mm: make faultaround produce old ptes
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         unsigned long index;
118         unsigned int offset;
119         unsigned int tag;
120         void **slot;
121
122         VM_BUG_ON(!PageLocked(page));
123
124         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126         if (shadow) {
127                 mapping->nrexceptional++;
128                 /*
129                  * Make sure the nrexceptional update is committed before
130                  * the nrpages update so that final truncate racing
131                  * with reclaim does not see both counters 0 at the
132                  * same time and miss a shadow entry.
133                  */
134                 smp_wmb();
135         }
136         mapping->nrpages--;
137
138         if (!node) {
139                 /* Clear direct pointer tags in root node */
140                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141                 radix_tree_replace_slot(slot, shadow);
142                 return;
143         }
144
145         /* Clear tree tags for the removed page */
146         index = page->index;
147         offset = index & RADIX_TREE_MAP_MASK;
148         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149                 if (test_bit(offset, node->tags[tag]))
150                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
151         }
152
153         /* Delete page, swap shadow entry */
154         radix_tree_replace_slot(slot, shadow);
155         workingset_node_pages_dec(node);
156         if (shadow)
157                 workingset_node_shadows_inc(node);
158         else
159                 if (__radix_tree_delete_node(&mapping->page_tree, node))
160                         return;
161
162         /*
163          * Track node that only contains shadow entries.
164          *
165          * Avoid acquiring the list_lru lock if already tracked.  The
166          * list_empty() test is safe as node->private_list is
167          * protected by mapping->tree_lock.
168          */
169         if (!workingset_node_pages(node) &&
170             list_empty(&node->private_list)) {
171                 node->private_data = mapping;
172                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173         }
174 }
175
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock.
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow)
182 {
183         struct address_space *mapping = page->mapping;
184
185         trace_mm_filemap_delete_from_page_cache(page);
186         /*
187          * if we're uptodate, flush out into the cleancache, otherwise
188          * invalidate any existing cleancache entries.  We can't leave
189          * stale data around in the cleancache once our page is gone
190          */
191         if (PageUptodate(page) && PageMappedToDisk(page))
192                 cleancache_put_page(page);
193         else
194                 cleancache_invalidate_page(mapping, page);
195
196         VM_BUG_ON_PAGE(page_mapped(page), page);
197         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198                 int mapcount;
199
200                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
201                          current->comm, page_to_pfn(page));
202                 dump_page(page, "still mapped when deleted");
203                 dump_stack();
204                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205
206                 mapcount = page_mapcount(page);
207                 if (mapping_exiting(mapping) &&
208                     page_count(page) >= mapcount + 2) {
209                         /*
210                          * All vmas have already been torn down, so it's
211                          * a good bet that actually the page is unmapped,
212                          * and we'd prefer not to leak it: if we're wrong,
213                          * some other bad page check should catch it later.
214                          */
215                         page_mapcount_reset(page);
216                         page_ref_sub(page, mapcount);
217                 }
218         }
219
220         page_cache_tree_delete(mapping, page, shadow);
221
222         page->mapping = NULL;
223         /* Leave page->index set: truncation lookup relies upon it */
224
225         /* hugetlb pages do not participate in page cache accounting. */
226         if (!PageHuge(page))
227                 __dec_zone_page_state(page, NR_FILE_PAGES);
228         if (PageSwapBacked(page))
229                 __dec_zone_page_state(page, NR_SHMEM);
230
231         /*
232          * At this point page must be either written or cleaned by truncate.
233          * Dirty page here signals a bug and loss of unwritten data.
234          *
235          * This fixes dirty accounting after removing the page entirely but
236          * leaves PageDirty set: it has no effect for truncated page and
237          * anyway will be cleared before returning page into buddy allocator.
238          */
239         if (WARN_ON_ONCE(PageDirty(page)))
240                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
241 }
242
243 /**
244  * delete_from_page_cache - delete page from page cache
245  * @page: the page which the kernel is trying to remove from page cache
246  *
247  * This must be called only on pages that have been verified to be in the page
248  * cache and locked.  It will never put the page into the free list, the caller
249  * has a reference on the page.
250  */
251 void delete_from_page_cache(struct page *page)
252 {
253         struct address_space *mapping = page->mapping;
254         unsigned long flags;
255
256         void (*freepage)(struct page *);
257
258         BUG_ON(!PageLocked(page));
259
260         freepage = mapping->a_ops->freepage;
261
262         spin_lock_irqsave(&mapping->tree_lock, flags);
263         __delete_from_page_cache(page, NULL);
264         spin_unlock_irqrestore(&mapping->tree_lock, flags);
265
266         if (freepage)
267                 freepage(page);
268         put_page(page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271
272 static int filemap_check_errors(struct address_space *mapping)
273 {
274         int ret = 0;
275         /* Check for outstanding write errors */
276         if (test_bit(AS_ENOSPC, &mapping->flags) &&
277             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278                 ret = -ENOSPC;
279         if (test_bit(AS_EIO, &mapping->flags) &&
280             test_and_clear_bit(AS_EIO, &mapping->flags))
281                 ret = -EIO;
282         return ret;
283 }
284
285 /**
286  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
287  * @mapping:    address space structure to write
288  * @start:      offset in bytes where the range starts
289  * @end:        offset in bytes where the range ends (inclusive)
290  * @sync_mode:  enable synchronous operation
291  *
292  * Start writeback against all of a mapping's dirty pages that lie
293  * within the byte offsets <start, end> inclusive.
294  *
295  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
296  * opposed to a regular memory cleansing writeback.  The difference between
297  * these two operations is that if a dirty page/buffer is encountered, it must
298  * be waited upon, and not just skipped over.
299  */
300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301                                 loff_t end, int sync_mode)
302 {
303         int ret;
304         struct writeback_control wbc = {
305                 .sync_mode = sync_mode,
306                 .nr_to_write = LONG_MAX,
307                 .range_start = start,
308                 .range_end = end,
309         };
310
311         if (!mapping_cap_writeback_dirty(mapping))
312                 return 0;
313
314         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
315         ret = do_writepages(mapping, &wbc);
316         wbc_detach_inode(&wbc);
317         return ret;
318 }
319
320 static inline int __filemap_fdatawrite(struct address_space *mapping,
321         int sync_mode)
322 {
323         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
324 }
325
326 int filemap_fdatawrite(struct address_space *mapping)
327 {
328         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329 }
330 EXPORT_SYMBOL(filemap_fdatawrite);
331
332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333                                 loff_t end)
334 {
335         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336 }
337 EXPORT_SYMBOL(filemap_fdatawrite_range);
338
339 /**
340  * filemap_flush - mostly a non-blocking flush
341  * @mapping:    target address_space
342  *
343  * This is a mostly non-blocking flush.  Not suitable for data-integrity
344  * purposes - I/O may not be started against all dirty pages.
345  */
346 int filemap_flush(struct address_space *mapping)
347 {
348         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349 }
350 EXPORT_SYMBOL(filemap_flush);
351
352 static int __filemap_fdatawait_range(struct address_space *mapping,
353                                      loff_t start_byte, loff_t end_byte)
354 {
355         pgoff_t index = start_byte >> PAGE_SHIFT;
356         pgoff_t end = end_byte >> PAGE_SHIFT;
357         struct pagevec pvec;
358         int nr_pages;
359         int ret = 0;
360
361         if (end_byte < start_byte)
362                 goto out;
363
364         pagevec_init(&pvec, 0);
365         while ((index <= end) &&
366                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367                         PAGECACHE_TAG_WRITEBACK,
368                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369                 unsigned i;
370
371                 for (i = 0; i < nr_pages; i++) {
372                         struct page *page = pvec.pages[i];
373
374                         /* until radix tree lookup accepts end_index */
375                         if (page->index > end)
376                                 continue;
377
378                         wait_on_page_writeback(page);
379                         if (TestClearPageError(page))
380                                 ret = -EIO;
381                 }
382                 pagevec_release(&pvec);
383                 cond_resched();
384         }
385 out:
386         return ret;
387 }
388
389 /**
390  * filemap_fdatawait_range - wait for writeback to complete
391  * @mapping:            address space structure to wait for
392  * @start_byte:         offset in bytes where the range starts
393  * @end_byte:           offset in bytes where the range ends (inclusive)
394  *
395  * Walk the list of under-writeback pages of the given address space
396  * in the given range and wait for all of them.  Check error status of
397  * the address space and return it.
398  *
399  * Since the error status of the address space is cleared by this function,
400  * callers are responsible for checking the return value and handling and/or
401  * reporting the error.
402  */
403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404                             loff_t end_byte)
405 {
406         int ret, ret2;
407
408         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
409         ret2 = filemap_check_errors(mapping);
410         if (!ret)
411                 ret = ret2;
412
413         return ret;
414 }
415 EXPORT_SYMBOL(filemap_fdatawait_range);
416
417 /**
418  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419  * @mapping: address space structure to wait for
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * and wait for all of them.  Unlike filemap_fdatawait(), this function
423  * does not clear error status of the address space.
424  *
425  * Use this function if callers don't handle errors themselves.  Expected
426  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427  * fsfreeze(8)
428  */
429 void filemap_fdatawait_keep_errors(struct address_space *mapping)
430 {
431         loff_t i_size = i_size_read(mapping->host);
432
433         if (i_size == 0)
434                 return;
435
436         __filemap_fdatawait_range(mapping, 0, i_size - 1);
437 }
438
439 /**
440  * filemap_fdatawait - wait for all under-writeback pages to complete
441  * @mapping: address space structure to wait for
442  *
443  * Walk the list of under-writeback pages of the given address space
444  * and wait for all of them.  Check error status of the address space
445  * and return it.
446  *
447  * Since the error status of the address space is cleared by this function,
448  * callers are responsible for checking the return value and handling and/or
449  * reporting the error.
450  */
451 int filemap_fdatawait(struct address_space *mapping)
452 {
453         loff_t i_size = i_size_read(mapping->host);
454
455         if (i_size == 0)
456                 return 0;
457
458         return filemap_fdatawait_range(mapping, 0, i_size - 1);
459 }
460 EXPORT_SYMBOL(filemap_fdatawait);
461
462 int filemap_write_and_wait(struct address_space *mapping)
463 {
464         int err = 0;
465
466         if ((!dax_mapping(mapping) && mapping->nrpages) ||
467             (dax_mapping(mapping) && mapping->nrexceptional)) {
468                 err = filemap_fdatawrite(mapping);
469                 /*
470                  * Even if the above returned error, the pages may be
471                  * written partially (e.g. -ENOSPC), so we wait for it.
