bio_done(async->inode, async->rw, async->bio,
834                                async->mirror_num, async->bio_flags,
835                                async->bio_offset);
836 }
837
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840         struct async_submit_bio *async;
841
842         async = container_of(work, struct  async_submit_bio, work);
843         kfree(async);
844 }
845
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847                         int rw, struct bio *bio, int mirror_num,
848                         unsigned long bio_flags,
849                         u64 bio_offset,
850                         extent_submit_bio_hook_t *submit_bio_start,
851                         extent_submit_bio_hook_t *submit_bio_done)
852 {
853         struct async_submit_bio *async;
854
855         async = kmalloc(sizeof(*async), GFP_NOFS);
856         if (!async)
857                 return -ENOMEM;
858
859         async->inode = inode;
860         async->rw = rw;
861         async->bio = bio;
862         async->mirror_num = mirror_num;
863         async->submit_bio_start = submit_bio_start;
864         async->submit_bio_done = submit_bio_done;
865
866         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867                         run_one_async_done, run_one_async_free);
868
869         async->bio_flags = bio_flags;
870         async->bio_offset = bio_offset;
871
872         async->error = 0;
873
874         atomic_inc(&fs_info->nr_async_submits);
875
876         if (rw & REQ_SYNC)
877                 btrfs_set_work_high_priority(&async->work);
878
879         btrfs_queue_work(fs_info->workers, &async->work);
880
881         while (atomic_read(&fs_info->async_submit_draining) &&
882               atomic_read(&fs_info->nr_async_submits)) {
883                 wait_event(fs_info->async_submit_wait,
884                            (atomic_read(&fs_info->nr_async_submits) == 0));
885         }
886
887         return 0;
888 }
889
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892         struct bio_vec *bvec;
893         struct btrfs_root *root;
894         int i, ret = 0;
895
896         bio_for_each_segment_all(bvec, bio, i) {
897                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899                 if (ret)
900                         break;
901         }
902
903         return ret;
904 }
905
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907                                     struct bio *bio, int mirror_num,
908                                     unsigned long bio_flags,
909                                     u64 bio_offset)
910 {
911         /*
912          * when we're called for a write, we're already in the async
913          * submission context.  Just jump into btrfs_map_bio
914          */
915         return btree_csum_one_bio(bio);
916 }
917
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919                                  int mirror_num, unsigned long bio_flags,
920                                  u64 bio_offset)
921 {
922         int ret;
923
924         /*
925          * when we're called for a write, we're already in the async
926          * submission context.  Just jump into btrfs_map_bio
927          */
928         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929         if (ret) {
930                 bio->bi_error = ret;
931                 bio_endio(bio);
932         }
933         return ret;
934 }
935
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938         if (bio_flags & EXTENT_BIO_TREE_LOG)
939                 return 0;
940 #ifdef CONFIG_X86
941         if (static_cpu_has(X86_FEATURE_XMM4_2))
942                 return 0;
943 #endif
944         return 1;
945 }
946
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948                                  int mirror_num, unsigned long bio_flags,
949                                  u64 bio_offset)
950 {
951         int async = check_async_write(inode, bio_flags);
952         int ret;
953
954         if (!(rw & REQ_WRITE)) {
955                 /*
956                  * called for a read, do the setup so that checksum validation
957                  * can happen in the async kernel threads
958                  */
959                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960                                           bio, BTRFS_WQ_ENDIO_METADATA);
961                 if (ret)
962                         goto out_w_error;
963                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964                                     mirror_num, 0);
965         } else if (!async) {
966                 ret = btree_csum_one_bio(bio);
967                 if (ret)
968                         goto out_w_error;
969                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970                                     mirror_num, 0);
971         } else {
972                 /*
973                  * kthread helpers are used to submit writes so that
974                  * checksumming can happen in parallel across all CPUs
975                  */
976                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977                                           inode, rw, bio, mirror_num, 0,
978                                           bio_offset,
979                                           __btree_submit_bio_start,
980                                           __btree_submit_bio_done);
981         }
982
983         if (ret)
984                 goto out_w_error;
985         return 0;
986
987 out_w_error:
988         bio->bi_error = ret;
989         bio_endio(bio);
990         return ret;
991 }
992
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995                         struct page *newpage, struct page *page,
996                         enum migrate_mode mode)
997 {
998         /*
999          * we can't safely write a btree page from here,
1000          * we haven't done the locking hook
1001          */
1002         if (PageDirty(page))
1003                 return -EAGAIN;
1004         /*
1005          * Buffers may be managed in a filesystem specific way.
1006          * We must have no buffers or drop them.
1007          */
1008         if (page_has_private(page) &&
1009             !try_to_release_page(page, GFP_KERNEL))
1010                 return -EAGAIN;
1011         return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014
1015
1016 static int btree_writepages(struct address_space *mapping,
1017                             struct writeback_control *wbc)
1018 {
1019         struct btrfs_fs_info *fs_info;
1020         int ret;
1021
1022         if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024                 if (wbc->for_kupdate)
1025                         return 0;
1026
1027                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028                 /* this is a bit racy, but that's ok */
1029                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030                                              BTRFS_DIRTY_METADATA_THRESH);
1031                 if (ret < 0)
1032                         return 0;
1033         }
1034         return btree_write_cache_pages(mapping, wbc);
1035 }
1036
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039         struct extent_io_tree *tree;
1040         tree = &BTRFS_I(page->mapping->host)->io_tree;
1041         return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046         if (PageWriteback(page) || PageDirty(page))
1047                 return 0;
1048
1049         return try_release_extent_buffer(page);
1050 }
1051
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053                                  unsigned int length)
1054 {
1055         struct extent_io_tree *tree;
1056         tree = &BTRFS_I(page->mapping->host)->io_tree;
1057         extent_invalidatepage(tree, page, offset);
1058         btree_releasepage(page, GFP_NOFS);
1059         if (PagePrivate(page)) {
1060                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061                            "page private not zero on page %llu",
1062                            (unsigned long long)page_offset(page));
1063                 ClearPagePrivate(page);
1064                 set_page_private(page, 0);
1065                 put_page(page);
1066         }
1067 }
1068
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072         struct extent_buffer *eb;
1073
1074         BUG_ON(!PagePrivate(page));
1075         eb = (struct extent_buffer *)page->private;
1076         BUG_ON(!eb);
1077         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078         BUG_ON(!atomic_read(&eb->refs));
1079         btrfs_assert_tree_locked(eb);
1080 #endif
1081         return __set_page_dirty_nobuffers(page);
1082 }
1083
1084 static const struct address_space_operations btree_aops = {
1085         .readpage       = btree_readpage,
1086         .writepages     = btree_writepages,
1087         .releasepage    = btree_releasepage,
1088         .invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090         .migratepage    = btree_migratepage,
1091 #endif
1092         .set_page_dirty = btree_set_page_dirty,
1093 };
1094
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097         struct extent_buffer *buf = NULL;
1098         struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100         buf = btrfs_find_create_tree_block(root, bytenr);
1101         if (IS_ERR(buf))
1102                 return;
1103         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1105         free_extent_buffer(buf);
1106 }
1107
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109                          int mirror_num, struct extent_buffer **eb)
1110 {
1111         struct extent_buffer *buf = NULL;
1112         struct inode *btree_inode = root->fs_info->btree_inode;
1113         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114         int ret;
1115
1116         buf = btrfs_find_create_tree_block(root, bytenr);
1117         if (IS_ERR(buf))
1118                 return 0;
1119
1120         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123                                        btree_get_extent, mirror_num);
1124         if (ret) {
1125                 free_extent_buffer(buf);
1126                 return ret;
1127         }
1128
1129         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130                 free_extent_buffer(buf);
1131                 return -EIO;
1132         } else if (extent_buffer_uptodate(buf)) {
1133                 *eb = buf;
1134         } else {
1135                 free_extent_buffer(buf);
1136         }
1137         return 0;
1138 }
1139
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141                                             u64 bytenr)
1142 {
1143         return find_extent_buffer(fs_info, bytenr);
1144 }
1145
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147                                                  u64 bytenr)
1148 {
1149         if (btrfs_is_testing(root->fs_info))
1150                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1151                                 root->nodesize);
1152         return alloc_extent_buffer(root->fs_info, bytenr);
1153 }
1154
1155
1156 int btrfs_write_tree_block(struct extent_buffer *buf)
1157 {
1158         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1159                                         buf->start + buf->len - 1);
1160 }
1161
1162 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163 {
1164         return filemap_fdatawait_range(buf->pages[0]->mapping,
1165                                        buf->start, buf->start + buf->len - 1);
1166 }
1167
1168 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1169                                       u64 parent_transid)
1170 {
1171         struct extent_buffer *buf = NULL;
1172         int ret;
1173
1174         buf = btrfs_find_create_tree_block(root, bytenr);
1175         if (IS_ERR(buf))
1176                 return buf;
1177
1178         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1179         if (ret) {
1180                 free_extent_buffer(buf);
1181                 return ERR_PTR(ret);
1182         }
1183         return buf;
1184
1185 }
1186
1187 void clean_tree_block(struct btrfs_trans_handle *trans,
1188                       struct btrfs_fs_info *fs_info,
1189                       struct extent_buffer *buf)
1190 {
1191         if (btrfs_header_generation(buf) ==
1192             fs_info->running_transaction->transid) {
1193                 btrfs_assert_tree_locked(buf);
1194
1195                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1196                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197                                              -buf->len,
1198                                              fs_info->dirty_metadata_batch);
1199                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1200                         btrfs_set_lock_blocking(buf);
1201                         clear_extent_buffer_dirty(buf);
1202                 }
1203         }
1204 }
1205
1206 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207 {
1208         struct btrfs_subvolume_writers *writers;
1209         int ret;
1210
1211         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212         if (!writers)
1213                 return ERR_PTR(-ENOMEM);
1214
1215         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1216         if (ret < 0) {
1217                 kfree(writers);
1218                 return ERR_PTR(ret);
1219         }
1220
1221         init_waitqueue_head(&writers->wait);
1222         return writers;
1223 }
1224
1225 static void
1226 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227 {
1228         percpu_counter_destroy(&writers->counter);
1229         kfree(writers);
1230 }
1231
1232 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1234                          u64 objectid)
1235 {
1236         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1237         root->node = NULL;
1238         root->commit_root = NULL;
1239         root->sectorsize = sectorsize;
1240         root->nodesize = nodesize;
1241         root->stripesize = stripesize;
1242         root->state = 0;
1243         root->orphan_cleanup_state = 0;
1244
1245         root->objectid = objectid;
1246         root->last_trans = 0;
1247         root->highest_objectid = 0;
1248         root->nr_delalloc_inodes = 0;
1249         root->nr_ordered_extents = 0;
1250         root->name = NULL;
1251         root->inode_tree = RB_ROOT;
1252         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1253         root->block_rsv = NULL;
1254         root->orphan_block_rsv = NULL;
1255
1256         INIT_LIST_HEAD(&root->dirty_list);
1257         INIT_LIST_HEAD(&root->root_list);
1258         INIT_LIST_HEAD(&root->delalloc_inodes);
1259         INIT_LIST_HEAD(&root->delalloc_root);
1260         INIT_LIST_HEAD(&root->ordered_extents);
1261         INIT_LIST_HEAD(&root->ordered_root);
1262         INIT_LIST_HEAD(&root->logged_list[0]);
1263         INIT_LIST_HEAD(&root->logged_list[1]);
1264         spin_lock_init(&root->orphan_lock);
1265         spin_lock_init(&root->inode_lock);
1266         spin_lock_init(&root->delalloc_lock);
1267         spin_lock_init(&root->ordered_extent_lock);
1268         spin_lock_init(&root->accounting_lock);
1269         spin_lock_init(&root->log_extents_lock[0]);
1270         spin_lock_init(&root->log_extents_lock[1]);
1271         mutex_init(&root->objectid_mutex);
1272         mutex_init(&root->log_mutex);
1273         mutex_init(&root->ordered_extent_mutex);
1274         mutex_init(&root->delalloc_mutex);
1275         init_waitqueue_head(&root->log_writer_wait);
1276         init_waitqueue_head(&root->log_commit_wait[0]);
1277         init_waitqueue_head(&root->log_commit_wait[1]);
1278         INIT_LIST_HEAD(&root->log_ctxs[0]);
1279         INIT_LIST_HEAD(&root->log_ctxs[1]);
1280         atomic_set(&root->log_commit[0], 0);
1281         atomic_set(&root->log_commit[1], 0);
1282         atomic_set(&root->log_writers, 0);
1283         atomic_set(&root->log_batch, 0);
1284         atomic_set(&root->orphan_inodes, 0);
1285         atomic_set(&root->refs, 1);
1286         atomic_set(&root->will_be_snapshoted, 0);
1287         atomic_set(&root->qgroup_meta_rsv, 0);
1288         root->log_transid = 0;
1289         root->log_transid_committed = -1;
1290         root->last_log_commit = 0;
1291         if (!dummy)
1292                 extent_io_tree_init(&root->dirty_log_pages,
1293                                      fs_info->btree_inode->i_mapping);
1294
1295         memset(&root->root_key, 0, sizeof(root->root_key));
1296         memset(&root->root_item, 0, sizeof(root->root_item));
1297         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1298         if (!dummy)
1299                 root->defrag_trans_start = fs_info->generation;
1300         else
1301                 root->defrag_trans_start = 0;
1302         root->root_key.objectid = objectid;
1303         root->anon_dev = 0;
1304
1305         spin_lock_init(&root->root_item_lock);
1306 }
1307
1308 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1309                 gfp_t flags)
1310 {
1311         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1312         if (root)
1313                 root->fs_info = fs_info;
1314         return root;
1315 }
1316
1317 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1318 /* Should only be used by the testing infrastructure */
1319 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1320                                           u32 sectorsize, u32 nodesize)
1321 {
1322         struct btrfs_root *root;
1323
1324         if (!fs_info)
1325                 return ERR_PTR(-EINVAL);
1326
1327         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1328         if (!root)
1329                 return ERR_PTR(-ENOMEM);
1330         /* We don't use the stripesize in selftest, set it as sectorsize */
1331         __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1332                         BTRFS_ROOT_TREE_OBJECTID);
1333         root->alloc_bytenr = 0;
1334
1335         return root;
1336 }
1337 #endif
1338
1339 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1340                                      struct btrfs_fs_info *fs_info,
1341                                      u64 objectid)
1342 {
1343         struct extent_buffer *leaf;
1344         struct btrfs_root *tree_root = fs_info->tree_root;
1345         struct btrfs_root *root;
1346         struct btrfs_key key;
1347         int ret = 0;
1348         uuid_le uuid;
1349
1350         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1351         if (!root)
1352                 return ERR_PTR(-ENOMEM);
1353
1354         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1355                 tree_root->stripesize, root, fs_info, objectid);
1356         root->root_key.objectid = objectid;
1357         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1358         root->root_key.offset = 0;
1359
1360         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1361         if (IS_ERR(leaf)) {
1362                 ret = PTR_ERR(leaf);
1363                 leaf = NULL;
1364                 goto fail;
1365         }
1366
1367         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1368         btrfs_set_header_bytenr(leaf, leaf->start);
1369         btrfs_set_header_generation(leaf, trans->transid);
1370         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1371         btrfs_set_header_owner(leaf, objectid);
1372         root->node = leaf;
1373
1374         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1375                             BTRFS_FSID_SIZE);
1376         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1377                             btrfs_header_chunk_tree_uuid(leaf),
1378                             BTRFS_UUID_SIZE);
1379         btrfs_mark_buffer_dirty(leaf);
1380
1381         root->commit_root = btrfs_root_node(root);
1382         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1383
1384         root->root_item.flags = 0;
1385         root->root_item.byte_limit = 0;
1386         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1387         btrfs_set_root_generation(&root->root_item, trans->transid);
1388         btrfs_set_root_level(&root->root_item, 0);
1389         btrfs_set_root_refs(&root->root_item, 1);
1390         btrfs_set_root_used(&root->root_item, leaf->len);
1391         btrfs_set_root_last_snapshot(&root->root_item, 0);
1392         btrfs_set_root_dirid(&root->root_item, 0);
1393         uuid_le_gen(&uuid);
1394         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1395         root->root_item.drop_level = 0;
1396
1397         key.objectid = objectid;
1398         key.type = BTRFS_ROOT_ITEM_KEY;
1399         key.offset = 0;
1400         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1401         if (ret)
1402                 goto fail;
1403
1404         btrfs_tree_unlock(leaf);
1405
1406         return root;
1407
1408 fail:
1409         if (leaf) {
1410                 btrfs_tree_unlock(leaf);
1411                 free_extent_buffer(root->commit_root);
1412                 free_extent_buffer(leaf);
1413         }
1414         kfree(root);
1415
1416         return ERR_PTR(ret);
1417 }
1418
1419 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1420                                          struct btrfs_fs_info *fs_info)
1421 {
1422         struct btrfs_root *root;
1423         struct btrfs_root *tree_root = fs_info->tree_root;
1424         struct extent_buffer *leaf;
1425
1426         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1427         if (!root)
1428                 return ERR_PTR(-ENOMEM);
1429
1430         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1431                      tree_root->stripesize, root, fs_info,
1432                      BTRFS_TREE_LOG_OBJECTID);
1433
1434         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1435         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1436         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1437
1438         /*
1439          * DON'T set REF_COWS for log trees
1440          *
1441          * log trees do not get reference counted because they go away
1442          * before a real commit is actually done.  They do store pointers
1443          * to file data extents, and those reference counts still get
1444          * updated (along with back refs to the log tree).
