856d750be96b64d06c48a1a4e2a68785e8dda048
[cascardo/linux.git] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68
69 struct cbuf {
70         unsigned int base;
71         unsigned int len;
72         unsigned int mask;
73 };
74
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77         cb->len += n;
78 }
79
80 static int cbuf_data(struct cbuf *cb)
81 {
82         return ((cb->base + cb->len) & cb->mask);
83 }
84
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87         cb->base = cb->len = 0;
88         cb->mask = size-1;
89 }
90
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93         cb->len  -= n;
94         cb->base += n;
95         cb->base &= cb->mask;
96 }
97
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100         return cb->len == 0;
101 }
102
103 struct connection {
104         struct socket *sock;    /* NULL if not connected */
105         uint32_t nodeid;        /* So we know who we are in the list */
106         struct mutex sock_mutex;
107         unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115         struct list_head writequeue;  /* List of outgoing writequeue_entries */
116         spinlock_t writequeue_lock;
117         int (*rx_action) (struct connection *); /* What to do when active */
118         void (*connect_action) (struct connection *);   /* What to do to connect */
119         struct page *rx_page;
120         struct cbuf cb;
121         int retries;
122 #define MAX_CONNECT_RETRIES 3
123         struct hlist_node list;
124         struct connection *othercon;
125         struct work_struct rwork; /* Receive workqueue */
126         struct work_struct swork; /* Send workqueue */
127 };
128 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
129
130 /* An entry waiting to be sent */
131 struct writequeue_entry {
132         struct list_head list;
133         struct page *page;
134         int offset;
135         int len;
136         int end;
137         int users;
138         struct connection *con;
139 };
140
141 struct dlm_node_addr {
142         struct list_head list;
143         int nodeid;
144         int addr_count;
145         int curr_addr_index;
146         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
147 };
148
149 static LIST_HEAD(dlm_node_addrs);
150 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
151
152 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
153 static int dlm_local_count;
154 static int dlm_allow_conn;
155
156 /* Work queues */
157 static struct workqueue_struct *recv_workqueue;
158 static struct workqueue_struct *send_workqueue;
159
160 static struct hlist_head connection_hash[CONN_HASH_SIZE];
161 static DEFINE_MUTEX(connections_lock);
162 static struct kmem_cache *con_cache;
163
164 static void process_recv_sockets(struct work_struct *work);
165 static void process_send_sockets(struct work_struct *work);
166
167
168 /* This is deliberately very simple because most clusters have simple
169    sequential nodeids, so we should be able to go straight to a connection
170    struct in the array */
171 static inline int nodeid_hash(int nodeid)
172 {
173         return nodeid & (CONN_HASH_SIZE-1);
174 }
175
176 static struct connection *__find_con(int nodeid)
177 {
178         int r;
179         struct connection *con;
180
181         r = nodeid_hash(nodeid);
182
183         hlist_for_each_entry(con, &connection_hash[r], list) {
184                 if (con->nodeid == nodeid)
185                         return con;
186         }
187         return NULL;
188 }
189
190 /*
191  * If 'allocation' is zero then we don't attempt to create a new
192  * connection structure for this node.
193  */
194 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
195 {
196         struct connection *con = NULL;
197         int r;
198
199         con = __find_con(nodeid);
200         if (con || !alloc)
201                 return con;
202
203         con = kmem_cache_zalloc(con_cache, alloc);
204         if (!con)
205                 return NULL;
206
207         r = nodeid_hash(nodeid);
208         hlist_add_head(&con->list, &connection_hash[r]);
209
210         con->nodeid = nodeid;
211         mutex_init(&con->sock_mutex);
212         INIT_LIST_HEAD(&con->writequeue);
213         spin_lock_init(&con->writequeue_lock);
214         INIT_WORK(&con->swork, process_send_sockets);
215         INIT_WORK(&con->rwork, process_recv_sockets);
216
217         /* Setup action pointers for child sockets */
218         if (con->nodeid) {
219                 struct connection *zerocon = __find_con(0);
220
221                 con->connect_action = zerocon->connect_action;
222                 if (!con->rx_action)
223                         con->rx_action = zerocon->rx_action;
224         }
225
226         return con;
227 }
228
229 /* Loop round all connections */
230 static void foreach_conn(void (*conn_func)(struct connection *c))
231 {
232         int i;
233         struct hlist_node *n;
234         struct connection *con;
235
236         for (i = 0; i < CONN_HASH_SIZE; i++) {
237                 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
238                         conn_func(con);
239         }
240 }
241
242 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
243 {
244         struct connection *con;
245
246         mutex_lock(&connections_lock);
247         con = __nodeid2con(nodeid, allocation);
248         mutex_unlock(&connections_lock);
249
250         return con;
251 }
252
253 static struct dlm_node_addr *find_node_addr(int nodeid)
254 {
255         struct dlm_node_addr *na;
256
257         list_for_each_entry(na, &dlm_node_addrs, list) {
258                 if (na->nodeid == nodeid)
259                         return na;
260         }
261         return NULL;
262 }
263
264 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
265 {
266         switch (x->ss_family) {
267         case AF_INET: {
268                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
269                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
270                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
271                         return 0;
272                 if (sinx->sin_port != siny->sin_port)
273                         return 0;
274                 break;
275         }
276         case AF_INET6: {
277                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
278                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
279                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
280                         return 0;
281                 if (sinx->sin6_port != siny->sin6_port)
282                         return 0;
283                 break;
284         }
285         default:
286                 return 0;
287         }
288         return 1;
289 }
290
291 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
292                           struct sockaddr *sa_out, bool try_new_addr)
293 {
294         struct sockaddr_storage sas;
295         struct dlm_node_addr *na;
296
297         if (!dlm_local_count)
298                 return -1;
299
300         spin_lock(&dlm_node_addrs_spin);
301         na = find_node_addr(nodeid);
302         if (na && na->addr_count) {
303                 memcpy(&sas, na->addr[na->curr_addr_index],
304                        sizeof(struct sockaddr_storage));
305
306                 if (try_new_addr) {
307                         na->curr_addr_index++;
308                         if (na->curr_addr_index == na->addr_count)
309                                 na->curr_addr_index = 0;
310                 }
311         }
312         spin_unlock(&dlm_node_addrs_spin);
313
314         if (!na)
315                 return -EEXIST;
316
317         if (!na->addr_count)
318                 return -ENOENT;
319
320         if (sas_out)
321                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
322
323         if (!sa_out)
324                 return 0;
325
326         if (dlm_local_addr[0]->ss_family == AF_INET) {
