dlm: replace BUG_ON with a less severe handling
[cascardo/linux.git] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68
69 struct cbuf {
70         unsigned int base;
71         unsigned int len;
72         unsigned int mask;
73 };
74
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77         cb->len += n;
78 }
79
80 static int cbuf_data(struct cbuf *cb)
81 {
82         return ((cb->base + cb->len) & cb->mask);
83 }
84
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87         cb->base = cb->len = 0;
88         cb->mask = size-1;
89 }
90
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93         cb->len  -= n;
94         cb->base += n;
95         cb->base &= cb->mask;
96 }
97
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100         return cb->len == 0;
101 }
102
103 struct connection {
104         struct socket *sock;    /* NULL if not connected */
105         uint32_t nodeid;        /* So we know who we are in the list */
106         struct mutex sock_mutex;
107         unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115         struct list_head writequeue;  /* List of outgoing writequeue_entries */
116         spinlock_t writequeue_lock;
117         int (*rx_action) (struct connection *); /* What to do when active */
118         void (*connect_action) (struct connection *);   /* What to do to connect */
119         struct page *rx_page;
120         struct cbuf cb;
121         int retries;
122 #define MAX_CONNECT_RETRIES 3
123         struct hlist_node list;
124         struct connection *othercon;
125         struct work_struct rwork; /* Receive workqueue */
126         struct work_struct swork; /* Send workqueue */
127 };
128 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
129
130 /* An entry waiting to be sent */
131 struct writequeue_entry {
132         struct list_head list;
133         struct page *page;
134         int offset;
135         int len;
136         int end;
137         int users;
138         struct connection *con;
139 };
140
141 struct dlm_node_addr {
142         struct list_head list;
143         int nodeid;
144         int addr_count;
145         int curr_addr_index;
146         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
147 };
148
149 static LIST_HEAD(dlm_node_addrs);
150 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
151
152 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
153 static int dlm_local_count;
154 static int dlm_allow_conn;
155
156 /* Work queues */
157 static struct workqueue_struct *recv_workqueue;
158 static struct workqueue_struct *send_workqueue;
159
160 static struct hlist_head connection_hash[CONN_HASH_SIZE];
161 static DEFINE_MUTEX(connections_lock);
162 static struct kmem_cache *con_cache;
163
164 static void process_recv_sockets(struct work_struct *work);
165 static void process_send_sockets(struct work_struct *work);
166
167
168 /* This is deliberately very simple because most clusters have simple
169    sequential nodeids, so we should be able to go straight to a connection
170    struct in the array */
171 static inline int nodeid_hash(int nodeid)
172 {
173         return nodeid & (CONN_HASH_SIZE-1);
174 }
175
176 static struct connection *__find_con(int nodeid)
177 {
178         int r;
179         struct connection *con;
180
181         r = nodeid_hash(nodeid);
182
183         hlist_for_each_entry(con, &connection_hash[r], list) {
184                 if (con->nodeid == nodeid)
185                         return con;
186         }
187         return NULL;
188 }
189
190 /*
191  * If 'allocation' is zero then we don't attempt to create a new
192  * connection structure for this node.
193  */
194 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
195 {
196         struct connection *con = NULL;
197         int r;
198
199         con = __find_con(nodeid);
200         if (con || !alloc)
201                 return con;
202
203         con = kmem_cache_zalloc(con_cache, alloc);
204         if (!con)
205                 return NULL;
206
207         r = nodeid_hash(nodeid);
208         hlist_add_head(&con->list, &connection_hash[r]);
209
210         con->nodeid = nodeid;
211         mutex_init(&con->sock_mutex);
212         INIT_LIST_HEAD(&con->writequeue);
213         spin_lock_init(&con->writequeue_lock);
214         INIT_WORK(&con->swork, process_send_sockets);
215         INIT_WORK(&con->rwork, process_recv_sockets);
216
217         /* Setup action pointers for child sockets */
218         if (con->nodeid) {
219                 struct connection *zerocon = __find_con(0);
220
221                 con->connect_action = zerocon->connect_action;
222                 if (!con->rx_action)
223                         con->rx_action = zerocon->rx_action;
224         }
225
226         return con;
227 }
228
229 /* Loop round all connections */
230 static void foreach_conn(void (*conn_func)(struct connection *c))
231 {
232         int i;
233         struct hlist_node *n;
234         struct connection *con;
235
236         for (i = 0; i < CONN_HASH_SIZE; i++) {
237                 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
238                         conn_func(con);
239         }
240 }
241
242 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
243 {
244         struct connection *con;
245
246         mutex_lock(&connections_lock);
247         con = __nodeid2con(nodeid, allocation);
248         mutex_unlock(&connections_lock);
249
250         return con;
251 }
252
253 static struct dlm_node_addr *find_node_addr(int nodeid)
254 {
255         struct dlm_node_addr *na;
256
257         list_for_each_entry(na, &dlm_node_addrs, list) {
258                 if (na->nodeid == nodeid)
259                         return na;
260         }
261         return NULL;
262 }
263
264 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
265 {
266         switch (x->ss_family) {
267         case AF_INET: {
268                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
269                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
270                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
271                         return 0;
272                 if (sinx->sin_port != siny->sin_port)
273                         return 0;
274                 break;
275         }
276         case AF_INET6: {
277                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
278                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
279                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
280                         return 0;
281                 if (sinx->sin6_port != siny->sin6_port)
282                         return 0;
283                 break;
284         }
285         default:
286                 return 0;
287         }
288         return 1;
289 }
290
291 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
292                           struct sockaddr *sa_out, bool try_new_addr)
293 {
294         struct sockaddr_storage sas;
295         struct dlm_node_addr *na;
296
297         if (!dlm_local_count)
298                 return -1;
299
300         spin_lock(&dlm_node_addrs_spin);
301         na = find_node_addr(nodeid);