1445          */
1446
1447         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1448                         NULL, 0, 0, 0);
1449         if (IS_ERR(leaf)) {
1450                 kfree(root);
1451                 return ERR_CAST(leaf);
1452         }
1453
1454         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1455         btrfs_set_header_bytenr(leaf, leaf->start);
1456         btrfs_set_header_generation(leaf, trans->transid);
1457         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1458         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1459         root->node = leaf;
1460
1461         write_extent_buffer(root->node, root->fs_info->fsid,
1462                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1463         btrfs_mark_buffer_dirty(root->node);
1464         btrfs_tree_unlock(root->node);
1465         return root;
1466 }
1467
1468 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1469                              struct btrfs_fs_info *fs_info)
1470 {
1471         struct btrfs_root *log_root;
1472
1473         log_root = alloc_log_tree(trans, fs_info);
1474         if (IS_ERR(log_root))
1475                 return PTR_ERR(log_root);
1476         WARN_ON(fs_info->log_root_tree);
1477         fs_info->log_root_tree = log_root;
1478         return 0;
1479 }
1480
1481 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1482                        struct btrfs_root *root)
1483 {
1484         struct btrfs_root *log_root;
1485         struct btrfs_inode_item *inode_item;
1486
1487         log_root = alloc_log_tree(trans, root->fs_info);
1488         if (IS_ERR(log_root))
1489                 return PTR_ERR(log_root);
1490
1491         log_root->last_trans = trans->transid;
1492         log_root->root_key.offset = root->root_key.objectid;
1493
1494         inode_item = &log_root->root_item.inode;
1495         btrfs_set_stack_inode_generation(inode_item, 1);
1496         btrfs_set_stack_inode_size(inode_item, 3);
1497         btrfs_set_stack_inode_nlink(inode_item, 1);
1498         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1499         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1500
1501         btrfs_set_root_node(&log_root->root_item, log_root->node);
1502
1503         WARN_ON(root->log_root);
1504         root->log_root = log_root;
1505         root->log_transid = 0;
1506         root->log_transid_committed = -1;
1507         root->last_log_commit = 0;
1508         return 0;
1509 }
1510
1511 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1512                                                struct btrfs_key *key)
1513 {
1514         struct btrfs_root *root;
1515         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1516         struct btrfs_path *path;
1517         u64 generation;
1518         int ret;
1519
1520         path = btrfs_alloc_path();
1521         if (!path)
1522                 return ERR_PTR(-ENOMEM);
1523
1524         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1525         if (!root) {
1526                 ret = -ENOMEM;
1527                 goto alloc_fail;
1528         }
1529
1530         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1531                 tree_root->stripesize, root, fs_info, key->objectid);
1532
1533         ret = btrfs_find_root(tree_root, key, path,
1534                               &root->root_item, &root->root_key);
1535         if (ret) {
1536                 if (ret > 0)
1537                         ret = -ENOENT;
1538                 goto find_fail;
1539         }
1540
1541         generation = btrfs_root_generation(&root->root_item);
1542         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1543                                      generation);
1544         if (IS_ERR(root->node)) {
1545                 ret = PTR_ERR(root->node);
1546                 goto find_fail;
1547         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1548                 ret = -EIO;
1549                 free_extent_buffer(root->node);
1550                 goto find_fail;
1551         }
1552         root->commit_root = btrfs_root_node(root);
1553 out:
1554         btrfs_free_path(path);
1555         return root;
1556
1557 find_fail:
1558         kfree(root);
1559 alloc_fail:
1560         root = ERR_PTR(ret);
1561         goto out;
1562 }
1563
1564 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1565                                       struct btrfs_key *location)
1566 {
1567         struct btrfs_root *root;
1568
1569         root = btrfs_read_tree_root(tree_root, location);
1570         if (IS_ERR(root))
1571                 return root;
1572
1573         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1574                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1575                 btrfs_check_and_init_root_item(&root->root_item);
1576         }
1577
1578         return root;
1579 }
1580
1581 int btrfs_init_fs_root(struct btrfs_root *root)
1582 {
1583         int ret;
1584         struct btrfs_subvolume_writers *writers;
1585
1586         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1587         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1588                                         GFP_NOFS);
1589         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1590                 ret = -ENOMEM;
1591                 goto fail;
1592         }
1593
1594         writers = btrfs_alloc_subvolume_writers();
1595         if (IS_ERR(writers)) {
1596                 ret = PTR_ERR(writers);
1597                 goto fail;
1598         }
1599         root->subv_writers = writers;
1600
1601         btrfs_init_free_ino_ctl(root);
1602         spin_lock_init(&root->ino_cache_lock);
1603         init_waitqueue_head(&root->ino_cache_wait);
1604
1605         ret = get_anon_bdev(&root->anon_dev);
1606         if (ret)
1607                 goto fail;
1608
1609         mutex_lock(&root->objectid_mutex);
1610         ret = btrfs_find_highest_objectid(root,
1611                                         &root->highest_objectid);
1612         if (ret) {
1613                 mutex_unlock(&root->objectid_mutex);
1614                 goto fail;
1615         }
1616
1617         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1618
1619         mutex_unlock(&root->objectid_mutex);
1620
1621         return 0;
1622 fail:
1623         /* the caller is responsible to call free_fs_root */
1624         return ret;
1625 }
1626
1627 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1628                                         u64 root_id)
1629 {
1630         struct btrfs_root *root;
1631
1632         spin_lock(&fs_info->fs_roots_radix_lock);
1633         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1634                                  (unsigned long)root_id);
1635         spin_unlock(&fs_info->fs_roots_radix_lock);
1636         return root;
1637 }
1638
1639 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1640                          struct btrfs_root *root)
1641 {
1642         int ret;
1643
1644         ret = radix_tree_preload(GFP_NOFS);
1645         if (ret)
1646                 return ret;
1647
1648         spin_lock(&fs_info->fs_roots_radix_lock);
1649         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1650                                 (unsigned long)root->root_key.objectid,
1651                                 root);
1652         if (ret == 0)
1653                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1654         spin_unlock(&fs_info->fs_roots_radix_lock);
1655         radix_tree_preload_end();
1656
1657         return ret;
1658 }
1659
1660 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1661                                      struct btrfs_key *location,
1662                                      bool check_ref)
1663 {
1664         struct btrfs_root *root;
1665         struct btrfs_path *path;
1666         struct btrfs_key key;
1667         int ret;
1668
1669         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1670                 return fs_info->tree_root;
1671         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1672                 return fs_info->extent_root;
1673         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1674                 return fs_info->chunk_root;
1675         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1676                 return fs_info->dev_root;
1677         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1678                 return fs_info->csum_root;
1679         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1680                 return fs_info->quota_root ? fs_info->quota_root :
1681                                              ERR_PTR(-ENOENT);
1682         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1683                 return fs_info->uuid_root ? fs_info->uuid_root :
1684                                             ERR_PTR(-ENOENT);
1685         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1686                 return fs_info->free_space_root ? fs_info->free_space_root :
1687                                                   ERR_PTR(-ENOENT);
1688 again:
1689         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1690         if (root) {
1691                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1692                         return ERR_PTR(-ENOENT);
1693                 return root;
1694         }
1695
1696         root = btrfs_read_fs_root(fs_info->tree_root, location);
1697         if (IS_ERR(root))
1698                 return root;
1699
1700         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1701                 ret = -ENOENT;
1702                 goto fail;
1703         }
1704
1705         ret = btrfs_init_fs_root(root);
1706         if (ret)
1707                 goto fail;
1708
1709         path = btrfs_alloc_path();
1710         if (!path) {
1711                 ret = -ENOMEM;
1712                 goto fail;
1713         }
1714         key.objectid = BTRFS_ORPHAN_OBJECTID;
1715         key.type = BTRFS_ORPHAN_ITEM_KEY;
1716         key.offset = location->objectid;
1717
1718         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1719         btrfs_free_path(path);
1720         if (ret < 0)
1721                 goto fail;
1722         if (ret == 0)
1723                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1724
1725         ret = btrfs_insert_fs_root(fs_info, root);
1726         if (ret) {
1727                 if (ret == -EEXIST) {
1728                         free_fs_root(root);
1729                         goto again;
1730                 }
1731                 goto fail;
1732         }
1733         return root;
1734 fail:
1735         free_fs_root(root);
1736         return ERR_PTR(ret);
1737 }
1738
1739 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1740 {
1741         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1742         int ret = 0;
1743         struct btrfs_device *device;
1744         struct backing_dev_info *bdi;
1745
1746         rcu_read_lock();
1747         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1748                 if (!device->bdev)
1749                         continue;
1750                 bdi = blk_get_backing_dev_info(device->bdev);
1751                 if (bdi_congested(bdi, bdi_bits)) {
1752                         ret = 1;
1753                         break;
1754                 }
1755         }
1756         rcu_read_unlock();
1757         return ret;
1758 }
1759
1760 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1761 {
1762         int err;
1763
1764         err = bdi_setup_and_register(bdi, "btrfs");
1765         if (err)
1766                 return err;
1767
1768         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1769         bdi->congested_fn       = btrfs_congested_fn;
1770         bdi->congested_data     = info;
1771         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1772         return 0;
1773 }
1774
1775 /*
1776  * called by the kthread helper functions to finally call the bio end_io
1777  * functions.  This is where read checksum verification actually happens
1778  */
1779 static void end_workqueue_fn(struct btrfs_work *work)
1780 {
1781         struct bio *bio;
1782         struct btrfs_end_io_wq *end_io_wq;
1783
1784         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1785         bio = end_io_wq->bio;
1786
1787         bio->bi_error = end_io_wq->error;
1788         bio->bi_private = end_io_wq->private;
1789         bio->bi_end_io = end_io_wq->end_io;
1790         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1791         bio_endio(bio);
1792 }
1793
1794 static int cleaner_kthread(void *arg)
1795 {
1796         struct btrfs_root *root = arg;
1797         int again;
1798         struct btrfs_trans_handle *trans;
1799
1800         do {
1801                 again = 0;
1802
1803                 /* Make the cleaner go to sleep early. */
1804                 if (btrfs_need_cleaner_sleep(root))
1805                         goto sleep;
1806
1807                 /*
1808                  * Do not do anything if we might cause open_ctree() to block
1809                  * before we have finished mounting the filesystem.
1810                  */
1811                 if (!root->fs_info->open)
1812                         goto sleep;
1813
1814                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1815                         goto sleep;
1816
1817                 /*
1818                  * Avoid the problem that we change the status of the fs
1819                  * during the above check and trylock.
1820                  */
1821                 if (btrfs_need_cleaner_sleep(root)) {
1822                         mutex_unlock(&root->fs_info->cleaner_mutex);
1823                         goto sleep;
1824                 }
1825
1826                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1827                 btrfs_run_delayed_iputs(root);
1828                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1829
1830                 again = btrfs_clean_one_deleted_snapshot(root);
1831                 mutex_unlock(&root->fs_info->cleaner_mutex);
1832
1833                 /*
1834                  * The defragger has dealt with the R/O remount and umount,
1835                  * needn't do anything special here.