327                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
328                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
329                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
330         } else {
331                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
332                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
333                 ret6->sin6_addr = in6->sin6_addr;
334         }
335
336         return 0;
337 }
338
339 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
340 {
341         struct dlm_node_addr *na;
342         int rv = -EEXIST;
343         int addr_i;
344
345         spin_lock(&dlm_node_addrs_spin);
346         list_for_each_entry(na, &dlm_node_addrs, list) {
347                 if (!na->addr_count)
348                         continue;
349
350                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
351                         if (addr_compare(na->addr[addr_i], addr)) {
352                                 *nodeid = na->nodeid;
353                                 rv = 0;
354                                 goto unlock;
355                         }
356                 }
357         }
358 unlock:
359         spin_unlock(&dlm_node_addrs_spin);
360         return rv;
361 }
362
363 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
364 {
365         struct sockaddr_storage *new_addr;
366         struct dlm_node_addr *new_node, *na;
367
368         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
369         if (!new_node)
370                 return -ENOMEM;
371
372         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
373         if (!new_addr) {
374                 kfree(new_node);
375                 return -ENOMEM;
376         }
377
378         memcpy(new_addr, addr, len);
379
380         spin_lock(&dlm_node_addrs_spin);
381         na = find_node_addr(nodeid);
382         if (!na) {
383                 new_node->nodeid = nodeid;
384                 new_node->addr[0] = new_addr;
385                 new_node->addr_count = 1;
386                 list_add(&new_node->list, &dlm_node_addrs);
387                 spin_unlock(&dlm_node_addrs_spin);
388                 return 0;
389         }
390
391         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
392                 spin_unlock(&dlm_node_addrs_spin);
393                 kfree(new_addr);
394                 kfree(new_node);
395                 return -ENOSPC;
396         }
397
398         na->addr[na->addr_count++] = new_addr;
399         spin_unlock(&dlm_node_addrs_spin);
400         kfree(new_node);
401         return 0;
402 }
403
404 /* Data available on socket or listen socket received a connect */
405 static void lowcomms_data_ready(struct sock *sk)
406 {
407         struct connection *con = sock2con(sk);
408         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
409                 queue_work(recv_workqueue, &con->rwork);
410 }
411
412 static void lowcomms_write_space(struct sock *sk)
413 {
414         struct connection *con = sock2con(sk);
415
416         if (!con)
417                 return;
418
419         clear_bit(SOCK_NOSPACE, &con->sock->flags);
420
421         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
422                 con->sock->sk->sk_write_pending--;
423                 clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
424         }
425
426         if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
427                 queue_work(send_workqueue, &con->swork);
428 }
429
430 static inline void lowcomms_connect_sock(struct connection *con)
431 {
432         if (test_bit(CF_CLOSE, &con->flags))
433                 return;
434         if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
435                 queue_work(send_workqueue, &con->swork);
436 }
437
438 static void lowcomms_state_change(struct sock *sk)
439 {
440         /* SCTP layer is not calling sk_data_ready when the connection
441          * is done, so we catch the signal through here. Also, it
442          * doesn't switch socket state when entering shutdown, so we
443          * skip the write in that case.
444          */
445         if (sk->sk_shutdown) {
446                 if (sk->sk_shutdown == RCV_SHUTDOWN)
447                         lowcomms_data_ready(sk);
448         } else if (sk->sk_state == TCP_ESTABLISHED) {
449                 lowcomms_write_space(sk);
450         }
451 }
452
453 int dlm_lowcomms_connect_node(int nodeid)
454 {
455         struct connection *con;
456
457         if (nodeid == dlm_our_nodeid())
458                 return 0;
459
460         con = nodeid2con(nodeid, GFP_NOFS);
461         if (!con)
462                 return -ENOMEM;
463         lowcomms_connect_sock(con);
464         return 0;
465 }
466
467 /* Make a socket active */
468 static void add_sock(struct socket *sock, struct connection *con)
469 {
470         con->sock = sock;
471
472         /* Install a data_ready callback */
473         con->sock->sk->sk_data_ready = lowcomms_data_ready;
474         con->sock->sk->sk_write_space = lowcomms_write_space;
475         con->sock->sk->sk_state_change = lowcomms_state_change;
476         con->sock->sk->sk_user_data = con;
477         con->sock->sk->sk_allocation = GFP_NOFS;
478 }
479
480 /* Add the port number to an IPv6 or 4 sockaddr and return the address
481    length */
482 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
483                           int *addr_len)
484 {
485         saddr->ss_family =  dlm_local_addr[0]->ss_family;
486         if (saddr->ss_family == AF_INET) {
487                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
488                 in4_addr->sin_port = cpu_to_be16(port);
489                 *addr_len = sizeof(struct sockaddr_in);
490                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
491         } else {
492                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
493                 in6_addr->sin6_port = cpu_to_be16(port);
494                 *addr_len = sizeof(struct sockaddr_in6);
495         }
496         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
497 }
498
499 /* Close a remote connection and tidy up */
500 static void close_connection(struct connection *con, bool and_other,
501                              bool tx, bool rx)
502 {
503         clear_bit(CF_CONNECT_PENDING, &con->flags);
504         clear_bit(CF_WRITE_PENDING, &con->flags);
505         if (tx && cancel_work_sync(&con->swork))
506                 log_print("canceled swork for node %d", con->nodeid);
507         if (rx && cancel_work_sync(&con->rwork))
508                 log_print("canceled rwork for node %d", con->nodeid);
509
510         mutex_lock(&con->sock_mutex);
511         if (con->sock) {
512                 sock_release(con->sock);
513                 con->sock = NULL;
514         }
515         if (con->othercon && and_other) {
516                 /* Will only re-enter once. */
517                 close_connection(con->othercon, false, true, true);
518         }
519         if (con->rx_page) {
520                 __free_page(con->rx_page);
521                 con->rx_page = NULL;
522         }
523
524         con->retries = 0;
525         mutex_unlock(&con->sock_mutex);
526 }
527
528 /* Data received from remote end */
529 static int receive_from_sock(struct connection *con)
530 {
531         int ret = 0;
532         struct msghdr msg = {};
533         struct kvec iov[2];
534         unsigned len;
535         int r;
536         int call_again_soon = 0;
537         int nvec;
538
539         mutex_lock(&con->sock_mutex);
540
541         if (con->sock == NULL) {
542                 ret = -EAGAIN;
543                 goto out_close;
544         }
545
546         if (con->rx_page == NULL) {
547                 /*
548                  * This doesn't need to be atomic, but I think it should
549                  * improve performance if it is.