302         if (na && na->addr_count) {
303                 memcpy(&sas, na->addr[na->curr_addr_index],
304                        sizeof(struct sockaddr_storage));
305
306                 if (try_new_addr) {
307                         na->curr_addr_index++;
308                         if (na->curr_addr_index == na->addr_count)
309                                 na->curr_addr_index = 0;
310                 }
311         }
312         spin_unlock(&dlm_node_addrs_spin);
313
314         if (!na)
315                 return -EEXIST;
316
317         if (!na->addr_count)
318                 return -ENOENT;
319
320         if (sas_out)
321                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
322
323         if (!sa_out)
324                 return 0;
325
326         if (dlm_local_addr[0]->ss_family == AF_INET) {
327                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
328                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
329                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
330         } else {
331                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
332                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
333                 ret6->sin6_addr = in6->sin6_addr;
334         }
335
336         return 0;
337 }
338
339 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
340 {
341         struct dlm_node_addr *na;
342         int rv = -EEXIST;
343         int addr_i;
344
345         spin_lock(&dlm_node_addrs_spin);
346         list_for_each_entry(na, &dlm_node_addrs, list) {
347                 if (!na->addr_count)
348                         continue;
349
350                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
351                         if (addr_compare(na->addr[addr_i], addr)) {
352                                 *nodeid = na->nodeid;
353                                 rv = 0;
354                                 goto unlock;
355                         }
356                 }
357         }
358 unlock:
359         spin_unlock(&dlm_node_addrs_spin);
360         return rv;
361 }
362
363 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
364 {
365         struct sockaddr_storage *new_addr;
366         struct dlm_node_addr *new_node, *na;
367
368         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
369         if (!new_node)
370                 return -ENOMEM;
371
372         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
373         if (!new_addr) {
374                 kfree(new_node);
375                 return -ENOMEM;
376         }
377
378         memcpy(new_addr, addr, len);
379
380         spin_lock(&dlm_node_addrs_spin);
381         na = find_node_addr(nodeid);
382         if (!na) {
383                 new_node->nodeid = nodeid;
384                 new_node->addr[0] = new_addr;
385                 new_node->addr_count = 1;
386                 list_add(&new_node->list, &dlm_node_addrs);
387                 spin_unlock(&dlm_node_addrs_spin);
388                 return 0;
389         }
390
391         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
392                 spin_unlock(&dlm_node_addrs_spin);
393                 kfree(new_addr);
394                 kfree(new_node);
395                 return -ENOSPC;
396         }
397
398         na->addr[na->addr_count++] = new_addr;
399         spin_unlock(&dlm_node_addrs_spin);
400         kfree(new_node);
401         return 0;
402 }
403
404 /* Data available on socket or listen socket received a connect */
405 static void lowcomms_data_ready(struct sock *sk)
406 {
407         struct connection *con = sock2con(sk);
408         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
409                 queue_work(recv_workqueue, &con->rwork);
410 }
411
412 static void lowcomms_write_space(struct sock *sk)
413 {
414         struct connection *con = sock2con(sk);
415
416         if (!con)
417                 return;
418
419         clear_bit(SOCK_NOSPACE, &con->sock->flags);
420
421         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
422                 con->sock->sk->sk_write_pending--;
423                 clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
424         }
425
426         if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
427                 queue_work(send_workqueue, &con->swork);
428 }
429
430 static inline void lowcomms_connect_sock(struct connection *con)
431 {
432         if (test_bit(CF_CLOSE, &con->flags))
433                 return;
434         if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
435                 queue_work(send_workqueue, &con->swork);
436 }
437
438 static void lowcomms_state_change(struct sock *sk)
439 {
440         /* SCTP layer is not calling sk_data_ready when the connection
441          * is done, so we catch the signal through here. Also, it
442          * doesn't switch socket state when entering shutdown, so we
443          * skip the write in that case.
444          */
445         if (sk->sk_shutdown) {
446                 if (sk->sk_shutdown == RCV_SHUTDOWN)
447                         lowcomms_data_ready(sk);
448         } else if (sk->sk_state == TCP_ESTABLISHED) {
449                 lowcomms_write_space(sk);
450         }
451 }
452
453 int dlm_lowcomms_connect_node(int nodeid)
454 {
455         struct connection *con;
456
457         if (nodeid == dlm_our_nodeid())
458                 return 0;
459
460         con = nodeid2con(nodeid, GFP_NOFS);
461         if (!con)
462                 return -ENOMEM;
463         lowcomms_connect_sock(con);
464         return 0;
465 }
466
467 /* Make a socket active */
468 static void add_sock(struct socket *sock, struct connection *con)
469 {
470         con->sock = sock;
471
472         /* Install a data_ready callback */
473         con->sock->sk->sk_data_ready = lowcomms_data_ready;
474         con->sock->sk->sk_write_space = lowcomms_write_space;
475         con->sock->sk->sk_state_change = lowcomms_state_change;
476         con->sock->sk->sk_user_data = con;
477         con->sock->sk->sk_allocation = GFP_NOFS;
478 }
479
480 /* Add the port number to an IPv6 or 4 sockaddr and return the address
481    length */
482 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
483                           int *addr_len)
484 {
485         saddr->ss_family =  dlm_local_addr[0]->ss_family;
486         if (saddr->ss_family == AF_INET) {
487                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
488                 in4_addr->sin_port = cpu_to_be16(port);
489                 *addr_len = sizeof(struct sockaddr_in);
490                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
491         } else {
492                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
493                 in6_addr->sin6_port = cpu_to_be16(port);
494                 *addr_len = sizeof(struct sockaddr_in6);
495         }
496         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
497 }
498
499 /* Close a remote connection and tidy up */
500 static void close_connection(struct connection *con, bool and_other,
501                              bool tx, bool rx)