472                  * But the -EIO is special case, it may indicate the worst
473                  * thing (e.g. bug) happened, so we avoid waiting for it.
474                  */
475                 if (err != -EIO) {
476                         int err2 = filemap_fdatawait(mapping);
477                         if (!err)
478                                 err = err2;
479                 }
480         } else {
481                 err = filemap_check_errors(mapping);
482         }
483         return err;
484 }
485 EXPORT_SYMBOL(filemap_write_and_wait);
486
487 /**
488  * filemap_write_and_wait_range - write out & wait on a file range
489  * @mapping:    the address_space for the pages
490  * @lstart:     offset in bytes where the range starts
491  * @lend:       offset in bytes where the range ends (inclusive)
492  *
493  * Write out and wait upon file offsets lstart->lend, inclusive.
494  *
495  * Note that `lend' is inclusive (describes the last byte to be written) so
496  * that this function can be used to write to the very end-of-file (end = -1).
497  */
498 int filemap_write_and_wait_range(struct address_space *mapping,
499                                  loff_t lstart, loff_t lend)
500 {
501         int err = 0;
502
503         if ((!dax_mapping(mapping) && mapping->nrpages) ||
504             (dax_mapping(mapping) && mapping->nrexceptional)) {
505                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
506                                                  WB_SYNC_ALL);
507                 /* See comment of filemap_write_and_wait() */
508                 if (err != -EIO) {
509                         int err2 = filemap_fdatawait_range(mapping,
510                                                 lstart, lend);
511                         if (!err)
512                                 err = err2;
513                 }
514         } else {
515                 err = filemap_check_errors(mapping);
516         }
517         return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait_range);
520
521 /**
522  * replace_page_cache_page - replace a pagecache page with a new one
523  * @old:        page to be replaced
524  * @new:        page to replace with
525  * @gfp_mask:   allocation mode
526  *
527  * This function replaces a page in the pagecache with a new one.  On
528  * success it acquires the pagecache reference for the new page and
529  * drops it for the old page.  Both the old and new pages must be
530  * locked.  This function does not add the new page to the LRU, the
531  * caller must do that.
532  *
533  * The remove + add is atomic.  The only way this function can fail is
534  * memory allocation failure.
535  */
536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537 {
538         int error;
539
540         VM_BUG_ON_PAGE(!PageLocked(old), old);
541         VM_BUG_ON_PAGE(!PageLocked(new), new);
542         VM_BUG_ON_PAGE(new->mapping, new);
543
544         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545         if (!error) {
546                 struct address_space *mapping = old->mapping;
547                 void (*freepage)(struct page *);
548                 unsigned long flags;
549
550                 pgoff_t offset = old->index;
551                 freepage = mapping->a_ops->freepage;
552
553                 get_page(new);
554                 new->mapping = mapping;
555                 new->index = offset;
556
557                 spin_lock_irqsave(&mapping->tree_lock, flags);
558                 __delete_from_page_cache(old, NULL);
559                 error = radix_tree_insert(&mapping->page_tree, offset, new);
560                 BUG_ON(error);
561                 mapping->nrpages++;
562
563                 /*
564                  * hugetlb pages do not participate in page cache accounting.
565                  */
566                 if (!PageHuge(new))
567                         __inc_zone_page_state(new, NR_FILE_PAGES);
568                 if (PageSwapBacked(new))
569                         __inc_zone_page_state(new, NR_SHMEM);
570                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
571                 mem_cgroup_migrate(old, new);
572                 radix_tree_preload_end();
573                 if (freepage)
574                         freepage(old);
575                 put_page(old);
576         }
577
578         return error;
579 }
580 EXPORT_SYMBOL_GPL(replace_page_cache_page);
581
582 static int page_cache_tree_insert(struct address_space *mapping,
583                                   struct page *page, void **shadowp)
584 {
585         struct radix_tree_node *node;
586         void **slot;
587         int error;
588
589         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
590                                     &node, &slot);
591         if (error)
592                 return error;
593         if (*slot) {
594                 void *p;
595
596                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597                 if (!radix_tree_exceptional_entry(p))
598                         return -EEXIST;
599
600                 if (WARN_ON(dax_mapping(mapping)))
601                         return -EINVAL;
602
603                 if (shadowp)
604                         *shadowp = p;
605                 mapping->nrexceptional--;
606                 if (node)
607                         workingset_node_shadows_dec(node);
608         }
609         radix_tree_replace_slot(slot, page);
610         mapping->nrpages++;
611         if (node) {
612                 workingset_node_pages_inc(node);
613                 /*
614                  * Don't track node that contains actual pages.
615                  *
616                  * Avoid acquiring the list_lru lock if already
617                  * untracked.  The list_empty() test is safe as
618                  * node->private_list is protected by
619                  * mapping->tree_lock.
620                  */
621                 if (!list_empty(&node->private_list))
622                         list_lru_del(&workingset_shadow_nodes,
623                                      &node->private_list);
624         }
625         return 0;
626 }
627
628 static int __add_to_page_cache_locked(struct page *page,
629                                       struct address_space *mapping,
630                                       pgoff_t offset, gfp_t gfp_mask,
631                                       void **shadowp)
632 {
633         int huge = PageHuge(page);
634         struct mem_cgroup *memcg;
635         int error;
636
637         VM_BUG_ON_PAGE(!PageLocked(page), page);
638         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
639
640         if (!huge) {
641                 error = mem_cgroup_try_charge(page, current->mm,
642                                               gfp_mask, &memcg, false);
643                 if (error)
644                         return error;
645         }
646
647         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
648         if (error) {
649                 if (!huge)
650                         mem_cgroup_cancel_charge(page, memcg, false);
651                 return error;
652         }
653
654         get_page(page);
655         page->mapping = mapping;
656         page->index = offset;
657
658         spin_lock_irq(&mapping->tree_lock);
659         error = page_cache_tree_insert(mapping, page, shadowp);
660         radix_tree_preload_end();
661         if (unlikely(error))
662                 goto err_insert;
663
664         /* hugetlb pages do not participate in page cache accounting. */
665         if (!huge)
666                 __inc_zone_page_state(page, NR_FILE_PAGES);
667         spin_unlock_irq(&mapping->tree_lock);
668         if (!huge)
669                 mem_cgroup_commit_charge(page, memcg, false, false);
670         trace_mm_filemap_add_to_page_cache(page);
671         return 0;
672 err_insert:
673         page->mapping = NULL;
674         /* Leave page->index set: truncation relies upon it */
675         spin_unlock_irq(&mapping->tree_lock);
676         if (!huge)
677                 mem_cgroup_cancel_charge(page, memcg, false);
678         put_page(page);
679         return error;
680 }
681
682 /**
683  * add_to_page_cache_locked - add a locked page to the pagecache
684  * @page:       page to add
685  * @mapping:    the page's address_space
686  * @offset:     page index
687  * @gfp_mask:   page allocation mode
688  *
689  * This function is used to add a page to the pagecache. It must be locked.
690  * This function does not add the page to the LRU.  The caller must do that.
691  */
692 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693                 pgoff_t offset, gfp_t gfp_mask)
694 {
695         return __add_to_page_cache_locked(page, mapping, offset,
696                                           gfp_mask, NULL);
697 }
698 EXPORT_SYMBOL(add_to_page_cache_locked);
699
700 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
701                                 pgoff_t offset, gfp_t gfp_mask)
702 {
703         void *shadow = NULL;
704         int ret;
705
706         __SetPageLocked(page);
707         ret = __add_to_page_cache_locked(page, mapping, offset,
708                                          gfp_mask, &shadow);
709         if (unlikely(ret))
710                 __ClearPageLocked(page);
711         else {
712                 /*
713                  * The page might have been evicted from cache only
714                  * recently, in which case it should be activated like
715                  * any other repeatedly accessed page.
716                  * The exception is pages getting rewritten; evicting other
717                  * data from the working set, only to cache data that will
718                  * get overwritten with something else, is a waste of memory.
719                  */
720                 if (!(gfp_mask & __GFP_WRITE) &&
721                     shadow && workingset_refault(shadow)) {
722                         SetPageActive(page);
723                         workingset_activation(page);
724                 } else
725                         ClearPageActive(page);
726                 lru_cache_add(page);
727         }
728         return ret;
729 }
730 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
731
732 #ifdef CONFIG_NUMA
733 struct page *__page_cache_alloc(gfp_t gfp)
734 {
735         int n;
736         struct page *page;
737
738         if (cpuset_do_page_mem_spread()) {
739                 unsigned int cpuset_mems_cookie;
740                 do {
741                         cpuset_mems_cookie = read_mems_allowed_begin();
742                         n = cpuset_mem_spread_node();
743                         page = __alloc_pages_node(n, gfp, 0);
744                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
745
746                 return page;
747         }
748         return alloc_pages(gfp, 0);
749 }
750 EXPORT_SYMBOL(__page_cache_alloc);
751 #endif
752
753 /*
754  * In order to wait for pages to become available there must be
755  * waitqueues associated with pages. By using a hash table of
756  * waitqueues where the bucket discipline is to maintain all
757  * waiters on the same queue and wake all when any of the pages
758  * become available, and for the woken contexts to check to be
759  * sure the appropriate page became available, this saves space
760  * at a cost of "thundering herd" phenomena during rare hash
761  * collisions.
762  */
763 wait_queue_head_t *page_waitqueue(struct page *page)
764 {
765         const struct zone *zone = page_zone(page);
766
767         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
768 }
769 EXPORT_SYMBOL(page_waitqueue);
770
771 void wait_on_page_bit(struct page *page, int bit_nr)
772 {
773         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
774
775         if (test_bit(bit_nr, &page->flags))
776                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
777                                                         TASK_UNINTERRUPTIBLE);
778 }
779 EXPORT_SYMBOL(wait_on_page_bit);
780
781 int wait_on_page_bit_killable(struct page *page, int bit_nr)
782 {
783         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
784
785         if (!test_bit(bit_nr, &page->flags))
786                 return 0;
787
788         return __wait_on_bit(page_waitqueue(page), &wait,
789                              bit_wait_io, TASK_KILLABLE);
790 }
791
792 int wait_on_page_bit_killable_timeout(struct page *page,
793                                        int bit_nr, unsigned long timeout)
794 {
795         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
796
797         wait.key.timeout = jiffies + timeout;
798         if (!test_bit(bit_nr, &page->flags))
799                 return 0;
800         return __wait_on_bit(page_waitqueue(page), &wait,
801                              bit_wait_io_timeout, TASK_KILLABLE);
802 }
803 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
804
805 /**
806  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
807  * @page: Page defining the wait queue of interest
808  * @waiter: Waiter to add to the queue
809  *
810  * Add an arbitrary @waiter to the wait queue for the nominated @page.
