ext4: make local functions static
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages_final(&inode->i_data);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (!is_bad_inode(inode))
225                 dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232         if (is_bad_inode(inode))
233                 goto no_delete;
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359                         "with only %d reserved metadata blocks "
360                         "(releasing %d blocks with reserved %d data blocks)",
361                         inode->i_ino, ei->i_allocated_meta_blocks,
362                              ei->i_reserved_meta_blocks, used,
363                              ei->i_reserved_data_blocks);
364                 WARN_ON(1);
365                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366         }
367
368         /* Update per-inode reservations */
369         ei->i_reserved_data_blocks -= used;
370         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372                            used + ei->i_allocated_meta_blocks);
373         ei->i_allocated_meta_blocks = 0;
374
375         if (ei->i_reserved_data_blocks == 0) {
376                 /*
377                  * We can release all of the reserved metadata blocks
378                  * only when we have written all of the delayed
379                  * allocation blocks.
380                  */
381                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382                                    ei->i_reserved_meta_blocks);
383                 ei->i_reserved_meta_blocks = 0;
384                 ei->i_da_metadata_calc_len = 0;
385         }
386         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388         /* Update quota subsystem for data blocks */
389         if (quota_claim)
390                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391         else {
392                 /*
393                  * We did fallocate with an offset that is already delayed
394                  * allocated. So on delayed allocated writeback we should
395                  * not re-claim the quota for fallocated blocks.
396                  */
397                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398         }
399
400         /*
401          * If we have done all the pending block allocations and if
402          * there aren't any writers on the inode, we can discard the
403          * inode's preallocations.
404          */
405         if ((ei->i_reserved_data_blocks == 0) &&
406             (atomic_read(&inode->i_writecount) == 0))
407                 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411                                 unsigned int line,
412                                 struct ext4_map_blocks *map)
413 {
414         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415                                    map->m_len)) {
416                 ext4_error_inode(inode, func, line, map->m_pblk,
417                                  "lblock %lu mapped to illegal pblock "
418                                  "(length %d)", (unsigned long) map->m_lblk,
419                                  map->m_len);
420                 return -EIO;
421         }
422         return 0;
423 }
424
425 #define check_block_validity(inode, map)        \
426         __check_block_validity((inode), __func__, __LINE__, (map))
427
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430                                        struct inode *inode,
431                                        struct ext4_map_blocks *es_map,
432                                        struct ext4_map_blocks *map,
433                                        int flags)
434 {
435         int retval;
436
437         map->m_flags = 0;
438         /*
439          * There is a race window that the result is not the same.
440          * e.g. xfstests #223 when dioread_nolock enables.  The reason
441          * is that we lookup a block mapping in extent status tree with
442          * out taking i_data_sem.  So at the time the unwritten extent
443          * could be converted.
444          */
445         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446                 down_read((&EXT4_I(inode)->i_data_sem));
447         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449                                              EXT4_GET_BLOCKS_KEEP_SIZE);
450         } else {
451                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452                                              EXT4_GET_BLOCKS_KEEP_SIZE);
453         }
454         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455                 up_read((&EXT4_I(inode)->i_data_sem));
456         /*
457          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458          * because it shouldn't be marked in es_map->m_flags.
459          */
460         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.
493  * if create==0 and the blocks are pre-allocated and unwritten block,
494  * the result buffer head is unmapped. If the create ==1, it will make sure
495  * the buffer head is mapped.
496  *
497  * It returns 0 if plain look up failed (blocks have not been allocated), in
498  * that case, buffer head is unmapped
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* We can handle the block number less than EXT_MAX_BLOCKS */
526         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527                 return -EIO;
528
529         /* Lookup extent status tree firstly */
530         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531                 ext4_es_lru_add(inode);
532                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533                         map->m_pblk = ext4_es_pblock(&es) +
534                                         map->m_lblk - es.es_lblk;
535                         map->m_flags |= ext4_es_is_written(&es) ?
536                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537                         retval = es.es_len - (map->m_lblk - es.es_lblk);
538                         if (retval > map->m_len)
539                                 retval = map->m_len;
540                         map->m_len = retval;
541                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558                 down_read((&EXT4_I(inode)->i_data_sem));
559         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
560                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561                                              EXT4_GET_BLOCKS_KEEP_SIZE);
562         } else {
563                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         }
566         if (retval > 0) {
567                 unsigned int status;
568
569                 if (unlikely(retval != map->m_len)) {
570                         ext4_warning(inode->i_sb,
571                                      "ES len assertion failed for inode "
572                                      "%lu: retval %d != map->m_len %d",
573                                      inode->i_ino, retval, map->m_len);
574                         WARN_ON(1);
575                 }
576
577                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580                     ext4_find_delalloc_range(inode, map->m_lblk,
581                                              map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589                 up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593                 ret = check_block_validity(inode, map);
594                 if (ret != 0)
595                         return ret;
596         }
597
598         /* If it is only a block(s) look up */
599         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600                 return retval;
601
602         /*
603          * Returns if the blocks have already allocated
604          *
605          * Note that if blocks have been preallocated
606          * ext4_ext_get_block() returns the create = 0
607          * with buffer head unmapped.
608          */
609         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610                 /*
611                  * If we need to convert extent to unwritten
612                  * we continue and do the actual work in
613                  * ext4_ext_map_blocks()
614                  */
615                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616                         return retval;
617
618         /*
619          * Here we clear m_flags because after allocating an new extent,
620          * it will be set again.
621          */
622         map->m_flags &= ~EXT4_MAP_FLAGS;
623
624         /*
625          * New blocks allocate and/or writing to unwritten extent
626          * will possibly result in updating i_data, so we take
627          * the write lock of i_data_sem, and call get_blocks()
628          * with create == 1 flag.
629          */
630         down_write((&EXT4_I(inode)->i_data_sem));
631
632         /*
633          * if the caller is from delayed allocation writeout path
634          * we have already reserved fs blocks for allocation
635          * let the underlying get_block() function know to
636          * avoid double accounting
637          */
638         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
639                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
640         /*
641          * We need to check for EXT4 here because migrate
642          * could have changed the inode type in between
643          */
644         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646         } else {
647                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650                         /*
651                          * We allocated new blocks which will result in
652                          * i_data's format changing.  Force the migrate
653                          * to fail by clearing migrate flags
654                          */
655                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656                 }
657
658                 /*
659                  * Update reserved blocks/metadata blocks after successful
660                  * block allocation which had been deferred till now. We don't
661                  * support fallocate for non extent files. So we can update
662                  * reserve space here.
663                  */
664                 if ((retval > 0) &&
665                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666                         ext4_da_update_reserve_space(inode, retval, 1);
667         }
668         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
669                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
670
671         if (retval > 0) {
672                 unsigned int status;
673
674                 if (unlikely(retval != map->m_len)) {
675                         ext4_warning(inode->i_sb,
676                                      "ES len assertion failed for inode "
677                                      "%lu: retval %d != map->m_len %d",
678                                      inode->i_ino, retval, map->m_len);
679                         WARN_ON(1);
680                 }
681
682                 /*
683                  * If the extent has been zeroed out, we don't need to update
684                  * extent status tree.
685                  */
686                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688                         if (ext4_es_is_written(&es))
689                                 goto has_zeroout;
690                 }
691                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694                     ext4_find_delalloc_range(inode, map->m_lblk,
695                                              map->m_lblk + map->m_len - 1))
696                         status |= EXTENT_STATUS_DELAYED;
697                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698                                             map->m_pblk, status);
699                 if (ret < 0)
700                         retval = ret;
701         }
702
703 has_zeroout:
704         up_write((&EXT4_I(inode)->i_data_sem));
705         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706                 ret = check_block_validity(inode, map);
707                 if (ret != 0)
708                         return ret;
709         }
710         return retval;
711 }
712
713 /* Maximum number of blocks we map for direct IO at once. */
714 #define DIO_MAX_BLOCKS 4096
715
716 static int _ext4_get_block(struct inode *inode, sector_t iblock,
717                            struct buffer_head *bh, int flags)
718 {
719         handle_t *handle = ext4_journal_current_handle();
720         struct ext4_map_blocks map;
721         int ret = 0, started = 0;
722         int dio_credits;
723
724         if (ext4_has_inline_data(inode))
725                 return -ERANGE;
726
727         map.m_lblk = iblock;
728         map.m_len = bh->b_size >> inode->i_blkbits;
729
730         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
731                 /* Direct IO write... */
732                 if (map.m_len > DIO_MAX_BLOCKS)
733                         map.m_len = DIO_MAX_BLOCKS;
734                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
735                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736                                             dio_credits);
737                 if (IS_ERR(handle)) {
738                         ret = PTR_ERR(handle);
739                         return ret;
740                 }
741                 started = 1;
742         }
743
744         ret = ext4_map_blocks(handle, inode, &map, flags);
745         if (ret > 0) {
746                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
748                 map_bh(bh, inode->i_sb, map.m_pblk);
749                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
750                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751                         set_buffer_defer_completion(bh);
752                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
753                 ret = 0;
754         }
755         if (started)
756                 ext4_journal_stop(handle);
757         return ret;
758 }
759
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761                    struct buffer_head *bh, int create)
762 {
763         return _ext4_get_block(inode, iblock, bh,
764                                create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766
767 /*
768  * `handle' can be NULL if create is zero
769  */
770 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
771                                 ext4_lblk_t block, int create, int *errp)
772 {
773         struct ext4_map_blocks map;
774         struct buffer_head *bh;
775         int fatal = 0, err;
776
777         J_ASSERT(handle != NULL || create == 0);
778
779         map.m_lblk = block;
780         map.m_len = 1;
781         err = ext4_map_blocks(handle, inode, &map,
782                               create ? EXT4_GET_BLOCKS_CREATE : 0);
783
784         /* ensure we send some value back into *errp */
785         *errp = 0;
786
787         if (create && err == 0)
788                 err = -ENOSPC;  /* should never happen */
789         if (err < 0)
790                 *errp = err;
791         if (err <= 0)
792                 return NULL;
793
794         bh = sb_getblk(inode->i_sb, map.m_pblk);
795         if (unlikely(!bh)) {
796                 *errp = -ENOMEM;
797                 return NULL;
798         }
799         if (map.m_flags & EXT4_MAP_NEW) {
800                 J_ASSERT(create != 0);
801                 J_ASSERT(handle != NULL);
802
803                 /*
804                  * Now that we do not always journal data, we should
805                  * keep in mind whether this should always journal the
806                  * new buffer as metadata.  For now, regular file
807                  * writes use ext4_get_block instead, so it's not a
808                  * problem.
809                  */
810                 lock_buffer(bh);
811                 BUFFER_TRACE(bh, "call get_create_access");
812                 fatal = ext4_journal_get_create_access(handle, bh);
813                 if (!fatal && !buffer_uptodate(bh)) {
814                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815                         set_buffer_uptodate(bh);
816                 }
817                 unlock_buffer(bh);
818                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819                 err = ext4_handle_dirty_metadata(handle, inode, bh);
820                 if (!fatal)
821                         fatal = err;
822         } else {
823                 BUFFER_TRACE(bh, "not a new buffer");
824         }
825         if (fatal) {
826                 *errp = fatal;
827                 brelse(bh);
828                 bh = NULL;
829         }
830         return bh;
831 }
832
833 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
834                                ext4_lblk_t block, int create, int *err)
835 {
836         struct buffer_head *bh;
837
838         bh = ext4_getblk(handle, inode, block, create, err);
839         if (!bh)
840                 return bh;
841         if (buffer_uptodate(bh))
842                 return bh;
843         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
844         wait_on_buffer(bh);
845         if (buffer_uptodate(bh))
846                 return bh;
847         put_bh(bh);
848         *err = -EIO;
849         return NULL;
850 }
851
852 int ext4_walk_page_buffers(handle_t *handle,
853                            struct buffer_head *head,
854                            unsigned from,
855                            unsigned to,
856                            int *partial,
857                            int (*fn)(handle_t *handle,
858                                      struct buffer_head *bh))
859 {
860         struct buffer_head *bh;
861         unsigned block_start, block_end;
862         unsigned blocksize = head->b_size;
863         int err, ret = 0;
864         struct buffer_head *next;
865
866         for (bh = head, block_start = 0;
867              ret == 0 && (bh != head || !block_start);
868              block_start = block_end, bh = next) {
869                 next = bh->b_this_page;
870                 block_end = block_start + blocksize;
871                 if (block_end <= from || block_start >= to) {
872                         if (partial && !buffer_uptodate(bh))
873                                 *partial = 1;
874                         continue;
875                 }
876                 err = (*fn)(handle, bh);
877                 if (!ret)
878                         ret = err;
879         }
880         return ret;
881 }
882
883 /*
884  * To preserve ordering, it is essential that the hole instantiation and
885  * the data write be encapsulated in a single transaction.  We cannot
886  * close off a transaction and start a new one between the ext4_get_block()
887  * and the commit_write().  So doing the jbd2_journal_start at the start of
888  * prepare_write() is the right place.
889  *
890  * Also, this function can nest inside ext4_writepage().  In that case, we
891  * *know* that ext4_writepage() has generated enough buffer credits to do the
892  * whole page.  So we won't block on the journal in that case, which is good,
893  * because the caller may be PF_MEMALLOC.
894  *
895  * By accident, ext4 can be reentered when a transaction is open via
896  * quota file writes.  If we were to commit the transaction while thus
897  * reentered, there can be a deadlock - we would be holding a quota
898  * lock, and the commit would never complete if another thread had a
899  * transaction open and was blocking on the quota lock - a ranking
900  * violation.
901  *
902  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
903  * will _not_ run commit under these circumstances because handle->h_ref
904  * is elevated.  We'll still have enough credits for the tiny quotafile
905  * write.
906  */
907 int do_journal_get_write_access(handle_t *handle,
908                                 struct buffer_head *bh)
909 {
910         int dirty = buffer_dirty(bh);
911         int ret;
912
913         if (!buffer_mapped(bh) || buffer_freed(bh))
914                 return 0;
915         /*
916          * __block_write_begin() could have dirtied some buffers. Clean
917          * the dirty bit as jbd2_journal_get_write_access() could complain
918          * otherwise about fs integrity issues. Setting of the dirty bit
919          * by __block_write_begin() isn't a real problem here as we clear
920          * the bit before releasing a page lock and thus writeback cannot
921          * ever write the buffer.
922          */
923         if (dirty)
924                 clear_buffer_dirty(bh);
925         ret = ext4_journal_get_write_access(handle, bh);
926         if (!ret && dirty)
927                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928         return ret;
929 }
930
931 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932                    struct buffer_head *bh_result, int create);
933 static int ext4_write_begin(struct file *file, struct address_space *mapping,
934                             loff_t pos, unsigned len, unsigned flags,
935                             struct page **pagep, void **fsdata)
936 {
937         struct inode *inode = mapping->host;
938         int ret, needed_blocks;
939         handle_t *handle;
940         int retries = 0;
941         struct page *page;
942         pgoff_t index;
943         unsigned from, to;
944
945         trace_ext4_write_begin(inode, pos, len, flags);
946         /*
947          * Reserve one block more for addition to orphan list in case
948          * we allocate blocks but write fails for some reason
949          */
950         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
951         index = pos >> PAGE_CACHE_SHIFT;
952         from = pos & (PAGE_CACHE_SIZE - 1);
953         to = from + len;
954
955         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957                                                     flags, pagep);
958                 if (ret < 0)
959                         return ret;
960                 if (ret == 1)
961                         return 0;
962         }
963
964         /*
965          * grab_cache_page_write_begin() can take a long time if the
966          * system is thrashing due to memory pressure, or if the page
967          * is being written back.  So grab it first before we start
968          * the transaction handle.  This also allows us to allocate
969          * the page (if needed) without using GFP_NOFS.
970          */
971 retry_grab:
972         page = grab_cache_page_write_begin(mapping, index, flags);
973         if (!page)
974                 return -ENOMEM;
975         unlock_page(page);
976
977 retry_journal:
978         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
979         if (IS_ERR(handle)) {
980                 page_cache_release(page);
981                 return PTR_ERR(handle);
982         }
983
984         lock_page(page);
985         if (page->mapping != mapping) {
986                 /* The page got truncated from under us */
987                 unlock_page(page);
988                 page_cache_release(page);
989                 ext4_journal_stop(handle);
990                 goto retry_grab;
991         }
992         /* In case writeback began while the page was unlocked */
993         wait_for_stable_page(page);
994
995         if (ext4_should_dioread_nolock(inode))
996                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
997         else
998                 ret = __block_write_begin(page, pos, len, ext4_get_block);
999
1000         if (!ret && ext4_should_journal_data(inode)) {
1001                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002                                              from, to, NULL,
1003                                              do_journal_get_write_access);
1004         }
1005
1006         if (ret) {
1007                 unlock_page(page);
1008                 /*
1009                  * __block_write_begin may have instantiated a few blocks
1010                  * outside i_size.  Trim these off again. Don't need
1011                  * i_size_read because we hold i_mutex.
1012                  *
1013                  * Add inode to orphan list in case we crash before
1014                  * truncate finishes
1015                  */
1016                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017                         ext4_orphan_add(handle, inode);
1018
1019                 ext4_journal_stop(handle);
1020                 if (pos + len > inode->i_size) {
1021                         ext4_truncate_failed_write(inode);
1022                         /*
1023                          * If truncate failed early the inode might
1024                          * still be on the orphan list; we need to
1025                          * make sure the inode is removed from the
1026                          * orphan list in that case.
1027                          */
1028                         if (inode->i_nlink)
1029                                 ext4_orphan_del(NULL, inode);
1030                 }
1031
1032                 if (ret == -ENOSPC &&
1033                     ext4_should_retry_alloc(inode->i_sb, &retries))
1034                         goto retry_journal;
1035                 page_cache_release(page);
1036                 return ret;
1037         }
1038         *pagep = page;
1039         return ret;
1040 }
1041
1042 /* For write_end() in data=journal mode */
1043 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1044 {
1045         int ret;
1046         if (!buffer_mapped(bh) || buffer_freed(bh))
1047                 return 0;
1048         set_buffer_uptodate(bh);
1049         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050         clear_buffer_meta(bh);
1051         clear_buffer_prio(bh);
1052         return ret;
1053 }
1054
1055 /*
1056  * We need to pick up the new inode size which generic_commit_write gave us
1057  * `file' can be NULL - eg, when called from page_symlink().
1058  *
1059  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1060  * buffers are managed internally.
1061  */
1062 static int ext4_write_end(struct file *file,
1063                           struct address_space *mapping,
1064                           loff_t pos, unsigned len, unsigned copied,
1065                           struct page *page, void *fsdata)
1066 {
1067         handle_t *handle = ext4_journal_current_handle();
1068         struct inode *inode = mapping->host;
1069         int ret = 0, ret2;
1070         int i_size_changed = 0;
1071
1072         trace_ext4_write_end(inode, pos, len, copied);
1073         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074                 ret = ext4_jbd2_file_inode(handle, inode);
1075                 if (ret) {
1076                         unlock_page(page);
1077                         page_cache_release(page);
1078                         goto errout;
1079                 }
1080         }
1081
1082         if (ext4_has_inline_data(inode)) {
1083                 ret = ext4_write_inline_data_end(inode, pos, len,
1084                                                  copied, page);
1085                 if (ret < 0)
1086                         goto errout;
1087                 copied = ret;
1088         } else
1089                 copied = block_write_end(file, mapping, pos,
1090                                          len, copied, page, fsdata);
1091
1092         /*
1093          * No need to use i_size_read() here, the i_size
1094          * cannot change under us because we hole i_mutex.