502 {
503         clear_bit(CF_CONNECT_PENDING, &con->flags);
504         clear_bit(CF_WRITE_PENDING, &con->flags);
505         if (tx && cancel_work_sync(&con->swork))
506                 log_print("canceled swork for node %d", con->nodeid);
507         if (rx && cancel_work_sync(&con->rwork))
508                 log_print("canceled rwork for node %d", con->nodeid);
509
510         mutex_lock(&con->sock_mutex);
511         if (con->sock) {
512                 sock_release(con->sock);
513                 con->sock = NULL;
514         }
515         if (con->othercon && and_other) {
516                 /* Will only re-enter once. */
517                 close_connection(con->othercon, false, true, true);
518         }
519         if (con->rx_page) {
520                 __free_page(con->rx_page);
521                 con->rx_page = NULL;
522         }
523
524         con->retries = 0;
525         mutex_unlock(&con->sock_mutex);
526 }
527
528 /* Data received from remote end */
529 static int receive_from_sock(struct connection *con)
530 {
531         int ret = 0;
532         struct msghdr msg = {};
533         struct kvec iov[2];
534         unsigned len;
535         int r;
536         int call_again_soon = 0;
537         int nvec;
538
539         mutex_lock(&con->sock_mutex);
540
541         if (con->sock == NULL) {
542                 ret = -EAGAIN;
543                 goto out_close;
544         }
545         if (con->nodeid == 0) {
546                 ret = -EINVAL;
547                 goto out_close;
548         }
549
550         if (con->rx_page == NULL) {
551                 /*
552                  * This doesn't need to be atomic, but I think it should
553                  * improve performance if it is.
554                  */
555                 con->rx_page = alloc_page(GFP_ATOMIC);
556                 if (con->rx_page == NULL)
557                         goto out_resched;
558                 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
559         }
560
561         /*
562          * iov[0] is the bit of the circular buffer between the current end
563          * point (cb.base + cb.len) and the end of the buffer.
564          */
565         iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
566         iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
567         iov[1].iov_len = 0;
568         nvec = 1;
569
570         /*
571          * iov[1] is the bit of the circular buffer between the start of the
572          * buffer and the start of the currently used section (cb.base)
573          */
574         if (cbuf_data(&con->cb) >= con->cb.base) {
575                 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
576                 iov[1].iov_len = con->cb.base;
577                 iov[1].iov_base = page_address(con->rx_page);
578                 nvec = 2;
579         }
580         len = iov[0].iov_len + iov[1].iov_len;
581
582         r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
583                                MSG_DONTWAIT | MSG_NOSIGNAL);
584         if (ret <= 0)
585                 goto out_close;
586         else if (ret == len)
587                 call_again_soon = 1;
588
589         cbuf_add(&con->cb, ret);
590         ret = dlm_process_incoming_buffer(con->nodeid,
591                                           page_address(con->rx_page),
592                                           con->cb.base, con->cb.len,
593                                           PAGE_CACHE_SIZE);
594         if (ret == -EBADMSG) {
595                 log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
596                           page_address(con->rx_page), con->cb.base,
597                           con->cb.len, r);
598         }
599         if (ret < 0)
600                 goto out_close;
601         cbuf_eat(&con->cb, ret);
602
603         if (cbuf_empty(&con->cb) && !call_again_soon) {
604                 __free_page(con->rx_page);
605                 con->rx_page = NULL;
606         }
607
608         if (call_again_soon)
609                 goto out_resched;
610         mutex_unlock(&con->sock_mutex);
611         return 0;
612
613 out_resched:
614         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
615                 queue_work(recv_workqueue, &con->rwork);
616         mutex_unlock(&con->sock_mutex);
617         return -EAGAIN;
618
619 out_close:
620         mutex_unlock(&con->sock_mutex);
621         if (ret != -EAGAIN) {
622                 close_connection(con, false, true, false);
623                 /* Reconnect when there is something to send */
624         }
625         /* Don't return success if we really got EOF */
626         if (ret == 0)
627                 ret = -EAGAIN;
628
629         return ret;
630 }
631
632 /* Listening socket is busy, accept a connection */
633 static int tcp_accept_from_sock(struct connection *con)
634 {
635         int result;
636         struct sockaddr_storage peeraddr;
637         struct socket *newsock;
638         int len;
639         int nodeid;
640         struct connection *newcon;
641         struct connection *addcon;
642
643         mutex_lock(&connections_lock);
644         if (!dlm_allow_conn) {
645                 mutex_unlock(&connections_lock);
646                 return -1;
647         }
648         mutex_unlock(&connections_lock);
649
650         memset(&peeraddr, 0, sizeof(peeraddr));
651         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
652                                   SOCK_STREAM, IPPROTO_TCP, &newsock);
653         if (result < 0)
654                 return -ENOMEM;
655
656         mutex_lock_nested(&con->sock_mutex, 0);
657
658         result = -ENOTCONN;
659         if (con->sock == NULL)
660                 goto accept_err;
661
662         newsock->type = con->sock->type;
663         newsock->ops = con->sock->ops;
664
665         result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
666         if (result < 0)
667                 goto accept_err;
668
669         /* Get the connected socket's peer */
670         memset(&peeraddr, 0, sizeof(peeraddr));
671         if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
672                                   &len, 2)) {
673                 result = -ECONNABORTED;
674                 goto accept_err;
675         }
676
677         /* Get the new node's NODEID */
678         make_sockaddr(&peeraddr, 0, &len);
679         if (addr_to_nodeid(&peeraddr, &nodeid)) {
680                 unsigned char *b=(unsigned char *)&peeraddr;
681                 log_print("connect from non cluster node");
682                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
683                                      b, sizeof(struct sockaddr_storage));
684                 sock_release(newsock);
685                 mutex_unlock(&con->sock_mutex);
686                 return -1;
687         }
688
689         log_print("got connection from %d", nodeid);
690
691         /*  Check to see if we already have a connection to this node. This
692          *  could happen if the two nodes initiate a connection at roughly
693          *  the same time and the connections cross on the wire.