811  */
812 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
813 {
814         wait_queue_head_t *q = page_waitqueue(page);
815         unsigned long flags;
816
817         spin_lock_irqsave(&q->lock, flags);
818         __add_wait_queue(q, waiter);
819         spin_unlock_irqrestore(&q->lock, flags);
820 }
821 EXPORT_SYMBOL_GPL(add_page_wait_queue);
822
823 /**
824  * unlock_page - unlock a locked page
825  * @page: the page
826  *
827  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
828  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
829  * mechanism between PageLocked pages and PageWriteback pages is shared.
830  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
831  *
832  * The mb is necessary to enforce ordering between the clear_bit and the read
833  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
834  */
835 void unlock_page(struct page *page)
836 {
837         page = compound_head(page);
838         VM_BUG_ON_PAGE(!PageLocked(page), page);
839         clear_bit_unlock(PG_locked, &page->flags);
840         smp_mb__after_atomic();
841         wake_up_page(page, PG_locked);
842 }
843 EXPORT_SYMBOL(unlock_page);
844
845 /**
846  * end_page_writeback - end writeback against a page
847  * @page: the page
848  */
849 void end_page_writeback(struct page *page)
850 {
851         /*
852          * TestClearPageReclaim could be used here but it is an atomic
853          * operation and overkill in this particular case. Failing to
854          * shuffle a page marked for immediate reclaim is too mild to
855          * justify taking an atomic operation penalty at the end of
856          * ever page writeback.
857          */
858         if (PageReclaim(page)) {
859                 ClearPageReclaim(page);
860                 rotate_reclaimable_page(page);
861         }
862
863         if (!test_clear_page_writeback(page))
864                 BUG();
865
866         smp_mb__after_atomic();
867         wake_up_page(page, PG_writeback);
868 }
869 EXPORT_SYMBOL(end_page_writeback);
870
871 /*
872  * After completing I/O on a page, call this routine to update the page
873  * flags appropriately
874  */
875 void page_endio(struct page *page, int rw, int err)
876 {
877         if (rw == READ) {
878                 if (!err) {
879                         SetPageUptodate(page);
880                 } else {
881                         ClearPageUptodate(page);
882                         SetPageError(page);
883                 }
884                 unlock_page(page);
885         } else { /* rw == WRITE */
886                 if (err) {
887                         SetPageError(page);
888                         if (page->mapping)
889                                 mapping_set_error(page->mapping, err);
890                 }
891                 end_page_writeback(page);
892         }
893 }
894 EXPORT_SYMBOL_GPL(page_endio);
895
896 /**
897  * __lock_page - get a lock on the page, assuming we need to sleep to get it
898  * @page: the page to lock
899  */
900 void __lock_page(struct page *page)
901 {
902         struct page *page_head = compound_head(page);
903         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
904
905         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
906                                                         TASK_UNINTERRUPTIBLE);
907 }
908 EXPORT_SYMBOL(__lock_page);
909
910 int __lock_page_killable(struct page *page)
911 {
912         struct page *page_head = compound_head(page);
913         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
914
915         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
916                                         bit_wait_io, TASK_KILLABLE);
917 }
918 EXPORT_SYMBOL_GPL(__lock_page_killable);
919
920 /*
921  * Return values:
922  * 1 - page is locked; mmap_sem is still held.
923  * 0 - page is not locked.
924  *     mmap_sem has been released (up_read()), unless flags had both
925  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
926  *     which case mmap_sem is still held.
927  *
928  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
929  * with the page locked and the mmap_sem unperturbed.
930  */
931 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
932                          unsigned int flags)
933 {
934         if (flags & FAULT_FLAG_ALLOW_RETRY) {
935                 /*
936                  * CAUTION! In this case, mmap_sem is not released
937                  * even though return 0.
938                  */
939                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
940                         return 0;
941
942                 up_read(&mm->mmap_sem);
943                 if (flags & FAULT_FLAG_KILLABLE)
944                         wait_on_page_locked_killable(page);
945                 else
946                         wait_on_page_locked(page);
947                 return 0;
948         } else {
949                 if (flags & FAULT_FLAG_KILLABLE) {
950                         int ret;
951
952                         ret = __lock_page_killable(page);
953                         if (ret) {
954                                 up_read(&mm->mmap_sem);
955                                 return 0;
956                         }
957                 } else
958                         __lock_page(page);
959                 return 1;
960         }
961 }
962
963 /**
964  * page_cache_next_hole - find the next hole (not-present entry)
965  * @mapping: mapping
966  * @index: index
967  * @max_scan: maximum range to search
968  *
969  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
970  * lowest indexed hole.
971  *
972  * Returns: the index of the hole if found, otherwise returns an index
973  * outside of the set specified (in which case 'return - index >=
974  * max_scan' will be true). In rare cases of index wrap-around, 0 will
975  * be returned.
976  *
977  * page_cache_next_hole may be called under rcu_read_lock. However,
978  * like radix_tree_gang_lookup, this will not atomically search a
979  * snapshot of the tree at a single point in time. For example, if a
980  * hole is created at index 5, then subsequently a hole is created at
981  * index 10, page_cache_next_hole covering both indexes may return 10
982  * if called under rcu_read_lock.
983  */
984 pgoff_t page_cache_next_hole(struct address_space *mapping,
985                              pgoff_t index, unsigned long max_scan)
986 {
987         unsigned long i;
988
989         for (i = 0; i < max_scan; i++) {
990                 struct page *page;
991
992                 page = radix_tree_lookup(&mapping->page_tree, index);
993                 if (!page || radix_tree_exceptional_entry(page))
994                         break;
995                 index++;
996                 if (index == 0)
997                         break;
998         }
999
1000         return index;
1001 }
1002 EXPORT_SYMBOL(page_cache_next_hole);
1003
1004 /**
1005  * page_cache_prev_hole - find the prev hole (not-present entry)
1006  * @mapping: mapping
1007  * @index: index
1008  * @max_scan: maximum range to search
1009  *
1010  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1011  * the first hole.
1012  *
1013  * Returns: the index of the hole if found, otherwise returns an index
1014  * outside of the set specified (in which case 'index - return >=
1015  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1016  * will be returned.
1017  *
1018  * page_cache_prev_hole may be called under rcu_read_lock. However,
1019  * like radix_tree_gang_lookup, this will not atomically search a
1020  * snapshot of the tree at a single point in time. For example, if a
1021  * hole is created at index 10, then subsequently a hole is created at
1022  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1023  * called under rcu_read_lock.
1024  */
1025 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1026                              pgoff_t index, unsigned long max_scan)
1027 {
1028         unsigned long i;
1029
1030         for (i = 0; i < max_scan; i++) {
1031                 struct page *page;
1032
1033                 page = radix_tree_lookup(&mapping->page_tree, index);
1034                 if (!page || radix_tree_exceptional_entry(page))
1035                         break;
1036                 index--;
1037                 if (index == ULONG_MAX)
1038                         break;
1039         }
1040
1041         return index;
1042 }
1043 EXPORT_SYMBOL(page_cache_prev_hole);
1044
1045 /**
1046  * find_get_entry - find and get a page cache entry
1047  * @mapping: the address_space to search
1048  * @offset: the page cache index
1049  *
1050  * Looks up the page cache slot at @mapping & @offset.  If there is a
1051  * page cache page, it is returned with an increased refcount.
1052  *
1053  * If the slot holds a shadow entry of a previously evicted page, or a
1054  * swap entry from shmem/tmpfs, it is returned.
1055  *
1056  * Otherwise, %NULL is returned.
1057  */
1058 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1059 {
1060         void **pagep;
1061         struct page *page;
1062
1063         rcu_read_lock();
1064 repeat:
1065         page = NULL;
1066         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1067         if (pagep) {
1068                 page = radix_tree_deref_slot(pagep);
1069                 if (unlikely(!page))
1070                         goto out;
1071                 if (radix_tree_exception(page)) {
1072                         if (radix_tree_deref_retry(page))
1073                                 goto repeat;
1074                         /*
1075                          * A shadow entry of a recently evicted page,
1076                          * or a swap entry from shmem/tmpfs.  Return
1077                          * it without attempting to raise page count.
1078                          */
1079                         goto out;
1080                 }
1081                 if (!page_cache_get_speculative(page))
1082                         goto repeat;
1083
1084                 /*
1085                  * Has the page moved?
1086                  * This is part of the lockless pagecache protocol. See
1087                  * include/linux/pagemap.h for details.
1088                  */
1089                 if (unlikely(page != *pagep)) {
1090                         put_page(page);
1091                         goto repeat;
1092                 }
1093         }
1094 out:
1095         rcu_read_unlock();
1096
1097         return page;
1098 }
1099 EXPORT_SYMBOL(find_get_entry);
1100
1101 /**
1102  * find_lock_entry - locate, pin and lock a page cache entry
1103  * @mapping: the address_space to search
1104  * @offset: the page cache index
1105  *
1106  * Looks up the page cache slot at @mapping & @offset.  If there is a
1107  * page cache page, it is returned locked and with an increased
1108  * refcount.
1109  *
1110  * If the slot holds a shadow entry of a previously evicted page, or a
1111  * swap entry from shmem/tmpfs, it is returned.
1112  *
1113  * Otherwise, %NULL is returned.
1114  *
1115  * find_lock_entry() may sleep.
1116  */
1117 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1118 {
1119         struct page *page;
1120
1121 repeat:
1122         page = find_get_entry(mapping, offset);
1123         if (page && !radix_tree_exception(page)) {
1124                 lock_page(page);
1125                 /* Has the page been truncated? */
1126                 if (unlikely(page->mapping != mapping)) {
1127                         unlock_page(page);
1128                         put_page(page);
1129                         goto repeat;
1130                 }
1131                 VM_BUG_ON_PAGE(page->index != offset, page);
1132         }
1133         return page;
1134 }
1135 EXPORT_SYMBOL(find_lock_entry);
1136
1137 /**
1138  * pagecache_get_page - find and get a page reference
1139  * @mapping: the address_space to search
1140  * @offset: the page index
1141  * @fgp_flags: PCG flags
1142  * @gfp_mask: gfp mask to use for the page cache data page allocation
1143  *
1144  * Looks up the page cache slot at @mapping & @offset.
1145  *
1146  * PCG flags modify how the page is returned.