550                  */
551                 con->rx_page = alloc_page(GFP_ATOMIC);
552                 if (con->rx_page == NULL)
553                         goto out_resched;
554                 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
555         }
556
557         /*
558          * iov[0] is the bit of the circular buffer between the current end
559          * point (cb.base + cb.len) and the end of the buffer.
560          */
561         iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
562         iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
563         iov[1].iov_len = 0;
564         nvec = 1;
565
566         /*
567          * iov[1] is the bit of the circular buffer between the start of the
568          * buffer and the start of the currently used section (cb.base)
569          */
570         if (cbuf_data(&con->cb) >= con->cb.base) {
571                 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
572                 iov[1].iov_len = con->cb.base;
573                 iov[1].iov_base = page_address(con->rx_page);
574                 nvec = 2;
575         }
576         len = iov[0].iov_len + iov[1].iov_len;
577
578         r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
579                                MSG_DONTWAIT | MSG_NOSIGNAL);
580         if (ret <= 0)
581                 goto out_close;
582         else if (ret == len)
583                 call_again_soon = 1;
584
585         BUG_ON(con->nodeid == 0);
586
587         cbuf_add(&con->cb, ret);
588         ret = dlm_process_incoming_buffer(con->nodeid,
589                                           page_address(con->rx_page),
590                                           con->cb.base, con->cb.len,
591                                           PAGE_CACHE_SIZE);
592         if (ret == -EBADMSG) {
593                 log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
594                           page_address(con->rx_page), con->cb.base,
595                           con->cb.len, r);
596         }
597         if (ret < 0)
598                 goto out_close;
599         cbuf_eat(&con->cb, ret);
600
601         if (cbuf_empty(&con->cb) && !call_again_soon) {
602                 __free_page(con->rx_page);
603                 con->rx_page = NULL;
604         }
605
606         if (call_again_soon)
607                 goto out_resched;
608         mutex_unlock(&con->sock_mutex);
609         return 0;
610
611 out_resched:
612         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
613                 queue_work(recv_workqueue, &con->rwork);
614         mutex_unlock(&con->sock_mutex);
615         return -EAGAIN;
616
617 out_close:
618         mutex_unlock(&con->sock_mutex);
619         if (ret != -EAGAIN) {
620                 close_connection(con, false, true, false);
621                 /* Reconnect when there is something to send */
622         }
623         /* Don't return success if we really got EOF */
624         if (ret == 0)
625                 ret = -EAGAIN;
626
627         return ret;
628 }
629
630 /* Listening socket is busy, accept a connection */
631 static int tcp_accept_from_sock(struct connection *con)
632 {
633         int result;
634         struct sockaddr_storage peeraddr;
635         struct socket *newsock;
636         int len;
637         int nodeid;
638         struct connection *newcon;
639         struct connection *addcon;
640
641         mutex_lock(&connections_lock);
642         if (!dlm_allow_conn) {
643                 mutex_unlock(&connections_lock);
644                 return -1;
645         }
646         mutex_unlock(&connections_lock);
647
648         memset(&peeraddr, 0, sizeof(peeraddr));
649         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
650                                   SOCK_STREAM, IPPROTO_TCP, &newsock);
651         if (result < 0)
652                 return -ENOMEM;
653
654         mutex_lock_nested(&con->sock_mutex, 0);
655
656         result = -ENOTCONN;
657         if (con->sock == NULL)
658                 goto accept_err;
659
660         newsock->type = con->sock->type;
661         newsock->ops = con->sock->ops;
662
663         result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
664         if (result < 0)
665                 goto accept_err;
666
667         /* Get the connected socket's peer */
668         memset(&peeraddr, 0, sizeof(peeraddr));
669         if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
670                                   &len, 2)) {
671                 result = -ECONNABORTED;
672                 goto accept_err;
673         }
674
675         /* Get the new node's NODEID */
676         make_sockaddr(&peeraddr, 0, &len);
677         if (addr_to_nodeid(&peeraddr, &nodeid)) {
678                 unsigned char *b=(unsigned char *)&peeraddr;
679                 log_print("connect from non cluster node");
680                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
681                                      b, sizeof(struct sockaddr_storage));
682                 sock_release(newsock);
683                 mutex_unlock(&con->sock_mutex);
684                 return -1;
685         }
686
687         log_print("got connection from %d", nodeid);
688
689         /*  Check to see if we already have a connection to this node. This
690          *  could happen if the two nodes initiate a connection at roughly
691          *  the same time and the connections cross on the wire.