694          *  In this case we store the incoming one in "othercon"
695          */
696         newcon = nodeid2con(nodeid, GFP_NOFS);
697         if (!newcon) {
698                 result = -ENOMEM;
699                 goto accept_err;
700         }
701         mutex_lock_nested(&newcon->sock_mutex, 1);
702         if (newcon->sock) {
703                 struct connection *othercon = newcon->othercon;
704
705                 if (!othercon) {
706                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
707                         if (!othercon) {
708                                 log_print("failed to allocate incoming socket");
709                                 mutex_unlock(&newcon->sock_mutex);
710                                 result = -ENOMEM;
711                                 goto accept_err;
712                         }
713                         othercon->nodeid = nodeid;
714                         othercon->rx_action = receive_from_sock;
715                         mutex_init(&othercon->sock_mutex);
716                         INIT_WORK(&othercon->swork, process_send_sockets);
717                         INIT_WORK(&othercon->rwork, process_recv_sockets);
718                         set_bit(CF_IS_OTHERCON, &othercon->flags);
719                 }
720                 if (!othercon->sock) {
721                         newcon->othercon = othercon;
722                         othercon->sock = newsock;
723                         newsock->sk->sk_user_data = othercon;
724                         add_sock(newsock, othercon);
725                         addcon = othercon;
726                 }
727                 else {
728                         printk("Extra connection from node %d attempted\n", nodeid);
729                         result = -EAGAIN;
730                         mutex_unlock(&newcon->sock_mutex);
731                         goto accept_err;
732                 }
733         }
734         else {
735                 newsock->sk->sk_user_data = newcon;
736                 newcon->rx_action = receive_from_sock;
737                 add_sock(newsock, newcon);
738                 addcon = newcon;
739         }
740
741         mutex_unlock(&newcon->sock_mutex);
742
743         /*
744          * Add it to the active queue in case we got data
745          * between processing the accept adding the socket
746          * to the read_sockets list
747          */
748         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
749                 queue_work(recv_workqueue, &addcon->rwork);
750         mutex_unlock(&con->sock_mutex);
751
752         return 0;
753
754 accept_err:
755         mutex_unlock(&con->sock_mutex);
756         sock_release(newsock);
757
758         if (result != -EAGAIN)
759                 log_print("error accepting connection from node: %d", result);
760         return result;
761 }
762
763 int sctp_accept_from_sock(struct connection *con)
764 {
765         /* Check that the new node is in the lockspace */
766         struct sctp_prim prim;
767         int nodeid;
768         int prim_len, ret;
769         int addr_len;
770         struct connection *newcon;
771         struct connection *addcon;
772         struct socket *newsock;
773
774         mutex_lock(&connections_lock);
775         if (!dlm_allow_conn) {
776                 mutex_unlock(&connections_lock);
777                 return -1;
778         }
779         mutex_unlock(&connections_lock);
780
781         mutex_lock_nested(&con->sock_mutex, 0);
782
783         ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
784         if (ret < 0)
785                 goto accept_err;
786
787         memset(&prim, 0, sizeof(struct sctp_prim));
788         prim_len = sizeof(struct sctp_prim);
789
790         ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
791                                 (char *)&prim, &prim_len);
792         if (ret < 0) {
793                 log_print("getsockopt/sctp_primary_addr failed: %d", ret);
794                 goto accept_err;
795         }
796
797         make_sockaddr(&prim.ssp_addr, 0, &addr_len);
798         if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
799                 unsigned char *b = (unsigned char *)&prim.ssp_addr;
800
801                 log_print("reject connect from unknown addr");
802                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
803                                      b, sizeof(struct sockaddr_storage));
804                 goto accept_err;
805         }
806
807         newcon = nodeid2con(nodeid, GFP_NOFS);
808         if (!newcon) {
809                 ret = -ENOMEM;
810                 goto accept_err;
811         }
812
813         mutex_lock_nested(&newcon->sock_mutex, 1);
814
815         if (newcon->sock) {
816                 struct connection *othercon = newcon->othercon;
817
818                 if (!othercon) {
819                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
820                         if (!othercon) {
821                                 log_print("failed to allocate incoming socket");
822                                 mutex_unlock(&newcon->sock_mutex);
823                                 ret = -ENOMEM;
824                                 goto accept_err;
825                         }
826                         othercon->nodeid = nodeid;
827                         othercon->rx_action = receive_from_sock;
828                         mutex_init(&othercon->sock_mutex);
829                         INIT_WORK(&othercon->swork, process_send_sockets);
830                         INIT_WORK(&othercon->rwork, process_recv_sockets);
831                         set_bit(CF_IS_OTHERCON, &othercon->flags);
832                 }
833                 if (!othercon->sock) {
834                         newcon->othercon = othercon;
835                         othercon->sock = newsock;
836                         newsock->sk->sk_user_data = othercon;
837                         add_sock(newsock, othercon);
838                         addcon = othercon;
839                 } else {
840                         printk("Extra connection from node %d attempted\n", nodeid);
841                         ret = -EAGAIN;
842                         mutex_unlock(&newcon->sock_mutex);
843                         goto accept_err;
844                 }
845         } else {
846                 newsock->sk->sk_user_data = newcon;
847                 newcon->rx_action = receive_from_sock;
848                 add_sock(newsock, newcon);
849                 addcon = newcon;
850         }
851
852         log_print("connected to %d", nodeid);
853
854         mutex_unlock(&newcon->sock_mutex);
855
856         /*
857          * Add it to the active queue in case we got data
858          * between processing the accept adding the socket
859          * to the read_sockets list
860          */
861         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
862                 queue_work(recv_workqueue, &addcon->rwork);
863         mutex_unlock(&con->sock_mutex);
864
865         return 0;
866
867 accept_err:
868         mutex_unlock(&con->sock_mutex);
869         if (newsock)
870                 sock_release(newsock);
871         if (ret != -EAGAIN)
872                 log_print("error accepting connection from node: %d", ret);
873
874         return ret;
875 }
876
877 static void free_entry(struct writequeue_entry *e)
878 {
879         __free_page(e->page);
880         kfree(e);
881 }
882
883 /*
884  * writequeue_entry_complete - try to delete and free write queue entry
885  * @e: write queue entry to try to delete
886  * @completed: bytes completed
887  *
888  * writequeue_lock must be held.