1836                  */
1837                 btrfs_run_defrag_inodes(root->fs_info);
1838
1839                 /*
1840                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1841                  * with relocation (btrfs_relocate_chunk) and relocation
1842                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1843                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1844                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1845                  * unused block groups.
1846                  */
1847                 btrfs_delete_unused_bgs(root->fs_info);
1848 sleep:
1849                 if (!again) {
1850                         set_current_state(TASK_INTERRUPTIBLE);
1851                         if (!kthread_should_stop())
1852                                 schedule();
1853                         __set_current_state(TASK_RUNNING);
1854                 }
1855         } while (!kthread_should_stop());
1856
1857         /*
1858          * Transaction kthread is stopped before us and wakes us up.
1859          * However we might have started a new transaction and COWed some
1860          * tree blocks when deleting unused block groups for example. So
1861          * make sure we commit the transaction we started to have a clean
1862          * shutdown when evicting the btree inode - if it has dirty pages
1863          * when we do the final iput() on it, eviction will trigger a
1864          * writeback for it which will fail with null pointer dereferences
1865          * since work queues and other resources were already released and
1866          * destroyed by the time the iput/eviction/writeback is made.
1867          */
1868         trans = btrfs_attach_transaction(root);
1869         if (IS_ERR(trans)) {
1870                 if (PTR_ERR(trans) != -ENOENT)
1871                         btrfs_err(root->fs_info,
1872                                   "cleaner transaction attach returned %ld",
1873                                   PTR_ERR(trans));
1874         } else {
1875                 int ret;
1876
1877                 ret = btrfs_commit_transaction(trans, root);
1878                 if (ret)
1879                         btrfs_err(root->fs_info,
1880                                   "cleaner open transaction commit returned %d",
1881                                   ret);
1882         }
1883
1884         return 0;
1885 }
1886
1887 static int transaction_kthread(void *arg)
1888 {
1889         struct btrfs_root *root = arg;
1890         struct btrfs_trans_handle *trans;
1891         struct btrfs_transaction *cur;
1892         u64 transid;
1893         unsigned long now;
1894         unsigned long delay;
1895         bool cannot_commit;
1896
1897         do {
1898                 cannot_commit = false;
1899                 delay = HZ * root->fs_info->commit_interval;
1900                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1901
1902                 spin_lock(&root->fs_info->trans_lock);
1903                 cur = root->fs_info->running_transaction;
1904                 if (!cur) {
1905                         spin_unlock(&root->fs_info->trans_lock);
1906                         goto sleep;
1907                 }
1908
1909                 now = get_seconds();
1910                 if (cur->state < TRANS_STATE_BLOCKED &&
1911                     (now < cur->start_time ||
1912                      now - cur->start_time < root->fs_info->commit_interval)) {
1913                         spin_unlock(&root->fs_info->trans_lock);
1914                         delay = HZ * 5;
1915                         goto sleep;
1916                 }
1917                 transid = cur->transid;
1918                 spin_unlock(&root->fs_info->trans_lock);
1919
1920                 /* If the file system is aborted, this will always fail. */
1921                 trans = btrfs_attach_transaction(root);
1922                 if (IS_ERR(trans)) {
1923                         if (PTR_ERR(trans) != -ENOENT)
1924                                 cannot_commit = true;
1925                         goto sleep;
1926                 }
1927                 if (transid == trans->transid) {
1928                         btrfs_commit_transaction(trans, root);
1929                 } else {
1930                         btrfs_end_transaction(trans, root);
1931                 }
1932 sleep:
1933                 wake_up_process(root->fs_info->cleaner_kthread);
1934                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1935
1936                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1937                                       &root->fs_info->fs_state)))
1938                         btrfs_cleanup_transaction(root);
1939                 set_current_state(TASK_INTERRUPTIBLE);
1940                 if (!kthread_should_stop() &&
1941                                 (!btrfs_transaction_blocked(root->fs_info) ||
1942                                  cannot_commit))
1943                         schedule_timeout(delay);
1944                 __set_current_state(TASK_RUNNING);
1945         } while (!kthread_should_stop());
1946         return 0;
1947 }
1948
1949 /*
1950  * this will find the highest generation in the array of
1951  * root backups.  The index of the highest array is returned,
1952  * or -1 if we can't find anything.
1953  *
1954  * We check to make sure the array is valid by comparing the
1955  * generation of the latest  root in the array with the generation
1956  * in the super block.  If they don't match we pitch it.
1957  */
1958 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1959 {
1960         u64 cur;
1961         int newest_index = -1;
1962         struct btrfs_root_backup *root_backup;
1963         int i;
1964
1965         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1966                 root_backup = info->super_copy->super_roots + i;
1967                 cur = btrfs_backup_tree_root_gen(root_backup);
1968                 if (cur == newest_gen)
1969                         newest_index = i;
1970         }
1971
1972         /* check to see if we actually wrapped around */
1973         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1974                 root_backup = info->super_copy->super_roots;
1975                 cur = btrfs_backup_tree_root_gen(root_backup);
1976                 if (cur == newest_gen)
1977                         newest_index = 0;
1978         }
1979         return newest_index;
1980 }
1981
1982
1983 /*
1984  * find the oldest backup so we know where to store new entries
1985  * in the backup array.  This will set the backup_root_index
1986  * field in the fs_info struct
1987  */
1988 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1989                                      u64 newest_gen)
1990 {
1991         int newest_index = -1;
1992
1993         newest_index = find_newest_super_backup(info, newest_gen);
1994         /* if there was garbage in there, just move along */
1995         if (newest_index == -1) {
1996                 info->backup_root_index = 0;
1997         } else {
1998                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1999         }
2000 }
2001
2002 /*
2003  * copy all the root pointers into the super backup array.
2004  * this will bump the backup pointer by one when it is
2005  * done
2006  */
2007 static void backup_super_roots(struct btrfs_fs_info *info)
2008 {
2009         int next_backup;
2010         struct btrfs_root_backup *root_backup;
2011         int last_backup;
2012
2013         next_backup = info->backup_root_index;
2014         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2015                 BTRFS_NUM_BACKUP_ROOTS;
2016
2017         /*
2018          * just overwrite the last backup if we're at the same generation
2019          * this happens only at umount
2020          */
2021         root_backup = info->super_for_commit->super_roots + last_backup;
2022         if (btrfs_backup_tree_root_gen(root_backup) ==
2023             btrfs_header_generation(info->tree_root->node))
2024                 next_backup = last_backup;
2025
2026         root_backup = info->super_for_commit->super_roots + next_backup;
2027
2028         /*
2029          * make sure all of our padding and empty slots get zero filled
2030          * regardless of which ones we use today
2031          */
2032         memset(root_backup, 0, sizeof(*root_backup));
2033
2034         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2035
2036         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2037         btrfs_set_backup_tree_root_gen(root_backup,
2038                                btrfs_header_generation(info->tree_root->node));
2039
2040         btrfs_set_backup_tree_root_level(root_backup,
2041                                btrfs_header_level(info->tree_root->node));
2042
2043         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2044         btrfs_set_backup_chunk_root_gen(root_backup,
2045                                btrfs_header_generation(info->chunk_root->node));
2046         btrfs_set_backup_chunk_root_level(root_backup,
2047                                btrfs_header_level(info->chunk_root->node));
2048
2049         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2050         btrfs_set_backup_extent_root_gen(root_backup,
2051                                btrfs_header_generation(info->extent_root->node));
2052         btrfs_set_backup_extent_root_level(root_backup,
2053                                btrfs_header_level(info->extent_root->node));
2054
2055         /*
2056          * we might commit during log recovery, which happens before we set
2057          * the fs_root.  Make sure it is valid before we fill it in.
2058          */
2059         if (info->fs_root && info->fs_root->node) {
2060                 btrfs_set_backup_fs_root(root_backup,
2061                                          info->fs_root->node->start);
2062                 btrfs_set_backup_fs_root_gen(root_backup,
2063                                btrfs_header_generation(info->fs_root->node));
2064                 btrfs_set_backup_fs_root_level(root_backup,
2065                                btrfs_header_level(info->fs_root->node));
2066         }
2067
2068         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2069         btrfs_set_backup_dev_root_gen(root_backup,
2070                                btrfs_header_generation(info->dev_root->node));
2071         btrfs_set_backup_dev_root_level(root_backup,
2072                                        btrfs_header_level(info->dev_root->node));
2073
2074         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2075         btrfs_set_backup_csum_root_gen(root_backup,
2076                                btrfs_header_generation(info->csum_root->node));
2077         btrfs_set_backup_csum_root_level(root_backup,
2078                                btrfs_header_level(info->csum_root->node));
2079
2080         btrfs_set_backup_total_bytes(root_backup,
2081                              btrfs_super_total_bytes(info->super_copy));
2082         btrfs_set_backup_bytes_used(root_backup,
2083                              btrfs_super_bytes_used(info->super_copy));
2084         btrfs_set_backup_num_devices(root_backup,
2085                              btrfs_super_num_devices(info->super_copy));
2086
2087         /*
2088          * if we don't copy this out to the super_copy, it won't get remembered
2089          * for the next commit
2090          */
2091         memcpy(&info->super_copy->super_roots,
2092                &info->super_for_commit->super_roots,
2093                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2094 }
2095
2096 /*
2097  * this copies info out of the root backup array and back into
2098  * the in-memory super block.  It is meant to help iterate through
2099  * the array, so you send it the number of backups you've already
2100  * tried and the last backup index you used.
2101  *
2102  * this returns -1 when it has tried all the backups
2103  */
2104 static noinline int next_root_backup(struct btrfs_fs_info *info,
2105                                      struct btrfs_super_block *super,
2106                                      int *num_backups_tried, int *backup_index)
2107 {
2108         struct btrfs_root_backup *root_backup;
2109         int newest = *backup_index;
2110
2111         if (*num_backups_tried == 0) {
2112                 u64 gen = btrfs_super_generation(super);
2113
2114                 newest = find_newest_super_backup(info, gen);
2115                 if (newest == -1)
2116                         return -1;
2117
2118                 *backup_index = newest;
2119                 *num_backups_tried = 1;
2120         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2121                 /* we've tried all the backups, all done */
2122                 return -1;
2123         } else {
2124                 /* jump to the next oldest backup */
2125                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2126                         BTRFS_NUM_BACKUP_ROOTS;
2127                 *backup_index = newest;
2128                 *num_backups_tried += 1;
2129         }
2130         root_backup = super->super_roots + newest;
2131
2132         btrfs_set_super_generation(super,
2133                                    btrfs_backup_tree_root_gen(root_backup));
2134         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2135         btrfs_set_super_root_level(super,
2136                                    btrfs_backup_tree_root_level(root_backup));
2137         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2138
2139         /*
2140          * fixme: the total bytes and num_devices need to match or we should
2141          * need a fsck
2142          */
2143         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2144         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2145         return 0;
2146 }
2147
2148 /* helper to cleanup workers */
2149 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2150 {
2151         btrfs_destroy_workqueue(fs_info->fixup_workers);
2152         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2153         btrfs_destroy_workqueue(fs_info->workers);
2154         btrfs_destroy_workqueue(fs_info->endio_workers);
2155         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2156         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2157         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2158         btrfs_destroy_workqueue(fs_info->rmw_workers);
2159         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2160         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2161         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2162         btrfs_destroy_workqueue(fs_info->submit_workers);
2163         btrfs_destroy_workqueue(fs_info->delayed_workers);
2164         btrfs_destroy_workqueue(fs_info->caching_workers);
2165         btrfs_destroy_workqueue(fs_info->readahead_workers);
2166         btrfs_destroy_workqueue(fs_info->flush_workers);
2167         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2168         btrfs_destroy_workqueue(fs_info->extent_workers);
2169 }
2170
2171 static void free_root_extent_buffers(struct btrfs_root *root)
2172 {
2173         if (root) {
2174                 free_extent_buffer(root->node);
2175                 free_extent_buffer(root->commit_root);
2176                 root->node = NULL;
2177                 root->commit_root = NULL;
2178         }
2179 }
2180
2181 /* helper to cleanup tree roots */
2182 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2183 {
2184         free_root_extent_buffers(info->tree_root);
2185
2186         free_root_extent_buffers(info->dev_root);
2187         free_root_extent_buffers(info->extent_root);
2188         free_root_extent_buffers(info->csum_root);
2189         free_root_extent_buffers(info->quota_root);
2190         free_root_extent_buffers(info->uuid_root);
2191         if (chunk_root)
2192                 free_root_extent_buffers(info->chunk_root);
2193         free_root_extent_buffers(info->free_space_root);
2194 }
2195
2196 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2197 {
2198         int ret;
2199         struct btrfs_root *gang[8];
2200         int i;
2201
2202         while (!list_empty(&fs_info->dead_roots)) {
2203                 gang[0] = list_entry(fs_info->dead_roots.next,
2204                                      struct btrfs_root, root_list);
2205                 list_del(&gang[0]->root_list);
2206
2207                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2208                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2209                 } else {
2210                         free_extent_buffer(gang[0]->node);
2211                         free_extent_buffer(gang[0]->commit_root);
2212                         btrfs_put_fs_root(gang[0]);
2213                 }
2214         }
2215
2216         while (1) {
2217                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2218                                              (void **)gang, 0,
2219                                              ARRAY_SIZE(gang));
2220                 if (!ret)
2221                         break;
2222                 for (i = 0; i < ret; i++)
2223                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2224         }
2225
2226         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2227                 btrfs_free_log_root_tree(NULL, fs_info);
2228                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2229                                             fs_info->pinned_extents);
2230         }
2231 }
2232
2233 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2234 {
2235         mutex_init(&fs_info->scrub_lock);
2236         atomic_set(&fs_info->scrubs_running, 0);
2237         atomic_set(&fs_info->scrub_pause_req, 0);
2238         atomic_set(&fs_info->scrubs_paused, 0);
2239         atomic_set(&fs_info->scrub_cancel_req, 0);
2240         init_waitqueue_head(&fs_info->scrub_pause_wait);
2241         fs_info->scrub_workers_refcnt = 0;
2242 }
2243
2244 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2245 {
2246         spin_lock_init(&fs_info->balance_lock);
2247         mutex_init(&fs_info->balance_mutex);
2248         atomic_set(&fs_info->balance_running, 0);
2249         atomic_set(&fs_info->balance_pause_req, 0);
2250         atomic_set(&fs_info->balance_cancel_req, 0);
2251         fs_info->balance_ctl = NULL;
2252         init_waitqueue_head(&fs_info->balance_wait_q);
2253 }
2254
2255 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2256                                    struct btrfs_root *tree_root)
2257 {
2258         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2259         set_nlink(fs_info->btree_inode, 1);
2260         /*
2261          * we set the i_size on the btree inode to the max possible int.