692          *  In this case we store the incoming one in "othercon"
693          */
694         newcon = nodeid2con(nodeid, GFP_NOFS);
695         if (!newcon) {
696                 result = -ENOMEM;
697                 goto accept_err;
698         }
699         mutex_lock_nested(&newcon->sock_mutex, 1);
700         if (newcon->sock) {
701                 struct connection *othercon = newcon->othercon;
702
703                 if (!othercon) {
704                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
705                         if (!othercon) {
706                                 log_print("failed to allocate incoming socket");
707                                 mutex_unlock(&newcon->sock_mutex);
708                                 result = -ENOMEM;
709                                 goto accept_err;
710                         }
711                         othercon->nodeid = nodeid;
712                         othercon->rx_action = receive_from_sock;
713                         mutex_init(&othercon->sock_mutex);
714                         INIT_WORK(&othercon->swork, process_send_sockets);
715                         INIT_WORK(&othercon->rwork, process_recv_sockets);
716                         set_bit(CF_IS_OTHERCON, &othercon->flags);
717                 }
718                 if (!othercon->sock) {
719                         newcon->othercon = othercon;
720                         othercon->sock = newsock;
721                         newsock->sk->sk_user_data = othercon;
722                         add_sock(newsock, othercon);
723                         addcon = othercon;
724                 }
725                 else {
726                         printk("Extra connection from node %d attempted\n", nodeid);
727                         result = -EAGAIN;
728                         mutex_unlock(&newcon->sock_mutex);
729                         goto accept_err;
730                 }
731         }
732         else {
733                 newsock->sk->sk_user_data = newcon;
734                 newcon->rx_action = receive_from_sock;
735                 add_sock(newsock, newcon);
736                 addcon = newcon;
737         }
738
739         mutex_unlock(&newcon->sock_mutex);
740
741         /*
742          * Add it to the active queue in case we got data
743          * between processing the accept adding the socket
744          * to the read_sockets list
745          */
746         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
747                 queue_work(recv_workqueue, &addcon->rwork);
748         mutex_unlock(&con->sock_mutex);
749
750         return 0;
751
752 accept_err:
753         mutex_unlock(&con->sock_mutex);
754         sock_release(newsock);
755
756         if (result != -EAGAIN)
757                 log_print("error accepting connection from node: %d", result);
758         return result;
759 }
760
761 int sctp_accept_from_sock(struct connection *con)
762 {
763         /* Check that the new node is in the lockspace */
764         struct sctp_prim prim;
765         int nodeid;
766         int prim_len, ret;
767         int addr_len;
768         struct connection *newcon;
769         struct connection *addcon;
770         struct socket *newsock;
771
772         mutex_lock(&connections_lock);
773         if (!dlm_allow_conn) {
774                 mutex_unlock(&connections_lock);
775                 return -1;
776         }
777         mutex_unlock(&connections_lock);
778
779         mutex_lock_nested(&con->sock_mutex, 0);
780
781         ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
782         if (ret < 0)
783                 goto accept_err;
784
785         memset(&prim, 0, sizeof(struct sctp_prim));
786         prim_len = sizeof(struct sctp_prim);
787
788         ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
789                                 (char *)&prim, &prim_len);
790         if (ret < 0) {
791                 log_print("getsockopt/sctp_primary_addr failed: %d", ret);
792                 goto accept_err;
793         }
794
795         make_sockaddr(&prim.ssp_addr, 0, &addr_len);
796         if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
797                 unsigned char *b = (unsigned char *)&prim.ssp_addr;
798
799                 log_print("reject connect from unknown addr");
800                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
801                                      b, sizeof(struct sockaddr_storage));
802                 goto accept_err;
803         }
804
805         newcon = nodeid2con(nodeid, GFP_NOFS);
806         if (!newcon) {
807                 ret = -ENOMEM;
808                 goto accept_err;
809         }
810
811         mutex_lock_nested(&newcon->sock_mutex, 1);
812
813         if (newcon->sock) {
814                 struct connection *othercon = newcon->othercon;
815
816                 if (!othercon) {
817                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
818                         if (!othercon) {
819                                 log_print("failed to allocate incoming socket");
820                                 mutex_unlock(&newcon->sock_mutex);
821                                 ret = -ENOMEM;
822                                 goto accept_err;
823                         }
824                         othercon->nodeid = nodeid;
825                         othercon->rx_action = receive_from_sock;
826                         mutex_init(&othercon->sock_mutex);
827                         INIT_WORK(&othercon->swork, process_send_sockets);
828                         INIT_WORK(&othercon->rwork, process_recv_sockets);
829                         set_bit(CF_IS_OTHERCON, &othercon->flags);
830                 }
831                 if (!othercon->sock) {
832                         newcon->othercon = othercon;
833                         othercon->sock = newsock;
834                         newsock->sk->sk_user_data = othercon;
835                         add_sock(newsock, othercon);
836                         addcon = othercon;
837                 } else {
838                         printk("Extra connection from node %d attempted\n", nodeid);
839                         ret = -EAGAIN;
840                         mutex_unlock(&newcon->sock_mutex);
841                         goto accept_err;
842                 }
843         } else {
844                 newsock->sk->sk_user_data = newcon;
845                 newcon->rx_action = receive_from_sock;
846                 add_sock(newsock, newcon);
847                 addcon = newcon;
848         }
849
850         log_print("connected to %d", nodeid);
851
852         mutex_unlock(&newcon->sock_mutex);
853
854         /*
855          * Add it to the active queue in case we got data
856          * between processing the accept adding the socket
857          * to the read_sockets list
858          */
859         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
860                 queue_work(recv_workqueue, &addcon->rwork);
861         mutex_unlock(&con->sock_mutex);
862
863         return 0;
864
865 accept_err:
866         mutex_unlock(&con->sock_mutex);
867         if (newsock)
868                 sock_release(newsock);
869         if (ret != -EAGAIN)
870                 log_print("error accepting connection from node: %d", ret);
871
872         return ret;
873 }
874
875 static void free_entry(struct writequeue_entry *e)
876 {
877         __free_page(e->page);
878         kfree(e);
879 }
880
881 /*
882  * writequeue_entry_complete - try to delete and free write queue entry
883  * @e: write queue entry to try to delete
884  * @completed: bytes completed
885  *
886  * writequeue_lock must be held.