1147  *
1148  * FGP_ACCESSED: the page will be marked accessed
1149  * FGP_LOCK: Page is return locked
1150  * FGP_CREAT: If page is not present then a new page is allocated using
1151  *              @gfp_mask and added to the page cache and the VM's LRU
1152  *              list. The page is returned locked and with an increased
1153  *              refcount. Otherwise, %NULL is returned.
1154  *
1155  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1156  * if the GFP flags specified for FGP_CREAT are atomic.
1157  *
1158  * If there is a page cache page, it is returned with an increased refcount.
1159  */
1160 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1161         int fgp_flags, gfp_t gfp_mask)
1162 {
1163         struct page *page;
1164
1165 repeat:
1166         page = find_get_entry(mapping, offset);
1167         if (radix_tree_exceptional_entry(page))
1168                 page = NULL;
1169         if (!page)
1170                 goto no_page;
1171
1172         if (fgp_flags & FGP_LOCK) {
1173                 if (fgp_flags & FGP_NOWAIT) {
1174                         if (!trylock_page(page)) {
1175                                 put_page(page);
1176                                 return NULL;
1177                         }
1178                 } else {
1179                         lock_page(page);
1180                 }
1181
1182                 /* Has the page been truncated? */
1183                 if (unlikely(page->mapping != mapping)) {
1184                         unlock_page(page);
1185                         put_page(page);
1186                         goto repeat;
1187                 }
1188                 VM_BUG_ON_PAGE(page->index != offset, page);
1189         }
1190
1191         if (page && (fgp_flags & FGP_ACCESSED))
1192                 mark_page_accessed(page);
1193
1194 no_page:
1195         if (!page && (fgp_flags & FGP_CREAT)) {
1196                 int err;
1197                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1198                         gfp_mask |= __GFP_WRITE;
1199                 if (fgp_flags & FGP_NOFS)
1200                         gfp_mask &= ~__GFP_FS;
1201
1202                 page = __page_cache_alloc(gfp_mask);
1203                 if (!page)
1204                         return NULL;
1205
1206                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1207                         fgp_flags |= FGP_LOCK;
1208
1209                 /* Init accessed so avoid atomic mark_page_accessed later */
1210                 if (fgp_flags & FGP_ACCESSED)
1211                         __SetPageReferenced(page);
1212
1213                 err = add_to_page_cache_lru(page, mapping, offset,
1214                                 gfp_mask & GFP_RECLAIM_MASK);
1215                 if (unlikely(err)) {
1216                         put_page(page);
1217                         page = NULL;
1218                         if (err == -EEXIST)
1219                                 goto repeat;
1220                 }
1221         }
1222
1223         return page;
1224 }
1225 EXPORT_SYMBOL(pagecache_get_page);
1226
1227 /**
1228  * find_get_entries - gang pagecache lookup
1229  * @mapping:    The address_space to search
1230  * @start:      The starting page cache index
1231  * @nr_entries: The maximum number of entries
1232  * @entries:    Where the resulting entries are placed
1233  * @indices:    The cache indices corresponding to the entries in @entries
1234  *
1235  * find_get_entries() will search for and return a group of up to
1236  * @nr_entries entries in the mapping.  The entries are placed at
1237  * @entries.  find_get_entries() takes a reference against any actual
1238  * pages it returns.
1239  *
1240  * The search returns a group of mapping-contiguous page cache entries
1241  * with ascending indexes.  There may be holes in the indices due to
1242  * not-present pages.
1243  *
1244  * Any shadow entries of evicted pages, or swap entries from
1245  * shmem/tmpfs, are included in the returned array.
1246  *
1247  * find_get_entries() returns the number of pages and shadow entries
1248  * which were found.
1249  */
1250 unsigned find_get_entries(struct address_space *mapping,
1251                           pgoff_t start, unsigned int nr_entries,
1252                           struct page **entries, pgoff_t *indices)
1253 {
1254         void **slot;
1255         unsigned int ret = 0;
1256         struct radix_tree_iter iter;
1257
1258         if (!nr_entries)
1259                 return 0;
1260
1261         rcu_read_lock();
1262         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1263                 struct page *page;
1264 repeat:
1265                 page = radix_tree_deref_slot(slot);
1266                 if (unlikely(!page))
1267                         continue;
1268                 if (radix_tree_exception(page)) {
1269                         if (radix_tree_deref_retry(page)) {
1270                                 slot = radix_tree_iter_retry(&iter);
1271                                 continue;
1272                         }
1273                         /*
1274                          * A shadow entry of a recently evicted page, a swap
1275                          * entry from shmem/tmpfs or a DAX entry.  Return it
1276                          * without attempting to raise page count.
1277                          */
1278                         goto export;
1279                 }
1280                 if (!page_cache_get_speculative(page))
1281                         goto repeat;
1282
1283                 /* Has the page moved? */
1284                 if (unlikely(page != *slot)) {
1285                         put_page(page);
1286                         goto repeat;
1287                 }
1288 export:
1289                 indices[ret] = iter.index;
1290                 entries[ret] = page;
1291                 if (++ret == nr_entries)
1292                         break;
1293         }
1294         rcu_read_unlock();
1295         return ret;
1296 }
1297
1298 /**
1299  * find_get_pages - gang pagecache lookup
1300  * @mapping:    The address_space to search
1301  * @start:      The starting page index
1302  * @nr_pages:   The maximum number of pages
1303  * @pages:      Where the resulting pages are placed
1304  *
1305  * find_get_pages() will search for and return a group of up to
1306  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1307  * find_get_pages() takes a reference against the returned pages.
1308  *
1309  * The search returns a group of mapping-contiguous pages with ascending
1310  * indexes.  There may be holes in the indices due to not-present pages.
1311  *
1312  * find_get_pages() returns the number of pages which were found.
1313  */
1314 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1315                             unsigned int nr_pages, struct page **pages)
1316 {
1317         struct radix_tree_iter iter;
1318         void **slot;
1319         unsigned ret = 0;
1320
1321         if (unlikely(!nr_pages))
1322                 return 0;
1323
1324         rcu_read_lock();
1325         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1326                 struct page *page;
1327 repeat:
1328                 page = radix_tree_deref_slot(slot);
1329                 if (unlikely(!page))
1330                         continue;
1331
1332                 if (radix_tree_exception(page)) {
1333                         if (radix_tree_deref_retry(page)) {
1334                                 slot = radix_tree_iter_retry(&iter);
1335                                 continue;
1336                         }
1337                         /*
1338                          * A shadow entry of a recently evicted page,
1339                          * or a swap entry from shmem/tmpfs.  Skip
1340                          * over it.
1341                          */
1342                         continue;
1343                 }
1344
1345                 if (!page_cache_get_speculative(page))
1346                         goto repeat;
1347
1348                 /* Has the page moved? */
1349                 if (unlikely(page != *slot)) {
1350                         put_page(page);
1351                         goto repeat;
1352                 }
1353
1354                 pages[ret] = page;
1355                 if (++ret == nr_pages)
1356                         break;
1357         }
1358
1359         rcu_read_unlock();
1360         return ret;
1361 }
1362
1363 /**
1364  * find_get_pages_contig - gang contiguous pagecache lookup
1365  * @mapping:    The address_space to search
1366  * @index:      The starting page index
1367  * @nr_pages:   The maximum number of pages
1368  * @pages:      Where the resulting pages are placed
1369  *
1370  * find_get_pages_contig() works exactly like find_get_pages(), except
1371  * that the returned number of pages are guaranteed to be contiguous.
1372  *
1373  * find_get_pages_contig() returns the number of pages which were found.
1374  */
1375 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1376                                unsigned int nr_pages, struct page **pages)
1377 {
1378         struct radix_tree_iter iter;
1379         void **slot;
1380         unsigned int ret = 0;
1381
1382         if (unlikely(!nr_pages))
1383                 return 0;
1384
1385         rcu_read_lock();
1386         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1387                 struct page *page;
1388 repeat:
1389                 page = radix_tree_deref_slot(slot);
1390                 /* The hole, there no reason to continue */
1391                 if (unlikely(!page))
1392                         break;
1393
1394                 if (radix_tree_exception(page)) {
1395                         if (radix_tree_deref_retry(page)) {
1396                                 slot = radix_tree_iter_retry(&iter);
1397                                 continue;
1398                         }
1399                         /*
1400                          * A shadow entry of a recently evicted page,
1401                          * or a swap entry from shmem/tmpfs.  Stop
1402                          * looking for contiguous pages.
1403                          */
1404                         break;
1405                 }
1406
1407                 if (!page_cache_get_speculative(page))
1408                         goto repeat;
1409
1410                 /* Has the page moved? */
1411                 if (unlikely(page != *slot)) {
1412                         put_page(page);
1413                         goto repeat;
1414                 }
1415
1416                 /*
1417                  * must check mapping and index after taking the ref.
1418                  * otherwise we can get both false positives and false
1419                  * negatives, which is just confusing to the caller.
1420                  */
1421                 if (page->mapping == NULL || page->index != iter.index) {
1422                         put_page(page);
1423                         break;
1424                 }
1425
1426                 pages[ret] = page;
1427                 if (++ret == nr_pages)
1428                         break;
1429         }
1430         rcu_read_unlock();
1431         return ret;
1432 }
1433 EXPORT_SYMBOL(find_get_pages_contig);
1434
1435 /**
1436  * find_get_pages_tag - find and return pages that match @tag
1437  * @mapping:    the address_space to search
1438  * @index:      the starting page index
1439  * @tag:        the tag index
1440  * @nr_pages:   the maximum number of pages
1441  * @pages:      where the resulting pages are placed
1442  *
1443  * Like find_get_pages, except we only return pages which are tagged with
1444  * @tag.   We update @index to index the next page for the traversal.
1445  */
1446 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1447                         int tag, unsigned int nr_pages, struct page **pages)
1448 {
1449         struct radix_tree_iter iter;
1450         void **slot;
1451         unsigned ret = 0;
1452
1453         if (unlikely(!nr_pages))
1454                 return 0;
1455
1456         rcu_read_lock();
1457         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1458                                    &iter, *index, tag) {
1459                 struct page *page;
1460 repeat:
1461                 page = radix_tree_deref_slot(slot);
1462                 if (unlikely(!page))
1463                         continue;
1464
1465                 if (radix_tree_exception(page)) {
1466                         if (radix_tree_deref_retry(page)) {
1467                                 slot = radix_tree_iter_retry(&iter);
1468                                 continue;
1469                         }
1470                         /*
1471                          * A shadow entry of a recently evicted page.