2262          * the real end of the address space is determined by all of
2263          * the devices in the system
2264          */
2265         fs_info->btree_inode->i_size = OFFSET_MAX;
2266         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2267
2268         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2269         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2270                              fs_info->btree_inode->i_mapping);
2271         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2272         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2273
2274         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2275
2276         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2277         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2278                sizeof(struct btrfs_key));
2279         set_bit(BTRFS_INODE_DUMMY,
2280                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2281         btrfs_insert_inode_hash(fs_info->btree_inode);
2282 }
2283
2284 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2285 {
2286         fs_info->dev_replace.lock_owner = 0;
2287         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2288         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2289         rwlock_init(&fs_info->dev_replace.lock);
2290         atomic_set(&fs_info->dev_replace.read_locks, 0);
2291         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2292         init_waitqueue_head(&fs_info->replace_wait);
2293         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2294 }
2295
2296 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2297 {
2298         spin_lock_init(&fs_info->qgroup_lock);
2299         mutex_init(&fs_info->qgroup_ioctl_lock);
2300         fs_info->qgroup_tree = RB_ROOT;
2301         fs_info->qgroup_op_tree = RB_ROOT;
2302         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2303         fs_info->qgroup_seq = 1;
2304         fs_info->quota_enabled = 0;
2305         fs_info->pending_quota_state = 0;
2306         fs_info->qgroup_ulist = NULL;
2307         fs_info->qgroup_rescan_running = false;
2308         mutex_init(&fs_info->qgroup_rescan_lock);
2309 }
2310
2311 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2312                 struct btrfs_fs_devices *fs_devices)
2313 {
2314         int max_active = fs_info->thread_pool_size;
2315         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2316
2317         fs_info->workers =
2318                 btrfs_alloc_workqueue(fs_info, "worker",
2319                                       flags | WQ_HIGHPRI, max_active, 16);
2320
2321         fs_info->delalloc_workers =
2322                 btrfs_alloc_workqueue(fs_info, "delalloc",
2323                                       flags, max_active, 2);
2324
2325         fs_info->flush_workers =
2326                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2327                                       flags, max_active, 0);
2328
2329         fs_info->caching_workers =
2330                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2331
2332         /*
2333          * a higher idle thresh on the submit workers makes it much more
2334          * likely that bios will be send down in a sane order to the
2335          * devices
2336          */
2337         fs_info->submit_workers =
2338                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2339                                       min_t(u64, fs_devices->num_devices,
2340                                             max_active), 64);
2341
2342         fs_info->fixup_workers =
2343                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2344
2345         /*
2346          * endios are largely parallel and should have a very
2347          * low idle thresh
2348          */
2349         fs_info->endio_workers =
2350                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2351         fs_info->endio_meta_workers =
2352                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2353                                       max_active, 4);
2354         fs_info->endio_meta_write_workers =
2355                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2356                                       max_active, 2);
2357         fs_info->endio_raid56_workers =
2358                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2359                                       max_active, 4);
2360         fs_info->endio_repair_workers =
2361                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2362         fs_info->rmw_workers =
2363                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2364         fs_info->endio_write_workers =
2365                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2366                                       max_active, 2);
2367         fs_info->endio_freespace_worker =
2368                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2369                                       max_active, 0);
2370         fs_info->delayed_workers =
2371                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2372                                       max_active, 0);
2373         fs_info->readahead_workers =
2374                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2375                                       max_active, 2);
2376         fs_info->qgroup_rescan_workers =
2377                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2378         fs_info->extent_workers =
2379                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2380                                       min_t(u64, fs_devices->num_devices,
2381                                             max_active), 8);
2382
2383         if (!(fs_info->workers && fs_info->delalloc_workers &&
2384               fs_info->submit_workers && fs_info->flush_workers &&
2385               fs_info->endio_workers && fs_info->endio_meta_workers &&
2386               fs_info->endio_meta_write_workers &&
2387               fs_info->endio_repair_workers &&
2388               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2389               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2390               fs_info->caching_workers && fs_info->readahead_workers &&
2391               fs_info->fixup_workers && fs_info->delayed_workers &&
2392               fs_info->extent_workers &&
2393               fs_info->qgroup_rescan_workers)) {
2394                 return -ENOMEM;
2395         }
2396
2397         return 0;
2398 }
2399
2400 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2401                             struct btrfs_fs_devices *fs_devices)
2402 {
2403         int ret;
2404         struct btrfs_root *tree_root = fs_info->tree_root;
2405         struct btrfs_root *log_tree_root;
2406         struct btrfs_super_block *disk_super = fs_info->super_copy;
2407         u64 bytenr = btrfs_super_log_root(disk_super);
2408
2409         if (fs_devices->rw_devices == 0) {
2410                 btrfs_warn(fs_info, "log replay required on RO media");
2411                 return -EIO;
2412         }
2413
2414         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2415         if (!log_tree_root)
2416                 return -ENOMEM;
2417
2418         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2419                         tree_root->stripesize, log_tree_root, fs_info,
2420                         BTRFS_TREE_LOG_OBJECTID);
2421
2422         log_tree_root->node = read_tree_block(tree_root, bytenr,
2423                         fs_info->generation + 1);
2424         if (IS_ERR(log_tree_root->node)) {
2425                 btrfs_warn(fs_info, "failed to read log tree");
2426                 ret = PTR_ERR(log_tree_root->node);
2427                 kfree(log_tree_root);
2428                 return ret;
2429         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2430                 btrfs_err(fs_info, "failed to read log tree");
2431                 free_extent_buffer(log_tree_root->node);
2432                 kfree(log_tree_root);
2433                 return -EIO;
2434         }
2435         /* returns with log_tree_root freed on success */
2436         ret = btrfs_recover_log_trees(log_tree_root);
2437         if (ret) {
2438                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2439                             "Failed to recover log tree");
2440                 free_extent_buffer(log_tree_root->node);
2441                 kfree(log_tree_root);
2442                 return ret;
2443         }
2444
2445         if (fs_info->sb->s_flags & MS_RDONLY) {
2446                 ret = btrfs_commit_super(tree_root);
2447                 if (ret)
2448                         return ret;
2449         }
2450
2451         return 0;
2452 }
2453
2454 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2455                             struct btrfs_root *tree_root)
2456 {
2457         struct btrfs_root *root;
2458         struct btrfs_key location;
2459         int ret;
2460
2461         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2462         location.type = BTRFS_ROOT_ITEM_KEY;
2463         location.offset = 0;
2464
2465         root = btrfs_read_tree_root(tree_root, &location);
2466         if (IS_ERR(root))
2467                 return PTR_ERR(root);
2468         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469         fs_info->extent_root = root;
2470
2471         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2472         root = btrfs_read_tree_root(tree_root, &location);
2473         if (IS_ERR(root))
2474                 return PTR_ERR(root);
2475         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476         fs_info->dev_root = root;
2477         btrfs_init_devices_late(fs_info);
2478
2479         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2480         root = btrfs_read_tree_root(tree_root, &location);
2481         if (IS_ERR(root))
2482                 return PTR_ERR(root);
2483         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2484         fs_info->csum_root = root;
2485
2486         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2487         root = btrfs_read_tree_root(tree_root, &location);
2488         if (!IS_ERR(root)) {
2489                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2490                 fs_info->quota_enabled = 1;
2491                 fs_info->pending_quota_state = 1;
2492                 fs_info->quota_root = root;
2493         }
2494
2495         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2496         root = btrfs_read_tree_root(tree_root, &location);
2497         if (IS_ERR(root)) {
2498                 ret = PTR_ERR(root);
2499                 if (ret != -ENOENT)
2500                         return ret;
2501         } else {
2502                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503                 fs_info->uuid_root = root;
2504         }
2505
2506         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2507                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2508                 root = btrfs_read_tree_root(tree_root, &location);
2509                 if (IS_ERR(root))
2510                         return PTR_ERR(root);
2511                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2512                 fs_info->free_space_root = root;
2513         }
2514
2515         return 0;
2516 }
2517
2518 int open_ctree(struct super_block *sb,
2519                struct btrfs_fs_devices *fs_devices,
2520                char *options)
2521 {
2522         u32 sectorsize;
2523         u32 nodesize;
2524         u32 stripesize;
2525         u64 generation;
2526         u64 features;
2527         struct btrfs_key location;
2528         struct buffer_head *bh;
2529         struct btrfs_super_block *disk_super;
2530         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2531         struct btrfs_root *tree_root;
2532         struct btrfs_root *chunk_root;
2533         int ret;
2534         int err = -EINVAL;
2535         int num_backups_tried = 0;
2536         int backup_index = 0;
2537         int max_active;
2538
2539         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2540         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2541         if (!tree_root || !chunk_root) {
2542                 err = -ENOMEM;
2543                 goto fail;
2544         }
2545
2546         ret = init_srcu_struct(&fs_info->subvol_srcu);
2547         if (ret) {
2548                 err = ret;
2549                 goto fail;
2550         }
2551
2552         ret = setup_bdi(fs_info, &fs_info->bdi);
2553         if (ret) {
2554                 err = ret;
2555                 goto fail_srcu;
2556         }
2557
2558         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2559         if (ret) {
2560                 err = ret;
2561                 goto fail_bdi;
2562         }
2563         fs_info->dirty_metadata_batch = PAGE_SIZE *
2564                                         (1 + ilog2(nr_cpu_ids));
2565
2566         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2567         if (ret) {
2568                 err = ret;
2569                 goto fail_dirty_metadata_bytes;
2570         }
2571
2572         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2573         if (ret) {
2574                 err = ret;
2575                 goto fail_delalloc_bytes;
2576         }
2577
2578         fs_info->btree_inode = new_inode(sb);
2579         if (!fs_info->btree_inode) {
2580                 err = -ENOMEM;
2581                 goto fail_bio_counter;
2582         }
2583
2584         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2585
2586         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2587         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2588         INIT_LIST_HEAD(&fs_info->trans_list);
2589         INIT_LIST_HEAD(&fs_info->dead_roots);
2590         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2591         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2592         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2593         spin_lock_init(&fs_info->delalloc_root_lock);
2594         spin_lock_init(&fs_info->trans_lock);
2595         spin_lock_init(&fs_info->fs_roots_radix_lock);
2596         spin_lock_init(&fs_info->delayed_iput_lock);
2597         spin_lock_init(&fs_info->defrag_inodes_lock);
2598         spin_lock_init(&fs_info->free_chunk_lock);
2599         spin_lock_init(&fs_info->tree_mod_seq_lock);
2600         spin_lock_init(&fs_info->super_lock);
2601         spin_lock_init(&fs_info->qgroup_op_lock);
2602         spin_lock_init(&fs_info->buffer_lock);
2603         spin_lock_init(&fs_info->unused_bgs_lock);
2604         rwlock_init(&fs_info->tree_mod_log_lock);
2605         mutex_init(&fs_info->unused_bg_unpin_mutex);
2606         mutex_init(&fs_info->delete_unused_bgs_mutex);
2607         mutex_init(&fs_info->reloc_mutex);
2608         mutex_init(&fs_info->delalloc_root_mutex);
2609         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2610         seqlock_init(&fs_info->profiles_lock);
2611
2612         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2613         INIT_LIST_HEAD(&fs_info->space_info);
2614         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2615         INIT_LIST_HEAD(&fs_info->unused_bgs);
2616         btrfs_mapping_init(&fs_info->mapping_tree);
2617         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2618                              BTRFS_BLOCK_RSV_GLOBAL);
2619         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2620                              BTRFS_BLOCK_RSV_DELALLOC);
2621         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2622         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2623         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2624         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2625                              BTRFS_BLOCK_RSV_DELOPS);
2626         atomic_set(&fs_info->nr_async_submits, 0);
2627         atomic_set(&fs_info->async_delalloc_pages, 0);
2628         atomic_set(&fs_info->async_submit_draining, 0);
2629         atomic_set(&fs_info->nr_async_bios, 0);
2630         atomic_set(&fs_info->defrag_running, 0);
2631         atomic_set(&fs_info->qgroup_op_seq, 0);
2632         atomic_set(&fs_info->reada_works_cnt, 0);
2633         atomic64_set(&fs_info->tree_mod_seq, 0);
2634         fs_info->fs_frozen = 0;
2635         fs_info->sb = sb;
2636         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2637         fs_info->metadata_ratio = 0;
2638         fs_info->defrag_inodes = RB_ROOT;
2639         fs_info->free_chunk_space = 0;
2640         fs_info->tree_mod_log = RB_ROOT;
2641         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2642         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2643         /* readahead state */
2644         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2645         spin_lock_init(&fs_info->reada_lock);
2646
2647         fs_info->thread_pool_size = min_t(unsigned long,
2648                                           num_online_cpus() + 2, 8);
2649
2650         INIT_LIST_HEAD(&fs_info->ordered_roots);
2651         spin_lock_init(&fs_info->ordered_root_lock);
2652         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2653                                         GFP_KERNEL);
2654         if (!fs_info->delayed_root) {
2655                 err = -ENOMEM;
2656                 goto fail_iput;
2657         }
2658         btrfs_init_delayed_root(fs_info->delayed_root);
2659
2660         btrfs_init_scrub(fs_info);
2661 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2662         fs_info->check_integrity_print_mask = 0;
2663 #endif
2664         btrfs_init_balance(fs_info);
2665         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2666
2667         sb->s_blocksize = 4096;
2668         sb->s_blocksize_bits = blksize_bits(4096);
2669         sb->s_bdi = &fs_info->bdi;
2670
2671         btrfs_init_btree_inode(fs_info, tree_root);
2672
2673         spin_lock_init(&fs_info->block_group_cache_lock);
2674         fs_info->block_group_cache_tree = RB_ROOT;
2675         fs_info->first_logical_byte = (u64)-1;
2676
2677         extent_io_tree_init(&fs_info->freed_extents[0],
2678                              fs_info->btree_inode->i_mapping);
2679         extent_io_tree_init(&fs_info->freed_extents[1],
2680                              fs_info->btree_inode->i_mapping);
2681         fs_info->pinned_extents = &fs_info->freed_extents[0];
2682         fs_info->do_barriers = 1;
2683
2684
2685         mutex_init(&fs_info->ordered_operations_mutex);
2686         mutex_init(&fs_info->tree_log_mutex);
2687         mutex_init(&fs_info->chunk_mutex);
2688         mutex_init(&fs_info->transaction_kthread_mutex);
2689         mutex_init(&fs_info->cleaner_mutex);
2690         mutex_init(&fs_info->volume_mutex);
2691         mutex_init(&fs_info->ro_block_group_mutex);
2692         init_rwsem(&fs_info->commit_root_sem);
2693         init_rwsem(&fs_info->cleanup_work_sem);
2694         init_rwsem(&fs_info->subvol_sem);
2695         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2696
2697         btrfs_init_dev_replace_locks(fs_info);
2698         btrfs_init_qgroup(fs_info);
2699
2700         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2701         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2702
2703         init_waitqueue_head(&fs_info->transaction_throttle);
2704         init_waitqueue_head(&fs_info->transaction_wait);
2705         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2706         init_waitqueue_head(&fs_info->async_submit_wait);
2707
2708         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2709
2710         ret = btrfs_alloc_stripe_hash_table(fs_info);
2711         if (ret) {
2712                 err = ret;
2713                 goto fail_alloc;
2714         }
2715
2716         __setup_root(4096, 4096, 4096, tree_root,
2717                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2718
2719         invalidate_bdev(fs_devices->latest_bdev);
2720
2721         /*
2722          * Read super block and check the signature bytes only
2723          */
2724         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2725         if (IS_ERR(bh)) {
2726                 err = PTR_ERR(bh);
2727                 goto fail_alloc;
2728         }
2729
2730         /*
2731          * We want to check superblock checksum, the type is stored inside.