887  */
888 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
889 {
890         e->offset += completed;
891         e->len -= completed;
892
893         if (e->len == 0 && e->users == 0) {
894                 list_del(&e->list);
895                 free_entry(e);
896         }
897 }
898
899 /*
900  * sctp_bind_addrs - bind a SCTP socket to all our addresses
901  */
902 static int sctp_bind_addrs(struct connection *con, uint16_t port)
903 {
904         struct sockaddr_storage localaddr;
905         int i, addr_len, result = 0;
906
907         for (i = 0; i < dlm_local_count; i++) {
908                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
909                 make_sockaddr(&localaddr, port, &addr_len);
910
911                 if (!i)
912                         result = kernel_bind(con->sock,
913                                              (struct sockaddr *)&localaddr,
914                                              addr_len);
915                 else
916                         result = kernel_setsockopt(con->sock, SOL_SCTP,
917                                                    SCTP_SOCKOPT_BINDX_ADD,
918                                                    (char *)&localaddr, addr_len);
919
920                 if (result < 0) {
921                         log_print("Can't bind to %d addr number %d, %d.\n",
922                                   port, i + 1, result);
923                         break;
924                 }
925         }
926         return result;
927 }
928
929 /* Initiate an SCTP association.
930    This is a special case of send_to_sock() in that we don't yet have a
931    peeled-off socket for this association, so we use the listening socket
932    and add the primary IP address of the remote node.
933  */
934 static void sctp_connect_to_sock(struct connection *con)
935 {
936         struct sockaddr_storage daddr;
937         int one = 1;
938         int result;
939         int addr_len;
940         struct socket *sock;
941
942         if (con->nodeid == 0) {
943                 log_print("attempt to connect sock 0 foiled");
944                 return;
945         }
946
947         mutex_lock(&con->sock_mutex);
948
949         /* Some odd races can cause double-connects, ignore them */
950         if (con->retries++ > MAX_CONNECT_RETRIES)
951                 goto out;
952
953         if (con->sock) {
954                 log_print("node %d already connected.", con->nodeid);
955                 goto out;
956         }
957
958         memset(&daddr, 0, sizeof(daddr));
959         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
960         if (result < 0) {
961                 log_print("no address for nodeid %d", con->nodeid);
962                 goto out;
963         }
964
965         /* Create a socket to communicate with */
966         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
967                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
968         if (result < 0)
969                 goto socket_err;
970
971         sock->sk->sk_user_data = con;
972         con->rx_action = receive_from_sock;
973         con->connect_action = sctp_connect_to_sock;
974         add_sock(sock, con);
975
976         /* Bind to all addresses. */
977         if (sctp_bind_addrs(con, 0))
978                 goto bind_err;
979
980         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
981
982         log_print("connecting to %d", con->nodeid);
983
984         /* Turn off Nagle's algorithm */
985         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
986                           sizeof(one));
987
988         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
989                                    O_NONBLOCK);
990         if (result == -EINPROGRESS)
991                 result = 0;
992         if (result == 0)
993                 goto out;
994
995
996 bind_err:
997         con->sock = NULL;
998         sock_release(sock);
999
1000 socket_err:
1001         /*
1002          * Some errors are fatal and this list might need adjusting. For other
1003          * errors we try again until the max number of retries is reached.
1004          */
1005         if (result != -EHOSTUNREACH &&
1006             result != -ENETUNREACH &&
1007             result != -ENETDOWN &&
1008             result != -EINVAL &&
1009             result != -EPROTONOSUPPORT) {
1010                 log_print("connect %d try %d error %d", con->nodeid,
1011                           con->retries, result);
1012                 mutex_unlock(&con->sock_mutex);
1013                 msleep(1000);
1014                 clear_bit(CF_CONNECT_PENDING, &con->flags);
1015                 lowcomms_connect_sock(con);
1016                 return;
1017         }
1018
1019 out:
1020         mutex_unlock(&con->sock_mutex);
1021 }
1022
1023 /* Connect a new socket to its peer */
1024 static void tcp_connect_to_sock(struct connection *con)
1025 {
1026         struct sockaddr_storage saddr, src_addr;
1027         int addr_len;
1028         struct socket *sock = NULL;
1029         int one = 1;
1030         int result;
1031
1032         if (con->nodeid == 0) {
1033                 log_print("attempt to connect sock 0 foiled");
1034                 return;
1035         }
1036
1037         mutex_lock(&con->sock_mutex);
1038         if (con->retries++ > MAX_CONNECT_RETRIES)
1039                 goto out;
1040
1041         /* Some odd races can cause double-connects, ignore them */
1042         if (con->sock)
1043                 goto out;
1044
1045         /* Create a socket to communicate with */
1046         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1047                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1048         if (result < 0)
1049                 goto out_err;
1050
1051         memset(&saddr, 0, sizeof(saddr));
1052         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1053         if (result < 0) {
1054                 log_print("no address for nodeid %d", con->nodeid);
1055                 goto out_err;
1056         }
1057
1058         sock->sk->sk_user_data = con;
1059         con->rx_action = receive_from_sock;
1060         con->connect_action = tcp_connect_to_sock;
1061         add_sock(sock, con);
1062
1063         /* Bind to our cluster-known address connecting to avoid
1064            routing problems */
1065         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1066         make_sockaddr(&src_addr, 0, &addr_len);
1067         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1068                                  addr_len);
1069         if (result < 0) {
1070                 log_print("could not bind for connect: %d", result);
1071                 /* This *may* not indicate a critical error */
1072         }
1073
1074         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1075
1076         log_print("connecting to %d", con->nodeid);
1077
1078         /* Turn off Nagle's algorithm */
1079         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1080                           sizeof(one));
1081
1082         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1083                                    O_NONBLOCK);
1084         if (result == -EINPROGRESS)
1085                 result = 0;
1086         if (result == 0)
1087                 goto out;
1088
1089 out_err:
1090         if (con->sock) {
1091                 sock_release(con->sock);
1092                 con->sock = NULL;
1093         } else if (sock) {
1094                 sock_release(sock);
1095         }
1096         /*
1097          * Some errors are fatal and this list might need adjusting. For other
1098          * errors we try again until the max number of retries is reached.