1095          *
1096          * But it's important to update i_size while still holding page lock:
1097          * page writeout could otherwise come in and zero beyond i_size.
1098          */
1099         if (pos + copied > inode->i_size) {
1100                 i_size_write(inode, pos + copied);
1101                 i_size_changed = 1;
1102         }
1103
1104         if (pos + copied > EXT4_I(inode)->i_disksize) {
1105                 /* We need to mark inode dirty even if
1106                  * new_i_size is less that inode->i_size
1107                  * but greater than i_disksize. (hint delalloc)
1108                  */
1109                 ext4_update_i_disksize(inode, (pos + copied));
1110                 i_size_changed = 1;
1111         }
1112         unlock_page(page);
1113         page_cache_release(page);
1114
1115         /*
1116          * Don't mark the inode dirty under page lock. First, it unnecessarily
1117          * makes the holding time of page lock longer. Second, it forces lock
1118          * ordering of page lock and transaction start for journaling
1119          * filesystems.
1120          */
1121         if (i_size_changed)
1122                 ext4_mark_inode_dirty(handle, inode);
1123
1124         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125                 /* if we have allocated more blocks and copied
1126                  * less. We will have blocks allocated outside
1127                  * inode->i_size. So truncate them
1128                  */
1129                 ext4_orphan_add(handle, inode);
1130 errout:
1131         ret2 = ext4_journal_stop(handle);
1132         if (!ret)
1133                 ret = ret2;
1134
1135         if (pos + len > inode->i_size) {
1136                 ext4_truncate_failed_write(inode);
1137                 /*
1138                  * If truncate failed early the inode might still be
1139                  * on the orphan list; we need to make sure the inode
1140                  * is removed from the orphan list in that case.
1141                  */
1142                 if (inode->i_nlink)
1143                         ext4_orphan_del(NULL, inode);
1144         }
1145
1146         return ret ? ret : copied;
1147 }
1148
1149 static int ext4_journalled_write_end(struct file *file,
1150                                      struct address_space *mapping,
1151                                      loff_t pos, unsigned len, unsigned copied,
1152                                      struct page *page, void *fsdata)
1153 {
1154         handle_t *handle = ext4_journal_current_handle();
1155         struct inode *inode = mapping->host;
1156         int ret = 0, ret2;
1157         int partial = 0;
1158         unsigned from, to;
1159         loff_t new_i_size;
1160
1161         trace_ext4_journalled_write_end(inode, pos, len, copied);
1162         from = pos & (PAGE_CACHE_SIZE - 1);
1163         to = from + len;
1164
1165         BUG_ON(!ext4_handle_valid(handle));
1166
1167         if (ext4_has_inline_data(inode))
1168                 copied = ext4_write_inline_data_end(inode, pos, len,
1169                                                     copied, page);
1170         else {
1171                 if (copied < len) {
1172                         if (!PageUptodate(page))
1173                                 copied = 0;
1174                         page_zero_new_buffers(page, from+copied, to);
1175                 }
1176
1177                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178                                              to, &partial, write_end_fn);
1179                 if (!partial)
1180                         SetPageUptodate(page);
1181         }
1182         new_i_size = pos + copied;
1183         if (new_i_size > inode->i_size)
1184                 i_size_write(inode, pos+copied);
1185         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187         if (new_i_size > EXT4_I(inode)->i_disksize) {
1188                 ext4_update_i_disksize(inode, new_i_size);
1189                 ret2 = ext4_mark_inode_dirty(handle, inode);
1190                 if (!ret)
1191                         ret = ret2;
1192         }
1193
1194         unlock_page(page);
1195         page_cache_release(page);
1196         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197                 /* if we have allocated more blocks and copied
1198                  * less. We will have blocks allocated outside
1199                  * inode->i_size. So truncate them
1200                  */
1201                 ext4_orphan_add(handle, inode);
1202
1203         ret2 = ext4_journal_stop(handle);
1204         if (!ret)
1205                 ret = ret2;
1206         if (pos + len > inode->i_size) {
1207                 ext4_truncate_failed_write(inode);
1208                 /*
1209                  * If truncate failed early the inode might still be
1210                  * on the orphan list; we need to make sure the inode
1211                  * is removed from the orphan list in that case.
1212                  */
1213                 if (inode->i_nlink)
1214                         ext4_orphan_del(NULL, inode);
1215         }
1216
1217         return ret ? ret : copied;
1218 }
1219
1220 /*
1221  * Reserve a metadata for a single block located at lblock
1222  */
1223 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224 {
1225         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226         struct ext4_inode_info *ei = EXT4_I(inode);
1227         unsigned int md_needed;
1228         ext4_lblk_t save_last_lblock;
1229         int save_len;
1230
1231         /*
1232          * recalculate the amount of metadata blocks to reserve
1233          * in order to allocate nrblocks
1234          * worse case is one extent per block
1235          */
1236         spin_lock(&ei->i_block_reservation_lock);
1237         /*
1238          * ext4_calc_metadata_amount() has side effects, which we have
1239          * to be prepared undo if we fail to claim space.
1240          */
1241         save_len = ei->i_da_metadata_calc_len;
1242         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243         md_needed = EXT4_NUM_B2C(sbi,
1244                                  ext4_calc_metadata_amount(inode, lblock));
1245         trace_ext4_da_reserve_space(inode, md_needed);
1246
1247         /*
1248          * We do still charge estimated metadata to the sb though;
1249          * we cannot afford to run out of free blocks.
1250          */
1251         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252                 ei->i_da_metadata_calc_len = save_len;
1253                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254                 spin_unlock(&ei->i_block_reservation_lock);
1255                 return -ENOSPC;
1256         }
1257         ei->i_reserved_meta_blocks += md_needed;
1258         spin_unlock(&ei->i_block_reservation_lock);
1259
1260         return 0;       /* success */
1261 }
1262
1263 /*
1264  * Reserve a single cluster located at lblock
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269         struct ext4_inode_info *ei = EXT4_I(inode);
1270         unsigned int md_needed;
1271         int ret;
1272         ext4_lblk_t save_last_lblock;
1273         int save_len;
1274
1275         /*
1276          * We will charge metadata quota at writeout time; this saves
1277          * us from metadata over-estimation, though we may go over by
1278          * a small amount in the end.  Here we just reserve for data.
1279          */
1280         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281         if (ret)
1282                 return ret;
1283
1284         /*
1285          * recalculate the amount of metadata blocks to reserve
1286          * in order to allocate nrblocks
1287          * worse case is one extent per block
1288          */
1289         spin_lock(&ei->i_block_reservation_lock);
1290         /*
1291          * ext4_calc_metadata_amount() has side effects, which we have
1292          * to be prepared undo if we fail to claim space.
1293          */
1294         save_len = ei->i_da_metadata_calc_len;
1295         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296         md_needed = EXT4_NUM_B2C(sbi,
1297                                  ext4_calc_metadata_amount(inode, lblock));
1298         trace_ext4_da_reserve_space(inode, md_needed);
1299
1300         /*
1301          * We do still charge estimated metadata to the sb though;
1302          * we cannot afford to run out of free blocks.
1303          */
1304         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305                 ei->i_da_metadata_calc_len = save_len;
1306                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307                 spin_unlock(&ei->i_block_reservation_lock);
1308                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309                 return -ENOSPC;
1310         }
1311         ei->i_reserved_data_blocks++;
1312         ei->i_reserved_meta_blocks += md_needed;
1313         spin_unlock(&ei->i_block_reservation_lock);
1314
1315         return 0;       /* success */
1316 }
1317
1318 static void ext4_da_release_space(struct inode *inode, int to_free)
1319 {
1320         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321         struct ext4_inode_info *ei = EXT4_I(inode);
1322
1323         if (!to_free)
1324                 return;         /* Nothing to release, exit */
1325
1326         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327
1328         trace_ext4_da_release_space(inode, to_free);
1329         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330                 /*
1331                  * if there aren't enough reserved blocks, then the
1332                  * counter is messed up somewhere.  Since this
1333                  * function is called from invalidate page, it's
1334                  * harmless to return without any action.
1335                  */
1336                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337                          "ino %lu, to_free %d with only %d reserved "
1338                          "data blocks", inode->i_ino, to_free,
1339                          ei->i_reserved_data_blocks);
1340                 WARN_ON(1);
1341                 to_free = ei->i_reserved_data_blocks;
1342         }
1343         ei->i_reserved_data_blocks -= to_free;
1344
1345         if (ei->i_reserved_data_blocks == 0) {
1346                 /*
1347                  * We can release all of the reserved metadata blocks
1348                  * only when we have written all of the delayed
1349                  * allocation blocks.
1350                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1351                  * i_reserved_data_blocks, etc. refer to number of clusters.
1352                  */
1353                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354                                    ei->i_reserved_meta_blocks);
1355                 ei->i_reserved_meta_blocks = 0;
1356                 ei->i_da_metadata_calc_len = 0;
1357         }
1358
1359         /* update fs dirty data blocks counter */
1360         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361
1362         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365 }
1366
1367 static void ext4_da_page_release_reservation(struct page *page,
1368                                              unsigned int offset,
1369                                              unsigned int length)
1370 {
1371         int to_release = 0;
1372         struct buffer_head *head, *bh;
1373         unsigned int curr_off = 0;
1374         struct inode *inode = page->mapping->host;
1375         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376         unsigned int stop = offset + length;
1377         int num_clusters;
1378         ext4_fsblk_t lblk;
1379
1380         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
1382         head = page_buffers(page);
1383         bh = head;
1384         do {
1385                 unsigned int next_off = curr_off + bh->b_size;
1386
1387                 if (next_off > stop)
1388                         break;
1389
1390                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1391                         to_release++;
1392                         clear_buffer_delay(bh);
1393                 }
1394                 curr_off = next_off;
1395         } while ((bh = bh->b_this_page) != head);
1396
1397         if (to_release) {
1398                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399                 ext4_es_remove_extent(inode, lblk, to_release);
1400         }
1401
1402         /* If we have released all the blocks belonging to a cluster, then we
1403          * need to release the reserved space for that cluster. */
1404         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405         while (num_clusters > 0) {
1406                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407                         ((num_clusters - 1) << sbi->s_cluster_bits);
1408                 if (sbi->s_cluster_ratio == 1 ||
1409                     !ext4_find_delalloc_cluster(inode, lblk))
1410                         ext4_da_release_space(inode, 1);
1411
1412                 num_clusters--;
1413         }
1414 }
1415
1416 /*
1417  * Delayed allocation stuff
1418  */
1419
1420 struct mpage_da_data {
1421         struct inode *inode;
1422         struct writeback_control *wbc;
1423
1424         pgoff_t first_page;     /* The first page to write */
1425         pgoff_t next_page;      /* Current page to examine */
1426         pgoff_t last_page;      /* Last page to examine */
1427         /*
1428          * Extent to map - this can be after first_page because that can be
1429          * fully mapped. We somewhat abuse m_flags to store whether the extent
1430          * is delalloc or unwritten.
1431          */
1432         struct ext4_map_blocks map;
1433         struct ext4_io_submit io_submit;        /* IO submission data */
1434 };
1435
1436 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437                                        bool invalidate)
1438 {
1439         int nr_pages, i;
1440         pgoff_t index, end;
1441         struct pagevec pvec;
1442         struct inode *inode = mpd->inode;
1443         struct address_space *mapping = inode->i_mapping;
1444
1445         /* This is necessary when next_page == 0. */
1446         if (mpd->first_page >= mpd->next_page)
1447                 return;
1448
1449         index = mpd->first_page;
1450         end   = mpd->next_page - 1;
1451         if (invalidate) {
1452                 ext4_lblk_t start, last;
1453                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455                 ext4_es_remove_extent(inode, start, last - start + 1);
1456         }
1457
1458         pagevec_init(&pvec, 0);
1459         while (index <= end) {
1460                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461                 if (nr_pages == 0)
1462                         break;
1463                 for (i = 0; i < nr_pages; i++) {
1464                         struct page *page = pvec.pages[i];
1465                         if (page->index > end)
1466                                 break;
1467                         BUG_ON(!PageLocked(page));
1468                         BUG_ON(PageWriteback(page));
1469                         if (invalidate) {
1470                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471                                 ClearPageUptodate(page);
1472                         }
1473                         unlock_page(page);
1474                 }
1475                 index = pvec.pages[nr_pages - 1]->index + 1;
1476                 pagevec_release(&pvec);
1477         }
1478 }
1479
1480 static void ext4_print_free_blocks(struct inode *inode)
1481 {
1482         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483         struct super_block *sb = inode->i_sb;
1484         struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487                EXT4_C2B(EXT4_SB(inode->i_sb),
1488                         ext4_count_free_clusters(sb)));
1489         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491                (long long) EXT4_C2B(EXT4_SB(sb),
1492                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494                (long long) EXT4_C2B(EXT4_SB(sb),
1495                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498                  ei->i_reserved_data_blocks);
1499         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500                ei->i_reserved_meta_blocks);
1501         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502                ei->i_allocated_meta_blocks);
1503         return;
1504 }
1505
1506 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507 {
1508         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509 }
1510
1511 /*
1512  * This function is grabs code from the very beginning of
1513  * ext4_map_blocks, but assumes that the caller is from delayed write
1514  * time. This function looks up the requested blocks and sets the
1515  * buffer delay bit under the protection of i_data_sem.
1516  */
1517 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518                               struct ext4_map_blocks *map,
1519                               struct buffer_head *bh)
1520 {
1521         struct extent_status es;
1522         int retval;
1523         sector_t invalid_block = ~((sector_t) 0xffff);
1524 #ifdef ES_AGGRESSIVE_TEST
1525         struct ext4_map_blocks orig_map;
1526
1527         memcpy(&orig_map, map, sizeof(*map));
1528 #endif
1529
1530         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531                 invalid_block = ~0;
1532
1533         map->m_flags = 0;
1534         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535                   "logical block %lu\n", inode->i_ino, map->m_len,
1536                   (unsigned long) map->m_lblk);
1537
1538         /* Lookup extent status tree firstly */
1539         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540                 ext4_es_lru_add(inode);
1541                 if (ext4_es_is_hole(&es)) {
1542                         retval = 0;
1543                         down_read((&EXT4_I(inode)->i_data_sem));
1544                         goto add_delayed;
1545                 }
1546
1547                 /*
1548                  * Delayed extent could be allocated by fallocate.
1549                  * So we need to check it.
1550                  */
1551                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552                         map_bh(bh, inode->i_sb, invalid_block);
1553                         set_buffer_new(bh);
1554                         set_buffer_delay(bh);
1555                         return 0;
1556                 }
1557
1558                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559                 retval = es.es_len - (iblock - es.es_lblk);
1560                 if (retval > map->m_len)
1561                         retval = map->m_len;
1562                 map->m_len = retval;
1563                 if (ext4_es_is_written(&es))
1564                         map->m_flags |= EXT4_MAP_MAPPED;
1565                 else if (ext4_es_is_unwritten(&es))
1566                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1567                 else
1568                         BUG_ON(1);
1569
1570 #ifdef ES_AGGRESSIVE_TEST
1571                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572 #endif
1573                 return retval;
1574         }
1575
1576         /*
1577          * Try to see if we can get the block without requesting a new
1578          * file system block.
1579          */
1580         down_read((&EXT4_I(inode)->i_data_sem));
1581         if (ext4_has_inline_data(inode)) {
1582                 /*
1583                  * We will soon create blocks for this page, and let
1584                  * us pretend as if the blocks aren't allocated yet.
1585                  * In case of clusters, we have to handle the work
1586                  * of mapping from cluster so that the reserved space
1587                  * is calculated properly.
1588                  */
1589                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1591                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592                 retval = 0;
1593         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594                 retval = ext4_ext_map_blocks(NULL, inode, map,
1595                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596         else
1597                 retval = ext4_ind_map_blocks(NULL, inode, map,
1598                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599
1600 add_delayed:
1601         if (retval == 0) {
1602                 int ret;
1603                 /*
1604                  * XXX: __block_prepare_write() unmaps passed block,
1605                  * is it OK?
1606                  */
1607                 /*
1608                  * If the block was allocated from previously allocated cluster,
1609                  * then we don't need to reserve it again. However we still need
1610                  * to reserve metadata for every block we're going to write.
1611                  */
1612                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613                         ret = ext4_da_reserve_space(inode, iblock);
1614                         if (ret) {
1615                                 /* not enough space to reserve */
1616                                 retval = ret;
1617                                 goto out_unlock;
1618                         }
1619                 } else {
1620                         ret = ext4_da_reserve_metadata(inode, iblock);
1621                         if (ret) {
1622                                 /* not enough space to reserve */
1623                                 retval = ret;
1624                                 goto out_unlock;
1625                         }
1626                 }
1627
1628                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629                                             ~0, EXTENT_STATUS_DELAYED);
1630                 if (ret) {
1631                         retval = ret;
1632                         goto out_unlock;
1633                 }
1634
1635                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636                  * and it should not appear on the bh->b_state.
1637                  */
1638                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640                 map_bh(bh, inode->i_sb, invalid_block);
1641                 set_buffer_new(bh);
1642                 set_buffer_delay(bh);
1643         } else if (retval > 0) {
1644                 int ret;
1645                 unsigned int status;
1646
1647                 if (unlikely(retval != map->m_len)) {
1648                         ext4_warning(inode->i_sb,
1649                                      "ES len assertion failed for inode "
1650                                      "%lu: retval %d != map->m_len %d",
1651                                      inode->i_ino, retval, map->m_len);
1652                         WARN_ON(1);
1653                 }
1654
1655                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658                                             map->m_pblk, status);
1659                 if (ret != 0)
1660                         retval = ret;
1661         }
1662
1663 out_unlock:
1664         up_read((&EXT4_I(inode)->i_data_sem));
1665
1666         return retval;
1667 }
1668
1669 /*
1670  * This is a special get_blocks_t callback which is used by
1671  * ext4_da_write_begin().  It will either return mapped block or
1672  * reserve space for a single block.
1673  *
1674  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675  * We also have b_blocknr = -1 and b_bdev initialized properly
1676  *
1677  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679  * initialized properly.
1680  */
1681 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682                            struct buffer_head *bh, int create)
1683 {
1684         struct ext4_map_blocks map;
1685         int ret = 0;
1686
1687         BUG_ON(create == 0);
1688         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690         map.m_lblk = iblock;
1691         map.m_len = 1;
1692
1693         /*
1694          * first, we need to know whether the block is allocated already
1695          * preallocated blocks are unmapped but should treated
1696          * the same as allocated blocks.