2732          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2733          */
2734         if (btrfs_check_super_csum(bh->b_data)) {
2735                 btrfs_err(fs_info, "superblock checksum mismatch");
2736                 err = -EINVAL;
2737                 brelse(bh);
2738                 goto fail_alloc;
2739         }
2740
2741         /*
2742          * super_copy is zeroed at allocation time and we never touch the
2743          * following bytes up to INFO_SIZE, the checksum is calculated from
2744          * the whole block of INFO_SIZE
2745          */
2746         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2747         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2748                sizeof(*fs_info->super_for_commit));
2749         brelse(bh);
2750
2751         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2752
2753         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2754         if (ret) {
2755                 btrfs_err(fs_info, "superblock contains fatal errors");
2756                 err = -EINVAL;
2757                 goto fail_alloc;
2758         }
2759
2760         disk_super = fs_info->super_copy;
2761         if (!btrfs_super_root(disk_super))
2762                 goto fail_alloc;
2763
2764         /* check FS state, whether FS is broken. */
2765         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2766                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2767
2768         /*
2769          * run through our array of backup supers and setup
2770          * our ring pointer to the oldest one
2771          */
2772         generation = btrfs_super_generation(disk_super);
2773         find_oldest_super_backup(fs_info, generation);
2774
2775         /*
2776          * In the long term, we'll store the compression type in the super
2777          * block, and it'll be used for per file compression control.
2778          */
2779         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2780
2781         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2782         if (ret) {
2783                 err = ret;
2784                 goto fail_alloc;
2785         }
2786
2787         features = btrfs_super_incompat_flags(disk_super) &
2788                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2789         if (features) {
2790                 btrfs_err(fs_info,
2791                     "cannot mount because of unsupported optional features (%llx)",
2792                     features);
2793                 err = -EINVAL;
2794                 goto fail_alloc;
2795         }
2796
2797         features = btrfs_super_incompat_flags(disk_super);
2798         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2799         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2800                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2801
2802         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2803                 btrfs_info(fs_info, "has skinny extents");
2804
2805         /*
2806          * flag our filesystem as having big metadata blocks if
2807          * they are bigger than the page size
2808          */
2809         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2810                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2811                         btrfs_info(fs_info,
2812                                 "flagging fs with big metadata feature");
2813                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2814         }
2815
2816         nodesize = btrfs_super_nodesize(disk_super);
2817         sectorsize = btrfs_super_sectorsize(disk_super);
2818         stripesize = sectorsize;
2819         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2820         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2821
2822         /*
2823          * mixed block groups end up with duplicate but slightly offset
2824          * extent buffers for the same range.  It leads to corruptions
2825          */
2826         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2827             (sectorsize != nodesize)) {
2828                 btrfs_err(fs_info,
2829 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2830                         nodesize, sectorsize);
2831                 goto fail_alloc;
2832         }
2833
2834         /*
2835          * Needn't use the lock because there is no other task which will
2836          * update the flag.
2837          */
2838         btrfs_set_super_incompat_flags(disk_super, features);
2839
2840         features = btrfs_super_compat_ro_flags(disk_super) &
2841                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2842         if (!(sb->s_flags & MS_RDONLY) && features) {
2843                 btrfs_err(fs_info,
2844         "cannot mount read-write because of unsupported optional features (%llx)",
2845                        features);
2846                 err = -EINVAL;
2847                 goto fail_alloc;
2848         }
2849
2850         max_active = fs_info->thread_pool_size;
2851
2852         ret = btrfs_init_workqueues(fs_info, fs_devices);
2853         if (ret) {
2854                 err = ret;
2855                 goto fail_sb_buffer;
2856         }
2857
2858         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2859         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2860                                     SZ_4M / PAGE_SIZE);
2861
2862         tree_root->nodesize = nodesize;
2863         tree_root->sectorsize = sectorsize;
2864         tree_root->stripesize = stripesize;
2865
2866         sb->s_blocksize = sectorsize;
2867         sb->s_blocksize_bits = blksize_bits(sectorsize);
2868
2869         mutex_lock(&fs_info->chunk_mutex);
2870         ret = btrfs_read_sys_array(tree_root);
2871         mutex_unlock(&fs_info->chunk_mutex);
2872         if (ret) {
2873                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2874                 goto fail_sb_buffer;
2875         }
2876
2877         generation = btrfs_super_chunk_root_generation(disk_super);
2878
2879         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2880                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2881
2882         chunk_root->node = read_tree_block(chunk_root,
2883                                            btrfs_super_chunk_root(disk_super),
2884                                            generation);
2885         if (IS_ERR(chunk_root->node) ||
2886             !extent_buffer_uptodate(chunk_root->node)) {
2887                 btrfs_err(fs_info, "failed to read chunk root");
2888                 if (!IS_ERR(chunk_root->node))
2889                         free_extent_buffer(chunk_root->node);
2890                 chunk_root->node = NULL;
2891                 goto fail_tree_roots;
2892         }
2893         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2894         chunk_root->commit_root = btrfs_root_node(chunk_root);
2895
2896         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2897            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2898
2899         ret = btrfs_read_chunk_tree(chunk_root);
2900         if (ret) {
2901                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2902                 goto fail_tree_roots;
2903         }
2904
2905         /*
2906          * keep the device that is marked to be the target device for the
2907          * dev_replace procedure
2908          */
2909         btrfs_close_extra_devices(fs_devices, 0);
2910
2911         if (!fs_devices->latest_bdev) {
2912                 btrfs_err(fs_info, "failed to read devices");
2913                 goto fail_tree_roots;
2914         }
2915
2916 retry_root_backup:
2917         generation = btrfs_super_generation(disk_super);
2918
2919         tree_root->node = read_tree_block(tree_root,
2920                                           btrfs_super_root(disk_super),
2921                                           generation);
2922         if (IS_ERR(tree_root->node) ||
2923             !extent_buffer_uptodate(tree_root->node)) {
2924                 btrfs_warn(fs_info, "failed to read tree root");
2925                 if (!IS_ERR(tree_root->node))
2926                         free_extent_buffer(tree_root->node);
2927                 tree_root->node = NULL;
2928                 goto recovery_tree_root;
2929         }
2930
2931         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2932         tree_root->commit_root = btrfs_root_node(tree_root);
2933         btrfs_set_root_refs(&tree_root->root_item, 1);
2934
2935         mutex_lock(&tree_root->objectid_mutex);
2936         ret = btrfs_find_highest_objectid(tree_root,
2937                                         &tree_root->highest_objectid);
2938         if (ret) {
2939                 mutex_unlock(&tree_root->objectid_mutex);
2940                 goto recovery_tree_root;
2941         }
2942
2943         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2944
2945         mutex_unlock(&tree_root->objectid_mutex);
2946
2947         ret = btrfs_read_roots(fs_info, tree_root);
2948         if (ret)
2949                 goto recovery_tree_root;
2950
2951         fs_info->generation = generation;
2952         fs_info->last_trans_committed = generation;
2953
2954         ret = btrfs_recover_balance(fs_info);
2955         if (ret) {
2956                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2957                 goto fail_block_groups;
2958         }
2959
2960         ret = btrfs_init_dev_stats(fs_info);
2961         if (ret) {
2962                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2963                 goto fail_block_groups;
2964         }
2965
2966         ret = btrfs_init_dev_replace(fs_info);
2967         if (ret) {
2968                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2969                 goto fail_block_groups;
2970         }
2971
2972         btrfs_close_extra_devices(fs_devices, 1);
2973
2974         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2975         if (ret) {
2976                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2977                                 ret);
2978                 goto fail_block_groups;
2979         }
2980
2981         ret = btrfs_sysfs_add_device(fs_devices);
2982         if (ret) {
2983                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2984                                 ret);
2985                 goto fail_fsdev_sysfs;
2986         }
2987
2988         ret = btrfs_sysfs_add_mounted(fs_info);
2989         if (ret) {
2990                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2991                 goto fail_fsdev_sysfs;
2992         }
2993
2994         ret = btrfs_init_space_info(fs_info);
2995         if (ret) {
2996                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2997                 goto fail_sysfs;
2998         }
2999
3000         ret = btrfs_read_block_groups(fs_info->extent_root);
3001         if (ret) {
3002                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3003                 goto fail_sysfs;
3004         }
3005         fs_info->num_tolerated_disk_barrier_failures =
3006                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3007         if (fs_info->fs_devices->missing_devices >
3008              fs_info->num_tolerated_disk_barrier_failures &&
3009             !(sb->s_flags & MS_RDONLY)) {
3010                 btrfs_warn(fs_info,
3011 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3012                         fs_info->fs_devices->missing_devices,
3013                         fs_info->num_tolerated_disk_barrier_failures);
3014                 goto fail_sysfs;
3015         }
3016
3017         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3018                                                "btrfs-cleaner");
3019         if (IS_ERR(fs_info->cleaner_kthread))
3020                 goto fail_sysfs;
3021
3022         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3023                                                    tree_root,
3024                                                    "btrfs-transaction");
3025         if (IS_ERR(fs_info->transaction_kthread))
3026                 goto fail_cleaner;
3027
3028         if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3029             !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3030             !fs_info->fs_devices->rotating) {
3031                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3032                 btrfs_set_opt(fs_info->mount_opt, SSD);
3033         }
3034
3035         /*
3036          * Mount does not set all options immediately, we can do it now and do
3037          * not have to wait for transaction commit
3038          */
3039         btrfs_apply_pending_changes(fs_info);
3040
3041 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3042         if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3043                 ret = btrfsic_mount(tree_root, fs_devices,
3044                                     btrfs_test_opt(tree_root->fs_info,
3045                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3046                                     1 : 0,
3047                                     fs_info->check_integrity_print_mask);
3048                 if (ret)
3049                         btrfs_warn(fs_info,
3050                                 "failed to initialize integrity check module: %d",
3051                                 ret);
3052         }
3053 #endif
3054         ret = btrfs_read_qgroup_config(fs_info);
3055         if (ret)
3056                 goto fail_trans_kthread;
3057
3058         /* do not make disk changes in broken FS or nologreplay is given */
3059         if (btrfs_super_log_root(disk_super) != 0 &&
3060             !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3061                 ret = btrfs_replay_log(fs_info, fs_devices);
3062                 if (ret) {
3063                         err = ret;
3064                         goto fail_qgroup;
3065                 }
3066         }
3067
3068         ret = btrfs_find_orphan_roots(tree_root);
3069         if (ret)
3070                 goto fail_qgroup;
3071
3072         if (!(sb->s_flags & MS_RDONLY)) {
3073                 ret = btrfs_cleanup_fs_roots(fs_info);
3074                 if (ret)
3075                         goto fail_qgroup;
3076
3077                 mutex_lock(&fs_info->cleaner_mutex);
3078                 ret = btrfs_recover_relocation(tree_root);
3079                 mutex_unlock(&fs_info->cleaner_mutex);
3080                 if (ret < 0) {
3081                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3082                                         ret);
3083                         err = -EINVAL;
3084                         goto fail_qgroup;
3085                 }
3086         }
3087
3088         location.objectid = BTRFS_FS_TREE_OBJECTID;
3089         location.type = BTRFS_ROOT_ITEM_KEY;
3090         location.offset = 0;
3091
3092         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3093         if (IS_ERR(fs_info->fs_root)) {
3094                 err = PTR_ERR(fs_info->fs_root);
3095                 goto fail_qgroup;
3096         }
3097
3098         if (sb->s_flags & MS_RDONLY)
3099                 return 0;
3100
3101         if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3102             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3103                 btrfs_info(fs_info, "creating free space tree");
3104                 ret = btrfs_create_free_space_tree(fs_info);
3105                 if (ret) {
3106                         btrfs_warn(fs_info,
3107                                 "failed to create free space tree: %d", ret);
3108                         close_ctree(tree_root);
3109                         return ret;
3110                 }
3111         }
3112
3113         down_read(&fs_info->cleanup_work_sem);
3114         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3115             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3116                 up_read(&fs_info->cleanup_work_sem);
3117                 close_ctree(tree_root);
3118                 return ret;
3119         }
3120         up_read(&fs_info->cleanup_work_sem);
3121
3122         ret = btrfs_resume_balance_async(fs_info);
3123         if (ret) {
3124                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3125                 close_ctree(tree_root);
3126                 return ret;
3127         }
3128
3129         ret = btrfs_resume_dev_replace_async(fs_info);
3130         if (ret) {