1099          */
1100         if (result != -EHOSTUNREACH &&
1101             result != -ENETUNREACH &&
1102             result != -ENETDOWN && 
1103             result != -EINVAL &&
1104             result != -EPROTONOSUPPORT) {
1105                 log_print("connect %d try %d error %d", con->nodeid,
1106                           con->retries, result);
1107                 mutex_unlock(&con->sock_mutex);
1108                 msleep(1000);
1109                 clear_bit(CF_CONNECT_PENDING, &con->flags);
1110                 lowcomms_connect_sock(con);
1111                 return;
1112         }
1113 out:
1114         mutex_unlock(&con->sock_mutex);
1115         return;
1116 }
1117
1118 static struct socket *tcp_create_listen_sock(struct connection *con,
1119                                              struct sockaddr_storage *saddr)
1120 {
1121         struct socket *sock = NULL;
1122         int result = 0;
1123         int one = 1;
1124         int addr_len;
1125
1126         if (dlm_local_addr[0]->ss_family == AF_INET)
1127                 addr_len = sizeof(struct sockaddr_in);
1128         else
1129                 addr_len = sizeof(struct sockaddr_in6);
1130
1131         /* Create a socket to communicate with */
1132         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1133                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1134         if (result < 0) {
1135                 log_print("Can't create listening comms socket");
1136                 goto create_out;
1137         }
1138
1139         /* Turn off Nagle's algorithm */
1140         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1141                           sizeof(one));
1142
1143         result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1144                                    (char *)&one, sizeof(one));
1145
1146         if (result < 0) {
1147                 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1148         }
1149         con->rx_action = tcp_accept_from_sock;
1150         con->connect_action = tcp_connect_to_sock;
1151
1152         /* Bind to our port */
1153         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1154         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1155         if (result < 0) {
1156                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1157                 sock_release(sock);
1158                 sock = NULL;
1159                 con->sock = NULL;
1160                 goto create_out;
1161         }
1162         result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1163                                  (char *)&one, sizeof(one));
1164         if (result < 0) {
1165                 log_print("Set keepalive failed: %d", result);
1166         }
1167
1168         result = sock->ops->listen(sock, 5);
1169         if (result < 0) {
1170                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1171                 sock_release(sock);
1172                 sock = NULL;
1173                 goto create_out;
1174         }
1175
1176 create_out:
1177         return sock;
1178 }
1179
1180 /* Get local addresses */
1181 static void init_local(void)
1182 {
1183         struct sockaddr_storage sas, *addr;
1184         int i;
1185
1186         dlm_local_count = 0;
1187         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1188                 if (dlm_our_addr(&sas, i))
1189                         break;
1190
1191                 addr = kmalloc(sizeof(*addr), GFP_NOFS);
1192                 if (!addr)
1193                         break;
1194                 memcpy(addr, &sas, sizeof(*addr));
1195                 dlm_local_addr[dlm_local_count++] = addr;
1196         }
1197 }
1198
1199 /* Initialise SCTP socket and bind to all interfaces */
1200 static int sctp_listen_for_all(void)
1201 {
1202         struct socket *sock = NULL;
1203         int result = -EINVAL;
1204         struct connection *con = nodeid2con(0, GFP_NOFS);
1205         int bufsize = NEEDED_RMEM;
1206         int one = 1;
1207
1208         if (!con)
1209                 return -ENOMEM;
1210
1211         log_print("Using SCTP for communications");
1212
1213         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1214                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1215         if (result < 0) {
1216                 log_print("Can't create comms socket, check SCTP is loaded");
1217                 goto out;
1218         }
1219
1220         result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1221                                  (char *)&bufsize, sizeof(bufsize));
1222         if (result)
1223                 log_print("Error increasing buffer space on socket %d", result);
1224
1225         result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1226                                    sizeof(one));
1227         if (result < 0)
1228                 log_print("Could not set SCTP NODELAY error %d\n", result);
1229
1230         /* Init con struct */
1231         sock->sk->sk_user_data = con;
1232         con->sock = sock;
1233         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1234         con->rx_action = sctp_accept_from_sock;
1235         con->connect_action = sctp_connect_to_sock;
1236
1237         /* Bind to all addresses. */
1238         if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1239                 goto create_delsock;
1240
1241         result = sock->ops->listen(sock, 5);