1697          */
1698         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699         if (ret <= 0)
1700                 return ret;
1701
1702         map_bh(bh, inode->i_sb, map.m_pblk);
1703         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705         if (buffer_unwritten(bh)) {
1706                 /* A delayed write to unwritten bh should be marked
1707                  * new and mapped.  Mapped ensures that we don't do
1708                  * get_block multiple times when we write to the same
1709                  * offset and new ensures that we do proper zero out
1710                  * for partial write.
1711                  */
1712                 set_buffer_new(bh);
1713                 set_buffer_mapped(bh);
1714         }
1715         return 0;
1716 }
1717
1718 static int bget_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720         get_bh(bh);
1721         return 0;
1722 }
1723
1724 static int bput_one(handle_t *handle, struct buffer_head *bh)
1725 {
1726         put_bh(bh);
1727         return 0;
1728 }
1729
1730 static int __ext4_journalled_writepage(struct page *page,
1731                                        unsigned int len)
1732 {
1733         struct address_space *mapping = page->mapping;
1734         struct inode *inode = mapping->host;
1735         struct buffer_head *page_bufs = NULL;
1736         handle_t *handle = NULL;
1737         int ret = 0, err = 0;
1738         int inline_data = ext4_has_inline_data(inode);
1739         struct buffer_head *inode_bh = NULL;
1740
1741         ClearPageChecked(page);
1742
1743         if (inline_data) {
1744                 BUG_ON(page->index != 0);
1745                 BUG_ON(len > ext4_get_max_inline_size(inode));
1746                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747                 if (inode_bh == NULL)
1748                         goto out;
1749         } else {
1750                 page_bufs = page_buffers(page);
1751                 if (!page_bufs) {
1752                         BUG();
1753                         goto out;
1754                 }
1755                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756                                        NULL, bget_one);
1757         }
1758         /* As soon as we unlock the page, it can go away, but we have
1759          * references to buffers so we are safe */
1760         unlock_page(page);
1761
1762         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763                                     ext4_writepage_trans_blocks(inode));
1764         if (IS_ERR(handle)) {
1765                 ret = PTR_ERR(handle);
1766                 goto out;
1767         }
1768
1769         BUG_ON(!ext4_handle_valid(handle));
1770
1771         if (inline_data) {
1772                 ret = ext4_journal_get_write_access(handle, inode_bh);
1773
1774                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776         } else {
1777                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778                                              do_journal_get_write_access);
1779
1780                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781                                              write_end_fn);
1782         }
1783         if (ret == 0)
1784                 ret = err;
1785         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786         err = ext4_journal_stop(handle);
1787         if (!ret)
1788                 ret = err;
1789
1790         if (!ext4_has_inline_data(inode))
1791                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792                                        NULL, bput_one);
1793         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794 out:
1795         brelse(inode_bh);
1796         return ret;
1797 }
1798
1799 /*
1800  * Note that we don't need to start a transaction unless we're journaling data
1801  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802  * need to file the inode to the transaction's list in ordered mode because if
1803  * we are writing back data added by write(), the inode is already there and if
1804  * we are writing back data modified via mmap(), no one guarantees in which
1805  * transaction the data will hit the disk. In case we are journaling data, we
1806  * cannot start transaction directly because transaction start ranks above page
1807  * lock so we have to do some magic.
1808  *
1809  * This function can get called via...
1810  *   - ext4_writepages after taking page lock (have journal handle)
1811  *   - journal_submit_inode_data_buffers (no journal handle)
1812  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813  *   - grab_page_cache when doing write_begin (have journal handle)
1814  *
1815  * We don't do any block allocation in this function. If we have page with
1816  * multiple blocks we need to write those buffer_heads that are mapped. This
1817  * is important for mmaped based write. So if we do with blocksize 1K
1818  * truncate(f, 1024);
1819  * a = mmap(f, 0, 4096);
1820  * a[0] = 'a';
1821  * truncate(f, 4096);
1822  * we have in the page first buffer_head mapped via page_mkwrite call back
1823  * but other buffer_heads would be unmapped but dirty (dirty done via the
1824  * do_wp_page). So writepage should write the first block. If we modify
1825  * the mmap area beyond 1024 we will again get a page_fault and the
1826  * page_mkwrite callback will do the block allocation and mark the
1827  * buffer_heads mapped.
1828  *
1829  * We redirty the page if we have any buffer_heads that is either delay or
1830  * unwritten in the page.
1831  *
1832  * We can get recursively called as show below.
1833  *
1834  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835  *              ext4_writepage()
1836  *
1837  * But since we don't do any block allocation we should not deadlock.
1838  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839  */
1840 static int ext4_writepage(struct page *page,
1841                           struct writeback_control *wbc)
1842 {
1843         int ret = 0;
1844         loff_t size;
1845         unsigned int len;
1846         struct buffer_head *page_bufs = NULL;
1847         struct inode *inode = page->mapping->host;
1848         struct ext4_io_submit io_submit;
1849         bool keep_towrite = false;
1850
1851         trace_ext4_writepage(page);
1852         size = i_size_read(inode);
1853         if (page->index == size >> PAGE_CACHE_SHIFT)
1854                 len = size & ~PAGE_CACHE_MASK;
1855         else
1856                 len = PAGE_CACHE_SIZE;
1857
1858         page_bufs = page_buffers(page);
1859         /*
1860          * We cannot do block allocation or other extent handling in this
1861          * function. If there are buffers needing that, we have to redirty
1862          * the page. But we may reach here when we do a journal commit via
1863          * journal_submit_inode_data_buffers() and in that case we must write
1864          * allocated buffers to achieve data=ordered mode guarantees.
1865          */
1866         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1867                                    ext4_bh_delay_or_unwritten)) {
1868                 redirty_page_for_writepage(wbc, page);
1869                 if (current->flags & PF_MEMALLOC) {
1870                         /*
1871                          * For memory cleaning there's no point in writing only
1872                          * some buffers. So just bail out. Warn if we came here
1873                          * from direct reclaim.
1874                          */
1875                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1876                                                         == PF_MEMALLOC);
1877                         unlock_page(page);
1878                         return 0;
1879                 }
1880                 keep_towrite = true;
1881         }
1882
1883         if (PageChecked(page) && ext4_should_journal_data(inode))
1884                 /*
1885                  * It's mmapped pagecache.  Add buffers and journal it.  There
1886                  * doesn't seem much point in redirtying the page here.
1887                  */
1888                 return __ext4_journalled_writepage(page, len);
1889
1890         ext4_io_submit_init(&io_submit, wbc);
1891         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1892         if (!io_submit.io_end) {
1893                 redirty_page_for_writepage(wbc, page);
1894                 unlock_page(page);
1895                 return -ENOMEM;
1896         }
1897         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1898         ext4_io_submit(&io_submit);
1899         /* Drop io_end reference we got from init */
1900         ext4_put_io_end_defer(io_submit.io_end);
1901         return ret;
1902 }
1903
1904 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1905 {
1906         int len;
1907         loff_t size = i_size_read(mpd->inode);
1908         int err;
1909
1910         BUG_ON(page->index != mpd->first_page);
1911         if (page->index == size >> PAGE_CACHE_SHIFT)
1912                 len = size & ~PAGE_CACHE_MASK;
1913         else
1914                 len = PAGE_CACHE_SIZE;
1915         clear_page_dirty_for_io(page);
1916         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1917         if (!err)
1918                 mpd->wbc->nr_to_write--;
1919         mpd->first_page++;
1920
1921         return err;
1922 }
1923
1924 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1925
1926 /*
1927  * mballoc gives us at most this number of blocks...
1928  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1929  * The rest of mballoc seems to handle chunks up to full group size.
1930  */
1931 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1932
1933 /*
1934  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1935  *
1936  * @mpd - extent of blocks
1937  * @lblk - logical number of the block in the file
1938  * @bh - buffer head we want to add to the extent
1939  *
1940  * The function is used to collect contig. blocks in the same state. If the
1941  * buffer doesn't require mapping for writeback and we haven't started the
1942  * extent of buffers to map yet, the function returns 'true' immediately - the
1943  * caller can write the buffer right away. Otherwise the function returns true
1944  * if the block has been added to the extent, false if the block couldn't be
1945  * added.
1946  */
1947 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1948                                    struct buffer_head *bh)
1949 {
1950         struct ext4_map_blocks *map = &mpd->map;
1951
1952         /* Buffer that doesn't need mapping for writeback? */
1953         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1954             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1955                 /* So far no extent to map => we write the buffer right away */
1956                 if (map->m_len == 0)
1957                         return true;
1958                 return false;
1959         }
1960
1961         /* First block in the extent? */
1962         if (map->m_len == 0) {
1963                 map->m_lblk = lblk;
1964                 map->m_len = 1;
1965                 map->m_flags = bh->b_state & BH_FLAGS;
1966                 return true;
1967         }
1968
1969         /* Don't go larger than mballoc is willing to allocate */
1970         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1971                 return false;
1972
1973         /* Can we merge the block to our big extent? */
1974         if (lblk == map->m_lblk + map->m_len &&
1975             (bh->b_state & BH_FLAGS) == map->m_flags) {
1976                 map->m_len++;
1977                 return true;
1978         }
1979         return false;
1980 }
1981
1982 /*
1983  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1984  *
1985  * @mpd - extent of blocks for mapping
1986  * @head - the first buffer in the page
1987  * @bh - buffer we should start processing from
1988  * @lblk - logical number of the block in the file corresponding to @bh
1989  *
1990  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1991  * the page for IO if all buffers in this page were mapped and there's no
1992  * accumulated extent of buffers to map or add buffers in the page to the
1993  * extent of buffers to map. The function returns 1 if the caller can continue
1994  * by processing the next page, 0 if it should stop adding buffers to the
1995  * extent to map because we cannot extend it anymore. It can also return value
1996  * < 0 in case of error during IO submission.
1997  */
1998 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1999                                    struct buffer_head *head,
2000                                    struct buffer_head *bh,
2001                                    ext4_lblk_t lblk)
2002 {
2003         struct inode *inode = mpd->inode;
2004         int err;
2005         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2006                                                         >> inode->i_blkbits;
2007
2008         do {
2009                 BUG_ON(buffer_locked(bh));
2010
2011                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2012                         /* Found extent to map? */
2013                         if (mpd->map.m_len)
2014                                 return 0;
2015                         /* Everything mapped so far and we hit EOF */
2016                         break;
2017                 }
2018         } while (lblk++, (bh = bh->b_this_page) != head);
2019         /* So far everything mapped? Submit the page for IO. */
2020         if (mpd->map.m_len == 0) {
2021                 err = mpage_submit_page(mpd, head->b_page);
2022                 if (err < 0)
2023                         return err;
2024         }
2025         return lblk < blocks;
2026 }
2027
2028 /*
2029  * mpage_map_buffers - update buffers corresponding to changed extent and
2030  *                     submit fully mapped pages for IO
2031  *
2032  * @mpd - description of extent to map, on return next extent to map
2033  *
2034  * Scan buffers corresponding to changed extent (we expect corresponding pages
2035  * to be already locked) and update buffer state according to new extent state.
2036  * We map delalloc buffers to their physical location, clear unwritten bits,
2037  * and mark buffers as uninit when we perform writes to unwritten extents
2038  * and do extent conversion after IO is finished. If the last page is not fully
2039  * mapped, we update @map to the next extent in the last page that needs
2040  * mapping. Otherwise we submit the page for IO.
2041  */
2042 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2043 {
2044         struct pagevec pvec;
2045         int nr_pages, i;
2046         struct inode *inode = mpd->inode;
2047         struct buffer_head *head, *bh;
2048         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2049         pgoff_t start, end;
2050         ext4_lblk_t lblk;
2051         sector_t pblock;
2052         int err;
2053
2054         start = mpd->map.m_lblk >> bpp_bits;
2055         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2056         lblk = start << bpp_bits;
2057         pblock = mpd->map.m_pblk;
2058
2059         pagevec_init(&pvec, 0);
2060         while (start <= end) {
2061                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2062                                           PAGEVEC_SIZE);
2063                 if (nr_pages == 0)
2064                         break;
2065                 for (i = 0; i < nr_pages; i++) {
2066                         struct page *page = pvec.pages[i];
2067
2068                         if (page->index > end)
2069                                 break;
2070                         /* Up to 'end' pages must be contiguous */
2071                         BUG_ON(page->index != start);
2072                         bh = head = page_buffers(page);
2073                         do {
2074                                 if (lblk < mpd->map.m_lblk)
2075                                         continue;
2076                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2077                                         /*
2078                                          * Buffer after end of mapped extent.
2079                                          * Find next buffer in the page to map.
2080                                          */
2081                                         mpd->map.m_len = 0;
2082                                         mpd->map.m_flags = 0;
2083                                         /*
2084                                          * FIXME: If dioread_nolock supports
2085                                          * blocksize < pagesize, we need to make
2086                                          * sure we add size mapped so far to
2087                                          * io_end->size as the following call
2088                                          * can submit the page for IO.
2089                                          */
2090                                         err = mpage_process_page_bufs(mpd, head,
2091                                                                       bh, lblk);
2092                                         pagevec_release(&pvec);
2093                                         if (err > 0)
2094                                                 err = 0;
2095                                         return err;
2096                                 }
2097                                 if (buffer_delay(bh)) {
2098                                         clear_buffer_delay(bh);
2099                                         bh->b_blocknr = pblock++;
2100                                 }
2101                                 clear_buffer_unwritten(bh);
2102                         } while (lblk++, (bh = bh->b_this_page) != head);
2103
2104                         /*
2105                          * FIXME: This is going to break if dioread_nolock
2106                          * supports blocksize < pagesize as we will try to
2107                          * convert potentially unmapped parts of inode.
2108                          */
2109                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2110                         /* Page fully mapped - let IO run! */
2111                         err = mpage_submit_page(mpd, page);
2112                         if (err < 0) {
2113                                 pagevec_release(&pvec);
2114                                 return err;
2115                         }
2116                         start++;
2117                 }
2118                 pagevec_release(&pvec);
2119         }
2120         /* Extent fully mapped and matches with page boundary. We are done. */
2121         mpd->map.m_len = 0;
2122         mpd->map.m_flags = 0;
2123         return 0;
2124 }
2125
2126 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2127 {
2128         struct inode *inode = mpd->inode;
2129         struct ext4_map_blocks *map = &mpd->map;
2130         int get_blocks_flags;
2131         int err, dioread_nolock;
2132
2133         trace_ext4_da_write_pages_extent(inode, map);
2134         /*
2135          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2136          * to convert an unwritten extent to be initialized (in the case
2137          * where we have written into one or more preallocated blocks).  It is
2138          * possible that we're going to need more metadata blocks than
2139          * previously reserved. However we must not fail because we're in
2140          * writeback and there is nothing we can do about it so it might result
2141          * in data loss.  So use reserved blocks to allocate metadata if
2142          * possible.
2143          *
2144          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2145          * in question are delalloc blocks.  This affects functions in many
2146          * different parts of the allocation call path.  This flag exists
2147          * primarily because we don't want to change *many* call functions, so
2148          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2149          * once the inode's allocation semaphore is taken.
2150          */
2151         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2152                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2153         dioread_nolock = ext4_should_dioread_nolock(inode);
2154         if (dioread_nolock)
2155                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2156         if (map->m_flags & (1 << BH_Delay))
2157                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2158
2159         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2160         if (err < 0)
2161                 return err;
2162         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2163                 if (!mpd->io_submit.io_end->handle &&
2164                     ext4_handle_valid(handle)) {
2165                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2166                         handle->h_rsv_handle = NULL;
2167                 }
2168                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2169         }
2170
2171         BUG_ON(map->m_len == 0);
2172         if (map->m_flags & EXT4_MAP_NEW) {
2173                 struct block_device *bdev = inode->i_sb->s_bdev;
2174                 int i;
2175
2176                 for (i = 0; i < map->m_len; i++)
2177                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2178         }
2179         return 0;
2180 }
2181
2182 /*
2183  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2184  *                               mpd->len and submit pages underlying it for IO
2185  *
2186  * @handle - handle for journal operations
2187  * @mpd - extent to map
2188  * @give_up_on_write - we set this to true iff there is a fatal error and there
2189  *                     is no hope of writing the data. The caller should discard
2190  *                     dirty pages to avoid infinite loops.
2191  *
2192  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2193  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2194  * them to initialized or split the described range from larger unwritten
2195  * extent. Note that we need not map all the described range since allocation
2196  * can return less blocks or the range is covered by more unwritten extents. We
2197  * cannot map more because we are limited by reserved transaction credits. On
2198  * the other hand we always make sure that the last touched page is fully
2199  * mapped so that it can be written out (and thus forward progress is
2200  * guaranteed). After mapping we submit all mapped pages for IO.
2201  */
2202 static int mpage_map_and_submit_extent(handle_t *handle,
2203                                        struct mpage_da_data *mpd,
2204                                        bool *give_up_on_write)
2205 {
2206         struct inode *inode = mpd->inode;
2207         struct ext4_map_blocks *map = &mpd->map;
2208         int err;
2209         loff_t disksize;
2210
2211         mpd->io_submit.io_end->offset =
2212                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2213         do {
2214                 err = mpage_map_one_extent(handle, mpd);
2215                 if (err < 0) {
2216                         struct super_block *sb = inode->i_sb;
2217
2218                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2219                                 goto invalidate_dirty_pages;
2220                         /*
2221                          * Let the uper layers retry transient errors.
2222                          * In the case of ENOSPC, if ext4_count_free_blocks()
2223                          * is non-zero, a commit should free up blocks.
2224                          */
2225                         if ((err == -ENOMEM) ||
2226                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2227                                 return err;
2228                         ext4_msg(sb, KERN_CRIT,
2229                                  "Delayed block allocation failed for "
2230                                  "inode %lu at logical offset %llu with"
2231                                  " max blocks %u with error %d",
2232                                  inode->i_ino,
2233                                  (unsigned long long)map->m_lblk,
2234                                  (unsigned)map->m_len, -err);
2235                         ext4_msg(sb, KERN_CRIT,
2236                                  "This should not happen!! Data will "
2237                                  "be lost\n");
2238                         if (err == -ENOSPC)
2239                                 ext4_print_free_blocks(inode);
2240                 invalidate_dirty_pages:
2241                         *give_up_on_write = true;
2242                         return err;
2243                 }
2244                 /*
2245                  * Update buffer state, submit mapped pages, and get us new
2246                  * extent to map
2247                  */
2248                 err = mpage_map_and_submit_buffers(mpd);
2249                 if (err < 0)
2250                         return err;
2251         } while (map->m_len);
2252
2253         /*
2254          * Update on-disk size after IO is submitted.  Races with
2255          * truncate are avoided by checking i_size under i_data_sem.