3131                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3132                 close_ctree(tree_root);
3133                 return ret;
3134         }
3135
3136         btrfs_qgroup_rescan_resume(fs_info);
3137
3138         if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3139             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3140                 btrfs_info(fs_info, "clearing free space tree");
3141                 ret = btrfs_clear_free_space_tree(fs_info);
3142                 if (ret) {
3143                         btrfs_warn(fs_info,
3144                                 "failed to clear free space tree: %d", ret);
3145                         close_ctree(tree_root);
3146                         return ret;
3147                 }
3148         }
3149
3150         if (!fs_info->uuid_root) {
3151                 btrfs_info(fs_info, "creating UUID tree");
3152                 ret = btrfs_create_uuid_tree(fs_info);
3153                 if (ret) {
3154                         btrfs_warn(fs_info,
3155                                 "failed to create the UUID tree: %d", ret);
3156                         close_ctree(tree_root);
3157                         return ret;
3158                 }
3159         } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3160                    fs_info->generation !=
3161                                 btrfs_super_uuid_tree_generation(disk_super)) {
3162                 btrfs_info(fs_info, "checking UUID tree");
3163                 ret = btrfs_check_uuid_tree(fs_info);
3164                 if (ret) {
3165                         btrfs_warn(fs_info,
3166                                 "failed to check the UUID tree: %d", ret);
3167                         close_ctree(tree_root);
3168                         return ret;
3169                 }
3170         } else {
3171                 fs_info->update_uuid_tree_gen = 1;
3172         }
3173
3174         fs_info->open = 1;
3175
3176         /*
3177          * backuproot only affect mount behavior, and if open_ctree succeeded,
3178          * no need to keep the flag
3179          */
3180         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3181
3182         return 0;
3183
3184 fail_qgroup:
3185         btrfs_free_qgroup_config(fs_info);
3186 fail_trans_kthread:
3187         kthread_stop(fs_info->transaction_kthread);
3188         btrfs_cleanup_transaction(fs_info->tree_root);
3189         btrfs_free_fs_roots(fs_info);
3190 fail_cleaner:
3191         kthread_stop(fs_info->cleaner_kthread);
3192
3193         /*
3194          * make sure we're done with the btree inode before we stop our
3195          * kthreads
3196          */
3197         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3198
3199 fail_sysfs:
3200         btrfs_sysfs_remove_mounted(fs_info);
3201
3202 fail_fsdev_sysfs:
3203         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3204
3205 fail_block_groups:
3206         btrfs_put_block_group_cache(fs_info);
3207         btrfs_free_block_groups(fs_info);
3208
3209 fail_tree_roots:
3210         free_root_pointers(fs_info, 1);
3211         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3212
3213 fail_sb_buffer:
3214         btrfs_stop_all_workers(fs_info);
3215 fail_alloc:
3216 fail_iput:
3217         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3218
3219         iput(fs_info->btree_inode);
3220 fail_bio_counter:
3221         percpu_counter_destroy(&fs_info->bio_counter);
3222 fail_delalloc_bytes:
3223         percpu_counter_destroy(&fs_info->delalloc_bytes);
3224 fail_dirty_metadata_bytes:
3225         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3226 fail_bdi:
3227         bdi_destroy(&fs_info->bdi);
3228 fail_srcu:
3229         cleanup_srcu_struct(&fs_info->subvol_srcu);
3230 fail:
3231         btrfs_free_stripe_hash_table(fs_info);
3232         btrfs_close_devices(fs_info->fs_devices);
3233         return err;
3234
3235 recovery_tree_root:
3236         if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3237                 goto fail_tree_roots;
3238
3239         free_root_pointers(fs_info, 0);
3240
3241         /* don't use the log in recovery mode, it won't be valid */
3242         btrfs_set_super_log_root(disk_super, 0);
3243
3244         /* we can't trust the free space cache either */
3245         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3246
3247         ret = next_root_backup(fs_info, fs_info->super_copy,
3248                                &num_backups_tried, &backup_index);
3249         if (ret == -1)
3250                 goto fail_block_groups;
3251         goto retry_root_backup;
3252 }
3253
3254 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3255 {
3256         if (uptodate) {
3257                 set_buffer_uptodate(bh);
3258         } else {
3259                 struct btrfs_device *device = (struct btrfs_device *)
3260                         bh->b_private;
3261
3262                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3263                                 "lost page write due to IO error on %s",
3264                                           rcu_str_deref(device->name));
3265                 /* note, we don't set_buffer_write_io_error because we have
3266                  * our own ways of dealing with the IO errors
3267                  */
3268                 clear_buffer_uptodate(bh);
3269                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3270         }
3271         unlock_buffer(bh);
3272         put_bh(bh);
3273 }
3274
3275 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3276                         struct buffer_head **bh_ret)
3277 {
3278         struct buffer_head *bh;
3279         struct btrfs_super_block *super;
3280         u64 bytenr;
3281
3282         bytenr = btrfs_sb_offset(copy_num);
3283         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3284                 return -EINVAL;
3285
3286         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3287         /*
3288          * If we fail to read from the underlying devices, as of now
3289          * the best option we have is to mark it EIO.
3290          */
3291         if (!bh)
3292                 return -EIO;
3293
3294         super = (struct btrfs_super_block *)bh->b_data;
3295         if (btrfs_super_bytenr(super) != bytenr ||
3296                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3297                 brelse(bh);
3298                 return -EINVAL;
3299         }
3300
3301         *bh_ret = bh;
3302         return 0;
3303 }
3304
3305
3306 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3307 {
3308         struct buffer_head *bh;
3309         struct buffer_head *latest = NULL;
3310         struct btrfs_super_block *super;
3311         int i;
3312         u64 transid = 0;
3313         int ret = -EINVAL;
3314
3315         /* we would like to check all the supers, but that would make
3316          * a btrfs mount succeed after a mkfs from a different FS.
3317          * So, we need to add a special mount option to scan for
3318          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3319          */
3320         for (i = 0; i < 1; i++) {
3321                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3322                 if (ret)
3323                         continue;
3324
3325                 super = (struct btrfs_super_block *)bh->b_data;
3326
3327                 if (!latest || btrfs_super_generation(super) > transid) {
3328                         brelse(latest);
3329                         latest = bh;
3330                         transid = btrfs_super_generation(super);
3331                 } else {
3332                         brelse(bh);
3333                 }
3334         }
3335
3336         if (!latest)
3337                 return ERR_PTR(ret);
3338
3339         return latest;
3340 }
3341
3342 /*
3343  * this should be called twice, once with wait == 0 and
3344  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3345  * we write are pinned.
3346  *
3347  * They are released when wait == 1 is done.
3348  * max_mirrors must be the same for both runs, and it indicates how
3349  * many supers on this one device should be written.
3350  *
3351  * max_mirrors == 0 means to write them all.
3352  */
3353 static int write_dev_supers(struct btrfs_device *device,
3354                             struct btrfs_super_block *sb,
3355                             int do_barriers, int wait, int max_mirrors)
3356 {
3357         struct buffer_head *bh;
3358         int i;
3359         int ret;
3360         int errors = 0;
3361         u32 crc;
3362         u64 bytenr;
3363
3364         if (max_mirrors == 0)
3365                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3366
3367         for (i = 0; i < max_mirrors; i++) {
3368                 bytenr = btrfs_sb_offset(i);
3369                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3370                     device->commit_total_bytes)
3371                         break;
3372
3373                 if (wait) {
3374                         bh = __find_get_block(device->bdev, bytenr / 4096,
3375                                               BTRFS_SUPER_INFO_SIZE);
3376                         if (!bh) {
3377                                 errors++;
3378                                 continue;
3379                         }
3380                         wait_on_buffer(bh);
3381                         if (!buffer_uptodate(bh))
3382                                 errors++;
3383
3384                         /* drop our reference */
3385                         brelse(bh);
3386
3387                         /* drop the reference from the wait == 0 run */
3388                         brelse(bh);
3389                         continue;
3390                 } else {
3391                         btrfs_set_super_bytenr(sb, bytenr);
3392
3393                         crc = ~(u32)0;
3394                         crc = btrfs_csum_data((char *)sb +
3395                                               BTRFS_CSUM_SIZE, crc,
3396                                               BTRFS_SUPER_INFO_SIZE -
3397                                               BTRFS_CSUM_SIZE);
3398                         btrfs_csum_final(crc, sb->csum);
3399
3400                         /*
3401                          * one reference for us, and we leave it for the
3402                          * caller
3403                          */
3404                         bh = __getblk(device->bdev, bytenr / 4096,
3405                                       BTRFS_SUPER_INFO_SIZE);
3406                         if (!bh) {
3407                                 btrfs_err(device->dev_root->fs_info,
3408                                     "couldn't get super buffer head for bytenr %llu",
3409                                     bytenr);
3410                                 errors++;
3411                                 continue;
3412                         }
3413
3414                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3415
3416                         /* one reference for submit_bh */
3417                         get_bh(bh);
3418
3419                         set_buffer_uptodate(bh);
3420                         lock_buffer(bh);
3421                         bh->b_end_io = btrfs_end_buffer_write_sync;
3422                         bh->b_private = device;
3423                 }
3424
3425                 /*
3426                  * we fua the first super.  The others we allow
3427                  * to go down lazy.
3428                  */
3429                 if (i == 0)
3430                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3431                 else
3432                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3433                 if (ret)
3434                         errors++;
3435         }
3436         return errors < i ? 0 : -1;
3437 }
3438
3439 /*
3440  * endio for the write_dev_flush, this will wake anyone waiting
3441  * for the barrier when it is done
3442  */
3443 static void btrfs_end_empty_barrier(struct bio *bio)
3444 {
3445         if (bio->bi_private)
3446                 complete(bio->bi_private);
3447         bio_put(bio);
3448 }
3449
3450 /*
3451  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3452  * sent down.  With wait == 1, it waits for the previous flush.
3453  *
3454  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3455  * capable
3456  */
3457 static int write_dev_flush(struct btrfs_device *device, int wait)
3458 {
3459         struct bio *bio;
3460         int ret = 0;
3461
3462         if (device->nobarriers)
3463                 return 0;
3464
3465         if (wait) {
3466                 bio = device->flush_bio;
3467                 if (!bio)
3468                         return 0;
3469
3470                 wait_for_completion(&device->flush_wait);
3471
3472                 if (bio->bi_error) {
3473                         ret = bio->bi_error;
3474                         btrfs_dev_stat_inc_and_print(device,
3475                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3476                 }
3477
3478                 /* drop the reference from the wait == 0 run */
3479                 bio_put(bio);
3480                 device->flush_bio = NULL;
3481
3482                 return ret;
3483         }
3484
3485         /*
3486          * one reference for us, and we leave it for the
3487          * caller
3488          */
3489         device->flush_bio = NULL;
3490         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3491         if (!bio)
3492                 return -ENOMEM;
3493
3494         bio->bi_end_io = btrfs_end_empty_barrier;
3495         bio->bi_bdev = device->bdev;
3496         init_completion(&device->flush_wait);
3497         bio->bi_private = &device->flush_wait;
3498         device->flush_bio = bio;
3499
3500         bio_get(bio);
3501         btrfsic_submit_bio(WRITE_FLUSH, bio);
3502
3503         return 0;
3504 }
3505
3506 /*
3507  * send an empty flush down to each device in parallel,
3508  * then wait for them
3509  */
3510 static int barrier_all_devices(struct btrfs_fs_info *info)
3511 {
3512         struct list_head *head;
3513         struct btrfs_device *dev;
3514         int errors_send = 0;
3515         int errors_wait = 0;
3516         int ret;
3517
3518         /* send down all the barriers */
3519         head = &info->fs_devices->devices;
3520         list_for_each_entry_rcu(dev, head, dev_list) {
3521                 if (dev->missing)
3522                         continue;
3523                 if (!dev->bdev) {
3524                         errors_send++;
3525                         continue;
3526                 }
3527                 if (!dev->in_fs_metadata || !dev->writeable)
3528                         continue;
3529
3530                 ret = write_dev_flush(dev, 0);
3531                 if (ret)
3532                         errors_send++;
3533         }
3534
3535         /* wait for all the barriers */
3536         list_for_each_entry_rcu(dev, head, dev_list) {
3537                 if (dev->missing)
3538                         continue;
3539                 if (!dev->bdev) {
3540                         errors_wait++;
3541                         continue;
3542                 }
3543                 if (!dev->in_fs_metadata || !dev->writeable)
3544                         continue;
3545
3546                 ret = write_dev_flush(dev, 1);
3547                 if (ret)
3548                         errors_wait++;
3549         }
3550         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3551             errors_wait > info->num_tolerated_disk_barrier_failures)
3552                 return -EIO;
3553         return 0;
3554 }
3555
3556 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3557 {
3558         int raid_type;
3559         int min_tolerated = INT_MAX;
3560
3561         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3562             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3563                 min_tolerated = min(min_tolerated,
3564                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3565                                     tolerated_failures);
3566
3567         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3568                 if (raid_type == BTRFS_RAID_SINGLE)
3569                         continue;
3570                 if (!(flags & btrfs_raid_group[raid_type]))
3571                         continue;
3572                 min_tolerated = min(min_tolerated,
3573                                     btrfs_raid_array[raid_type].