1242         if (result < 0) {
1243                 log_print("Can't set socket listening");
1244                 goto create_delsock;
1245         }
1246
1247         return 0;
1248
1249 create_delsock:
1250         sock_release(sock);
1251         con->sock = NULL;
1252 out:
1253         return result;
1254 }
1255
1256 static int tcp_listen_for_all(void)
1257 {
1258         struct socket *sock = NULL;
1259         struct connection *con = nodeid2con(0, GFP_NOFS);
1260         int result = -EINVAL;
1261
1262         if (!con)
1263                 return -ENOMEM;
1264
1265         /* We don't support multi-homed hosts */
1266         if (dlm_local_addr[1] != NULL) {
1267                 log_print("TCP protocol can't handle multi-homed hosts, "
1268                           "try SCTP");
1269                 return -EINVAL;
1270         }
1271
1272         log_print("Using TCP for communications");
1273
1274         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1275         if (sock) {
1276                 add_sock(sock, con);
1277                 result = 0;
1278         }
1279         else {
1280                 result = -EADDRINUSE;
1281         }
1282
1283         return result;
1284 }
1285
1286
1287
1288 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1289                                                      gfp_t allocation)
1290 {
1291         struct writequeue_entry *entry;
1292
1293         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1294         if (!entry)
1295                 return NULL;
1296
1297         entry->page = alloc_page(allocation);
1298         if (!entry->page) {
1299                 kfree(entry);
1300                 return NULL;
1301         }
1302
1303         entry->offset = 0;
1304         entry->len = 0;
1305         entry->end = 0;
1306         entry->users = 0;
1307         entry->con = con;
1308
1309         return entry;
1310 }
1311
1312 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1313 {
1314         struct connection *con;
1315         struct writequeue_entry *e;
1316         int offset = 0;
1317
1318         con = nodeid2con(nodeid, allocation);
1319         if (!con)
1320                 return NULL;
1321
1322         spin_lock(&con->writequeue_lock);
1323         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1324         if ((&e->list == &con->writequeue) ||
1325             (PAGE_CACHE_SIZE - e->end < len)) {
1326                 e = NULL;
1327         } else {
1328                 offset = e->end;
1329                 e->end += len;
1330                 e->users++;
1331         }
1332         spin_unlock(&con->writequeue_lock);
1333
1334         if (e) {
1335         got_one:
1336                 *ppc = page_address(e->page) + offset;
1337                 return e;
1338         }
1339
1340         e = new_writequeue_entry(con, allocation);
1341         if (e) {
1342                 spin_lock(&con->writequeue_lock);
1343                 offset = e->end;
1344                 e->end += len;
1345                 e->users++;
1346                 list_add_tail(&e->list, &con->writequeue);
1347                 spin_unlock(&con->writequeue_lock);
1348                 goto got_one;
1349         }
1350         return NULL;
1351 }
1352
1353 void dlm_lowcomms_commit_buffer(void *mh)
1354 {
1355         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1356         struct connection *con = e->con;
1357         int users;
1358
1359         spin_lock(&con->writequeue_lock);
1360         users = --e->users;
1361         if (users)
1362                 goto out;
1363         e->len = e->end - e->offset;
1364         spin_unlock(&con->writequeue_lock);
1365
1366         if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1367                 queue_work(send_workqueue, &con->swork);
1368         }
1369         return;
1370
1371 out:
1372         spin_unlock(&con->writequeue_lock);
1373         return;
1374 }
1375
1376 /* Send a message */
1377 static void send_to_sock(struct connection *con)
1378 {
1379         int ret = 0;
1380         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1381         struct writequeue_entry *e;
1382         int len, offset;
1383         int count = 0;
1384
1385         mutex_lock(&con->sock_mutex);
1386         if (con->sock == NULL)
1387                 goto out_connect;
1388
1389         spin_lock(&con->writequeue_lock);
1390         for (;;) {
1391                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1392                                list);
1393                 if ((struct list_head *) e == &con->writequeue)
1394                         break;
1395
1396                 len = e->len;
1397                 offset = e->offset;
1398                 BUG_ON(len == 0 && e->users == 0);
1399                 spin_unlock(&con->writequeue_lock);
1400
1401                 ret = 0;
1402                 if (len) {
1403                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1404                                               msg_flags);
1405                         if (ret == -EAGAIN || ret == 0) {
1406                                 if (ret == -EAGAIN &&
1407                                     test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1408                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1409                                         /* Notify TCP that we're limited by the
1410                                          * application window size.