2256          */
2257         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2258         if (disksize > EXT4_I(inode)->i_disksize) {
2259                 int err2;
2260                 loff_t i_size;
2261
2262                 down_write(&EXT4_I(inode)->i_data_sem);
2263                 i_size = i_size_read(inode);
2264                 if (disksize > i_size)
2265                         disksize = i_size;
2266                 if (disksize > EXT4_I(inode)->i_disksize)
2267                         EXT4_I(inode)->i_disksize = disksize;
2268                 err2 = ext4_mark_inode_dirty(handle, inode);
2269                 up_write(&EXT4_I(inode)->i_data_sem);
2270                 if (err2)
2271                         ext4_error(inode->i_sb,
2272                                    "Failed to mark inode %lu dirty",
2273                                    inode->i_ino);
2274                 if (!err)
2275                         err = err2;
2276         }
2277         return err;
2278 }
2279
2280 /*
2281  * Calculate the total number of credits to reserve for one writepages
2282  * iteration. This is called from ext4_writepages(). We map an extent of
2283  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2284  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2285  * bpp - 1 blocks in bpp different extents.
2286  */
2287 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2288 {
2289         int bpp = ext4_journal_blocks_per_page(inode);
2290
2291         return ext4_meta_trans_blocks(inode,
2292                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2293 }
2294
2295 /*
2296  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2297  *                               and underlying extent to map
2298  *
2299  * @mpd - where to look for pages
2300  *
2301  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2302  * IO immediately. When we find a page which isn't mapped we start accumulating
2303  * extent of buffers underlying these pages that needs mapping (formed by
2304  * either delayed or unwritten buffers). We also lock the pages containing
2305  * these buffers. The extent found is returned in @mpd structure (starting at
2306  * mpd->lblk with length mpd->len blocks).
2307  *
2308  * Note that this function can attach bios to one io_end structure which are
2309  * neither logically nor physically contiguous. Although it may seem as an
2310  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2311  * case as we need to track IO to all buffers underlying a page in one io_end.
2312  */
2313 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2314 {
2315         struct address_space *mapping = mpd->inode->i_mapping;
2316         struct pagevec pvec;
2317         unsigned int nr_pages;
2318         long left = mpd->wbc->nr_to_write;
2319         pgoff_t index = mpd->first_page;
2320         pgoff_t end = mpd->last_page;
2321         int tag;
2322         int i, err = 0;
2323         int blkbits = mpd->inode->i_blkbits;
2324         ext4_lblk_t lblk;
2325         struct buffer_head *head;
2326
2327         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2328                 tag = PAGECACHE_TAG_TOWRITE;
2329         else
2330                 tag = PAGECACHE_TAG_DIRTY;
2331
2332         pagevec_init(&pvec, 0);
2333         mpd->map.m_len = 0;
2334         mpd->next_page = index;
2335         while (index <= end) {
2336                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2337                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2338                 if (nr_pages == 0)
2339                         goto out;
2340
2341                 for (i = 0; i < nr_pages; i++) {
2342                         struct page *page = pvec.pages[i];
2343
2344                         /*
2345                          * At this point, the page may be truncated or
2346                          * invalidated (changing page->mapping to NULL), or
2347                          * even swizzled back from swapper_space to tmpfs file
2348                          * mapping. However, page->index will not change
2349                          * because we have a reference on the page.
2350                          */
2351                         if (page->index > end)
2352                                 goto out;
2353
2354                         /*
2355                          * Accumulated enough dirty pages? This doesn't apply
2356                          * to WB_SYNC_ALL mode. For integrity sync we have to
2357                          * keep going because someone may be concurrently
2358                          * dirtying pages, and we might have synced a lot of
2359                          * newly appeared dirty pages, but have not synced all
2360                          * of the old dirty pages.
2361                          */
2362                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2363                                 goto out;
2364
2365                         /* If we can't merge this page, we are done. */
2366                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2367                                 goto out;
2368
2369                         lock_page(page);
2370                         /*
2371                          * If the page is no longer dirty, or its mapping no
2372                          * longer corresponds to inode we are writing (which
2373                          * means it has been truncated or invalidated), or the
2374                          * page is already under writeback and we are not doing
2375                          * a data integrity writeback, skip the page
2376                          */
2377                         if (!PageDirty(page) ||
2378                             (PageWriteback(page) &&
2379                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2380                             unlikely(page->mapping != mapping)) {
2381                                 unlock_page(page);
2382                                 continue;
2383                         }
2384
2385                         wait_on_page_writeback(page);
2386                         BUG_ON(PageWriteback(page));
2387
2388                         if (mpd->map.m_len == 0)
2389                                 mpd->first_page = page->index;
2390                         mpd->next_page = page->index + 1;
2391                         /* Add all dirty buffers to mpd */
2392                         lblk = ((ext4_lblk_t)page->index) <<
2393                                 (PAGE_CACHE_SHIFT - blkbits);
2394                         head = page_buffers(page);
2395                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2396                         if (err <= 0)
2397                                 goto out;
2398                         err = 0;
2399                         left--;
2400                 }
2401                 pagevec_release(&pvec);
2402                 cond_resched();
2403         }
2404         return 0;
2405 out:
2406         pagevec_release(&pvec);
2407         return err;
2408 }
2409
2410 static int __writepage(struct page *page, struct writeback_control *wbc,
2411                        void *data)
2412 {
2413         struct address_space *mapping = data;
2414         int ret = ext4_writepage(page, wbc);
2415         mapping_set_error(mapping, ret);
2416         return ret;
2417 }
2418
2419 static int ext4_writepages(struct address_space *mapping,
2420                            struct writeback_control *wbc)
2421 {
2422         pgoff_t writeback_index = 0;
2423         long nr_to_write = wbc->nr_to_write;
2424         int range_whole = 0;
2425         int cycled = 1;
2426         handle_t *handle = NULL;
2427         struct mpage_da_data mpd;
2428         struct inode *inode = mapping->host;
2429         int needed_blocks, rsv_blocks = 0, ret = 0;
2430         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2431         bool done;
2432         struct blk_plug plug;
2433         bool give_up_on_write = false;
2434
2435         trace_ext4_writepages(inode, wbc);
2436
2437         /*
2438          * No pages to write? This is mainly a kludge to avoid starting
2439          * a transaction for special inodes like journal inode on last iput()
2440          * because that could violate lock ordering on umount
2441          */
2442         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2443                 goto out_writepages;
2444
2445         if (ext4_should_journal_data(inode)) {
2446                 struct blk_plug plug;
2447
2448                 blk_start_plug(&plug);
2449                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2450                 blk_finish_plug(&plug);
2451                 goto out_writepages;
2452         }
2453
2454         /*
2455          * If the filesystem has aborted, it is read-only, so return
2456          * right away instead of dumping stack traces later on that
2457          * will obscure the real source of the problem.  We test
2458          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2459          * the latter could be true if the filesystem is mounted
2460          * read-only, and in that case, ext4_writepages should
2461          * *never* be called, so if that ever happens, we would want
2462          * the stack trace.
2463          */
2464         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2465                 ret = -EROFS;
2466                 goto out_writepages;
2467         }
2468
2469         if (ext4_should_dioread_nolock(inode)) {
2470                 /*
2471                  * We may need to convert up to one extent per block in
2472                  * the page and we may dirty the inode.
2473                  */
2474                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2475         }
2476
2477         /*
2478          * If we have inline data and arrive here, it means that
2479          * we will soon create the block for the 1st page, so
2480          * we'd better clear the inline data here.
2481          */
2482         if (ext4_has_inline_data(inode)) {
2483                 /* Just inode will be modified... */
2484                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2485                 if (IS_ERR(handle)) {
2486                         ret = PTR_ERR(handle);
2487                         goto out_writepages;
2488                 }
2489                 BUG_ON(ext4_test_inode_state(inode,
2490                                 EXT4_STATE_MAY_INLINE_DATA));
2491                 ext4_destroy_inline_data(handle, inode);
2492                 ext4_journal_stop(handle);
2493         }
2494
2495         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496                 range_whole = 1;
2497
2498         if (wbc->range_cyclic) {
2499                 writeback_index = mapping->writeback_index;
2500                 if (writeback_index)
2501                         cycled = 0;
2502                 mpd.first_page = writeback_index;
2503                 mpd.last_page = -1;
2504         } else {
2505                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2506                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2507         }
2508
2509         mpd.inode = inode;
2510         mpd.wbc = wbc;
2511         ext4_io_submit_init(&mpd.io_submit, wbc);
2512 retry:
2513         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2514                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2515         done = false;
2516         blk_start_plug(&plug);
2517         while (!done && mpd.first_page <= mpd.last_page) {
2518                 /* For each extent of pages we use new io_end */
2519                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2520                 if (!mpd.io_submit.io_end) {
2521                         ret = -ENOMEM;
2522                         break;
2523                 }
2524
2525                 /*
2526                  * We have two constraints: We find one extent to map and we
2527                  * must always write out whole page (makes a difference when
2528                  * blocksize < pagesize) so that we don't block on IO when we
2529                  * try to write out the rest of the page. Journalled mode is
2530                  * not supported by delalloc.
2531                  */
2532                 BUG_ON(ext4_should_journal_data(inode));
2533                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2534
2535                 /* start a new transaction */
2536                 handle = ext4_journal_start_with_reserve(inode,
2537                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2538                 if (IS_ERR(handle)) {
2539                         ret = PTR_ERR(handle);
2540                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2541                                "%ld pages, ino %lu; err %d", __func__,
2542                                 wbc->nr_to_write, inode->i_ino, ret);
2543                         /* Release allocated io_end */
2544                         ext4_put_io_end(mpd.io_submit.io_end);
2545                         break;
2546                 }
2547
2548                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2549                 ret = mpage_prepare_extent_to_map(&mpd);
2550                 if (!ret) {
2551                         if (mpd.map.m_len)
2552                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2553                                         &give_up_on_write);
2554                         else {
2555                                 /*
2556                                  * We scanned the whole range (or exhausted
2557                                  * nr_to_write), submitted what was mapped and
2558                                  * didn't find anything needing mapping. We are
2559                                  * done.
2560                                  */
2561                                 done = true;
2562                         }
2563                 }
2564                 ext4_journal_stop(handle);
2565                 /* Submit prepared bio */
2566                 ext4_io_submit(&mpd.io_submit);
2567                 /* Unlock pages we didn't use */
2568                 mpage_release_unused_pages(&mpd, give_up_on_write);
2569                 /* Drop our io_end reference we got from init */
2570                 ext4_put_io_end(mpd.io_submit.io_end);
2571
2572                 if (ret == -ENOSPC && sbi->s_journal) {
2573                         /*
2574                          * Commit the transaction which would
2575                          * free blocks released in the transaction
2576                          * and try again
2577                          */
2578                         jbd2_journal_force_commit_nested(sbi->s_journal);
2579                         ret = 0;
2580                         continue;
2581                 }
2582                 /* Fatal error - ENOMEM, EIO... */
2583                 if (ret)
2584                         break;
2585         }
2586         blk_finish_plug(&plug);
2587         if (!ret && !cycled && wbc->nr_to_write > 0) {
2588                 cycled = 1;
2589                 mpd.last_page = writeback_index - 1;
2590                 mpd.first_page = 0;
2591                 goto retry;
2592         }
2593
2594         /* Update index */
2595         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2596                 /*
2597                  * Set the writeback_index so that range_cyclic
2598                  * mode will write it back later
2599                  */
2600                 mapping->writeback_index = mpd.first_page;
2601
2602 out_writepages:
2603         trace_ext4_writepages_result(inode, wbc, ret,
2604                                      nr_to_write - wbc->nr_to_write);
2605         return ret;
2606 }
2607
2608 static int ext4_nonda_switch(struct super_block *sb)
2609 {
2610         s64 free_clusters, dirty_clusters;
2611         struct ext4_sb_info *sbi = EXT4_SB(sb);
2612
2613         /*
2614          * switch to non delalloc mode if we are running low
2615          * on free block. The free block accounting via percpu
2616          * counters can get slightly wrong with percpu_counter_batch getting
2617          * accumulated on each CPU without updating global counters
2618          * Delalloc need an accurate free block accounting. So switch
2619          * to non delalloc when we are near to error range.
2620          */
2621         free_clusters =
2622                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2623         dirty_clusters =
2624                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2625         /*
2626          * Start pushing delalloc when 1/2 of free blocks are dirty.
2627          */
2628         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2629                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2630
2631         if (2 * free_clusters < 3 * dirty_clusters ||
2632             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2633                 /*
2634                  * free block count is less than 150% of dirty blocks
2635                  * or free blocks is less than watermark
2636                  */
2637                 return 1;
2638         }
2639         return 0;
2640 }
2641
2642 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2643                                loff_t pos, unsigned len, unsigned flags,
2644                                struct page **pagep, void **fsdata)
2645 {
2646         int ret, retries = 0;
2647         struct page *page;
2648         pgoff_t index;
2649         struct inode *inode = mapping->host;
2650         handle_t *handle;
2651
2652         index = pos >> PAGE_CACHE_SHIFT;
2653
2654         if (ext4_nonda_switch(inode->i_sb)) {
2655                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2656                 return ext4_write_begin(file, mapping, pos,
2657                                         len, flags, pagep, fsdata);
2658         }
2659         *fsdata = (void *)0;
2660         trace_ext4_da_write_begin(inode, pos, len, flags);
2661
2662         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2663                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2664                                                       pos, len, flags,
2665                                                       pagep, fsdata);
2666                 if (ret < 0)
2667                         return ret;
2668                 if (ret == 1)
2669                         return 0;
2670         }
2671
2672         /*
2673          * grab_cache_page_write_begin() can take a long time if the
2674          * system is thrashing due to memory pressure, or if the page
2675          * is being written back.  So grab it first before we start
2676          * the transaction handle.  This also allows us to allocate
2677          * the page (if needed) without using GFP_NOFS.
2678          */
2679 retry_grab:
2680         page = grab_cache_page_write_begin(mapping, index, flags);
2681         if (!page)
2682                 return -ENOMEM;
2683         unlock_page(page);
2684
2685         /*
2686          * With delayed allocation, we don't log the i_disksize update
2687          * if there is delayed block allocation. But we still need
2688          * to journalling the i_disksize update if writes to the end
2689          * of file which has an already mapped buffer.
2690          */
2691 retry_journal:
2692         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2693         if (IS_ERR(handle)) {
2694                 page_cache_release(page);
2695                 return PTR_ERR(handle);
2696         }
2697
2698         lock_page(page);
2699         if (page->mapping != mapping) {
2700                 /* The page got truncated from under us */
2701                 unlock_page(page);
2702                 page_cache_release(page);
2703                 ext4_journal_stop(handle);
2704                 goto retry_grab;
2705         }
2706         /* In case writeback began while the page was unlocked */
2707         wait_for_stable_page(page);
2708
2709         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2710         if (ret < 0) {
2711                 unlock_page(page);
2712                 ext4_journal_stop(handle);
2713                 /*
2714                  * block_write_begin may have instantiated a few blocks
2715                  * outside i_size.  Trim these off again. Don't need
2716                  * i_size_read because we hold i_mutex.
2717                  */
2718                 if (pos + len > inode->i_size)
2719                         ext4_truncate_failed_write(inode);
2720
2721                 if (ret == -ENOSPC &&
2722                     ext4_should_retry_alloc(inode->i_sb, &retries))
2723                         goto retry_journal;
2724
2725                 page_cache_release(page);
2726                 return ret;
2727         }
2728
2729         *pagep = page;
2730         return ret;
2731 }
2732
2733 /*
2734  * Check if we should update i_disksize
2735  * when write to the end of file but not require block allocation
2736  */
2737 static int ext4_da_should_update_i_disksize(struct page *page,
2738                                             unsigned long offset)
2739 {
2740         struct buffer_head *bh;
2741         struct inode *inode = page->mapping->host;
2742         unsigned int idx;
2743         int i;
2744
2745         bh = page_buffers(page);
2746         idx = offset >> inode->i_blkbits;
2747
2748         for (i = 0; i < idx; i++)
2749                 bh = bh->b_this_page;
2750
2751         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2752                 return 0;
2753         return 1;
2754 }
2755
2756 static int ext4_da_write_end(struct file *file,
2757                              struct address_space *mapping,
2758                              loff_t pos, unsigned len, unsigned copied,
2759                              struct page *page, void *fsdata)
2760 {
2761         struct inode *inode = mapping->host;
2762         int ret = 0, ret2;
2763         handle_t *handle = ext4_journal_current_handle();
2764         loff_t new_i_size;
2765         unsigned long start, end;
2766         int write_mode = (int)(unsigned long)fsdata;
2767
2768         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2769                 return ext4_write_end(file, mapping, pos,
2770                                       len, copied, page, fsdata);
2771
2772         trace_ext4_da_write_end(inode, pos, len, copied);
2773         start = pos & (PAGE_CACHE_SIZE - 1);
2774         end = start + copied - 1;
2775
2776         /*
2777          * generic_write_end() will run mark_inode_dirty() if i_size
2778          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2779          * into that.
2780          */
2781         new_i_size = pos + copied;
2782         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2783                 if (ext4_has_inline_data(inode) ||
2784                     ext4_da_should_update_i_disksize(page, end)) {
2785                         down_write(&EXT4_I(inode)->i_data_sem);
2786                         if (new_i_size > EXT4_I(inode)->i_disksize)
2787                                 EXT4_I(inode)->i_disksize = new_i_size;
2788                         up_write(&EXT4_I(inode)->i_data_sem);
2789                         /* We need to mark inode dirty even if
2790                          * new_i_size is less that inode->i_size
2791                          * bu greater than i_disksize.(hint delalloc)
2792                          */
2793                         ext4_mark_inode_dirty(handle, inode);
2794                 }
2795         }
2796
2797         if (write_mode != CONVERT_INLINE_DATA &&
2798             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2799             ext4_has_inline_data(inode))
2800                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2801                                                      page);
2802         else
2803                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2804                                                         page, fsdata);
2805
2806         copied = ret2;
2807         if (ret2 < 0)
2808                 ret = ret2;
2809         ret2 = ext4_journal_stop(handle);
2810         if (!ret)
2811                 ret = ret2;
2812
2813         return ret ? ret : copied;
2814 }
2815
2816 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2817                                    unsigned int length)
2818 {
2819         /*
2820          * Drop reserved blocks
2821          */
2822         BUG_ON(!PageLocked(page));
2823         if (!page_has_buffers(page))
2824                 goto out;
2825
2826         ext4_da_page_release_reservation(page, offset, length);
2827
2828 out:
2829         ext4_invalidatepage(page, offset, length);
2830
2831         return;
2832 }
2833
2834 /*
2835  * Force all delayed allocation blocks to be allocated for a given inode.
2836  */
2837 int ext4_alloc_da_blocks(struct inode *inode)
2838 {
2839         trace_ext4_alloc_da_blocks(inode);
2840
2841         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2842             !EXT4_I(inode)->i_reserved_meta_blocks)
2843                 return 0;
2844
2845         /*
2846          * We do something simple for now.  The filemap_flush() will
2847          * also start triggering a write of the data blocks, which is
2848          * not strictly speaking necessary (and for users of
2849          * laptop_mode, not even desirable).  However, to do otherwise
2850          * would require replicating code paths in:
2851          *
2852          * ext4_writepages() ->
2853          *    write_cache_pages() ---> (via passed in callback function)
2854          *        __mpage_da_writepage() -->
2855          *           mpage_add_bh_to_extent()
2856          *           mpage_da_map_blocks()
2857          *
2858          * The problem is that write_cache_pages(), located in
2859          * mm/page-writeback.c, marks pages clean in preparation for
2860          * doing I/O, which is not desirable if we're not planning on
2861          * doing I/O at all.