3574                                     tolerated_failures);
3575         }
3576
3577         if (min_tolerated == INT_MAX) {
3578                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3579                 min_tolerated = 0;
3580         }
3581
3582         return min_tolerated;
3583 }
3584
3585 int btrfs_calc_num_tolerated_disk_barrier_failures(
3586         struct btrfs_fs_info *fs_info)
3587 {
3588         struct btrfs_ioctl_space_info space;
3589         struct btrfs_space_info *sinfo;
3590         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3591                        BTRFS_BLOCK_GROUP_SYSTEM,
3592                        BTRFS_BLOCK_GROUP_METADATA,
3593                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3594         int i;
3595         int c;
3596         int num_tolerated_disk_barrier_failures =
3597                 (int)fs_info->fs_devices->num_devices;
3598
3599         for (i = 0; i < ARRAY_SIZE(types); i++) {
3600                 struct btrfs_space_info *tmp;
3601
3602                 sinfo = NULL;
3603                 rcu_read_lock();
3604                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3605                         if (tmp->flags == types[i]) {
3606                                 sinfo = tmp;
3607                                 break;
3608                         }
3609                 }
3610                 rcu_read_unlock();
3611
3612                 if (!sinfo)
3613                         continue;
3614
3615                 down_read(&sinfo->groups_sem);
3616                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3617                         u64 flags;
3618
3619                         if (list_empty(&sinfo->block_groups[c]))
3620                                 continue;
3621
3622                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3623                                                    &space);
3624                         if (space.total_bytes == 0 || space.used_bytes == 0)
3625                                 continue;
3626                         flags = space.flags;
3627
3628                         num_tolerated_disk_barrier_failures = min(
3629                                 num_tolerated_disk_barrier_failures,
3630                                 btrfs_get_num_tolerated_disk_barrier_failures(
3631                                         flags));
3632                 }
3633                 up_read(&sinfo->groups_sem);
3634         }
3635
3636         return num_tolerated_disk_barrier_failures;
3637 }
3638
3639 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3640 {
3641         struct list_head *head;
3642         struct btrfs_device *dev;
3643         struct btrfs_super_block *sb;
3644         struct btrfs_dev_item *dev_item;
3645         int ret;
3646         int do_barriers;
3647         int max_errors;
3648         int total_errors = 0;
3649         u64 flags;
3650
3651         do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3652         backup_super_roots(root->fs_info);
3653
3654         sb = root->fs_info->super_for_commit;
3655         dev_item = &sb->dev_item;
3656
3657         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3658         head = &root->fs_info->fs_devices->devices;
3659         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3660
3661         if (do_barriers) {
3662                 ret = barrier_all_devices(root->fs_info);
3663                 if (ret) {
3664                         mutex_unlock(
3665                                 &root->fs_info->fs_devices->device_list_mutex);
3666                         btrfs_handle_fs_error(root->fs_info, ret,
3667                                     "errors while submitting device barriers.");
3668                         return ret;
3669                 }
3670         }
3671
3672         list_for_each_entry_rcu(dev, head, dev_list) {
3673                 if (!dev->bdev) {
3674                         total_errors++;
3675                         continue;
3676                 }
3677                 if (!dev->in_fs_metadata || !dev->writeable)
3678                         continue;
3679
3680                 btrfs_set_stack_device_generation(dev_item, 0);
3681                 btrfs_set_stack_device_type(dev_item, dev->type);
3682                 btrfs_set_stack_device_id(dev_item, dev->devid);
3683                 btrfs_set_stack_device_total_bytes(dev_item,
3684                                                    dev->commit_total_bytes);
3685                 btrfs_set_stack_device_bytes_used(dev_item,
3686                                                   dev->commit_bytes_used);
3687                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3688                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3689                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3690                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3691                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3692
3693                 flags = btrfs_super_flags(sb);
3694                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3695
3696                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3697                 if (ret)
3698                         total_errors++;
3699         }
3700         if (total_errors > max_errors) {
3701                 btrfs_err(root->fs_info, "%d errors while writing supers",
3702                        total_errors);
3703                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3704
3705                 /* FUA is masked off if unsupported and can't be the reason */
3706                 btrfs_handle_fs_error(root->fs_info, -EIO,
3707                             "%d errors while writing supers", total_errors);
3708                 return -EIO;
3709         }
3710
3711         total_errors = 0;
3712         list_for_each_entry_rcu(dev, head, dev_list) {
3713                 if (!dev->bdev)
3714                         continue;
3715                 if (!dev->in_fs_metadata || !dev->writeable)
3716                         continue;
3717
3718                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3719                 if (ret)
3720                         total_errors++;
3721         }
3722         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3723         if (total_errors > max_errors) {
3724                 btrfs_handle_fs_error(root->fs_info, -EIO,
3725                             "%d errors while writing supers", total_errors);
3726                 return -EIO;
3727         }
3728         return 0;
3729 }
3730
3731 int write_ctree_super(struct btrfs_trans_handle *trans,
3732                       struct btrfs_root *root, int max_mirrors)
3733 {
3734         return write_all_supers(root, max_mirrors);
3735 }
3736
3737 /* Drop a fs root from the radix tree and free it. */
3738 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3739                                   struct btrfs_root *root)
3740 {
3741         spin_lock(&fs_info->fs_roots_radix_lock);
3742         radix_tree_delete(&fs_info->fs_roots_radix,
3743                           (unsigned long)root->root_key.objectid);
3744         spin_unlock(&fs_info->fs_roots_radix_lock);
3745
3746         if (btrfs_root_refs(&root->root_item) == 0)
3747                 synchronize_srcu(&fs_info->subvol_srcu);
3748
3749         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3750                 btrfs_free_log(NULL, root);
3751                 if (root->reloc_root) {
3752                         free_extent_buffer(root->reloc_root->node);
3753                         free_extent_buffer(root->reloc_root->commit_root);
3754                         btrfs_put_fs_root(root->reloc_root);
3755                         root->reloc_root = NULL;
3756                 }
3757         }
3758
3759         if (root->free_ino_pinned)
3760                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3761         if (root->free_ino_ctl)
3762                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3763         free_fs_root(root);
3764 }
3765
3766 static void free_fs_root(struct btrfs_root *root)
3767 {
3768         iput(root->ino_cache_inode);
3769         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3770         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3771         root->orphan_block_rsv = NULL;
3772         if (root->anon_dev)
3773                 free_anon_bdev(root->anon_dev);
3774         if (root->subv_writers)
3775                 btrfs_free_subvolume_writers(root->subv_writers);
3776         free_extent_buffer(root->node);
3777         free_extent_buffer(root->commit_root);
3778         kfree(root->free_ino_ctl);
3779         kfree(root->free_ino_pinned);
3780         kfree(root->name);
3781         btrfs_put_fs_root(root);
3782 }
3783
3784 void btrfs_free_fs_root(struct btrfs_root *root)
3785 {
3786         free_fs_root(root);
3787 }
3788
3789 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3790 {
3791         u64 root_objectid = 0;
3792         struct btrfs_root *gang[8];
3793         int i = 0;
3794         int err = 0;
3795         unsigned int ret = 0;
3796         int index;
3797
3798         while (1) {
3799                 index = srcu_read_lock(&fs_info->subvol_srcu);
3800                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3801                                              (void **)gang, root_objectid,
3802                                              ARRAY_SIZE(gang));
3803                 if (!ret) {
3804                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3805                         break;
3806                 }
3807                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3808
3809                 for (i = 0; i < ret; i++) {
3810                         /* Avoid to grab roots in dead_roots */
3811                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3812                                 gang[i] = NULL;
3813                                 continue;
3814                         }
3815                         /* grab all the search result for later use */
3816                         gang[i] = btrfs_grab_fs_root(gang[i]);
3817                 }
3818                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3819
3820                 for (i = 0; i < ret; i++) {
3821                         if (!gang[i])
3822                                 continue;
3823                         root_objectid = gang[i]->root_key.objectid;
3824                         err = btrfs_orphan_cleanup(gang[i]);
3825                         if (err)
3826                                 break;
3827                         btrfs_put_fs_root(gang[i]);
3828                 }
3829                 root_objectid++;
3830         }
3831
3832         /* release the uncleaned roots due to error */
3833         for (; i < ret; i++) {
3834                 if (gang[i])
3835                         btrfs_put_fs_root(gang[i]);
3836         }
3837         return err;
3838 }
3839
3840 int btrfs_commit_super(struct btrfs_root *root)
3841 {
3842         struct btrfs_trans_handle *trans;
3843
3844         mutex_lock(&root->fs_info->cleaner_mutex);
3845         btrfs_run_delayed_iputs(root);
3846         mutex_unlock(&root->fs_info->cleaner_mutex);
3847         wake_up_process(root->fs_info->cleaner_kthread);
3848
3849         /* wait until ongoing cleanup work done */
3850         down_write(&root->fs_info->cleanup_work_sem);
3851         up_write(&root->fs_info->cleanup_work_sem);
3852
3853         trans = btrfs_join_transaction(root);
3854         if (IS_ERR(trans))
3855                 return PTR_ERR(trans);
3856         return btrfs_commit_transaction(trans, root);
3857 }
3858
3859 void close_ctree(struct btrfs_root *root)
3860 {
3861         struct btrfs_fs_info *fs_info = root->fs_info;
3862         int ret;
3863
3864         fs_info->closing = 1;
3865         smp_mb();
3866
3867         /* wait for the qgroup rescan worker to stop */
3868         btrfs_qgroup_wait_for_completion(fs_info, false);
3869
3870         /* wait for the uuid_scan task to finish */
3871         down(&fs_info->uuid_tree_rescan_sem);
3872         /* avoid complains from lockdep et al., set sem back to initial state */
3873         up(&fs_info->uuid_tree_rescan_sem);
3874
3875         /* pause restriper - we want to resume on mount */
3876         btrfs_pause_balance(fs_info);
3877
3878         btrfs_dev_replace_suspend_for_unmount(fs_info);
3879
3880         btrfs_scrub_cancel(fs_info);
3881
3882         /* wait for any defraggers to finish */
3883         wait_event(fs_info->transaction_wait,
3884                    (atomic_read(&fs_info->defrag_running) == 0));
3885
3886         /* clear out the rbtree of defraggable inodes */
3887         btrfs_cleanup_defrag_inodes(fs_info);
3888
3889         cancel_work_sync(&fs_info->async_reclaim_work);
3890
3891         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3892                 /*
3893                  * If the cleaner thread is stopped and there are
3894                  * block groups queued for removal, the deletion will be
3895                  * skipped when we quit the cleaner thread.
3896                  */
3897                 btrfs_delete_unused_bgs(root->fs_info);
3898
3899                 ret = btrfs_commit_super(root);
3900                 if (ret)
3901                         btrfs_err(fs_info, "commit super ret %d", ret);
3902         }
3903
3904         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3905                 btrfs_error_commit_super(root);
3906
3907         kthread_stop(fs_info->transaction_kthread);
3908         kthread_stop(fs_info->cleaner_kthread);
3909
3910         fs_info->closing = 2;
3911         smp_mb();
3912
3913         btrfs_free_qgroup_config(fs_info);
3914
3915         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3916                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3917                        percpu_counter_sum(&fs_info->delalloc_bytes));
3918         }
3919
3920         btrfs_sysfs_remove_mounted(fs_info);
3921         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3922
3923         btrfs_free_fs_roots(fs_info);
3924
3925         btrfs_put_block_group_cache(fs_info);
3926
3927         btrfs_free_block_groups(fs_info);
3928
3929         /*
3930          * we must make sure there is not any read request to
3931          * submit after we stopping all workers.
3932          */
3933         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3934         btrfs_stop_all_workers(fs_info);
3935
3936         fs_info->open = 0;
3937         free_root_pointers(fs_info, 1);
3938
3939         iput(fs_info->btree_inode);
3940
3941 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3942         if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3943                 btrfsic_unmount(root, fs_info->fs_devices);
3944 #endif
3945
3946         btrfs_close_devices(fs_info->fs_devices);
3947         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3948
3949         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3950         percpu_counter_destroy(&fs_info->delalloc_bytes);
3951         percpu_counter_destroy(&fs_info->bio_counter);
3952         bdi_destroy(&fs_info->bdi);
3953         cleanup_srcu_struct(&fs_info->subvol_srcu);
3954
3955         btrfs_free_stripe_hash_table(fs_info);
3956
3957         __btrfs_free_block_rsv(root->orphan_block_rsv);
3958         root->orphan_block_rsv = NULL;
3959
3960         lock_chunks(root);
3961         while (!list_empty(&fs_info->pinned_chunks)) {
3962                 struct extent_map *em;
3963
3964                 em = list_first_entry(&fs_info->pinned_chunks,
3965                                       struct extent_map, list);
3966                 list_del_init(&em->list);
3967                 free_extent_map(em);
3968         }
3969         unlock_chunks(root);
3970 }
3971
3972 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3973                           int atomic)
3974 {
3975         int ret;
3976         struct inode *btree_inode = buf->pages[0]->mapping->host;
3977
3978         ret = extent_buffer_uptodate(buf);
3979         if (!ret)
3980                 return ret;
3981
3982         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3983                                     parent_transid, atomic);
3984         if (ret == -EAGAIN)
3985                 return ret;
3986         return !ret;
3987 }
3988
3989 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3990 {
3991         struct btrfs_root *root;
3992         u64 transid = btrfs_header_generation(buf);
3993         int was_dirty;
3994
3995 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3996         /*
3997          * This is a fast path so only do this check if we have sanity tests
3998          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3999          * outside of the sanity tests.
4000          */
4001         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4002                 return;
4003 #endif
4004         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4005         btrfs_assert_tree_locked(buf);
4006         if (transid != root->fs_info->generation)
4007                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
4008                        "found %llu running %llu\n",
4009                         buf->start, transid, root->fs_info->generation);
4010         was_dirty = set_extent_buffer_dirty(buf);
4011         if (!was_dirty)
4012                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4013                                      buf->len,
4014                                      root->fs_info->dirty_metadata_batch);
4015 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4016         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4017                 btrfs_print_leaf(root, buf);
4018                 ASSERT(0);
4019         }
4020 #endif
4021 }
4022
4023 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4024                                         int flush_delayed)
4025 {
4026         /*
4027          * looks as though older kernels can get into trouble with
4028          * this code, they end up stuck in balance_dirty_pages forever
4029          */
4030         int ret;
4031
4032         if (current->flags & PF_MEMALLOC)
4033                 return;
4034
4035         if (flush_delayed)
4036                 btrfs_balance_delayed_items(root);
4037
4038         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4039                                      BTRFS_DIRTY_METADATA_THRESH);
4040         if (ret > 0) {
4041                 balance_dirty_pages_ratelimited(
4042                                    root->fs_info->btree_inode->i_mapping);
4043         }
4044 }
4045
4046 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4047 {
4048         __btrfs_btree_balance_dirty(root, 1);
4049 }
4050
4051 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4052 {
4053         __btrfs_btree_balance_dirty(root, 0);
4054 }
4055
4056 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4057 {
4058         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4059         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4060 }
4061
4062 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4063                               int read_only)
4064 {
4065         struct btrfs_super_block *sb = fs_info->super_copy;
4066         u64 nodesize = btrfs_super_nodesize(sb);
4067         u64 sectorsize = btrfs_super_sectorsize(sb);
4068         int ret = 0;
4069
4070         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4071                 printk(KERN_ERR "BTRFS: no valid FS found\n");
4072                 ret = -EINVAL;
4073         }
4074         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4075                 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4076                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4077         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4078                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4079                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4080                 ret = -EINVAL;
4081         }
4082         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4083                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4084                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4085                 ret = -EINVAL;
4086         }
4087         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4088                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4089                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4090                 ret = -EINVAL;
4091         }
4092
4093         /*
4094          * Check sectorsize and nodesize first, other check will need it.