1472                          *
1473                          * Those entries should never be tagged, but
1474                          * this tree walk is lockless and the tags are
1475                          * looked up in bulk, one radix tree node at a
1476                          * time, so there is a sizable window for page
1477                          * reclaim to evict a page we saw tagged.
1478                          *
1479                          * Skip over it.
1480                          */
1481                         continue;
1482                 }
1483
1484                 if (!page_cache_get_speculative(page))
1485                         goto repeat;
1486
1487                 /* Has the page moved? */
1488                 if (unlikely(page != *slot)) {
1489                         put_page(page);
1490                         goto repeat;
1491                 }
1492
1493                 pages[ret] = page;
1494                 if (++ret == nr_pages)
1495                         break;
1496         }
1497
1498         rcu_read_unlock();
1499
1500         if (ret)
1501                 *index = pages[ret - 1]->index + 1;
1502
1503         return ret;
1504 }
1505 EXPORT_SYMBOL(find_get_pages_tag);
1506
1507 /**
1508  * find_get_entries_tag - find and return entries that match @tag
1509  * @mapping:    the address_space to search
1510  * @start:      the starting page cache index
1511  * @tag:        the tag index
1512  * @nr_entries: the maximum number of entries
1513  * @entries:    where the resulting entries are placed
1514  * @indices:    the cache indices corresponding to the entries in @entries
1515  *
1516  * Like find_get_entries, except we only return entries which are tagged with
1517  * @tag.
1518  */
1519 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1520                         int tag, unsigned int nr_entries,
1521                         struct page **entries, pgoff_t *indices)
1522 {
1523         void **slot;
1524         unsigned int ret = 0;
1525         struct radix_tree_iter iter;
1526
1527         if (!nr_entries)
1528                 return 0;
1529
1530         rcu_read_lock();
1531         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1532                                    &iter, start, tag) {
1533                 struct page *page;
1534 repeat:
1535                 page = radix_tree_deref_slot(slot);
1536                 if (unlikely(!page))
1537                         continue;
1538                 if (radix_tree_exception(page)) {
1539                         if (radix_tree_deref_retry(page)) {
1540                                 slot = radix_tree_iter_retry(&iter);
1541                                 continue;
1542                         }
1543
1544                         /*
1545                          * A shadow entry of a recently evicted page, a swap
1546                          * entry from shmem/tmpfs or a DAX entry.  Return it
1547                          * without attempting to raise page count.
1548                          */
1549                         goto export;
1550                 }
1551                 if (!page_cache_get_speculative(page))
1552                         goto repeat;
1553
1554                 /* Has the page moved? */
1555                 if (unlikely(page != *slot)) {
1556                         put_page(page);
1557                         goto repeat;
1558                 }
1559 export:
1560                 indices[ret] = iter.index;
1561                 entries[ret] = page;
1562                 if (++ret == nr_entries)
1563                         break;
1564         }
1565         rcu_read_unlock();
1566         return ret;
1567 }
1568 EXPORT_SYMBOL(find_get_entries_tag);
1569
1570 /*
1571  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1572  * a _large_ part of the i/o request. Imagine the worst scenario:
1573  *
1574  *      ---R__________________________________________B__________
1575  *         ^ reading here                             ^ bad block(assume 4k)
1576  *
1577  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1578  * => failing the whole request => read(R) => read(R+1) =>
1579  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1580  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1581  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1582  *
1583  * It is going insane. Fix it by quickly scaling down the readahead size.
1584  */
1585 static void shrink_readahead_size_eio(struct file *filp,
1586                                         struct file_ra_state *ra)
1587 {
1588         ra->ra_pages /= 4;
1589 }
1590
1591 /**
1592  * do_generic_file_read - generic file read routine
1593  * @filp:       the file to read
1594  * @ppos:       current file position
1595  * @iter:       data destination
1596  * @written:    already copied
1597  *
1598  * This is a generic file read routine, and uses the
1599  * mapping->a_ops->readpage() function for the actual low-level stuff.
1600  *
1601  * This is really ugly. But the goto's actually try to clarify some
1602  * of the logic when it comes to error handling etc.
1603  */
1604 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1605                 struct iov_iter *iter, ssize_t written)
1606 {
1607         struct address_space *mapping = filp->f_mapping;
1608         struct inode *inode = mapping->host;
1609         struct file_ra_state *ra = &filp->f_ra;
1610         pgoff_t index;
1611         pgoff_t last_index;
1612         pgoff_t prev_index;
1613         unsigned long offset;      /* offset into pagecache page */
1614         unsigned int prev_offset;
1615         int error = 0;
1616
1617         index = *ppos >> PAGE_SHIFT;
1618         prev_index = ra->prev_pos >> PAGE_SHIFT;
1619         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1620         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1621         offset = *ppos & ~PAGE_MASK;
1622
1623         for (;;) {
1624                 struct page *page;
1625                 pgoff_t end_index;
1626                 loff_t isize;
1627                 unsigned long nr, ret;
1628
1629                 cond_resched();
1630 find_page:
1631                 page = find_get_page(mapping, index);
1632                 if (!page) {
1633                         page_cache_sync_readahead(mapping,
1634                                         ra, filp,
1635                                         index, last_index - index);
1636                         page = find_get_page(mapping, index);
1637                         if (unlikely(page == NULL))
1638                                 goto no_cached_page;
1639                 }
1640                 if (PageReadahead(page)) {
1641                         page_cache_async_readahead(mapping,
1642                                         ra, filp, page,
1643                                         index, last_index - index);
1644                 }
1645                 if (!PageUptodate(page)) {
1646                         /*
1647                          * See comment in do_read_cache_page on why
1648                          * wait_on_page_locked is used to avoid unnecessarily
1649                          * serialisations and why it's safe.
1650                          */
1651                         wait_on_page_locked_killable(page);
1652                         if (PageUptodate(page))
1653                                 goto page_ok;
1654
1655                         if (inode->i_blkbits == PAGE_SHIFT ||
1656                                         !mapping->a_ops->is_partially_uptodate)
1657                                 goto page_not_up_to_date;
1658                         if (!trylock_page(page))
1659                                 goto page_not_up_to_date;
1660                         /* Did it get truncated before we got the lock? */
1661                         if (!page->mapping)
1662                                 goto page_not_up_to_date_locked;
1663                         if (!mapping->a_ops->is_partially_uptodate(page,
1664                                                         offset, iter->count))
1665                                 goto page_not_up_to_date_locked;
1666                         unlock_page(page);
1667                 }
1668 page_ok:
1669                 /*
1670                  * i_size must be checked after we know the page is Uptodate.
1671                  *
1672                  * Checking i_size after the check allows us to calculate
1673                  * the correct value for "nr", which means the zero-filled
1674                  * part of the page is not copied back to userspace (unless
1675                  * another truncate extends the file - this is desired though).
1676                  */
1677
1678                 isize = i_size_read(inode);
1679                 end_index = (isize - 1) >> PAGE_SHIFT;
1680                 if (unlikely(!isize || index > end_index)) {
1681                         put_page(page);
1682                         goto out;
1683                 }
1684
1685                 /* nr is the maximum number of bytes to copy from this page */
1686                 nr = PAGE_SIZE;
1687                 if (index == end_index) {
1688                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1689                         if (nr <= offset) {
1690                                 put_page(page);
1691                                 goto out;
1692                         }
1693                 }
1694                 nr = nr - offset;
1695
1696                 /* If users can be writing to this page using arbitrary
1697                  * virtual addresses, take care about potential aliasing
1698                  * before reading the page on the kernel side.
1699                  */
1700                 if (mapping_writably_mapped(mapping))
1701                         flush_dcache_page(page);
1702
1703                 /*
1704                  * When a sequential read accesses a page several times,
1705                  * only mark it as accessed the first time.
1706                  */
1707                 if (prev_index != index || offset != prev_offset)
1708                         mark_page_accessed(page);
1709                 prev_index = index;
1710
1711                 /*
1712                  * Ok, we have the page, and it's up-to-date, so
1713                  * now we can copy it to user space...
1714                  */
1715
1716                 ret = copy_page_to_iter(page, offset, nr, iter);
1717                 offset += ret;
1718                 index += offset >> PAGE_SHIFT;
1719                 offset &= ~PAGE_MASK;
1720                 prev_offset = offset;
1721
1722                 put_page(page);
1723                 written += ret;
1724                 if (!iov_iter_count(iter))
1725                         goto out;
1726                 if (ret < nr) {
1727                         error = -EFAULT;
1728                         goto out;
1729                 }
1730                 continue;
1731
1732 page_not_up_to_date:
1733                 /* Get exclusive access to the page ... */
1734                 error = lock_page_killable(page);
1735                 if (unlikely(error))
1736                         goto readpage_error;
1737
1738 page_not_up_to_date_locked:
1739                 /* Did it get truncated before we got the lock? */
1740                 if (!page->mapping) {
1741                         unlock_page(page);
1742                         put_page(page);
1743                         continue;
1744                 }
1745
1746                 /* Did somebody else fill it already? */
1747                 if (PageUptodate(page)) {
1748                         unlock_page(page);
1749                         goto page_ok;
1750                 }
1751
1752 readpage:
1753                 /*
1754                  * A previous I/O error may have been due to temporary
1755                  * failures, eg. multipath errors.
1756                  * PG_error will be set again if readpage fails.
1757                  */
1758                 ClearPageError(page);
1759                 /* Start the actual read. The read will unlock the page. */
1760                 error = mapping->a_ops->readpage(filp, page);
1761
1762                 if (unlikely(error)) {
1763                         if (error == AOP_TRUNCATED_PAGE) {
1764                                 put_page(page);
1765                                 error = 0;
1766                                 goto find_page;
1767                         }
1768                         goto readpage_error;
1769                 }
1770
1771                 if (!PageUptodate(page)) {
1772                         error = lock_page_killable(page);
1773                         if (unlikely(error))
1774                                 goto readpage_error;
1775                         if (!PageUptodate(page)) {
1776                                 if (page->mapping == NULL) {
1777                                         /*
1778                                          * invalidate_mapping_pages got it
1779                                          */
1780                                         unlock_page(page);
1781                                         put_page(page);
1782                                         goto find_page;
1783                                 }
1784                                 unlock_page(page);
1785                                 shrink_readahead_size_eio(filp, ra);
1786                                 error = -EIO;
1787                                 goto readpage_error;
1788                         }
1789                         unlock_page(page);
1790                 }
1791
1792                 goto page_ok;
1793
1794 readpage_error:
1795                 /* UHHUH! A synchronous read error occurred. Report it */
1796                 put_page(page);
1797                 goto out;
1798
1799 no_cached_page:
1800                 /*
1801                  * Ok, it wasn't cached, so we need to create a new
1802                  * page..