2862          *
2863          * We could call write_cache_pages(), and then redirty all of
2864          * the pages by calling redirty_page_for_writepage() but that
2865          * would be ugly in the extreme.  So instead we would need to
2866          * replicate parts of the code in the above functions,
2867          * simplifying them because we wouldn't actually intend to
2868          * write out the pages, but rather only collect contiguous
2869          * logical block extents, call the multi-block allocator, and
2870          * then update the buffer heads with the block allocations.
2871          *
2872          * For now, though, we'll cheat by calling filemap_flush(),
2873          * which will map the blocks, and start the I/O, but not
2874          * actually wait for the I/O to complete.
2875          */
2876         return filemap_flush(inode->i_mapping);
2877 }
2878
2879 /*
2880  * bmap() is special.  It gets used by applications such as lilo and by
2881  * the swapper to find the on-disk block of a specific piece of data.
2882  *
2883  * Naturally, this is dangerous if the block concerned is still in the
2884  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2885  * filesystem and enables swap, then they may get a nasty shock when the
2886  * data getting swapped to that swapfile suddenly gets overwritten by
2887  * the original zero's written out previously to the journal and
2888  * awaiting writeback in the kernel's buffer cache.
2889  *
2890  * So, if we see any bmap calls here on a modified, data-journaled file,
2891  * take extra steps to flush any blocks which might be in the cache.
2892  */
2893 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2894 {
2895         struct inode *inode = mapping->host;
2896         journal_t *journal;
2897         int err;
2898
2899         /*
2900          * We can get here for an inline file via the FIBMAP ioctl
2901          */
2902         if (ext4_has_inline_data(inode))
2903                 return 0;
2904
2905         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2906                         test_opt(inode->i_sb, DELALLOC)) {
2907                 /*
2908                  * With delalloc we want to sync the file
2909                  * so that we can make sure we allocate
2910                  * blocks for file
2911                  */
2912                 filemap_write_and_wait(mapping);
2913         }
2914
2915         if (EXT4_JOURNAL(inode) &&
2916             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2917                 /*
2918                  * This is a REALLY heavyweight approach, but the use of
2919                  * bmap on dirty files is expected to be extremely rare:
2920                  * only if we run lilo or swapon on a freshly made file
2921                  * do we expect this to happen.
2922                  *
2923                  * (bmap requires CAP_SYS_RAWIO so this does not
2924                  * represent an unprivileged user DOS attack --- we'd be
2925                  * in trouble if mortal users could trigger this path at
2926                  * will.)
2927                  *
2928                  * NB. EXT4_STATE_JDATA is not set on files other than
2929                  * regular files.  If somebody wants to bmap a directory
2930                  * or symlink and gets confused because the buffer
2931                  * hasn't yet been flushed to disk, they deserve
2932                  * everything they get.
2933                  */
2934
2935                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2936                 journal = EXT4_JOURNAL(inode);
2937                 jbd2_journal_lock_updates(journal);
2938                 err = jbd2_journal_flush(journal);
2939                 jbd2_journal_unlock_updates(journal);
2940
2941                 if (err)
2942                         return 0;
2943         }
2944
2945         return generic_block_bmap(mapping, block, ext4_get_block);
2946 }
2947
2948 static int ext4_readpage(struct file *file, struct page *page)
2949 {
2950         int ret = -EAGAIN;
2951         struct inode *inode = page->mapping->host;
2952
2953         trace_ext4_readpage(page);
2954
2955         if (ext4_has_inline_data(inode))
2956                 ret = ext4_readpage_inline(inode, page);
2957
2958         if (ret == -EAGAIN)
2959                 return mpage_readpage(page, ext4_get_block);
2960
2961         return ret;
2962 }
2963
2964 static int
2965 ext4_readpages(struct file *file, struct address_space *mapping,
2966                 struct list_head *pages, unsigned nr_pages)
2967 {
2968         struct inode *inode = mapping->host;
2969
2970         /* If the file has inline data, no need to do readpages. */
2971         if (ext4_has_inline_data(inode))
2972                 return 0;
2973
2974         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2975 }
2976
2977 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2978                                 unsigned int length)
2979 {
2980         trace_ext4_invalidatepage(page, offset, length);
2981
2982         /* No journalling happens on data buffers when this function is used */
2983         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2984
2985         block_invalidatepage(page, offset, length);
2986 }
2987
2988 static int __ext4_journalled_invalidatepage(struct page *page,
2989                                             unsigned int offset,
2990                                             unsigned int length)
2991 {
2992         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2993
2994         trace_ext4_journalled_invalidatepage(page, offset, length);
2995
2996         /*
2997          * If it's a full truncate we just forget about the pending dirtying
2998          */
2999         if (offset == 0 && length == PAGE_CACHE_SIZE)
3000                 ClearPageChecked(page);
3001
3002         return jbd2_journal_invalidatepage(journal, page, offset, length);
3003 }
3004
3005 /* Wrapper for aops... */
3006 static void ext4_journalled_invalidatepage(struct page *page,
3007                                            unsigned int offset,
3008                                            unsigned int length)
3009 {
3010         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3011 }
3012
3013 static int ext4_releasepage(struct page *page, gfp_t wait)
3014 {
3015         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3016
3017         trace_ext4_releasepage(page);
3018
3019         /* Page has dirty journalled data -> cannot release */
3020         if (PageChecked(page))
3021                 return 0;
3022         if (journal)
3023                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3024         else
3025                 return try_to_free_buffers(page);
3026 }
3027
3028 /*
3029  * ext4_get_block used when preparing for a DIO write or buffer write.
3030  * We allocate an uinitialized extent if blocks haven't been allocated.
3031  * The extent will be converted to initialized after the IO is complete.
3032  */
3033 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3034                    struct buffer_head *bh_result, int create)
3035 {
3036         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3037                    inode->i_ino, create);
3038         return _ext4_get_block(inode, iblock, bh_result,
3039                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3040 }
3041
3042 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3043                    struct buffer_head *bh_result, int create)
3044 {
3045         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3046                    inode->i_ino, create);
3047         return _ext4_get_block(inode, iblock, bh_result,
3048                                EXT4_GET_BLOCKS_NO_LOCK);
3049 }
3050
3051 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3052                             ssize_t size, void *private)
3053 {
3054         ext4_io_end_t *io_end = iocb->private;
3055
3056         /* if not async direct IO just return */
3057         if (!io_end)
3058                 return;
3059
3060         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3061                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3062                   iocb->private, io_end->inode->i_ino, iocb, offset,
3063                   size);
3064
3065         iocb->private = NULL;
3066         io_end->offset = offset;
3067         io_end->size = size;
3068         ext4_put_io_end(io_end);
3069 }
3070
3071 /*
3072  * For ext4 extent files, ext4 will do direct-io write to holes,
3073  * preallocated extents, and those write extend the file, no need to
3074  * fall back to buffered IO.
3075  *
3076  * For holes, we fallocate those blocks, mark them as unwritten
3077  * If those blocks were preallocated, we mark sure they are split, but
3078  * still keep the range to write as unwritten.
3079  *
3080  * The unwritten extents will be converted to written when DIO is completed.
3081  * For async direct IO, since the IO may still pending when return, we
3082  * set up an end_io call back function, which will do the conversion
3083  * when async direct IO completed.
3084  *
3085  * If the O_DIRECT write will extend the file then add this inode to the
3086  * orphan list.  So recovery will truncate it back to the original size
3087  * if the machine crashes during the write.
3088  *
3089  */
3090 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3091                               const struct iovec *iov, loff_t offset,
3092                               unsigned long nr_segs)
3093 {
3094         struct file *file = iocb->ki_filp;
3095         struct inode *inode = file->f_mapping->host;
3096         ssize_t ret;
3097         size_t count = iov_length(iov, nr_segs);
3098         int overwrite = 0;
3099         get_block_t *get_block_func = NULL;
3100         int dio_flags = 0;
3101         loff_t final_size = offset + count;
3102         ext4_io_end_t *io_end = NULL;
3103
3104         /* Use the old path for reads and writes beyond i_size. */
3105         if (rw != WRITE || final_size > inode->i_size)
3106                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3107
3108         BUG_ON(iocb->private == NULL);
3109
3110         /*
3111          * Make all waiters for direct IO properly wait also for extent
3112          * conversion. This also disallows race between truncate() and
3113          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3114          */
3115         if (rw == WRITE)
3116                 atomic_inc(&inode->i_dio_count);
3117
3118         /* If we do a overwrite dio, i_mutex locking can be released */
3119         overwrite = *((int *)iocb->private);
3120
3121         if (overwrite) {
3122                 down_read(&EXT4_I(inode)->i_data_sem);
3123                 mutex_unlock(&inode->i_mutex);
3124         }
3125
3126         /*
3127          * We could direct write to holes and fallocate.
3128          *
3129          * Allocated blocks to fill the hole are marked as
3130          * unwritten to prevent parallel buffered read to expose
3131          * the stale data before DIO complete the data IO.
3132          *
3133          * As to previously fallocated extents, ext4 get_block will
3134          * just simply mark the buffer mapped but still keep the
3135          * extents unwritten.
3136          *
3137          * For non AIO case, we will convert those unwritten extents
3138          * to written after return back from blockdev_direct_IO.
3139          *
3140          * For async DIO, the conversion needs to be deferred when the
3141          * IO is completed. The ext4 end_io callback function will be
3142          * called to take care of the conversion work.  Here for async
3143          * case, we allocate an io_end structure to hook to the iocb.
3144          */
3145         iocb->private = NULL;
3146         ext4_inode_aio_set(inode, NULL);
3147         if (!is_sync_kiocb(iocb)) {
3148                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3149                 if (!io_end) {
3150                         ret = -ENOMEM;
3151                         goto retake_lock;
3152                 }
3153                 /*
3154                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3155                  */
3156                 iocb->private = ext4_get_io_end(io_end);
3157                 /*
3158                  * we save the io structure for current async direct
3159                  * IO, so that later ext4_map_blocks() could flag the
3160                  * io structure whether there is a unwritten extents
3161                  * needs to be converted when IO is completed.
3162                  */
3163                 ext4_inode_aio_set(inode, io_end);
3164         }
3165
3166         if (overwrite) {
3167                 get_block_func = ext4_get_block_write_nolock;
3168         } else {
3169                 get_block_func = ext4_get_block_write;
3170                 dio_flags = DIO_LOCKING;
3171         }
3172         ret = __blockdev_direct_IO(rw, iocb, inode,
3173                                    inode->i_sb->s_bdev, iov,
3174                                    offset, nr_segs,
3175                                    get_block_func,
3176                                    ext4_end_io_dio,
3177                                    NULL,
3178                                    dio_flags);
3179
3180         /*
3181          * Put our reference to io_end. This can free the io_end structure e.g.
3182          * in sync IO case or in case of error. It can even perform extent
3183          * conversion if all bios we submitted finished before we got here.
3184          * Note that in that case iocb->private can be already set to NULL
3185          * here.
3186          */
3187         if (io_end) {
3188                 ext4_inode_aio_set(inode, NULL);
3189                 ext4_put_io_end(io_end);
3190                 /*
3191                  * When no IO was submitted ext4_end_io_dio() was not
3192                  * called so we have to put iocb's reference.
3193                  */
3194                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3195                         WARN_ON(iocb->private != io_end);
3196                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3197                         ext4_put_io_end(io_end);
3198                         iocb->private = NULL;
3199                 }
3200         }
3201         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3202                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3203                 int err;
3204                 /*
3205                  * for non AIO case, since the IO is already
3206                  * completed, we could do the conversion right here
3207                  */
3208                 err = ext4_convert_unwritten_extents(NULL, inode,
3209                                                      offset, ret);
3210                 if (err < 0)
3211                         ret = err;
3212                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3213         }
3214
3215 retake_lock:
3216         if (rw == WRITE)
3217                 inode_dio_done(inode);
3218         /* take i_mutex locking again if we do a ovewrite dio */
3219         if (overwrite) {
3220                 up_read(&EXT4_I(inode)->i_data_sem);
3221                 mutex_lock(&inode->i_mutex);
3222         }
3223
3224         return ret;
3225 }
3226
3227 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3228                               const struct iovec *iov, loff_t offset,
3229                               unsigned long nr_segs)
3230 {
3231         struct file *file = iocb->ki_filp;
3232         struct inode *inode = file->f_mapping->host;
3233         ssize_t ret;
3234
3235         /*
3236          * If we are doing data journalling we don't support O_DIRECT
3237          */
3238         if (ext4_should_journal_data(inode))
3239                 return 0;
3240
3241         /* Let buffer I/O handle the inline data case. */
3242         if (ext4_has_inline_data(inode))
3243                 return 0;
3244
3245         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3246         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3247                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3248         else
3249                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3250         trace_ext4_direct_IO_exit(inode, offset,
3251                                 iov_length(iov, nr_segs), rw, ret);
3252         return ret;
3253 }
3254
3255 /*
3256  * Pages can be marked dirty completely asynchronously from ext4's journalling
3257  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3258  * much here because ->set_page_dirty is called under VFS locks.  The page is
3259  * not necessarily locked.
3260  *
3261  * We cannot just dirty the page and leave attached buffers clean, because the
3262  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3263  * or jbddirty because all the journalling code will explode.
3264  *
3265  * So what we do is to mark the page "pending dirty" and next time writepage
3266  * is called, propagate that into the buffers appropriately.
3267  */
3268 static int ext4_journalled_set_page_dirty(struct page *page)
3269 {
3270         SetPageChecked(page);
3271         return __set_page_dirty_nobuffers(page);
3272 }
3273
3274 static const struct address_space_operations ext4_aops = {
3275         .readpage               = ext4_readpage,
3276         .readpages              = ext4_readpages,
3277         .writepage              = ext4_writepage,
3278         .writepages             = ext4_writepages,
3279         .write_begin            = ext4_write_begin,
3280         .write_end              = ext4_write_end,
3281         .bmap                   = ext4_bmap,
3282         .invalidatepage         = ext4_invalidatepage,
3283         .releasepage            = ext4_releasepage,
3284         .direct_IO              = ext4_direct_IO,
3285         .migratepage            = buffer_migrate_page,
3286         .is_partially_uptodate  = block_is_partially_uptodate,
3287         .error_remove_page      = generic_error_remove_page,
3288 };
3289
3290 static const struct address_space_operations ext4_journalled_aops = {
3291         .readpage               = ext4_readpage,
3292         .readpages              = ext4_readpages,
3293         .writepage              = ext4_writepage,
3294         .writepages             = ext4_writepages,
3295         .write_begin            = ext4_write_begin,
3296         .write_end              = ext4_journalled_write_end,
3297         .set_page_dirty         = ext4_journalled_set_page_dirty,
3298         .bmap                   = ext4_bmap,
3299         .invalidatepage         = ext4_journalled_invalidatepage,
3300         .releasepage            = ext4_releasepage,
3301         .direct_IO              = ext4_direct_IO,
3302         .is_partially_uptodate  = block_is_partially_uptodate,
3303         .error_remove_page      = generic_error_remove_page,
3304 };
3305
3306 static const struct address_space_operations ext4_da_aops = {
3307         .readpage               = ext4_readpage,
3308         .readpages              = ext4_readpages,
3309         .writepage              = ext4_writepage,
3310         .writepages             = ext4_writepages,
3311         .write_begin            = ext4_da_write_begin,
3312         .write_end              = ext4_da_write_end,
3313         .bmap                   = ext4_bmap,
3314         .invalidatepage         = ext4_da_invalidatepage,
3315         .releasepage            = ext4_releasepage,
3316         .direct_IO              = ext4_direct_IO,
3317         .migratepage            = buffer_migrate_page,
3318         .is_partially_uptodate  = block_is_partially_uptodate,
3319         .error_remove_page      = generic_error_remove_page,
3320 };
3321
3322 void ext4_set_aops(struct inode *inode)
3323 {
3324         switch (ext4_inode_journal_mode(inode)) {
3325         case EXT4_INODE_ORDERED_DATA_MODE:
3326                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3327                 break;
3328         case EXT4_INODE_WRITEBACK_DATA_MODE:
3329                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3330                 break;
3331         case EXT4_INODE_JOURNAL_DATA_MODE:
3332                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3333                 return;
3334         default:
3335                 BUG();
3336         }
3337         if (test_opt(inode->i_sb, DELALLOC))
3338                 inode->i_mapping->a_ops = &ext4_da_aops;
3339         else
3340                 inode->i_mapping->a_ops = &ext4_aops;
3341 }
3342
3343 /*
3344  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3345  * starting from file offset 'from'.  The range to be zero'd must
3346  * be contained with in one block.  If the specified range exceeds
3347  * the end of the block it will be shortened to end of the block
3348  * that cooresponds to 'from'
3349  */
3350 static int ext4_block_zero_page_range(handle_t *handle,
3351                 struct address_space *mapping, loff_t from, loff_t length)
3352 {
3353         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3354         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3355         unsigned blocksize, max, pos;
3356         ext4_lblk_t iblock;
3357         struct inode *inode = mapping->host;
3358         struct buffer_head *bh;
3359         struct page *page;
3360         int err = 0;
3361
3362         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3363                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3364         if (!page)
3365                 return -ENOMEM;
3366
3367         blocksize = inode->i_sb->s_blocksize;
3368         max = blocksize - (offset & (blocksize - 1));
3369
3370         /*
3371          * correct length if it does not fall between
3372          * 'from' and the end of the block
3373          */
3374         if (length > max || length < 0)
3375                 length = max;
3376
3377         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3378
3379         if (!page_has_buffers(page))
3380                 create_empty_buffers(page, blocksize, 0);
3381
3382         /* Find the buffer that contains "offset" */
3383         bh = page_buffers(page);
3384         pos = blocksize;
3385         while (offset >= pos) {
3386                 bh = bh->b_this_page;
3387                 iblock++;
3388                 pos += blocksize;
3389         }
3390         if (buffer_freed(bh)) {
3391                 BUFFER_TRACE(bh, "freed: skip");
3392                 goto unlock;
3393         }
3394         if (!buffer_mapped(bh)) {
3395                 BUFFER_TRACE(bh, "unmapped");
3396                 ext4_get_block(inode, iblock, bh, 0);
3397                 /* unmapped? It's a hole - nothing to do */
3398                 if (!buffer_mapped(bh)) {
3399                         BUFFER_TRACE(bh, "still unmapped");
3400                         goto unlock;
3401                 }
3402         }
3403
3404         /* Ok, it's mapped. Make sure it's up-to-date */
3405         if (PageUptodate(page))
3406                 set_buffer_uptodate(bh);
3407
3408         if (!buffer_uptodate(bh)) {
3409                 err = -EIO;
3410                 ll_rw_block(READ, 1, &bh);
3411                 wait_on_buffer(bh);
3412                 /* Uhhuh. Read error. Complain and punt. */
3413                 if (!buffer_uptodate(bh))
3414                         goto unlock;
3415         }
3416         if (ext4_should_journal_data(inode)) {
3417                 BUFFER_TRACE(bh, "get write access");
3418                 err = ext4_journal_get_write_access(handle, bh);
3419                 if (err)
3420                         goto unlock;
3421         }
3422         zero_user(page, offset, length);
3423         BUFFER_TRACE(bh, "zeroed end of block");
3424
3425         if (ext4_should_journal_data(inode)) {
3426                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3427         } else {
3428                 err = 0;
3429                 mark_buffer_dirty(bh);
3430                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3431                         err = ext4_jbd2_file_inode(handle, inode);
3432         }
3433
3434 unlock:
3435         unlock_page(page);
3436         page_cache_release(page);
3437         return err;
3438 }
3439
3440 /*
3441  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3442  * up to the end of the block which corresponds to `from'.