889  */
890 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
891 {
892         e->offset += completed;
893         e->len -= completed;
894
895         if (e->len == 0 && e->users == 0) {
896                 list_del(&e->list);
897                 free_entry(e);
898         }
899 }
900
901 /*
902  * sctp_bind_addrs - bind a SCTP socket to all our addresses
903  */
904 static int sctp_bind_addrs(struct connection *con, uint16_t port)
905 {
906         struct sockaddr_storage localaddr;
907         int i, addr_len, result = 0;
908
909         for (i = 0; i < dlm_local_count; i++) {
910                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
911                 make_sockaddr(&localaddr, port, &addr_len);
912
913                 if (!i)
914                         result = kernel_bind(con->sock,
915                                              (struct sockaddr *)&localaddr,
916                                              addr_len);
917                 else
918                         result = kernel_setsockopt(con->sock, SOL_SCTP,
919                                                    SCTP_SOCKOPT_BINDX_ADD,
920                                                    (char *)&localaddr, addr_len);
921
922                 if (result < 0) {
923                         log_print("Can't bind to %d addr number %d, %d.\n",
924                                   port, i + 1, result);
925                         break;
926                 }
927         }
928         return result;
929 }
930
931 /* Initiate an SCTP association.
932    This is a special case of send_to_sock() in that we don't yet have a
933    peeled-off socket for this association, so we use the listening socket
934    and add the primary IP address of the remote node.
935  */
936 static void sctp_connect_to_sock(struct connection *con)
937 {
938         struct sockaddr_storage daddr;
939         int one = 1;
940         int result;
941         int addr_len;
942         struct socket *sock;
943
944         if (con->nodeid == 0) {
945                 log_print("attempt to connect sock 0 foiled");
946                 return;
947         }
948
949         mutex_lock(&con->sock_mutex);
950
951         /* Some odd races can cause double-connects, ignore them */
952         if (con->retries++ > MAX_CONNECT_RETRIES)
953                 goto out;
954
955         if (con->sock) {
956                 log_print("node %d already connected.", con->nodeid);
957                 goto out;
958         }
959
960         memset(&daddr, 0, sizeof(daddr));
961         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
962         if (result < 0) {
963                 log_print("no address for nodeid %d", con->nodeid);
964                 goto out;
965         }
966
967         /* Create a socket to communicate with */
968         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
969                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
970         if (result < 0)
971                 goto socket_err;
972
973         sock->sk->sk_user_data = con;
974         con->rx_action = receive_from_sock;
975         con->connect_action = sctp_connect_to_sock;
976         add_sock(sock, con);
977
978         /* Bind to all addresses. */
979         if (sctp_bind_addrs(con, 0))
980                 goto bind_err;
981
982         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
983
984         log_print("connecting to %d", con->nodeid);
985
986         /* Turn off Nagle's algorithm */
987         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
988                           sizeof(one));
989
990         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
991                                    O_NONBLOCK);
992         if (result == -EINPROGRESS)
993                 result = 0;
994         if (result == 0)
995                 goto out;
996
997
998 bind_err:
999         con->sock = NULL;
1000         sock_release(sock);
1001
1002 socket_err:
1003         /*
1004          * Some errors are fatal and this list might need adjusting. For other
1005          * errors we try again until the max number of retries is reached.