1803                  */
1804                 page = page_cache_alloc_cold(mapping);
1805                 if (!page) {
1806                         error = -ENOMEM;
1807                         goto out;
1808                 }
1809                 error = add_to_page_cache_lru(page, mapping, index,
1810                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1811                 if (error) {
1812                         put_page(page);
1813                         if (error == -EEXIST) {
1814                                 error = 0;
1815                                 goto find_page;
1816                         }
1817                         goto out;
1818                 }
1819                 goto readpage;
1820         }
1821
1822 out:
1823         ra->prev_pos = prev_index;
1824         ra->prev_pos <<= PAGE_SHIFT;
1825         ra->prev_pos |= prev_offset;
1826
1827         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1828         file_accessed(filp);
1829         return written ? written : error;
1830 }
1831
1832 /**
1833  * generic_file_read_iter - generic filesystem read routine
1834  * @iocb:       kernel I/O control block
1835  * @iter:       destination for the data read
1836  *
1837  * This is the "read_iter()" routine for all filesystems
1838  * that can use the page cache directly.
1839  */
1840 ssize_t
1841 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1842 {
1843         struct file *file = iocb->ki_filp;
1844         ssize_t retval = 0;
1845         size_t count = iov_iter_count(iter);
1846
1847         if (!count)
1848                 goto out; /* skip atime */
1849
1850         if (iocb->ki_flags & IOCB_DIRECT) {
1851                 struct address_space *mapping = file->f_mapping;
1852                 struct inode *inode = mapping->host;
1853                 loff_t size;
1854
1855                 size = i_size_read(inode);
1856                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1857                                         iocb->ki_pos + count - 1);
1858                 if (!retval) {
1859                         struct iov_iter data = *iter;
1860                         retval = mapping->a_ops->direct_IO(iocb, &data);
1861                 }
1862
1863                 if (retval > 0) {
1864                         iocb->ki_pos += retval;
1865                         iov_iter_advance(iter, retval);
1866                 }
1867
1868                 /*
1869                  * Btrfs can have a short DIO read if we encounter
1870                  * compressed extents, so if there was an error, or if
1871                  * we've already read everything we wanted to, or if
1872                  * there was a short read because we hit EOF, go ahead
1873                  * and return.  Otherwise fallthrough to buffered io for
1874                  * the rest of the read.  Buffered reads will not work for
1875                  * DAX files, so don't bother trying.
1876                  */
1877                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1878                     IS_DAX(inode)) {
1879                         file_accessed(file);
1880                         goto out;
1881                 }
1882         }
1883
1884         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1885 out:
1886         return retval;
1887 }
1888 EXPORT_SYMBOL(generic_file_read_iter);
1889
1890 #ifdef CONFIG_MMU
1891 /**
1892  * page_cache_read - adds requested page to the page cache if not already there
1893  * @file:       file to read
1894  * @offset:     page index
1895  * @gfp_mask:   memory allocation flags
1896  *
1897  * This adds the requested page to the page cache if it isn't already there,
1898  * and schedules an I/O to read in its contents from disk.
1899  */
1900 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1901 {
1902         struct address_space *mapping = file->f_mapping;
1903         struct page *page;
1904         int ret;
1905
1906         do {
1907                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1908                 if (!page)
1909                         return -ENOMEM;
1910
1911                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1912                 if (ret == 0)
1913                         ret = mapping->a_ops->readpage(file, page);
1914                 else if (ret == -EEXIST)
1915                         ret = 0; /* losing race to add is OK */
1916
1917                 put_page(page);
1918
1919         } while (ret == AOP_TRUNCATED_PAGE);
1920
1921         return ret;
1922 }
1923
1924 #define MMAP_LOTSAMISS  (100)
1925
1926 /*
1927  * Synchronous readahead happens when we don't even find
1928  * a page in the page cache at all.
1929  */
1930 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1931                                    struct file_ra_state *ra,
1932                                    struct file *file,
1933                                    pgoff_t offset)
1934 {
1935         struct address_space *mapping = file->f_mapping;
1936
1937         /* If we don't want any read-ahead, don't bother */
1938         if (vma->vm_flags & VM_RAND_READ)
1939                 return;
1940         if (!ra->ra_pages)
1941                 return;
1942
1943         if (vma->vm_flags & VM_SEQ_READ) {
1944                 page_cache_sync_readahead(mapping, ra, file, offset,
1945                                           ra->ra_pages);
1946                 return;
1947         }
1948
1949         /* Avoid banging the cache line if not needed */
1950         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1951                 ra->mmap_miss++;
1952
1953         /*
1954          * Do we miss much more than hit in this file? If so,
1955          * stop bothering with read-ahead. It will only hurt.
1956          */
1957         if (ra->mmap_miss > MMAP_LOTSAMISS)
1958                 return;
1959
1960         /*
1961          * mmap read-around
1962          */
1963         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1964         ra->size = ra->ra_pages;
1965         ra->async_size = ra->ra_pages / 4;
1966         ra_submit(ra, mapping, file);
1967 }
1968
1969 /*
1970  * Asynchronous readahead happens when we find the page and PG_readahead,
1971  * so we want to possibly extend the readahead further..
1972  */
1973 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1974                                     struct file_ra_state *ra,
1975                                     struct file *file,
1976                                     struct page *page,
1977                                     pgoff_t offset)
1978 {
1979         struct address_space *mapping = file->f_mapping;
1980
1981         /* If we don't want any read-ahead, don't bother */
1982         if (vma->vm_flags & VM_RAND_READ)
1983                 return;
1984         if (ra->mmap_miss > 0)
1985                 ra->mmap_miss--;
1986         if (PageReadahead(page))
1987                 page_cache_async_readahead(mapping, ra, file,
1988                                            page, offset, ra->ra_pages);
1989 }
1990
1991 /**
1992  * filemap_fault - read in file data for page fault handling
1993  * @vma:        vma in which the fault was taken
1994  * @vmf:        struct vm_fault containing details of the fault
1995  *
1996  * filemap_fault() is invoked via the vma operations vector for a
1997  * mapped memory region to read in file data during a page fault.
1998  *
1999  * The goto's are kind of ugly, but this streamlines the normal case of having
2000  * it in the page cache, and handles the special cases reasonably without
2001  * having a lot of duplicated code.
2002  *
2003  * vma->vm_mm->mmap_sem must be held on entry.
2004  *
2005  * If our return value has VM_FAULT_RETRY set, it's because
2006  * lock_page_or_retry() returned 0.
2007  * The mmap_sem has usually been released in this case.
2008  * See __lock_page_or_retry() for the exception.
2009  *
2010  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2011  * has not been released.
2012  *
2013  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2014  */
2015 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2016 {
2017         int error;
2018         struct file *file = vma->vm_file;
2019         struct address_space *mapping = file->f_mapping;
2020         struct file_ra_state *ra = &file->f_ra;
2021         struct inode *inode = mapping->host;
2022         pgoff_t offset = vmf->pgoff;
2023         struct page *page;
2024         loff_t size;
2025         int ret = 0;
2026
2027         size = round_up(i_size_read(inode), PAGE_SIZE);
2028         if (offset >= size >> PAGE_SHIFT)
2029                 return VM_FAULT_SIGBUS;
2030
2031         /*
2032          * Do we have something in the page cache already?
2033          */
2034         page = find_get_page(mapping, offset);
2035         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2036                 /*
2037                  * We found the page, so try async readahead before
2038                  * waiting for the lock.
2039                  */
2040                 do_async_mmap_readahead(vma, ra, file, page, offset);
2041         } else if (!page) {
2042                 /* No page in the page cache at all */
2043                 do_sync_mmap_readahead(vma, ra, file, offset);
2044                 count_vm_event(PGMAJFAULT);
2045                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2046                 ret = VM_FAULT_MAJOR;
2047 retry_find:
2048                 page = find_get_page(mapping, offset);
2049                 if (!page)
2050                         goto no_cached_page;
2051         }
2052
2053         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2054                 put_page(page);
2055                 return ret | VM_FAULT_RETRY;
2056         }
2057
2058         /* Did it get truncated? */
2059         if (unlikely(page->mapping != mapping)) {
2060                 unlock_page(page);
2061                 put_page(page);
2062                 goto retry_find;
2063         }
2064         VM_BUG_ON_PAGE(page->index != offset, page);
2065
2066         /*
2067          * We have a locked page in the page cache, now we need to check
2068          * that it's up-to-date. If not, it is going to be due to an error.
2069          */
2070         if (unlikely(!PageUptodate(page)))
2071                 goto page_not_uptodate;
2072
2073         /*
2074          * Found the page and have a reference on it.
2075          * We must recheck i_size under page lock.
2076          */
2077         size = round_up(i_size_read(inode), PAGE_SIZE);
2078         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2079                 unlock_page(page);
2080                 put_page(page);
2081                 return VM_FAULT_SIGBUS;
2082         }
2083
2084         vmf->page = page;
2085         return ret | VM_FAULT_LOCKED;
2086
2087 no_cached_page:
2088         /*
2089          * We're only likely to ever get here if MADV_RANDOM is in
2090          * effect.
2091          */
2092         error = page_cache_read(file, offset, vmf->gfp_mask);
2093
2094         /*
2095          * The page we want has now been added to the page cache.
2096          * In the unlikely event that someone removed it in the
2097          * meantime, we'll just come back here and read it again.
2098          */
2099         if (error >= 0)
2100                 goto retry_find;
2101
2102         /*
2103          * An error return from page_cache_read can result if the
2104          * system is low on memory, or a problem occurs while trying
2105          * to schedule I/O.
2106          */
2107         if (error == -ENOMEM)
2108                 return VM_FAULT_OOM;
2109         return VM_FAULT_SIGBUS;
2110
2111 page_not_uptodate:
2112         /*
2113          * Umm, take care of errors if the page isn't up-to-date.
2114          * Try to re-read it _once_. We do this synchronously,
2115          * because there really aren't any performance issues here
2116          * and we need to check for errors.