3443  * This required during truncate. We need to physically zero the tail end
3444  * of that block so it doesn't yield old data if the file is later grown.
3445  */
3446 static int ext4_block_truncate_page(handle_t *handle,
3447                 struct address_space *mapping, loff_t from)
3448 {
3449         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3450         unsigned length;
3451         unsigned blocksize;
3452         struct inode *inode = mapping->host;
3453
3454         blocksize = inode->i_sb->s_blocksize;
3455         length = blocksize - (offset & (blocksize - 1));
3456
3457         return ext4_block_zero_page_range(handle, mapping, from, length);
3458 }
3459
3460 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3461                              loff_t lstart, loff_t length)
3462 {
3463         struct super_block *sb = inode->i_sb;
3464         struct address_space *mapping = inode->i_mapping;
3465         unsigned partial_start, partial_end;
3466         ext4_fsblk_t start, end;
3467         loff_t byte_end = (lstart + length - 1);
3468         int err = 0;
3469
3470         partial_start = lstart & (sb->s_blocksize - 1);
3471         partial_end = byte_end & (sb->s_blocksize - 1);
3472
3473         start = lstart >> sb->s_blocksize_bits;
3474         end = byte_end >> sb->s_blocksize_bits;
3475
3476         /* Handle partial zero within the single block */
3477         if (start == end &&
3478             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3479                 err = ext4_block_zero_page_range(handle, mapping,
3480                                                  lstart, length);
3481                 return err;
3482         }
3483         /* Handle partial zero out on the start of the range */
3484         if (partial_start) {
3485                 err = ext4_block_zero_page_range(handle, mapping,
3486                                                  lstart, sb->s_blocksize);
3487                 if (err)
3488                         return err;
3489         }
3490         /* Handle partial zero out on the end of the range */
3491         if (partial_end != sb->s_blocksize - 1)
3492                 err = ext4_block_zero_page_range(handle, mapping,
3493                                                  byte_end - partial_end,
3494                                                  partial_end + 1);
3495         return err;
3496 }
3497
3498 int ext4_can_truncate(struct inode *inode)
3499 {
3500         if (S_ISREG(inode->i_mode))
3501                 return 1;
3502         if (S_ISDIR(inode->i_mode))
3503                 return 1;
3504         if (S_ISLNK(inode->i_mode))
3505                 return !ext4_inode_is_fast_symlink(inode);
3506         return 0;
3507 }
3508
3509 /*
3510  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3511  * associated with the given offset and length
3512  *
3513  * @inode:  File inode
3514  * @offset: The offset where the hole will begin
3515  * @len:    The length of the hole
3516  *
3517  * Returns: 0 on success or negative on failure
3518  */
3519
3520 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3521 {
3522         struct super_block *sb = inode->i_sb;
3523         ext4_lblk_t first_block, stop_block;
3524         struct address_space *mapping = inode->i_mapping;
3525         loff_t first_block_offset, last_block_offset;
3526         handle_t *handle;
3527         unsigned int credits;
3528         int ret = 0;
3529
3530         if (!S_ISREG(inode->i_mode))
3531                 return -EOPNOTSUPP;
3532
3533         trace_ext4_punch_hole(inode, offset, length, 0);
3534
3535         /*
3536          * Write out all dirty pages to avoid race conditions
3537          * Then release them.
3538          */
3539         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3540                 ret = filemap_write_and_wait_range(mapping, offset,
3541                                                    offset + length - 1);
3542                 if (ret)
3543                         return ret;
3544         }
3545
3546         mutex_lock(&inode->i_mutex);
3547
3548         /* No need to punch hole beyond i_size */
3549         if (offset >= inode->i_size)
3550                 goto out_mutex;
3551
3552         /*
3553          * If the hole extends beyond i_size, set the hole
3554          * to end after the page that contains i_size
3555          */
3556         if (offset + length > inode->i_size) {
3557                 length = inode->i_size +
3558                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3559                    offset;
3560         }
3561
3562         if (offset & (sb->s_blocksize - 1) ||
3563             (offset + length) & (sb->s_blocksize - 1)) {
3564                 /*
3565                  * Attach jinode to inode for jbd2 if we do any zeroing of
3566                  * partial block
3567                  */
3568                 ret = ext4_inode_attach_jinode(inode);
3569                 if (ret < 0)
3570                         goto out_mutex;
3571
3572         }
3573
3574         first_block_offset = round_up(offset, sb->s_blocksize);
3575         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3576
3577         /* Now release the pages and zero block aligned part of pages*/
3578         if (last_block_offset > first_block_offset)
3579                 truncate_pagecache_range(inode, first_block_offset,
3580                                          last_block_offset);
3581
3582         /* Wait all existing dio workers, newcomers will block on i_mutex */
3583         ext4_inode_block_unlocked_dio(inode);
3584         inode_dio_wait(inode);
3585
3586         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3587                 credits = ext4_writepage_trans_blocks(inode);
3588         else
3589                 credits = ext4_blocks_for_truncate(inode);
3590         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3591         if (IS_ERR(handle)) {
3592                 ret = PTR_ERR(handle);
3593                 ext4_std_error(sb, ret);
3594                 goto out_dio;
3595         }
3596
3597         ret = ext4_zero_partial_blocks(handle, inode, offset,
3598                                        length);
3599         if (ret)
3600                 goto out_stop;
3601
3602         first_block = (offset + sb->s_blocksize - 1) >>
3603                 EXT4_BLOCK_SIZE_BITS(sb);
3604         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3605
3606         /* If there are no blocks to remove, return now */
3607         if (first_block >= stop_block)
3608                 goto out_stop;
3609
3610         down_write(&EXT4_I(inode)->i_data_sem);
3611         ext4_discard_preallocations(inode);
3612
3613         ret = ext4_es_remove_extent(inode, first_block,
3614                                     stop_block - first_block);
3615         if (ret) {
3616                 up_write(&EXT4_I(inode)->i_data_sem);
3617                 goto out_stop;
3618         }
3619
3620         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3621                 ret = ext4_ext_remove_space(inode, first_block,
3622                                             stop_block - 1);
3623         else
3624                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3625                                             stop_block);
3626
3627         up_write(&EXT4_I(inode)->i_data_sem);
3628         if (IS_SYNC(inode))
3629                 ext4_handle_sync(handle);
3630
3631         /* Now release the pages again to reduce race window */
3632         if (last_block_offset > first_block_offset)
3633                 truncate_pagecache_range(inode, first_block_offset,
3634                                          last_block_offset);
3635
3636         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3637         ext4_mark_inode_dirty(handle, inode);
3638 out_stop:
3639         ext4_journal_stop(handle);
3640 out_dio:
3641         ext4_inode_resume_unlocked_dio(inode);
3642 out_mutex:
3643         mutex_unlock(&inode->i_mutex);
3644         return ret;
3645 }
3646
3647 int ext4_inode_attach_jinode(struct inode *inode)
3648 {
3649         struct ext4_inode_info *ei = EXT4_I(inode);
3650         struct jbd2_inode *jinode;
3651
3652         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3653                 return 0;
3654
3655         jinode = jbd2_alloc_inode(GFP_KERNEL);
3656         spin_lock(&inode->i_lock);
3657         if (!ei->jinode) {
3658                 if (!jinode) {
3659                         spin_unlock(&inode->i_lock);
3660                         return -ENOMEM;
3661                 }
3662                 ei->jinode = jinode;
3663                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3664                 jinode = NULL;
3665         }
3666         spin_unlock(&inode->i_lock);
3667         if (unlikely(jinode != NULL))
3668                 jbd2_free_inode(jinode);
3669         return 0;
3670 }
3671
3672 /*
3673  * ext4_truncate()
3674  *
3675  * We block out ext4_get_block() block instantiations across the entire
3676  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3677  * simultaneously on behalf of the same inode.
3678  *
3679  * As we work through the truncate and commit bits of it to the journal there
3680  * is one core, guiding principle: the file's tree must always be consistent on
3681  * disk.  We must be able to restart the truncate after a crash.
3682  *
3683  * The file's tree may be transiently inconsistent in memory (although it
3684  * probably isn't), but whenever we close off and commit a journal transaction,
3685  * the contents of (the filesystem + the journal) must be consistent and
3686  * restartable.  It's pretty simple, really: bottom up, right to left (although
3687  * left-to-right works OK too).
3688  *
3689  * Note that at recovery time, journal replay occurs *before* the restart of
3690  * truncate against the orphan inode list.
3691  *
3692  * The committed inode has the new, desired i_size (which is the same as
3693  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3694  * that this inode's truncate did not complete and it will again call
3695  * ext4_truncate() to have another go.  So there will be instantiated blocks
3696  * to the right of the truncation point in a crashed ext4 filesystem.  But
3697  * that's fine - as long as they are linked from the inode, the post-crash
3698  * ext4_truncate() run will find them and release them.
3699  */
3700 void ext4_truncate(struct inode *inode)
3701 {
3702         struct ext4_inode_info *ei = EXT4_I(inode);
3703         unsigned int credits;
3704         handle_t *handle;
3705         struct address_space *mapping = inode->i_mapping;
3706
3707         /*
3708          * There is a possibility that we're either freeing the inode
3709          * or it's a completely new inode. In those cases we might not
3710          * have i_mutex locked because it's not necessary.
3711          */
3712         if (!(inode->i_state & (I_NEW|I_FREEING)))
3713                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3714         trace_ext4_truncate_enter(inode);
3715
3716         if (!ext4_can_truncate(inode))
3717                 return;
3718
3719         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3720
3721         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3722                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3723
3724         if (ext4_has_inline_data(inode)) {
3725                 int has_inline = 1;
3726
3727                 ext4_inline_data_truncate(inode, &has_inline);
3728                 if (has_inline)
3729                         return;
3730         }
3731
3732         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3733         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3734                 if (ext4_inode_attach_jinode(inode) < 0)
3735                         return;
3736         }
3737
3738         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3739                 credits = ext4_writepage_trans_blocks(inode);
3740         else
3741                 credits = ext4_blocks_for_truncate(inode);
3742
3743         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3744         if (IS_ERR(handle)) {
3745                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3746                 return;
3747         }
3748
3749         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3750                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3751
3752         /*
3753          * We add the inode to the orphan list, so that if this
3754          * truncate spans multiple transactions, and we crash, we will
3755          * resume the truncate when the filesystem recovers.  It also
3756          * marks the inode dirty, to catch the new size.
3757          *
3758          * Implication: the file must always be in a sane, consistent
3759          * truncatable state while each transaction commits.
3760          */
3761         if (ext4_orphan_add(handle, inode))
3762                 goto out_stop;
3763
3764         down_write(&EXT4_I(inode)->i_data_sem);
3765
3766         ext4_discard_preallocations(inode);
3767
3768         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3769                 ext4_ext_truncate(handle, inode);
3770         else
3771                 ext4_ind_truncate(handle, inode);
3772
3773         up_write(&ei->i_data_sem);
3774
3775         if (IS_SYNC(inode))
3776                 ext4_handle_sync(handle);
3777
3778 out_stop:
3779         /*
3780          * If this was a simple ftruncate() and the file will remain alive,
3781          * then we need to clear up the orphan record which we created above.
3782          * However, if this was a real unlink then we were called by
3783          * ext4_delete_inode(), and we allow that function to clean up the
3784          * orphan info for us.
3785          */
3786         if (inode->i_nlink)
3787                 ext4_orphan_del(handle, inode);
3788
3789         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3790         ext4_mark_inode_dirty(handle, inode);
3791         ext4_journal_stop(handle);
3792
3793         trace_ext4_truncate_exit(inode);
3794 }
3795
3796 /*
3797  * ext4_get_inode_loc returns with an extra refcount against the inode's
3798  * underlying buffer_head on success. If 'in_mem' is true, we have all
3799  * data in memory that is needed to recreate the on-disk version of this
3800  * inode.
3801  */
3802 static int __ext4_get_inode_loc(struct inode *inode,
3803                                 struct ext4_iloc *iloc, int in_mem)
3804 {
3805         struct ext4_group_desc  *gdp;
3806         struct buffer_head      *bh;
3807         struct super_block      *sb = inode->i_sb;
3808         ext4_fsblk_t            block;
3809         int                     inodes_per_block, inode_offset;
3810
3811         iloc->bh = NULL;
3812         if (!ext4_valid_inum(sb, inode->i_ino))
3813                 return -EIO;
3814
3815         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3816         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3817         if (!gdp)
3818                 return -EIO;
3819
3820         /*
3821          * Figure out the offset within the block group inode table
3822          */
3823         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3824         inode_offset = ((inode->i_ino - 1) %
3825                         EXT4_INODES_PER_GROUP(sb));
3826         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3827         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3828
3829         bh = sb_getblk(sb, block);
3830         if (unlikely(!bh))
3831                 return -ENOMEM;
3832         if (!buffer_uptodate(bh)) {
3833                 lock_buffer(bh);
3834
3835                 /*
3836                  * If the buffer has the write error flag, we have failed
3837                  * to write out another inode in the same block.  In this
3838                  * case, we don't have to read the block because we may
3839                  * read the old inode data successfully.
3840                  */
3841                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3842                         set_buffer_uptodate(bh);
3843
3844                 if (buffer_uptodate(bh)) {
3845                         /* someone brought it uptodate while we waited */
3846                         unlock_buffer(bh);
3847                         goto has_buffer;
3848                 }
3849
3850                 /*
3851                  * If we have all information of the inode in memory and this
3852                  * is the only valid inode in the block, we need not read the
3853                  * block.
3854                  */
3855                 if (in_mem) {
3856                         struct buffer_head *bitmap_bh;
3857                         int i, start;
3858
3859                         start = inode_offset & ~(inodes_per_block - 1);
3860
3861                         /* Is the inode bitmap in cache? */
3862                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3863                         if (unlikely(!bitmap_bh))
3864                                 goto make_io;
3865
3866                         /*
3867                          * If the inode bitmap isn't in cache then the
3868                          * optimisation may end up performing two reads instead
3869                          * of one, so skip it.
3870                          */
3871                         if (!buffer_uptodate(bitmap_bh)) {
3872                                 brelse(bitmap_bh);
3873                                 goto make_io;
3874                         }
3875                         for (i = start; i < start + inodes_per_block; i++) {
3876                                 if (i == inode_offset)
3877                                         continue;
3878                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3879                                         break;
3880                         }
3881                         brelse(bitmap_bh);
3882                         if (i == start + inodes_per_block) {
3883                                 /* all other inodes are free, so skip I/O */
3884                                 memset(bh->b_data, 0, bh->b_size);
3885                                 set_buffer_uptodate(bh);
3886                                 unlock_buffer(bh);
3887                                 goto has_buffer;
3888                         }
3889                 }
3890
3891 make_io:
3892                 /*
3893                  * If we need to do any I/O, try to pre-readahead extra
3894                  * blocks from the inode table.
3895                  */
3896                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3897                         ext4_fsblk_t b, end, table;
3898                         unsigned num;
3899                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3900
3901                         table = ext4_inode_table(sb, gdp);
3902                         /* s_inode_readahead_blks is always a power of 2 */
3903                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3904                         if (table > b)
3905                                 b = table;
3906                         end = b + ra_blks;
3907                         num = EXT4_INODES_PER_GROUP(sb);
3908                         if (ext4_has_group_desc_csum(sb))
3909                                 num -= ext4_itable_unused_count(sb, gdp);
3910                         table += num / inodes_per_block;
3911                         if (end > table)
3912                                 end = table;
3913                         while (b <= end)
3914                                 sb_breadahead(sb, b++);
3915                 }
3916
3917                 /*
3918                  * There are other valid inodes in the buffer, this inode
3919                  * has in-inode xattrs, or we don't have this inode in memory.
3920                  * Read the block from disk.