1006          */
1007         if (result != -EHOSTUNREACH &&
1008             result != -ENETUNREACH &&
1009             result != -ENETDOWN &&
1010             result != -EINVAL &&
1011             result != -EPROTONOSUPPORT) {
1012                 log_print("connect %d try %d error %d", con->nodeid,
1013                           con->retries, result);
1014                 mutex_unlock(&con->sock_mutex);
1015                 msleep(1000);
1016                 clear_bit(CF_CONNECT_PENDING, &con->flags);
1017                 lowcomms_connect_sock(con);
1018                 return;
1019         }
1020
1021 out:
1022         mutex_unlock(&con->sock_mutex);
1023 }
1024
1025 /* Connect a new socket to its peer */
1026 static void tcp_connect_to_sock(struct connection *con)
1027 {
1028         struct sockaddr_storage saddr, src_addr;
1029         int addr_len;
1030         struct socket *sock = NULL;
1031         int one = 1;
1032         int result;
1033
1034         if (con->nodeid == 0) {
1035                 log_print("attempt to connect sock 0 foiled");
1036                 return;
1037         }
1038
1039         mutex_lock(&con->sock_mutex);
1040         if (con->retries++ > MAX_CONNECT_RETRIES)
1041                 goto out;
1042
1043         /* Some odd races can cause double-connects, ignore them */
1044         if (con->sock)
1045                 goto out;
1046
1047         /* Create a socket to communicate with */
1048         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1049                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1050         if (result < 0)
1051                 goto out_err;
1052
1053         memset(&saddr, 0, sizeof(saddr));
1054         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1055         if (result < 0) {
1056                 log_print("no address for nodeid %d", con->nodeid);
1057                 goto out_err;
1058         }
1059
1060         sock->sk->sk_user_data = con;
1061         con->rx_action = receive_from_sock;
1062         con->connect_action = tcp_connect_to_sock;
1063         add_sock(sock, con);
1064
1065         /* Bind to our cluster-known address connecting to avoid
1066            routing problems */
1067         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1068         make_sockaddr(&src_addr, 0, &addr_len);
1069         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1070                                  addr_len);
1071         if (result < 0) {
1072                 log_print("could not bind for connect: %d", result);
1073                 /* This *may* not indicate a critical error */
1074         }
1075
1076         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1077
1078         log_print("connecting to %d", con->nodeid);
1079
1080         /* Turn off Nagle's algorithm */
1081         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1082                           sizeof(one));
1083
1084         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1085                                    O_NONBLOCK);
1086         if (result == -EINPROGRESS)
1087                 result = 0;
1088         if (result == 0)
1089                 goto out;
1090
1091 out_err:
1092         if (con->sock) {
1093                 sock_release(con->sock);
1094                 con->sock = NULL;
1095         } else if (sock) {
1096                 sock_release(sock);
1097         }
1098         /*
1099          * Some errors are fatal and this list might need adjusting. For other
1100          * errors we try again until the max number of retries is reached.
1101          */
1102         if (result != -EHOSTUNREACH &&
1103             result != -ENETUNREACH &&
1104             result != -ENETDOWN && 
1105             result != -EINVAL &&
1106             result != -EPROTONOSUPPORT) {
1107                 log_print("connect %d try %d error %d", con->nodeid,
1108                           con->retries, result);
1109                 mutex_unlock(&con->sock_mutex);
1110                 msleep(1000);
1111                 clear_bit(CF_CONNECT_PENDING, &con->flags);
1112                 lowcomms_connect_sock(con);
1113                 return;
1114         }
1115 out:
1116         mutex_unlock(&con->sock_mutex);
1117         return;
1118 }
1119
1120 static struct socket *tcp_create_listen_sock(struct connection *con,
1121                                              struct sockaddr_storage *saddr)
1122 {
1123         struct socket *sock = NULL;
1124         int result = 0;
1125         int one = 1;
1126         int addr_len;
1127
1128         if (dlm_local_addr[0]->ss_family == AF_INET)
1129                 addr_len = sizeof(struct sockaddr_in);
1130         else
1131                 addr_len = sizeof(struct sockaddr_in6);
1132
1133         /* Create a socket to communicate with */
1134         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1135                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1136         if (result < 0) {
1137                 log_print("Can't create listening comms socket");
1138                 goto create_out;
1139         }
1140
1141         /* Turn off Nagle's algorithm */
1142         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1143                           sizeof(one));
1144
1145         result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1146                                    (char *)&one, sizeof(one));
1147
1148         if (result < 0) {
1149                 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1150         }
1151         con->rx_action = tcp_accept_from_sock;
1152         con->connect_action = tcp_connect_to_sock;
1153
1154         /* Bind to our port */
1155         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1156         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1157         if (result < 0) {
1158                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1159                 sock_release(sock);
1160                 sock = NULL;
1161                 con->sock = NULL;
1162                 goto create_out;
1163         }
1164         result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1165                                  (char *)&one, sizeof(one));
1166         if (result < 0) {
1167                 log_print("Set keepalive failed: %d", result);
1168         }
1169
1170         result = sock->ops->listen(sock, 5);
1171         if (result < 0) {
1172                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1173                 sock_release(sock);
1174                 sock = NULL;
1175                 goto create_out;
1176         }
1177
1178 create_out:
1179         return sock;
1180 }
1181
1182 /* Get local addresses */
1183 static void init_local(void)
1184 {
1185         struct sockaddr_storage sas, *addr;
1186         int i;
1187
1188         dlm_local_count = 0;
1189         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1190                 if (dlm_our_addr(&sas, i))
1191                         break;
1192
1193                 addr = kmalloc(sizeof(*addr), GFP_NOFS);
1194                 if (!addr)
1195                         break;
1196                 memcpy(addr, &sas, sizeof(*addr));
1197                 dlm_local_addr[dlm_local_count++] = addr;