2117          */
2118         ClearPageError(page);
2119         error = mapping->a_ops->readpage(file, page);
2120         if (!error) {
2121                 wait_on_page_locked(page);
2122                 if (!PageUptodate(page))
2123                         error = -EIO;
2124         }
2125         put_page(page);
2126
2127         if (!error || error == AOP_TRUNCATED_PAGE)
2128                 goto retry_find;
2129
2130         /* Things didn't work out. Return zero to tell the mm layer so. */
2131         shrink_readahead_size_eio(file, ra);
2132         return VM_FAULT_SIGBUS;
2133 }
2134 EXPORT_SYMBOL(filemap_fault);
2135
2136 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2137 {
2138         struct radix_tree_iter iter;
2139         void **slot;
2140         struct file *file = vma->vm_file;
2141         struct address_space *mapping = file->f_mapping;
2142         loff_t size;
2143         struct page *page;
2144         unsigned long address = (unsigned long) vmf->virtual_address;
2145         unsigned long addr;
2146         pte_t *pte;
2147
2148         rcu_read_lock();
2149         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2150                 if (iter.index > vmf->max_pgoff)
2151                         break;
2152 repeat:
2153                 page = radix_tree_deref_slot(slot);
2154                 if (unlikely(!page))
2155                         goto next;
2156                 if (radix_tree_exception(page)) {
2157                         if (radix_tree_deref_retry(page)) {
2158                                 slot = radix_tree_iter_retry(&iter);
2159                                 continue;
2160                         }
2161                         goto next;
2162                 }
2163
2164                 if (!page_cache_get_speculative(page))
2165                         goto repeat;
2166
2167                 /* Has the page moved? */
2168                 if (unlikely(page != *slot)) {
2169                         put_page(page);
2170                         goto repeat;
2171                 }
2172
2173                 if (!PageUptodate(page) ||
2174                                 PageReadahead(page) ||
2175                                 PageHWPoison(page))
2176                         goto skip;
2177                 if (!trylock_page(page))
2178                         goto skip;
2179
2180                 if (page->mapping != mapping || !PageUptodate(page))
2181                         goto unlock;
2182
2183                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2184                 if (page->index >= size >> PAGE_SHIFT)
2185                         goto unlock;
2186
2187                 pte = vmf->pte + page->index - vmf->pgoff;
2188                 if (!pte_none(*pte))
2189                         goto unlock;
2190
2191                 if (file->f_ra.mmap_miss > 0)
2192                         file->f_ra.mmap_miss--;
2193                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2194                 do_set_pte(vma, addr, page, pte, false, false, true);
2195                 unlock_page(page);
2196                 goto next;
2197 unlock:
2198                 unlock_page(page);
2199 skip:
2200                 put_page(page);
2201 next:
2202                 if (iter.index == vmf->max_pgoff)
2203                         break;
2204         }
2205         rcu_read_unlock();
2206 }
2207 EXPORT_SYMBOL(filemap_map_pages);
2208
2209 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2210 {
2211         struct page *page = vmf->page;
2212         struct inode *inode = file_inode(vma->vm_file);
2213         int ret = VM_FAULT_LOCKED;
2214
2215         sb_start_pagefault(inode->i_sb);
2216         file_update_time(vma->vm_file);
2217         lock_page(page);
2218         if (page->mapping != inode->i_mapping) {
2219                 unlock_page(page);
2220                 ret = VM_FAULT_NOPAGE;
2221                 goto out;
2222         }
2223         /*
2224          * We mark the page dirty already here so that when freeze is in
2225          * progress, we are guaranteed that writeback during freezing will
2226          * see the dirty page and writeprotect it again.
2227          */
2228         set_page_dirty(page);
2229         wait_for_stable_page(page);
2230 out:
2231         sb_end_pagefault(inode->i_sb);
2232         return ret;
2233 }
2234 EXPORT_SYMBOL(filemap_page_mkwrite);
2235
2236 const struct vm_operations_struct generic_file_vm_ops = {
2237         .fault          = filemap_fault,
2238         .map_pages      = filemap_map_pages,
2239         .page_mkwrite   = filemap_page_mkwrite,
2240 };
2241
2242 /* This is used for a general mmap of a disk file */
2243
2244 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2245 {
2246         struct address_space *mapping = file->f_mapping;
2247
2248         if (!mapping->a_ops->readpage)
2249                 return -ENOEXEC;
2250         file_accessed(file);
2251         vma->vm_ops = &generic_file_vm_ops;
2252         return 0;
2253 }
2254
2255 /*
2256  * This is for filesystems which do not implement ->writepage.
2257  */
2258 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2259 {
2260         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2261                 return -EINVAL;
2262         return generic_file_mmap(file, vma);
2263 }
2264 #else
2265 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2266 {
2267         return -ENOSYS;
2268 }
2269 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2270 {
2271         return -ENOSYS;
2272 }
2273 #endif /* CONFIG_MMU */
2274
2275 EXPORT_SYMBOL(generic_file_mmap);
2276 EXPORT_SYMBOL(generic_file_readonly_mmap);
2277
2278 static struct page *wait_on_page_read(struct page *page)
2279 {
2280         if (!IS_ERR(page)) {
2281                 wait_on_page_locked(page);
2282                 if (!PageUptodate(page)) {
2283                         put_page(page);
2284                         page = ERR_PTR(-EIO);
2285                 }
2286         }
2287         return page;
2288 }
2289
2290 static struct page *do_read_cache_page(struct address_space *mapping,
2291                                 pgoff_t index,
2292                                 int (*filler)(void *, struct page *),
2293                                 void *data,
2294                                 gfp_t gfp)
2295 {
2296         struct page *page;
2297         int err;
2298 repeat:
2299         page = find_get_page(mapping, index);
2300         if (!page) {
2301                 page = __page_cache_alloc(gfp | __GFP_COLD);
2302                 if (!page)
2303                         return ERR_PTR(-ENOMEM);
2304                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2305                 if (unlikely(err)) {
2306                         put_page(page);
2307                         if (err == -EEXIST)
2308                                 goto repeat;
2309                         /* Presumably ENOMEM for radix tree node */
2310                         return ERR_PTR(err);
2311                 }
2312
2313 filler:
2314                 err = filler(data, page);
2315                 if (err < 0) {
2316                         put_page(page);
2317                         return ERR_PTR(err);
2318                 }
2319
2320                 page = wait_on_page_read(page);
2321                 if (IS_ERR(page))
2322                         return page;
2323                 goto out;
2324         }
2325         if (PageUptodate(page))
2326                 goto out;
2327
2328         /*
2329          * Page is not up to date and may be locked due one of the following
2330          * case a: Page is being filled and the page lock is held
2331          * case b: Read/write error clearing the page uptodate status
2332          * case c: Truncation in progress (page locked)
2333          * case d: Reclaim in progress
2334          *
2335          * Case a, the page will be up to date when the page is unlocked.
2336          *    There is no need to serialise on the page lock here as the page
2337          *    is pinned so the lock gives no additional protection. Even if the
2338          *    the page is truncated, the data is still valid if PageUptodate as
2339          *    it's a race vs truncate race.
2340          * Case b, the page will not be up to date
2341          * Case c, the page may be truncated but in itself, the data may still
2342          *    be valid after IO completes as it's a read vs truncate race. The
2343          *    operation must restart if the page is not uptodate on unlock but
2344          *    otherwise serialising on page lock to stabilise the mapping gives
2345          *    no additional guarantees to the caller as the page lock is
2346          *    released before return.
2347          * Case d, similar to truncation. If reclaim holds the page lock, it
2348          *    will be a race with remove_mapping that determines if the mapping
2349          *    is valid on unlock but otherwise the data is valid and there is
2350          *    no need to serialise with page lock.
2351          *
2352          * As the page lock gives no additional guarantee, we optimistically
2353          * wait on the page to be unlocked and check if it's up to date and
2354          * use the page if it is. Otherwise, the page lock is required to
2355          * distinguish between the different cases. The motivation is that we
2356          * avoid spurious serialisations and wakeups when multiple processes
2357          * wait on the same page for IO to complete.
2358          */
2359         wait_on_page_locked(page);
2360         if (PageUptodate(page))
2361                 goto out;
2362
2363         /* Distinguish between all the cases under the safety of the lock */
2364         lock_page(page);
2365
2366         /* Case c or d, restart the operation */
2367         if (!page->mapping) {
2368                 unlock_page(page);
2369                 put_page(page);
2370                 goto repeat;
2371         }
2372
2373         /* Someone else locked and filled the page in a very small window */
2374         if (PageUptodate(page)) {
2375                 unlock_page(page);
2376                 goto out;
2377         }
2378         goto filler;
2379
2380 out:
2381         mark_page_accessed(page);
2382         return page;
2383 }
2384
2385 /**
2386  * read_cache_page - read into page cache, fill it if needed
2387  * @mapping:    the page's address_space
2388  * @index:      the page index
2389  * @filler:     function to perform the read
2390  * @data:       first arg to filler(data, page) function, often left as NULL
2391  *
2392  * Read into the page cache. If a page already exists, and PageUptodate() is
2393  * not set, try to fill the page and wait for it to become unlocked.
2394  *
2395  * If the page does not get brought uptodate, return -EIO.
2396  */
2397 struct page *read_cache_page(struct address_space *mapping,
2398                                 pgoff_t index,
2399                                 int (*filler)(void *, struct page *),
2400                                 void *data)
2401 {
2402         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2403 }
2404 EXPORT_SYMBOL(read_cache_page);
2405
2406 /**
2407  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2408  * @mapping:    the page's address_space
2409  * @index:      the page index
2410  * @gfp:        the page allocator flags to use if allocating
2411  *
2412  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2413  * any new page allocations done using the specified allocation flags.
2414  *
2415  * If the page does not get brought uptodate, return -EIO.
2416  */
2417 struct page *read_cache_page_gfp(struct address_space *mapping,
2418                                 pgoff_t index,
2419                                 gfp_t gfp)
2420 {
2421         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2422
2423         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2424 }
2425 EXPORT_SYMBOL(read_cache_page_gfp);
2426
2427 /*
2428  * Performs necessary checks before doing a write
2429  *
2430  * Can adjust writing position or amount of bytes to write.
2431  * Returns appropriate error code that caller should return or
2432  * zero in case that write should be allowed.
2433  */
2434 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2435 {
2436         struct file *file = iocb->ki_filp;
2437         struct inode *inode = file->f_mapping->host;
2438         unsigned long limit = rlimit(RLIMIT_FSIZE);
2439         loff_t pos;
2440
2441         if (!iov_iter_count(from))
2442                 return 0;
2443
2444         /* FIXME: this is for backwards compatibility with 2.4 */
2445         if (iocb->ki_flags & IOCB_APPEND)
2446                 iocb->ki_pos = i_size_read(inode);
2447
2448         pos = iocb->ki_pos;
2449
2450         if (limit != RLIM_INFINITY) {
2451                 if (iocb->ki_pos >= limit) {
2452                         send_sig(SIGXFSZ, current, 0);
2453                         return -EFBIG;
2454                 }
2455                 iov_iter_truncate(from, limit - (unsigned long)pos);
2456         }
2457
2458         /*
2459          * LFS rule
2460          */
2461         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2462                                 !(file->f_flags & O_LARGEFILE))) {
2463                 if (pos >= MAX_NON_LFS)
2464                         return -EFBIG;
2465                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2466         }
2467
2468         /*
2469          * Are we about to exceed the fs block limit ?