3921                  */
3922                 trace_ext4_load_inode(inode);
3923                 get_bh(bh);
3924                 bh->b_end_io = end_buffer_read_sync;
3925                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3926                 wait_on_buffer(bh);
3927                 if (!buffer_uptodate(bh)) {
3928                         EXT4_ERROR_INODE_BLOCK(inode, block,
3929                                                "unable to read itable block");
3930                         brelse(bh);
3931                         return -EIO;
3932                 }
3933         }
3934 has_buffer:
3935         iloc->bh = bh;
3936         return 0;
3937 }
3938
3939 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3940 {
3941         /* We have all inode data except xattrs in memory here. */
3942         return __ext4_get_inode_loc(inode, iloc,
3943                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3944 }
3945
3946 void ext4_set_inode_flags(struct inode *inode)
3947 {
3948         unsigned int flags = EXT4_I(inode)->i_flags;
3949         unsigned int new_fl = 0;
3950
3951         if (flags & EXT4_SYNC_FL)
3952                 new_fl |= S_SYNC;
3953         if (flags & EXT4_APPEND_FL)
3954                 new_fl |= S_APPEND;
3955         if (flags & EXT4_IMMUTABLE_FL)
3956                 new_fl |= S_IMMUTABLE;
3957         if (flags & EXT4_NOATIME_FL)
3958                 new_fl |= S_NOATIME;
3959         if (flags & EXT4_DIRSYNC_FL)
3960                 new_fl |= S_DIRSYNC;
3961         inode_set_flags(inode, new_fl,
3962                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3963 }
3964
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3967 {
3968         unsigned int vfs_fl;
3969         unsigned long old_fl, new_fl;
3970
3971         do {
3972                 vfs_fl = ei->vfs_inode.i_flags;
3973                 old_fl = ei->i_flags;
3974                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3975                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3976                                 EXT4_DIRSYNC_FL);
3977                 if (vfs_fl & S_SYNC)
3978                         new_fl |= EXT4_SYNC_FL;
3979                 if (vfs_fl & S_APPEND)
3980                         new_fl |= EXT4_APPEND_FL;
3981                 if (vfs_fl & S_IMMUTABLE)
3982                         new_fl |= EXT4_IMMUTABLE_FL;
3983                 if (vfs_fl & S_NOATIME)
3984                         new_fl |= EXT4_NOATIME_FL;
3985                 if (vfs_fl & S_DIRSYNC)
3986                         new_fl |= EXT4_DIRSYNC_FL;
3987         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3988 }
3989
3990 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3991                                   struct ext4_inode_info *ei)
3992 {
3993         blkcnt_t i_blocks ;
3994         struct inode *inode = &(ei->vfs_inode);
3995         struct super_block *sb = inode->i_sb;
3996
3997         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3998                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3999                 /* we are using combined 48 bit field */
4000                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4001                                         le32_to_cpu(raw_inode->i_blocks_lo);
4002                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4003                         /* i_blocks represent file system block size */
4004                         return i_blocks  << (inode->i_blkbits - 9);
4005                 } else {
4006                         return i_blocks;
4007                 }
4008         } else {
4009                 return le32_to_cpu(raw_inode->i_blocks_lo);
4010         }
4011 }
4012
4013 static inline void ext4_iget_extra_inode(struct inode *inode,
4014                                          struct ext4_inode *raw_inode,
4015                                          struct ext4_inode_info *ei)
4016 {
4017         __le32 *magic = (void *)raw_inode +
4018                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4019         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4020                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4021                 ext4_find_inline_data_nolock(inode);
4022         } else
4023                 EXT4_I(inode)->i_inline_off = 0;
4024 }
4025
4026 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4027 {
4028         struct ext4_iloc iloc;
4029         struct ext4_inode *raw_inode;
4030         struct ext4_inode_info *ei;
4031         struct inode *inode;
4032         journal_t *journal = EXT4_SB(sb)->s_journal;
4033         long ret;
4034         int block;
4035         uid_t i_uid;
4036         gid_t i_gid;
4037
4038         inode = iget_locked(sb, ino);
4039         if (!inode)
4040                 return ERR_PTR(-ENOMEM);
4041         if (!(inode->i_state & I_NEW))
4042                 return inode;
4043
4044         ei = EXT4_I(inode);
4045         iloc.bh = NULL;
4046
4047         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4048         if (ret < 0)
4049                 goto bad_inode;
4050         raw_inode = ext4_raw_inode(&iloc);
4051
4052         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4053                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4054                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4055                     EXT4_INODE_SIZE(inode->i_sb)) {
4056                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4057                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4058                                 EXT4_INODE_SIZE(inode->i_sb));
4059                         ret = -EIO;
4060                         goto bad_inode;
4061                 }
4062         } else
4063                 ei->i_extra_isize = 0;
4064
4065         /* Precompute checksum seed for inode metadata */
4066         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4067                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4068                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4069                 __u32 csum;
4070                 __le32 inum = cpu_to_le32(inode->i_ino);
4071                 __le32 gen = raw_inode->i_generation;
4072                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4073                                    sizeof(inum));
4074                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4075                                               sizeof(gen));
4076         }
4077
4078         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4079                 EXT4_ERROR_INODE(inode, "checksum invalid");
4080                 ret = -EIO;
4081                 goto bad_inode;
4082         }
4083
4084         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4085         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4086         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4087         if (!(test_opt(inode->i_sb, NO_UID32))) {
4088                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4089                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4090         }
4091         i_uid_write(inode, i_uid);
4092         i_gid_write(inode, i_gid);
4093         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4094
4095         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4096         ei->i_inline_off = 0;
4097         ei->i_dir_start_lookup = 0;
4098         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4099         /* We now have enough fields to check if the inode was active or not.
4100          * This is needed because nfsd might try to access dead inodes
4101          * the test is that same one that e2fsck uses
4102          * NeilBrown 1999oct15
4103          */
4104         if (inode->i_nlink == 0) {
4105                 if ((inode->i_mode == 0 ||
4106                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4107                     ino != EXT4_BOOT_LOADER_INO) {
4108                         /* this inode is deleted */
4109                         ret = -ESTALE;
4110                         goto bad_inode;
4111                 }
4112                 /* The only unlinked inodes we let through here have
4113                  * valid i_mode and are being read by the orphan
4114                  * recovery code: that's fine, we're about to complete
4115                  * the process of deleting those.
4116                  * OR it is the EXT4_BOOT_LOADER_INO which is
4117                  * not initialized on a new filesystem. */
4118         }
4119         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4120         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4121         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4122         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4123                 ei->i_file_acl |=
4124                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4125         inode->i_size = ext4_isize(raw_inode);
4126         ei->i_disksize = inode->i_size;
4127 #ifdef CONFIG_QUOTA
4128         ei->i_reserved_quota = 0;
4129 #endif
4130         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4131         ei->i_block_group = iloc.block_group;
4132         ei->i_last_alloc_group = ~0;
4133         /*
4134          * NOTE! The in-memory inode i_data array is in little-endian order
4135          * even on big-endian machines: we do NOT byteswap the block numbers!
4136          */
4137         for (block = 0; block < EXT4_N_BLOCKS; block++)
4138                 ei->i_data[block] = raw_inode->i_block[block];
4139         INIT_LIST_HEAD(&ei->i_orphan);
4140
4141         /*
4142          * Set transaction id's of transactions that have to be committed
4143          * to finish f[data]sync. We set them to currently running transaction
4144          * as we cannot be sure that the inode or some of its metadata isn't
4145          * part of the transaction - the inode could have been reclaimed and
4146          * now it is reread from disk.
4147          */
4148         if (journal) {
4149                 transaction_t *transaction;
4150                 tid_t tid;
4151
4152                 read_lock(&journal->j_state_lock);
4153                 if (journal->j_running_transaction)
4154                         transaction = journal->j_running_transaction;
4155                 else
4156                         transaction = journal->j_committing_transaction;
4157                 if (transaction)
4158                         tid = transaction->t_tid;
4159                 else
4160                         tid = journal->j_commit_sequence;
4161                 read_unlock(&journal->j_state_lock);
4162                 ei->i_sync_tid = tid;
4163                 ei->i_datasync_tid = tid;
4164         }
4165
4166         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4167                 if (ei->i_extra_isize == 0) {
4168                         /* The extra space is currently unused. Use it. */
4169                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4170                                             EXT4_GOOD_OLD_INODE_SIZE;
4171                 } else {
4172                         ext4_iget_extra_inode(inode, raw_inode, ei);
4173                 }
4174         }
4175
4176         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4177         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4178         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4179         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4180
4181         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4182                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4183                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4184                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4185                                 inode->i_version |=
4186                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4187                 }
4188         }
4189
4190         ret = 0;
4191         if (ei->i_file_acl &&
4192             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4193                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4194                                  ei->i_file_acl);
4195                 ret = -EIO;
4196                 goto bad_inode;
4197         } else if (!ext4_has_inline_data(inode)) {
4198                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4199                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4200                             (S_ISLNK(inode->i_mode) &&
4201                              !ext4_inode_is_fast_symlink(inode))))
4202                                 /* Validate extent which is part of inode */
4203                                 ret = ext4_ext_check_inode(inode);
4204                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4205                            (S_ISLNK(inode->i_mode) &&
4206                             !ext4_inode_is_fast_symlink(inode))) {
4207                         /* Validate block references which are part of inode */
4208                         ret = ext4_ind_check_inode(inode);
4209                 }
4210         }
4211         if (ret)
4212                 goto bad_inode;
4213
4214         if (S_ISREG(inode->i_mode)) {
4215                 inode->i_op = &ext4_file_inode_operations;
4216                 inode->i_fop = &ext4_file_operations;
4217                 ext4_set_aops(inode);
4218         } else if (S_ISDIR(inode->i_mode)) {
4219                 inode->i_op = &ext4_dir_inode_operations;
4220                 inode->i_fop = &ext4_dir_operations;
4221         } else if (S_ISLNK(inode->i_mode)) {
4222                 if (ext4_inode_is_fast_symlink(inode)) {
4223                         inode->i_op = &ext4_fast_symlink_inode_operations;
4224                         nd_terminate_link(ei->i_data, inode->i_size,
4225                                 sizeof(ei->i_data) - 1);
4226                 } else {
4227                         inode->i_op = &ext4_symlink_inode_operations;
4228                         ext4_set_aops(inode);
4229                 }
4230         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4231               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4232                 inode->i_op = &ext4_special_inode_operations;
4233                 if (raw_inode->i_block[0])
4234                         init_special_inode(inode, inode->i_mode,
4235                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4236                 else
4237                         init_special_inode(inode, inode->i_mode,
4238                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4239         } else if (ino == EXT4_BOOT_LOADER_INO) {
4240                 make_bad_inode(inode);
4241         } else {
4242                 ret = -EIO;
4243                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4244                 goto bad_inode;
4245         }
4246         brelse(iloc.bh);
4247         ext4_set_inode_flags(inode);
4248         unlock_new_inode(inode);
4249         return inode;
4250
4251 bad_inode:
4252         brelse(iloc.bh);
4253         iget_failed(inode);
4254         return ERR_PTR(ret);
4255 }
4256
4257 static int ext4_inode_blocks_set(handle_t *handle,
4258                                 struct ext4_inode *raw_inode,
4259                                 struct ext4_inode_info *ei)
4260 {
4261         struct inode *inode = &(ei->vfs_inode);
4262         u64 i_blocks = inode->i_blocks;
4263         struct super_block *sb = inode->i_sb;
4264
4265         if (i_blocks <= ~0U) {
4266                 /*
4267                  * i_blocks can be represented in a 32 bit variable
4268                  * as multiple of 512 bytes
4269                  */
4270                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271                 raw_inode->i_blocks_high = 0;
4272                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273                 return 0;
4274         }
4275         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4276                 return -EFBIG;
4277
4278         if (i_blocks <= 0xffffffffffffULL) {
4279                 /*
4280                  * i_blocks can be represented in a 48 bit variable
4281                  * as multiple of 512 bytes
4282                  */
4283                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4284                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4285                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4286         } else {
4287                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4288                 /* i_block is stored in file system block size */
4289                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4290                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4291                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4292         }
4293         return 0;
4294 }
4295
4296 /*
4297  * Post the struct inode info into an on-disk inode location in the
4298  * buffer-cache.  This gobbles the caller's reference to the
4299  * buffer_head in the inode location struct.
4300  *
4301  * The caller must have write access to iloc->bh.
4302  */
4303 static int ext4_do_update_inode(handle_t *handle,
4304                                 struct inode *inode,
4305                                 struct ext4_iloc *iloc)
4306 {
4307         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4308         struct ext4_inode_info *ei = EXT4_I(inode);
4309         struct buffer_head *bh = iloc->bh;
4310         struct super_block *sb = inode->i_sb;
4311         int err = 0, rc, block;
4312         int need_datasync = 0, set_large_file = 0;
4313         uid_t i_uid;
4314         gid_t i_gid;
4315
4316         spin_lock(&ei->i_raw_lock);
4317
4318         /* For fields not tracked in the in-memory inode,
4319          * initialise them to zero for new inodes. */
4320         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4321                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4322
4323         ext4_get_inode_flags(ei);
4324         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4325         i_uid = i_uid_read(inode);
4326         i_gid = i_gid_read(inode);
4327         if (!(test_opt(inode->i_sb, NO_UID32))) {
4328                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4329                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4330 /*
4331  * Fix up interoperability with old kernels. Otherwise, old inodes get
4332  * re-used with the upper 16 bits of the uid/gid intact
4333  */
4334                 if (!ei->i_dtime) {
4335                         raw_inode->i_uid_high =
4336                                 cpu_to_le16(high_16_bits(i_uid));
4337                         raw_inode->i_gid_high =
4338                                 cpu_to_le16(high_16_bits(i_gid));
4339                 } else {
4340                         raw_inode->i_uid_high = 0;
4341                         raw_inode->i_gid_high = 0;
4342                 }
4343         } else {
4344                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4345                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4346                 raw_inode->i_uid_high = 0;
4347                 raw_inode->i_gid_high = 0;
4348         }
4349         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4350
4351         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4352         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4353         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4354         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4355
4356         if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4357                 spin_unlock(&ei->i_raw_lock);
4358                 goto out_brelse;
4359         }
4360         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4361         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4362         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4363                 raw_inode->i_file_acl_high =
4364                         cpu_to_le16(ei->i_file_acl >> 32);
4365         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4366         if (ei->i_disksize != ext4_isize(raw_inode)) {
4367                 ext4_isize_set(raw_inode, ei->i_disksize);
4368                 need_datasync = 1;
4369         }
4370         if (ei->i_disksize > 0x7fffffffULL) {
4371                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4372                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4373                                 EXT4_SB(sb)->s_es->s_rev_level ==
4374                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4375                         set_large_file = 1;
4376         }
4377         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4378         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4379                 if (old_valid_dev(inode->i_rdev)) {
4380                         raw_inode->i_block[0] =
4381                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4382                         raw_inode->i_block[1] = 0;
4383                 } else {
4384                         raw_inode->i_block[0] = 0;
4385                         raw_inode->i_block[1] =
4386                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4387                         raw_inode->i_block[2] = 0;
4388                 }
4389         } else if (!ext4_has_inline_data(inode)) {
4390                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4391                         raw_inode->i_block[block] = ei->i_data[block];
4392         }
4393
4394         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4395                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4396                 if (ei->i_extra_isize) {
4397                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4398                                 raw_inode->i_version_hi =
4399                                         cpu_to_le32(inode->i_version >> 32);
4400                         raw_inode->i_extra_isize =
4401                                 cpu_to_le16(ei->i_extra_isize);
4402                 }
4403         }
4404
4405         ext4_inode_csum_set(inode, raw_inode, ei);
4406
4407         spin_unlock(&ei->i_raw_lock);
4408
4409         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4410         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4411         if (!err)
4412                 err = rc;
4413         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4414         if (set_large_file) {
4415                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4416                 if (err)
4417                         goto out_brelse;
4418                 ext4_update_dynamic_rev(sb);
4419                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4420                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4421                 ext4_handle_sync(handle);
4422                 err = ext4_handle_dirty_super(handle, sb);
4423         }
4424         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4425 out_brelse:
4426         brelse(bh);
4427         ext4_std_error(inode->i_sb, err);
4428         return err;
4429 }
4430
4431 /*
4432  * ext4_write_inode()
4433  *
4434  * We are called from a few places:
4435  *
4436  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4437  *   Here, there will be no transaction running. We wait for any running
4438  *   transaction to commit.
4439  *
4440  * - Within flush work (sys_sync(), kupdate and such).
4441  *   We wait on commit, if told to.
4442  *
4443  * - Within iput_final() -> write_inode_now()
4444  *   We wait on commit, if told to.
4445  *
4446  * In all cases it is actually safe for us to return without doing anything,
4447  * because the inode has been copied into a raw inode buffer in
4448  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4449  * writeback.
4450  *
4451  * Note that we are absolutely dependent upon all inode dirtiers doing the
4452  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4453  * which we are interested.
4454  *
4455  * It would be a bug for them to not do this.  The code:
4456  *
4457  *      mark_inode_dirty(inode)
4458  *      stuff();
4459  *      inode->i_size = expr;
4460  *
4461  * is in error because write_inode() could occur while `stuff()' is running,
4462  * and the new i_size will be lost.  Plus the inode will no longer be on the
4463  * superblock's dirty inode list.
4464  */
4465 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4466 {
4467         int err;
4468
4469         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4470                 return 0;
4471
4472         if (EXT4_SB(inode->i_sb)->s_journal) {
4473                 if (ext4_journal_current_handle()) {
4474                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4475                         dump_stack();
4476                         return -EIO;
4477                 }
4478
4479                 /*
4480                  * No need to force transaction in WB_SYNC_NONE mode. Also
4481                  * ext4_sync_fs() will force the commit after everything is
4482                  * written.
4483                  */
4484                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4485                         return 0;
4486
4487                 err = ext4_force_commit(inode->i_sb);
4488         } else {
4489                 struct ext4_iloc iloc;
4490
4491                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4492                 if (err)
4493                         return err;
4494                 /*
4495                  * sync(2) will flush the whole buffer cache. No need to do
4496                  * it here separately for each inode.
4497                  */
4498                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4499                         sync_dirty_buffer(iloc.bh);
4500                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4501                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4502                                          "IO error syncing inode");
4503                         err = -EIO;
4504                 }
4505                 brelse(iloc.bh);
4506         }
4507         return err;
4508 }
4509
4510 /*
4511  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4512  * buffers that are attached to a page stradding i_size and are undergoing
4513  * commit. In that case we have to wait for commit to finish and try again.
4514  */
4515 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4516 {
4517         struct page *page;
4518         unsigned offset;
4519         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4520         tid_t commit_tid = 0;
4521         int ret;
4522
4523         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4524         /*
4525          * All buffers in the last page remain valid? Then there's nothing to
4526          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4527          * blocksize case
4528          */
4529         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4530                 return;
4531         while (1) {
4532                 page = find_lock_page(inode->i_mapping,
4533                                       inode->i_size >> PAGE_CACHE_SHIFT);
4534                 if (!page)
4535                         return;
4536                 ret = __ext4_journalled_invalidatepage(page, offset,
4537                                                 PAGE_CACHE_SIZE - offset);
4538                 unlock_page(page);
4539                 page_cache_release(page);
4540                 if (ret != -EBUSY)
4541                         return;
4542                 commit_tid = 0;
4543                 read_lock(&journal->j_state_lock);
4544                 if (journal->j_committing_transaction)
4545                         commit_tid = journal->j_committing_transaction->t_tid;
4546                 read_unlock(&journal->j_state_lock);
4547                 if (commit_tid)
4548                         jbd2_log_wait_commit(journal, commit_tid);
4549         }
4550 }
4551
4552 /*
4553  * ext4_setattr()
4554  *
4555  * Called from notify_change.
4556  *
4557  * We want to trap VFS attempts to truncate the file as soon as
4558  * possible.  In particular, we want to make sure that when the VFS
4559  * shrinks i_size, we put the inode on the orphan list and modify
4560  * i_disksize immediately, so that during the subsequent flushing of
4561  * dirty pages and freeing of disk blocks, we can guarantee that any
4562  * commit will leave the blocks being flushed in an unused state on
4563  * disk.  (On recovery, the inode will get truncated and the blocks will
4564  * be freed, so we have a strong guarantee that no future commit will
4565  * leave these blocks visible to the user.)
4566  *
4567  * Another thing we have to assure is that if we are in ordered mode
4568  * and inode is still attached to the committing transaction, we must
4569  * we start writeout of all the dirty pages which are being truncated.
4570  * This way we are sure that all the data written in the previous
4571  * transaction are already on disk (truncate waits for pages under
4572  * writeback).
4573  *
4574  * Called with inode->i_mutex down.