1198         }
1199 }
1200
1201 /* Initialise SCTP socket and bind to all interfaces */
1202 static int sctp_listen_for_all(void)
1203 {
1204         struct socket *sock = NULL;
1205         int result = -EINVAL;
1206         struct connection *con = nodeid2con(0, GFP_NOFS);
1207         int bufsize = NEEDED_RMEM;
1208         int one = 1;
1209
1210         if (!con)
1211                 return -ENOMEM;
1212
1213         log_print("Using SCTP for communications");
1214
1215         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1216                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1217         if (result < 0) {
1218                 log_print("Can't create comms socket, check SCTP is loaded");
1219                 goto out;
1220         }
1221
1222         result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1223                                  (char *)&bufsize, sizeof(bufsize));
1224         if (result)
1225                 log_print("Error increasing buffer space on socket %d", result);
1226
1227         result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1228                                    sizeof(one));
1229         if (result < 0)
1230                 log_print("Could not set SCTP NODELAY error %d\n", result);
1231
1232         /* Init con struct */
1233         sock->sk->sk_user_data = con;
1234         con->sock = sock;
1235         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1236         con->rx_action = sctp_accept_from_sock;
1237         con->connect_action = sctp_connect_to_sock;
1238
1239         /* Bind to all addresses. */
1240         if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1241                 goto create_delsock;
1242
1243         result = sock->ops->listen(sock, 5);
1244         if (result < 0) {
1245                 log_print("Can't set socket listening");
1246                 goto create_delsock;
1247         }
1248
1249         return 0;
1250
1251 create_delsock:
1252         sock_release(sock);
1253         con->sock = NULL;
1254 out:
1255         return result;
1256 }
1257
1258 static int tcp_listen_for_all(void)
1259 {
1260         struct socket *sock = NULL;
1261         struct connection *con = nodeid2con(0, GFP_NOFS);
1262         int result = -EINVAL;
1263
1264         if (!con)
1265                 return -ENOMEM;
1266
1267         /* We don't support multi-homed hosts */
1268         if (dlm_local_addr[1] != NULL) {
1269                 log_print("TCP protocol can't handle multi-homed hosts, "
1270                           "try SCTP");
1271                 return -EINVAL;
1272         }
1273
1274         log_print("Using TCP for communications");
1275
1276         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1277         if (sock) {
1278                 add_sock(sock, con);
1279                 result = 0;
1280         }
1281         else {
1282                 result = -EADDRINUSE;
1283         }
1284
1285         return result;
1286 }
1287
1288
1289
1290 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1291                                                      gfp_t allocation)
1292 {
1293         struct writequeue_entry *entry;
1294
1295         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1296         if (!entry)
1297                 return NULL;
1298
1299         entry->page = alloc_page(allocation);
1300         if (!entry->page) {
1301                 kfree(entry);
1302                 return NULL;
1303         }
1304
1305         entry->offset = 0;
1306         entry->len = 0;
1307         entry->end = 0;
1308         entry->users = 0;
1309         entry->con = con;
1310
1311         return entry;
1312 }
1313
1314 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1315 {
1316         struct connection *con;
1317         struct writequeue_entry *e;
1318         int offset = 0;
1319
1320         con = nodeid2con(nodeid, allocation);
1321         if (!con)
1322                 return NULL;
1323
1324         spin_lock(&con->writequeue_lock);
1325         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1326         if ((&e->list == &con->writequeue) ||
1327             (PAGE_CACHE_SIZE - e->end < len)) {
1328                 e = NULL;
1329         } else {
1330                 offset = e->end;
1331                 e->end += len;
1332                 e->users++;
1333         }
1334         spin_unlock(&con->writequeue_lock);
1335
1336         if (e) {
1337         got_one:
1338                 *ppc = page_address(e->page) + offset;
1339                 return e;
1340         }
1341
1342         e = new_writequeue_entry(con, allocation);
1343         if (e) {
1344                 spin_lock(&con->writequeue_lock);
1345                 offset = e->end;
1346                 e->end += len;
1347                 e->users++;
1348                 list_add_tail(&e->list, &con->writequeue);
1349                 spin_unlock(&con->writequeue_lock);
1350                 goto got_one;
1351         }
1352         return NULL;
1353 }
1354
1355 void dlm_lowcomms_commit_buffer(void *mh)
1356 {
1357         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1358         struct connection *con = e->con;
1359         int users;
1360
1361         spin_lock(&con->writequeue_lock);
1362         users = --e->users;
1363         if (users)
1364                 goto out;
1365         e->len = e->end - e->offset;
1366         spin_unlock(&con->writequeue_lock);
1367
1368         if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1369                 queue_work(send_workqueue, &con->swork);
1370         }
1371         return;
1372
1373 out:
1374         spin_unlock(&con->writequeue_lock);
1375         return;
1376 }
1377
1378 /* Send a message */
1379 static void send_to_sock(struct connection *con)
1380 {
1381         int ret = 0;
1382         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1383         struct writequeue_entry *e;
1384         int len, offset;
1385         int count = 0;
1386
1387         mutex_lock(&con->sock_mutex);
1388         if (con->sock == NULL)
1389                 goto out_connect;
1390
1391         spin_lock(&con->writequeue_lock);
1392         for (;;) {
1393                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1394                                list);
1395                 if ((struct list_head *) e == &con->writequeue)
1396                         break;
1397
1398                 len = e->len;
1399                 offset = e->offset;
1400                 BUG_ON(len == 0 && e->users == 0);
1401                 spin_unlock(&con->writequeue_lock);
1402
1403                 ret = 0;
1404                 if (len) {
1405                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1406                                               msg_flags);
1407                         if (ret == -EAGAIN || ret == 0) {
1408                                 if (ret == -EAGAIN &&
1409                                     test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1410                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1411                                         /* Notify TCP that we're limited by the
1412                                          * application window size.