1411                                          */
1412                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1413                                         con->sock->sk->sk_write_pending++;
1414                                 }
1415                                 cond_resched();
1416                                 goto out;
1417                         } else if (ret < 0)
1418                                 goto send_error;
1419                 }
1420
1421                 /* Don't starve people filling buffers */
1422                 if (++count >= MAX_SEND_MSG_COUNT) {
1423                         cond_resched();
1424                         count = 0;
1425                 }
1426
1427                 spin_lock(&con->writequeue_lock);
1428                 writequeue_entry_complete(e, ret);
1429         }
1430         spin_unlock(&con->writequeue_lock);
1431 out:
1432         mutex_unlock(&con->sock_mutex);
1433         return;
1434
1435 send_error:
1436         mutex_unlock(&con->sock_mutex);
1437         close_connection(con, false, false, true);
1438         lowcomms_connect_sock(con);
1439         return;
1440
1441 out_connect:
1442         mutex_unlock(&con->sock_mutex);
1443         lowcomms_connect_sock(con);
1444 }
1445
1446 static void clean_one_writequeue(struct connection *con)
1447 {
1448         struct writequeue_entry *e, *safe;
1449
1450         spin_lock(&con->writequeue_lock);
1451         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1452                 list_del(&e->list);
1453                 free_entry(e);
1454         }
1455         spin_unlock(&con->writequeue_lock);
1456 }
1457
1458 /* Called from recovery when it knows that a node has
1459    left the cluster */
1460 int dlm_lowcomms_close(int nodeid)
1461 {
1462         struct connection *con;
1463         struct dlm_node_addr *na;
1464
1465         log_print("closing connection to node %d", nodeid);
1466         con = nodeid2con(nodeid, 0);
1467         if (con) {
1468                 set_bit(CF_CLOSE, &con->flags);
1469                 close_connection(con, true, true, true);
1470                 clean_one_writequeue(con);
1471         }
1472
1473         spin_lock(&dlm_node_addrs_spin);
1474         na = find_node_addr(nodeid);
1475         if (na) {
1476                 list_del(&na->list);
1477                 while (na->addr_count--)
1478                         kfree(na->addr[na->addr_count]);
1479                 kfree(na);
1480         }
1481         spin_unlock(&dlm_node_addrs_spin);
1482
1483         return 0;
1484 }
1485
1486 /* Receive workqueue function */
1487 static void process_recv_sockets(struct work_struct *work)
1488 {
1489         struct connection *con = container_of(work, struct connection, rwork);
1490         int err;
1491
1492         clear_bit(CF_READ_PENDING, &con->flags);
1493         do {
1494                 err = con->rx_action(con);
1495         } while (!err);
1496 }
1497
1498 /* Send workqueue function */
1499 static void process_send_sockets(struct work_struct *work)
1500 {
1501         struct connection *con = container_of(work, struct connection, swork);
1502
1503         if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1504                 con->connect_action(con);
1505                 set_bit(CF_WRITE_PENDING, &con->flags);
1506         }
1507         if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1508                 send_to_sock(con);
1509 }
1510
1511
1512 /* Discard all entries on the write queues */
1513 static void clean_writequeues(void)
1514 {
1515         foreach_conn(clean_one_writequeue);
1516 }
1517
1518 static void work_stop(void)
1519 {
1520         destroy_workqueue(recv_workqueue);
1521         destroy_workqueue(send_workqueue);
1522 }
1523
1524 static int work_start(void)
1525 {
1526         recv_workqueue = alloc_workqueue("dlm_recv",
1527                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1528         if (!recv_workqueue) {
1529                 log_print("can't start dlm_recv");
1530                 return -ENOMEM;
1531         }
1532
1533         send_workqueue = alloc_workqueue("dlm_send",
1534                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1535         if (!send_workqueue) {
1536                 log_print("can't start dlm_send");
1537                 destroy_workqueue(recv_workqueue);
1538                 return -ENOMEM;
1539         }
1540
1541         return 0;
1542 }
1543
1544 static void stop_conn(struct connection *con)
1545 {
1546         con->flags |= 0x0F;
1547         if (con->sock && con->sock->sk)
1548                 con->sock->sk->sk_user_data = NULL;
1549 }
1550
1551 static void free_conn(struct connection *con)
1552 {
1553         close_connection(con, true, true, true);
1554         if (con->othercon)
1555                 kmem_cache_free(con_cache, con->othercon);
1556         hlist_del(&con->list);
1557         kmem_cache_free(con_cache, con);
1558 }
1559
1560 void dlm_lowcomms_stop(void)
1561 {
1562         /* Set all the flags to prevent any
1563            socket activity.
1564         */
1565         mutex_lock(&connections_lock);
1566         dlm_allow_conn = 0;
1567         foreach_conn(stop_conn);
1568         mutex_unlock(&connections_lock);
1569
1570         work_stop();
1571
1572         mutex_lock(&connections_lock);
1573         clean_writequeues();
1574
1575         foreach_conn(free_conn);
1576
1577         mutex_unlock(&connections_lock);
1578         kmem_cache_destroy(con_cache);
1579 }
1580
1581 int dlm_lowcomms_start(void)
1582 {
1583         int error = -EINVAL;
1584         struct connection *con;
1585         int i;
1586
1587         for (i = 0; i < CONN_HASH_SIZE; i++)
1588                 INIT_HLIST_HEAD(&connection_hash[i]);
1589
1590         init_local();
1591         if (!dlm_local_count) {
1592                 error = -ENOTCONN;
1593                 log_print("no local IP address has been set");
1594                 goto fail;
1595         }
1596
1597         error = -ENOMEM;
1598         con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1599                                       __alignof__(struct connection), 0,
1600                                       NULL);
1601         if (!con_cache)
1602                 goto fail;
1603
1604         error = work_start();
1605         if (error)
1606                 goto fail_destroy;
1607
1608         dlm_allow_conn = 1;
1609
1610         /* Start listening */
1611         if (dlm_config.ci_protocol == 0)
1612                 error = tcp_listen_for_all();
1613         else
1614                 error = sctp_listen_for_all();
1615         if (error)
1616                 goto fail_unlisten;
1617
1618         return 0;
1619
1620 fail_unlisten:
1621         dlm_allow_conn = 0;
1622         con = nodeid2con(0,0);
1623         if (con) {
1624                 close_connection(con, false, true, true);
1625                 kmem_cache_free(con_cache, con);
1626         }
1627 fail_destroy:
1628         kmem_cache_destroy(con_cache);
1629 fail:
1630         return error;
1631 }
1632
1633 void dlm_lowcomms_exit(void)
1634 {
1635         struct dlm_node_addr *na, *safe;
1636
1637         spin_lock(&dlm_node_addrs_spin);
1638         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1639                 list_del(&na->list);
1640                 while (na->addr_count--)
1641                         kfree(na->addr[na->addr_count]);
1642                 kfree(na);
1643         }
1644         spin_unlock(&dlm_node_addrs_spin);
1645 }