4095          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4096          */
4097         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4098             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4099                 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4100                 ret = -EINVAL;
4101         }
4102         /* Only PAGE SIZE is supported yet */
4103         if (sectorsize != PAGE_SIZE) {
4104                 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4105                                 sectorsize, PAGE_SIZE);
4106                 ret = -EINVAL;
4107         }
4108         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4109             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4110                 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4111                 ret = -EINVAL;
4112         }
4113         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4114                 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4115                                 le32_to_cpu(sb->__unused_leafsize),
4116                                 nodesize);
4117                 ret = -EINVAL;
4118         }
4119
4120         /* Root alignment check */
4121         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4122                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4123                                 btrfs_super_root(sb));
4124                 ret = -EINVAL;
4125         }
4126         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4127                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4128                                 btrfs_super_chunk_root(sb));
4129                 ret = -EINVAL;
4130         }
4131         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4132                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4133                                 btrfs_super_log_root(sb));
4134                 ret = -EINVAL;
4135         }
4136
4137         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4138                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4139                                 fs_info->fsid, sb->dev_item.fsid);
4140                 ret = -EINVAL;
4141         }
4142
4143         /*
4144          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4145          * done later
4146          */
4147         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4148                 btrfs_err(fs_info, "bytes_used is too small %llu",
4149                        btrfs_super_bytes_used(sb));
4150                 ret = -EINVAL;
4151         }
4152         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4153                 btrfs_err(fs_info, "invalid stripesize %u",
4154                        btrfs_super_stripesize(sb));
4155                 ret = -EINVAL;
4156         }
4157         if (btrfs_super_num_devices(sb) > (1UL << 31))
4158                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4159                                 btrfs_super_num_devices(sb));
4160         if (btrfs_super_num_devices(sb) == 0) {
4161                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4162                 ret = -EINVAL;
4163         }
4164
4165         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4166                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4167                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4168                 ret = -EINVAL;
4169         }
4170
4171         /*
4172          * Obvious sys_chunk_array corruptions, it must hold at least one key
4173          * and one chunk
4174          */
4175         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4176                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4177                                 btrfs_super_sys_array_size(sb),
4178                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4179                 ret = -EINVAL;
4180         }
4181         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4182                         + sizeof(struct btrfs_chunk)) {
4183                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4184                                 btrfs_super_sys_array_size(sb),
4185                                 sizeof(struct btrfs_disk_key)
4186                                 + sizeof(struct btrfs_chunk));
4187                 ret = -EINVAL;
4188         }
4189
4190         /*
4191          * The generation is a global counter, we'll trust it more than the others
4192          * but it's still possible that it's the one that's wrong.
4193          */
4194         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4195                 printk(KERN_WARNING
4196                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4197                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4198         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4199             && btrfs_super_cache_generation(sb) != (u64)-1)
4200                 printk(KERN_WARNING
4201                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4202                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4203
4204         return ret;
4205 }
4206
4207 static void btrfs_error_commit_super(struct btrfs_root *root)
4208 {
4209         mutex_lock(&root->fs_info->cleaner_mutex);
4210         btrfs_run_delayed_iputs(root);
4211         mutex_unlock(&root->fs_info->cleaner_mutex);
4212
4213         down_write(&root->fs_info->cleanup_work_sem);
4214         up_write(&root->fs_info->cleanup_work_sem);
4215
4216         /* cleanup FS via transaction */
4217         btrfs_cleanup_transaction(root);
4218 }
4219
4220 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4221 {
4222         struct btrfs_ordered_extent *ordered;
4223
4224         spin_lock(&root->ordered_extent_lock);
4225         /*
4226          * This will just short circuit the ordered completion stuff which will
4227          * make sure the ordered extent gets properly cleaned up.
4228          */
4229         list_for_each_entry(ordered, &root->ordered_extents,
4230                             root_extent_list)
4231                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4232         spin_unlock(&root->ordered_extent_lock);
4233 }
4234
4235 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4236 {
4237         struct btrfs_root *root;
4238         struct list_head splice;
4239
4240         INIT_LIST_HEAD(&splice);
4241
4242         spin_lock(&fs_info->ordered_root_lock);
4243         list_splice_init(&fs_info->ordered_roots, &splice);
4244         while (!list_empty(&splice)) {
4245                 root = list_first_entry(&splice, struct btrfs_root,
4246                                         ordered_root);
4247                 list_move_tail(&root->ordered_root,
4248                                &fs_info->ordered_roots);
4249
4250                 spin_unlock(&fs_info->ordered_root_lock);
4251                 btrfs_destroy_ordered_extents(root);
4252
4253                 cond_resched();
4254                 spin_lock(&fs_info->ordered_root_lock);
4255         }
4256         spin_unlock(&fs_info->ordered_root_lock);
4257 }
4258
4259 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4260                                       struct btrfs_root *root)
4261 {
4262         struct rb_node *node;
4263         struct btrfs_delayed_ref_root *delayed_refs;
4264         struct btrfs_delayed_ref_node *ref;
4265         int ret = 0;
4266
4267         delayed_refs = &trans->delayed_refs;
4268
4269         spin_lock(&delayed_refs->lock);
4270         if (atomic_read(&delayed_refs->num_entries) == 0) {
4271                 spin_unlock(&delayed_refs->lock);
4272                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4273                 return ret;
4274         }
4275
4276         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4277                 struct btrfs_delayed_ref_head *head;
4278                 struct btrfs_delayed_ref_node *tmp;
4279                 bool pin_bytes = false;
4280
4281                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4282                                 href_node);
4283                 if (!mutex_trylock(&head->mutex)) {
4284                         atomic_inc(&head->node.refs);
4285                         spin_unlock(&delayed_refs->lock);
4286
4287                         mutex_lock(&head->mutex);
4288                         mutex_unlock(&head->mutex);
4289                         btrfs_put_delayed_ref(&head->node);
4290                         spin_lock(&delayed_refs->lock);
4291                         continue;
4292                 }
4293                 spin_lock(&head->lock);
4294                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4295                                                  list) {
4296                         ref->in_tree = 0;
4297                         list_del(&ref->list);
4298                         atomic_dec(&delayed_refs->num_entries);
4299                         btrfs_put_delayed_ref(ref);
4300                 }
4301                 if (head->must_insert_reserved)
4302                         pin_bytes = true;
4303                 btrfs_free_delayed_extent_op(head->extent_op);
4304                 delayed_refs->num_heads--;
4305                 if (head->processing == 0)
4306                         delayed_refs->num_heads_ready--;
4307                 atomic_dec(&delayed_refs->num_entries);
4308                 head->node.in_tree = 0;
4309                 rb_erase(&head->href_node, &delayed_refs->href_root);
4310                 spin_unlock(&head->lock);
4311                 spin_unlock(&delayed_refs->lock);
4312                 mutex_unlock(&head->mutex);
4313
4314                 if (pin_bytes)
4315                         btrfs_pin_extent(root, head->node.bytenr,
4316                                          head->node.num_bytes, 1);
4317                 btrfs_put_delayed_ref(&head->node);
4318                 cond_resched();
4319                 spin_lock(&delayed_refs->lock);
4320         }
4321
4322         spin_unlock(&delayed_refs->lock);
4323
4324         return ret;
4325 }
4326
4327 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4328 {
4329         struct btrfs_inode *btrfs_inode;
4330         struct list_head splice;
4331
4332         INIT_LIST_HEAD(&splice);
4333
4334         spin_lock(&root->delalloc_lock);
4335         list_splice_init(&root->delalloc_inodes, &splice);
4336
4337         while (!list_empty(&splice)) {
4338                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4339                                                delalloc_inodes);
4340
4341                 list_del_init(&btrfs_inode->delalloc_inodes);
4342                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4343                           &btrfs_inode->runtime_flags);
4344                 spin_unlock(&root->delalloc_lock);
4345
4346                 btrfs_invalidate_inodes(btrfs_inode->root);
4347
4348                 spin_lock(&root->delalloc_lock);
4349         }
4350
4351         spin_unlock(&root->delalloc_lock);
4352 }
4353
4354 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4355 {
4356         struct btrfs_root *root;
4357         struct list_head splice;
4358
4359         INIT_LIST_HEAD(&splice);
4360
4361         spin_lock(&fs_info->delalloc_root_lock);
4362         list_splice_init(&fs_info->delalloc_roots, &splice);
4363         while (!list_empty(&splice)) {
4364                 root = list_first_entry(&splice, struct btrfs_root,
4365                                          delalloc_root);
4366                 list_del_init(&root->delalloc_root);
4367                 root = btrfs_grab_fs_root(root);
4368                 BUG_ON(!root);
4369                 spin_unlock(&fs_info->delalloc_root_lock);
4370
4371                 btrfs_destroy_delalloc_inodes(root);
4372                 btrfs_put_fs_root(root);
4373
4374                 spin_lock(&fs_info->delalloc_root_lock);
4375         }
4376         spin_unlock(&fs_info->delalloc_root_lock);
4377 }
4378
4379 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4380                                         struct extent_io_tree *dirty_pages,
4381                                         int mark)
4382 {
4383         int ret;
4384         struct extent_buffer *eb;
4385         u64 start = 0;
4386         u64 end;
4387
4388         while (1) {
4389                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4390                                             mark, NULL);
4391                 if (ret)
4392                         break;
4393
4394                 clear_extent_bits(dirty_pages, start, end, mark);
4395                 while (start <= end) {
4396                         eb = btrfs_find_tree_block(root->fs_info, start);
4397                         start += root->nodesize;
4398                         if (!eb)
4399                                 continue;
4400                         wait_on_extent_buffer_writeback(eb);
4401
4402                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4403                                                &eb->bflags))
4404                                 clear_extent_buffer_dirty(eb);
4405                         free_extent_buffer_stale(eb);
4406                 }
4407         }
4408
4409         return ret;
4410 }
4411
4412 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4413                                        struct extent_io_tree *pinned_extents)
4414 {
4415         struct extent_io_tree *unpin;
4416         u64 start;
4417         u64 end;
4418         int ret;
4419         bool loop = true;
4420
4421         unpin = pinned_extents;
4422 again:
4423         while (1) {
4424                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4425                                             EXTENT_DIRTY, NULL);
4426                 if (ret)
4427                         break;
4428
4429                 clear_extent_dirty(unpin, start, end);
4430                 btrfs_error_unpin_extent_range(root, start, end);
4431                 cond_resched();
4432         }
4433
4434         if (loop) {
4435                 if (unpin == &root->fs_info->freed_extents[0])
4436                         unpin = &root->fs_info->freed_extents[1];
4437                 else
4438                         unpin = &root->fs_info->freed_extents[0];
4439                 loop = false;
4440                 goto again;
4441         }
4442
4443         return 0;
4444 }
4445
4446 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4447                                    struct btrfs_root *root)
4448 {
4449         btrfs_destroy_delayed_refs(cur_trans, root);
4450
4451         cur_trans->state = TRANS_STATE_COMMIT_START;
4452         wake_up(&root->fs_info->transaction_blocked_wait);
4453
4454         cur_trans->state = TRANS_STATE_UNBLOCKED;
4455         wake_up(&root->fs_info->transaction_wait);
4456
4457         btrfs_destroy_delayed_inodes(root);
4458         btrfs_assert_delayed_root_empty(root);
4459
4460         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4461                                      EXTENT_DIRTY);
4462         btrfs_destroy_pinned_extent(root,
4463                                     root->fs_info->pinned_extents);
4464
4465         cur_trans->state =TRANS_STATE_COMPLETED;
4466         wake_up(&cur_trans->commit_wait);
4467
4468         /*
4469         memset(cur_trans, 0, sizeof(*cur_trans));
4470         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4471         */
4472 }
4473
4474 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4475 {
4476         struct btrfs_transaction *t;
4477
4478         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4479
4480         spin_lock(&root->fs_info->trans_lock);
4481         while (!list_empty(&root->fs_info->trans_list)) {
4482                 t = list_first_entry(&root->fs_info->trans_list,
4483                                      struct btrfs_transaction, list);
4484                 if (t->state >= TRANS_STATE_COMMIT_START) {
4485                         atomic_inc(&t->use_count);
4486                         spin_unlock(&root->fs_info->trans_lock);
4487                         btrfs_wait_for_commit(root, t->transid);
4488                         btrfs_put_transaction(t);
4489                         spin_lock(&root->fs_info->trans_lock);
4490                         continue;
4491                 }
4492                 if (t == root->fs_info->running_transaction) {
4493                         t->state = TRANS_STATE_COMMIT_DOING;
4494                         spin_unlock(&root->fs_info->trans_lock);
4495                         /*
4496                          * We wait for 0 num_writers since we don't hold a trans
4497                          * handle open currently for this transaction.
4498                          */
4499                         wait_event(t->writer_wait,
4500                                    atomic_read(&t->num_writers) == 0);
4501                 } else {
4502                         spin_unlock(&root->fs_info->trans_lock);
4503                 }
4504                 btrfs_cleanup_one_transaction(t, root);
4505
4506                 spin_lock(&root->fs_info->trans_lock);
4507                 if (t == root->fs_info->running_transaction)
4508                         root->fs_info->running_transaction = NULL;
4509                 list_del_init(&t->list);
4510                 spin_unlock(&root->fs_info->trans_lock);
4511
4512                 btrfs_put_transaction(t);
4513                 trace_btrfs_transaction_commit(root);
4514                 spin_lock(&root->fs_info->trans_lock);
4515         }
4516         spin_unlock(&root->fs_info->trans_lock);
4517         btrfs_destroy_all_ordered_extents(root->fs_info);
4518         btrfs_destroy_delayed_inodes(root);
4519         btrfs_assert_delayed_root_empty(root);
4520         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4521         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4522         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4523
4524         return 0;
4525 }
4526
4527 static const struct extent_io_ops btree_extent_io_ops = {
4528         .readpage_end_io_hook = btree_readpage_end_io_hook,
4529         .readpage_io_failed_hook = btree_io_failed_hook,
4530         .submit_bio_hook = btree_submit_bio_hook,
4531         /* note we're sharing with inode.c for the merge bio hook */
4532         .merge_bio_hook = btrfs_merge_bio_hook,
4533 };