4575  */
4576 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4577 {
4578         struct inode *inode = dentry->d_inode;
4579         int error, rc = 0;
4580         int orphan = 0;
4581         const unsigned int ia_valid = attr->ia_valid;
4582
4583         error = inode_change_ok(inode, attr);
4584         if (error)
4585                 return error;
4586
4587         if (is_quota_modification(inode, attr))
4588                 dquot_initialize(inode);
4589         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4590             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4591                 handle_t *handle;
4592
4593                 /* (user+group)*(old+new) structure, inode write (sb,
4594                  * inode block, ? - but truncate inode update has it) */
4595                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4596                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4597                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4598                 if (IS_ERR(handle)) {
4599                         error = PTR_ERR(handle);
4600                         goto err_out;
4601                 }
4602                 error = dquot_transfer(inode, attr);
4603                 if (error) {
4604                         ext4_journal_stop(handle);
4605                         return error;
4606                 }
4607                 /* Update corresponding info in inode so that everything is in
4608                  * one transaction */
4609                 if (attr->ia_valid & ATTR_UID)
4610                         inode->i_uid = attr->ia_uid;
4611                 if (attr->ia_valid & ATTR_GID)
4612                         inode->i_gid = attr->ia_gid;
4613                 error = ext4_mark_inode_dirty(handle, inode);
4614                 ext4_journal_stop(handle);
4615         }
4616
4617         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4618                 handle_t *handle;
4619
4620                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4621                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4622
4623                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4624                                 return -EFBIG;
4625                 }
4626
4627                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4628                         inode_inc_iversion(inode);
4629
4630                 if (S_ISREG(inode->i_mode) &&
4631                     (attr->ia_size < inode->i_size)) {
4632                         if (ext4_should_order_data(inode)) {
4633                                 error = ext4_begin_ordered_truncate(inode,
4634                                                             attr->ia_size);
4635                                 if (error)
4636                                         goto err_out;
4637                         }
4638                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4639                         if (IS_ERR(handle)) {
4640                                 error = PTR_ERR(handle);
4641                                 goto err_out;
4642                         }
4643                         if (ext4_handle_valid(handle)) {
4644                                 error = ext4_orphan_add(handle, inode);
4645                                 orphan = 1;
4646                         }
4647                         down_write(&EXT4_I(inode)->i_data_sem);
4648                         EXT4_I(inode)->i_disksize = attr->ia_size;
4649                         rc = ext4_mark_inode_dirty(handle, inode);
4650                         if (!error)
4651                                 error = rc;
4652                         /*
4653                          * We have to update i_size under i_data_sem together
4654                          * with i_disksize to avoid races with writeback code
4655                          * running ext4_wb_update_i_disksize().
4656                          */
4657                         if (!error)
4658                                 i_size_write(inode, attr->ia_size);
4659                         up_write(&EXT4_I(inode)->i_data_sem);
4660                         ext4_journal_stop(handle);
4661                         if (error) {
4662                                 ext4_orphan_del(NULL, inode);
4663                                 goto err_out;
4664                         }
4665                 } else
4666                         i_size_write(inode, attr->ia_size);
4667
4668                 /*
4669                  * Blocks are going to be removed from the inode. Wait
4670                  * for dio in flight.  Temporarily disable
4671                  * dioread_nolock to prevent livelock.
4672                  */
4673                 if (orphan) {
4674                         if (!ext4_should_journal_data(inode)) {
4675                                 ext4_inode_block_unlocked_dio(inode);
4676                                 inode_dio_wait(inode);
4677                                 ext4_inode_resume_unlocked_dio(inode);
4678                         } else
4679                                 ext4_wait_for_tail_page_commit(inode);
4680                 }
4681                 /*
4682                  * Truncate pagecache after we've waited for commit
4683                  * in data=journal mode to make pages freeable.
4684                  */
4685                         truncate_pagecache(inode, inode->i_size);
4686         }
4687         /*
4688          * We want to call ext4_truncate() even if attr->ia_size ==
4689          * inode->i_size for cases like truncation of fallocated space
4690          */
4691         if (attr->ia_valid & ATTR_SIZE)
4692                 ext4_truncate(inode);
4693
4694         if (!rc) {
4695                 setattr_copy(inode, attr);
4696                 mark_inode_dirty(inode);
4697         }
4698
4699         /*
4700          * If the call to ext4_truncate failed to get a transaction handle at
4701          * all, we need to clean up the in-core orphan list manually.
4702          */
4703         if (orphan && inode->i_nlink)
4704                 ext4_orphan_del(NULL, inode);
4705
4706         if (!rc && (ia_valid & ATTR_MODE))
4707                 rc = posix_acl_chmod(inode, inode->i_mode);
4708
4709 err_out:
4710         ext4_std_error(inode->i_sb, error);
4711         if (!error)
4712                 error = rc;
4713         return error;
4714 }
4715
4716 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4717                  struct kstat *stat)
4718 {
4719         struct inode *inode;
4720         unsigned long long delalloc_blocks;
4721
4722         inode = dentry->d_inode;
4723         generic_fillattr(inode, stat);
4724
4725         /*
4726          * If there is inline data in the inode, the inode will normally not
4727          * have data blocks allocated (it may have an external xattr block).
4728          * Report at least one sector for such files, so tools like tar, rsync,
4729          * others doen't incorrectly think the file is completely sparse.
4730          */
4731         if (unlikely(ext4_has_inline_data(inode)))
4732                 stat->blocks += (stat->size + 511) >> 9;
4733
4734         /*
4735          * We can't update i_blocks if the block allocation is delayed
4736          * otherwise in the case of system crash before the real block
4737          * allocation is done, we will have i_blocks inconsistent with
4738          * on-disk file blocks.
4739          * We always keep i_blocks updated together with real
4740          * allocation. But to not confuse with user, stat
4741          * will return the blocks that include the delayed allocation
4742          * blocks for this file.
4743          */
4744         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4745                                    EXT4_I(inode)->i_reserved_data_blocks);
4746         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4747         return 0;
4748 }
4749
4750 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4751                                    int pextents)
4752 {
4753         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4754                 return ext4_ind_trans_blocks(inode, lblocks);
4755         return ext4_ext_index_trans_blocks(inode, pextents);
4756 }
4757
4758 /*
4759  * Account for index blocks, block groups bitmaps and block group
4760  * descriptor blocks if modify datablocks and index blocks
4761  * worse case, the indexs blocks spread over different block groups
4762  *
4763  * If datablocks are discontiguous, they are possible to spread over
4764  * different block groups too. If they are contiguous, with flexbg,
4765  * they could still across block group boundary.
4766  *
4767  * Also account for superblock, inode, quota and xattr blocks
4768  */
4769 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4770                                   int pextents)
4771 {
4772         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4773         int gdpblocks;
4774         int idxblocks;
4775         int ret = 0;
4776
4777         /*
4778          * How many index blocks need to touch to map @lblocks logical blocks
4779          * to @pextents physical extents?
4780          */
4781         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4782
4783         ret = idxblocks;
4784
4785         /*
4786          * Now let's see how many group bitmaps and group descriptors need
4787          * to account
4788          */
4789         groups = idxblocks + pextents;
4790         gdpblocks = groups;
4791         if (groups > ngroups)
4792                 groups = ngroups;
4793         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4794                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4795
4796         /* bitmaps and block group descriptor blocks */
4797         ret += groups + gdpblocks;
4798
4799         /* Blocks for super block, inode, quota and xattr blocks */
4800         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4801
4802         return ret;
4803 }
4804
4805 /*
4806  * Calculate the total number of credits to reserve to fit
4807  * the modification of a single pages into a single transaction,
4808  * which may include multiple chunks of block allocations.
4809  *
4810  * This could be called via ext4_write_begin()
4811  *
4812  * We need to consider the worse case, when
4813  * one new block per extent.
4814  */
4815 int ext4_writepage_trans_blocks(struct inode *inode)
4816 {
4817         int bpp = ext4_journal_blocks_per_page(inode);
4818         int ret;
4819
4820         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4821
4822         /* Account for data blocks for journalled mode */
4823         if (ext4_should_journal_data(inode))
4824                 ret += bpp;
4825         return ret;
4826 }
4827
4828 /*
4829  * Calculate the journal credits for a chunk of data modification.
4830  *
4831  * This is called from DIO, fallocate or whoever calling
4832  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4833  *
4834  * journal buffers for data blocks are not included here, as DIO
4835  * and fallocate do no need to journal data buffers.
4836  */
4837 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4838 {
4839         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4840 }
4841
4842 /*
4843  * The caller must have previously called ext4_reserve_inode_write().
4844  * Give this, we know that the caller already has write access to iloc->bh.
4845  */
4846 int ext4_mark_iloc_dirty(handle_t *handle,
4847                          struct inode *inode, struct ext4_iloc *iloc)
4848 {
4849         int err = 0;
4850
4851         if (IS_I_VERSION(inode))
4852                 inode_inc_iversion(inode);
4853
4854         /* the do_update_inode consumes one bh->b_count */
4855         get_bh(iloc->bh);
4856
4857         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4858         err = ext4_do_update_inode(handle, inode, iloc);
4859         put_bh(iloc->bh);
4860         return err;
4861 }
4862
4863 /*
4864  * On success, We end up with an outstanding reference count against
4865  * iloc->bh.  This _must_ be cleaned up later.
4866  */
4867
4868 int
4869 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4870                          struct ext4_iloc *iloc)
4871 {
4872         int err;
4873
4874         err = ext4_get_inode_loc(inode, iloc);
4875         if (!err) {
4876                 BUFFER_TRACE(iloc->bh, "get_write_access");
4877                 err = ext4_journal_get_write_access(handle, iloc->bh);
4878                 if (err) {
4879                         brelse(iloc->bh);
4880                         iloc->bh = NULL;
4881                 }
4882         }
4883         ext4_std_error(inode->i_sb, err);
4884         return err;
4885 }
4886
4887 /*
4888  * Expand an inode by new_extra_isize bytes.
4889  * Returns 0 on success or negative error number on failure.
4890  */
4891 static int ext4_expand_extra_isize(struct inode *inode,
4892                                    unsigned int new_extra_isize,
4893                                    struct ext4_iloc iloc,
4894                                    handle_t *handle)
4895 {
4896         struct ext4_inode *raw_inode;
4897         struct ext4_xattr_ibody_header *header;
4898
4899         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4900                 return 0;
4901
4902         raw_inode = ext4_raw_inode(&iloc);
4903
4904         header = IHDR(inode, raw_inode);
4905
4906         /* No extended attributes present */
4907         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4908             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4909                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4910                         new_extra_isize);
4911                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4912                 return 0;
4913         }
4914
4915         /* try to expand with EAs present */
4916         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4917                                           raw_inode, handle);
4918 }
4919
4920 /*
4921  * What we do here is to mark the in-core inode as clean with respect to inode
4922  * dirtiness (it may still be data-dirty).
4923  * This means that the in-core inode may be reaped by prune_icache
4924  * without having to perform any I/O.  This is a very good thing,
4925  * because *any* task may call prune_icache - even ones which
4926  * have a transaction open against a different journal.
4927  *
4928  * Is this cheating?  Not really.  Sure, we haven't written the
4929  * inode out, but prune_icache isn't a user-visible syncing function.
4930  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4931  * we start and wait on commits.
4932  */
4933 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4934 {
4935         struct ext4_iloc iloc;
4936         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4937         static unsigned int mnt_count;
4938         int err, ret;
4939
4940         might_sleep();
4941         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4942         err = ext4_reserve_inode_write(handle, inode, &iloc);
4943         if (ext4_handle_valid(handle) &&
4944             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4945             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4946                 /*
4947                  * We need extra buffer credits since we may write into EA block
4948                  * with this same handle. If journal_extend fails, then it will
4949                  * only result in a minor loss of functionality for that inode.
4950                  * If this is felt to be critical, then e2fsck should be run to
4951                  * force a large enough s_min_extra_isize.
4952                  */
4953                 if ((jbd2_journal_extend(handle,
4954                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4955                         ret = ext4_expand_extra_isize(inode,
4956                                                       sbi->s_want_extra_isize,
4957                                                       iloc, handle);
4958                         if (ret) {
4959                                 ext4_set_inode_state(inode,
4960                                                      EXT4_STATE_NO_EXPAND);
4961                                 if (mnt_count !=
4962                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4963                                         ext4_warning(inode->i_sb,
4964                                         "Unable to expand inode %lu. Delete"
4965                                         " some EAs or run e2fsck.",
4966                                         inode->i_ino);
4967                                         mnt_count =
4968                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4969                                 }
4970                         }
4971                 }
4972         }
4973         if (!err)
4974                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4975         return err;
4976 }
4977
4978 /*
4979  * ext4_dirty_inode() is called from __mark_inode_dirty()
4980  *
4981  * We're really interested in the case where a file is being extended.
4982  * i_size has been changed by generic_commit_write() and we thus need
4983  * to include the updated inode in the current transaction.
4984  *
4985  * Also, dquot_alloc_block() will always dirty the inode when blocks
4986  * are allocated to the file.
4987  *
4988  * If the inode is marked synchronous, we don't honour that here - doing
4989  * so would cause a commit on atime updates, which we don't bother doing.
4990  * We handle synchronous inodes at the highest possible level.
4991  */
4992 void ext4_dirty_inode(struct inode *inode, int flags)
4993 {
4994         handle_t *handle;
4995
4996         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4997         if (IS_ERR(handle))
4998                 goto out;
4999
5000         ext4_mark_inode_dirty(handle, inode);
5001
5002         ext4_journal_stop(handle);
5003 out:
5004         return;
5005 }
5006
5007 #if 0
5008 /*
5009  * Bind an inode's backing buffer_head into this transaction, to prevent
5010  * it from being flushed to disk early.  Unlike
5011  * ext4_reserve_inode_write, this leaves behind no bh reference and
5012  * returns no iloc structure, so the caller needs to repeat the iloc
5013  * lookup to mark the inode dirty later.
5014  */
5015 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5016 {
5017         struct ext4_iloc iloc;
5018
5019         int err = 0;
5020         if (handle) {
5021                 err = ext4_get_inode_loc(inode, &iloc);
5022                 if (!err) {
5023                         BUFFER_TRACE(iloc.bh, "get_write_access");
5024                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5025                         if (!err)
5026                                 err = ext4_handle_dirty_metadata(handle,
5027                                                                  NULL,
5028                                                                  iloc.bh);
5029                         brelse(iloc.bh);
5030                 }
5031         }
5032         ext4_std_error(inode->i_sb, err);
5033         return err;
5034 }
5035 #endif
5036
5037 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5038 {
5039         journal_t *journal;
5040         handle_t *handle;
5041         int err;
5042
5043         /*
5044          * We have to be very careful here: changing a data block's
5045          * journaling status dynamically is dangerous.  If we write a
5046          * data block to the journal, change the status and then delete
5047          * that block, we risk forgetting to revoke the old log record
5048          * from the journal and so a subsequent replay can corrupt data.
5049          * So, first we make sure that the journal is empty and that
5050          * nobody is changing anything.
5051          */
5052
5053         journal = EXT4_JOURNAL(inode);
5054         if (!journal)
5055                 return 0;
5056         if (is_journal_aborted(journal))
5057                 return -EROFS;
5058         /* We have to allocate physical blocks for delalloc blocks
5059          * before flushing journal. otherwise delalloc blocks can not
5060          * be allocated any more. even more truncate on delalloc blocks
5061          * could trigger BUG by flushing delalloc blocks in journal.
5062          * There is no delalloc block in non-journal data mode.
5063          */
5064         if (val && test_opt(inode->i_sb, DELALLOC)) {
5065                 err = ext4_alloc_da_blocks(inode);
5066                 if (err < 0)
5067                         return err;
5068         }
5069
5070         /* Wait for all existing dio workers */
5071         ext4_inode_block_unlocked_dio(inode);
5072         inode_dio_wait(inode);
5073
5074         jbd2_journal_lock_updates(journal);
5075
5076         /*
5077          * OK, there are no updates running now, and all cached data is
5078          * synced to disk.  We are now in a completely consistent state
5079          * which doesn't have anything in the journal, and we know that
5080          * no filesystem updates are running, so it is safe to modify
5081          * the inode's in-core data-journaling state flag now.
5082          */
5083
5084         if (val)
5085                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5086         else {
5087                 jbd2_journal_flush(journal);
5088                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5089         }
5090         ext4_set_aops(inode);
5091
5092         jbd2_journal_unlock_updates(journal);
5093         ext4_inode_resume_unlocked_dio(inode);
5094
5095         /* Finally we can mark the inode as dirty. */
5096
5097         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5098         if (IS_ERR(handle))
5099                 return PTR_ERR(handle);
5100
5101         err = ext4_mark_inode_dirty(handle, inode);
5102         ext4_handle_sync(handle);
5103         ext4_journal_stop(handle);
5104         ext4_std_error(inode->i_sb, err);
5105
5106         return err;
5107 }
5108
5109 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5110 {
5111         return !buffer_mapped(bh);
5112 }
5113
5114 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5115 {
5116         struct page *page = vmf->page;
5117         loff_t size;
5118         unsigned long len;
5119         int ret;
5120         struct file *file = vma->vm_file;
5121         struct inode *inode = file_inode(file);
5122         struct address_space *mapping = inode->i_mapping;
5123         handle_t *handle;
5124         get_block_t *get_block;
5125         int retries = 0;
5126
5127         sb_start_pagefault(inode->i_sb);
5128         file_update_time(vma->vm_file);
5129         /* Delalloc case is easy... */
5130         if (test_opt(inode->i_sb, DELALLOC) &&
5131             !ext4_should_journal_data(inode) &&
5132             !ext4_nonda_switch(inode->i_sb)) {
5133                 do {
5134                         ret = __block_page_mkwrite(vma, vmf,
5135                                                    ext4_da_get_block_prep);
5136                 } while (ret == -ENOSPC &&
5137                        ext4_should_retry_alloc(inode->i_sb, &retries));
5138                 goto out_ret;
5139         }
5140
5141         lock_page(page);
5142         size = i_size_read(inode);
5143         /* Page got truncated from under us? */
5144         if (page->mapping != mapping || page_offset(page) > size) {
5145                 unlock_page(page);
5146                 ret = VM_FAULT_NOPAGE;
5147                 goto out;
5148         }
5149
5150         if (page->index == size >> PAGE_CACHE_SHIFT)
5151                 len = size & ~PAGE_CACHE_MASK;
5152         else
5153                 len = PAGE_CACHE_SIZE;
5154         /*
5155          * Return if we have all the buffers mapped. This avoids the need to do
5156          * journal_start/journal_stop which can block and take a long time
5157          */
5158         if (page_has_buffers(page)) {
5159                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5160                                             0, len, NULL,
5161                                             ext4_bh_unmapped)) {
5162                         /* Wait so that we don't change page under IO */
5163                         wait_for_stable_page(page);
5164                         ret = VM_FAULT_LOCKED;
5165                         goto out;
5166                 }
5167         }
5168         unlock_page(page);
5169         /* OK, we need to fill the hole... */
5170         if (ext4_should_dioread_nolock(inode))
5171                 get_block = ext4_get_block_write;
5172         else
5173                 get_block = ext4_get_block;
5174 retry_alloc:
5175         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5176                                     ext4_writepage_trans_blocks(inode));
5177         if (IS_ERR(handle)) {
5178                 ret = VM_FAULT_SIGBUS;
5179                 goto out;
5180         }
5181         ret = __block_page_mkwrite(vma, vmf, get_block);
5182         if (!ret && ext4_should_journal_data(inode)) {
5183                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5184                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5185                         unlock_page(page);
5186                         ret = VM_FAULT_SIGBUS;
5187                         ext4_journal_stop(handle);
5188                         goto out;
5189                 }
5190                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5191         }
5192         ext4_journal_stop(handle);
5193         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5194                 goto retry_alloc;
5195 out_ret:
5196         ret = block_page_mkwrite_return(ret);
5197 out:
5198         sb_end_pagefault(inode->i_sb);
5199         return ret;
5200 }