1413                                          */
1414                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1415                                         con->sock->sk->sk_write_pending++;
1416                                 }
1417                                 cond_resched();
1418                                 goto out;
1419                         } else if (ret < 0)
1420                                 goto send_error;
1421                 }
1422
1423                 /* Don't starve people filling buffers */
1424                 if (++count >= MAX_SEND_MSG_COUNT) {
1425                         cond_resched();
1426                         count = 0;
1427                 }
1428
1429                 spin_lock(&con->writequeue_lock);
1430                 writequeue_entry_complete(e, ret);
1431         }
1432         spin_unlock(&con->writequeue_lock);
1433 out:
1434         mutex_unlock(&con->sock_mutex);
1435         return;
1436
1437 send_error:
1438         mutex_unlock(&con->sock_mutex);
1439         close_connection(con, false, false, true);
1440         lowcomms_connect_sock(con);
1441         return;
1442
1443 out_connect:
1444         mutex_unlock(&con->sock_mutex);
1445         lowcomms_connect_sock(con);
1446 }
1447
1448 static void clean_one_writequeue(struct connection *con)
1449 {
1450         struct writequeue_entry *e, *safe;
1451
1452         spin_lock(&con->writequeue_lock);
1453         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1454                 list_del(&e->list);
1455                 free_entry(e);
1456         }
1457         spin_unlock(&con->writequeue_lock);
1458 }
1459
1460 /* Called from recovery when it knows that a node has
1461    left the cluster */
1462 int dlm_lowcomms_close(int nodeid)
1463 {
1464         struct connection *con;
1465         struct dlm_node_addr *na;
1466
1467         log_print("closing connection to node %d", nodeid);
1468         con = nodeid2con(nodeid, 0);
1469         if (con) {
1470                 set_bit(CF_CLOSE, &con->flags);
1471                 close_connection(con, true, true, true);
1472                 clean_one_writequeue(con);
1473         }
1474
1475         spin_lock(&dlm_node_addrs_spin);
1476         na = find_node_addr(nodeid);
1477         if (na) {
1478                 list_del(&na->list);
1479                 while (na->addr_count--)
1480                         kfree(na->addr[na->addr_count]);
1481                 kfree(na);
1482         }
1483         spin_unlock(&dlm_node_addrs_spin);
1484
1485         return 0;
1486 }
1487
1488 /* Receive workqueue function */
1489 static void process_recv_sockets(struct work_struct *work)
1490 {
1491         struct connection *con = container_of(work, struct connection, rwork);
1492         int err;
1493
1494         clear_bit(CF_READ_PENDING, &con->flags);
1495         do {
1496                 err = con->rx_action(con);
1497         } while (!err);
1498 }
1499
1500 /* Send workqueue function */
1501 static void process_send_sockets(struct work_struct *work)
1502 {
1503         struct connection *con = container_of(work, struct connection, swork);
1504
1505         if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1506                 con->connect_action(con);
1507                 set_bit(CF_WRITE_PENDING, &con->flags);
1508         }
1509         if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1510                 send_to_sock(con);
1511 }
1512
1513
1514 /* Discard all entries on the write queues */
1515 static void clean_writequeues(void)
1516 {
1517         foreach_conn(clean_one_writequeue);
1518 }
1519
1520 static void work_stop(void)
1521 {
1522         destroy_workqueue(recv_workqueue);
1523         destroy_workqueue(send_workqueue);
1524 }
1525
1526 static int work_start(void)
1527 {
1528         recv_workqueue = alloc_workqueue("dlm_recv",
1529                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1530         if (!recv_workqueue) {
1531                 log_print("can't start dlm_recv");
1532                 return -ENOMEM;
1533         }
1534
1535         send_workqueue = alloc_workqueue("dlm_send",
1536                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1537         if (!send_workqueue) {
1538                 log_print("can't start dlm_send");
1539                 destroy_workqueue(recv_workqueue);
1540                 return -ENOMEM;
1541         }
1542
1543         return 0;
1544 }
1545
1546 static void stop_conn(struct connection *con)
1547 {
1548         con->flags |= 0x0F;
1549         if (con->sock && con->sock->sk)
1550                 con->sock->sk->sk_user_data = NULL;
1551 }
1552
1553 static void free_conn(struct connection *con)
1554 {
1555         close_connection(con, true, true, true);
1556         if (con->othercon)
1557                 kmem_cache_free(con_cache, con->othercon);
1558         hlist_del(&con->list);
1559         kmem_cache_free(con_cache, con);
1560 }
1561
1562 void dlm_lowcomms_stop(void)
1563 {
1564         /* Set all the flags to prevent any
1565            socket activity.
1566         */
1567         mutex_lock(&connections_lock);
1568         dlm_allow_conn = 0;
1569         foreach_conn(stop_conn);
1570         mutex_unlock(&connections_lock);
1571
1572         work_stop();
1573
1574         mutex_lock(&connections_lock);
1575         clean_writequeues();
1576
1577         foreach_conn(free_conn);
1578
1579         mutex_unlock(&connections_lock);
1580         kmem_cache_destroy(con_cache);
1581 }
1582
1583 int dlm_lowcomms_start(void)
1584 {
1585         int error = -EINVAL;
1586         struct connection *con;
1587         int i;
1588
1589         for (i = 0; i < CONN_HASH_SIZE; i++)
1590                 INIT_HLIST_HEAD(&connection_hash[i]);
1591
1592         init_local();
1593         if (!dlm_local_count) {
1594                 error = -ENOTCONN;
1595                 log_print("no local IP address has been set");
1596                 goto fail;
1597         }
1598
1599         error = -ENOMEM;
1600         con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1601                                       __alignof__(struct connection), 0,
1602                                       NULL);
1603         if (!con_cache)
1604                 goto fail;
1605
1606         error = work_start();
1607         if (error)
1608                 goto fail_destroy;
1609
1610         dlm_allow_conn = 1;
1611
1612         /* Start listening */
1613         if (dlm_config.ci_protocol == 0)
1614                 error = tcp_listen_for_all();
1615         else
1616                 error = sctp_listen_for_all();
1617         if (error)
1618                 goto fail_unlisten;
1619
1620         return 0;
1621
1622 fail_unlisten:
1623         dlm_allow_conn = 0;
1624         con = nodeid2con(0,0);
1625         if (con) {
1626                 close_connection(con, false, true, true);
1627                 kmem_cache_free(con_cache, con);
1628         }
1629 fail_destroy:
1630         kmem_cache_destroy(con_cache);
1631 fail:
1632         return error;
1633 }
1634
1635 void dlm_lowcomms_exit(void)
1636 {
1637         struct dlm_node_addr *na, *safe;
1638
1639         spin_lock(&dlm_node_addrs_spin);
1640         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1641                 list_del(&na->list);
1642                 while (na->addr_count--)
1643                         kfree(na->addr[na->addr_count]);
1644                 kfree(na);
1645         }
1646         spin_unlock(&dlm_node_addrs_spin);
1647 }