2470          *
2471          * If we have written data it becomes a short write.  If we have
2472          * exceeded without writing data we send a signal and return EFBIG.
2473          * Linus frestrict idea will clean these up nicely..
2474          */
2475         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2476                 return -EFBIG;
2477
2478         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2479         return iov_iter_count(from);
2480 }
2481 EXPORT_SYMBOL(generic_write_checks);
2482
2483 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2484                                 loff_t pos, unsigned len, unsigned flags,
2485                                 struct page **pagep, void **fsdata)
2486 {
2487         const struct address_space_operations *aops = mapping->a_ops;
2488
2489         return aops->write_begin(file, mapping, pos, len, flags,
2490                                                         pagep, fsdata);
2491 }
2492 EXPORT_SYMBOL(pagecache_write_begin);
2493
2494 int pagecache_write_end(struct file *file, struct address_space *mapping,
2495                                 loff_t pos, unsigned len, unsigned copied,
2496                                 struct page *page, void *fsdata)
2497 {
2498         const struct address_space_operations *aops = mapping->a_ops;
2499
2500         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2501 }
2502 EXPORT_SYMBOL(pagecache_write_end);
2503
2504 ssize_t
2505 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2506 {
2507         struct file     *file = iocb->ki_filp;
2508         struct address_space *mapping = file->f_mapping;
2509         struct inode    *inode = mapping->host;
2510         loff_t          pos = iocb->ki_pos;
2511         ssize_t         written;
2512         size_t          write_len;
2513         pgoff_t         end;
2514         struct iov_iter data;
2515
2516         write_len = iov_iter_count(from);
2517         end = (pos + write_len - 1) >> PAGE_SHIFT;
2518
2519         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2520         if (written)
2521                 goto out;
2522
2523         /*
2524          * After a write we want buffered reads to be sure to go to disk to get
2525          * the new data.  We invalidate clean cached page from the region we're
2526          * about to write.  We do this *before* the write so that we can return
2527          * without clobbering -EIOCBQUEUED from ->direct_IO().
2528          */
2529         if (mapping->nrpages) {
2530                 written = invalidate_inode_pages2_range(mapping,
2531                                         pos >> PAGE_SHIFT, end);
2532                 /*
2533                  * If a page can not be invalidated, return 0 to fall back
2534                  * to buffered write.
2535                  */
2536                 if (written) {
2537                         if (written == -EBUSY)
2538                                 return 0;
2539                         goto out;
2540                 }
2541         }
2542
2543         data = *from;
2544         written = mapping->a_ops->direct_IO(iocb, &data);
2545
2546         /*
2547          * Finally, try again to invalidate clean pages which might have been
2548          * cached by non-direct readahead, or faulted in by get_user_pages()
2549          * if the source of the write was an mmap'ed region of the file
2550          * we're writing.  Either one is a pretty crazy thing to do,
2551          * so we don't support it 100%.  If this invalidation
2552          * fails, tough, the write still worked...
2553          */
2554         if (mapping->nrpages) {
2555                 invalidate_inode_pages2_range(mapping,
2556                                               pos >> PAGE_SHIFT, end);
2557         }
2558
2559         if (written > 0) {
2560                 pos += written;
2561                 iov_iter_advance(from, written);
2562                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2563                         i_size_write(inode, pos);
2564                         mark_inode_dirty(inode);
2565                 }
2566                 iocb->ki_pos = pos;
2567         }
2568 out:
2569         return written;
2570 }
2571 EXPORT_SYMBOL(generic_file_direct_write);
2572
2573 /*
2574  * Find or create a page at the given pagecache position. Return the locked
2575  * page. This function is specifically for buffered writes.
2576  */
2577 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2578                                         pgoff_t index, unsigned flags)
2579 {
2580         struct page *page;
2581         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2582
2583         if (flags & AOP_FLAG_NOFS)
2584                 fgp_flags |= FGP_NOFS;
2585
2586         page = pagecache_get_page(mapping, index, fgp_flags,
2587                         mapping_gfp_mask(mapping));
2588         if (page)
2589                 wait_for_stable_page(page);
2590
2591         return page;
2592 }
2593 EXPORT_SYMBOL(grab_cache_page_write_begin);
2594
2595 ssize_t generic_perform_write(struct file *file,
2596                                 struct iov_iter *i, loff_t pos)
2597 {
2598         struct address_space *mapping = file->f_mapping;
2599         const struct address_space_operations *a_ops = mapping->a_ops;
2600         long status = 0;
2601         ssize_t written = 0;
2602         unsigned int flags = 0;
2603
2604         /*
2605          * Copies from kernel address space cannot fail (NFSD is a big user).
2606          */
2607         if (!iter_is_iovec(i))
2608                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2609
2610         do {
2611                 struct page *page;
2612                 unsigned long offset;   /* Offset into pagecache page */
2613                 unsigned long bytes;    /* Bytes to write to page */
2614                 size_t copied;          /* Bytes copied from user */
2615                 void *fsdata;
2616
2617                 offset = (pos & (PAGE_SIZE - 1));
2618                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2619                                                 iov_iter_count(i));
2620
2621 again:
2622                 /*
2623                  * Bring in the user page that we will copy from _first_.
2624                  * Otherwise there's a nasty deadlock on copying from the
2625                  * same page as we're writing to, without it being marked
2626                  * up-to-date.
2627                  *
2628                  * Not only is this an optimisation, but it is also required
2629                  * to check that the address is actually valid, when atomic
2630                  * usercopies are used, below.
2631                  */
2632                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2633                         status = -EFAULT;
2634                         break;
2635                 }
2636
2637                 if (fatal_signal_pending(current)) {
2638                         status = -EINTR;
2639                         break;
2640                 }
2641
2642                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2643                                                 &page, &fsdata);
2644                 if (unlikely(status < 0))
2645                         break;
2646
2647                 if (mapping_writably_mapped(mapping))
2648                         flush_dcache_page(page);
2649
2650                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2651                 flush_dcache_page(page);
2652
2653                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2654                                                 page, fsdata);
2655                 if (unlikely(status < 0))
2656                         break;
2657                 copied = status;
2658
2659                 cond_resched();
2660
2661                 iov_iter_advance(i, copied);
2662                 if (unlikely(copied == 0)) {
2663                         /*
2664                          * If we were unable to copy any data at all, we must
2665                          * fall back to a single segment length write.
2666                          *
2667                          * If we didn't fallback here, we could livelock
2668                          * because not all segments in the iov can be copied at
2669                          * once without a pagefault.
2670                          */
2671                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2672                                                 iov_iter_single_seg_count(i));
2673                         goto again;
2674                 }
2675                 pos += copied;
2676                 written += copied;
2677
2678                 balance_dirty_pages_ratelimited(mapping);
2679         } while (iov_iter_count(i));
2680
2681         return written ? written : status;
2682 }
2683 EXPORT_SYMBOL(generic_perform_write);
2684
2685 /**
2686  * __generic_file_write_iter - write data to a file
2687  * @iocb:       IO state structure (file, offset, etc.)
2688  * @from:       iov_iter with data to write
2689  *
2690  * This function does all the work needed for actually writing data to a
2691  * file. It does all basic checks, removes SUID from the file, updates
2692  * modification times and calls proper subroutines depending on whether we
2693  * do direct IO or a standard buffered write.
2694  *
2695  * It expects i_mutex to be grabbed unless we work on a block device or similar
2696  * object which does not need locking at all.
2697  *
2698  * This function does *not* take care of syncing data in case of O_SYNC write.
2699  * A caller has to handle it. This is mainly due to the fact that we want to
2700  * avoid syncing under i_mutex.
2701  */
2702 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2703 {
2704         struct file *file = iocb->ki_filp;
2705         struct address_space * mapping = file->f_mapping;
2706         struct inode    *inode = mapping->host;
2707         ssize_t         written = 0;
2708         ssize_t         err;
2709         ssize_t         status;
2710
2711         /* We can write back this queue in page reclaim */
2712         current->backing_dev_info = inode_to_bdi(inode);
2713         err = file_remove_privs(file);
2714         if (err)
2715                 goto out;
2716
2717         err = file_update_time(file);
2718         if (err)
2719                 goto out;
2720
2721         if (iocb->ki_flags & IOCB_DIRECT) {
2722                 loff_t pos, endbyte;
2723
2724                 written = generic_file_direct_write(iocb, from);
2725                 /*
2726                  * If the write stopped short of completing, fall back to
2727                  * buffered writes.  Some filesystems do this for writes to
2728                  * holes, for example.  For DAX files, a buffered write will
2729                  * not succeed (even if it did, DAX does not handle dirty
2730                  * page-cache pages correctly).
2731                  */
2732                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2733                         goto out;
2734
2735                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2736                 /*
2737                  * If generic_perform_write() returned a synchronous error
2738                  * then we want to return the number of bytes which were
2739                  * direct-written, or the error code if that was zero.  Note
2740                  * that this differs from normal direct-io semantics, which
2741                  * will return -EFOO even if some bytes were written.
2742                  */
2743                 if (unlikely(status < 0)) {
2744                         err = status;
2745                         goto out;
2746                 }
2747                 /*
2748                  * We need to ensure that the page cache pages are written to
2749                  * disk and invalidated to preserve the expected O_DIRECT
2750                  * semantics.
2751                  */
2752                 endbyte = pos + status - 1;
2753                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2754                 if (err == 0) {
2755                         iocb->ki_pos = endbyte + 1;
2756                         written += status;
2757                         invalidate_mapping_pages(mapping,
2758                                                  pos >> PAGE_SHIFT,
2759                                                  endbyte >> PAGE_SHIFT);
2760                 } else {
2761                         /*
2762                          * We don't know how much we wrote, so just return
2763                          * the number of bytes which were direct-written
2764                          */
2765                 }
2766         } else {
2767                 written = generic_perform_write(file, from, iocb->ki_pos);
2768                 if (likely(written > 0))
2769                         iocb->ki_pos += written;
2770         }
2771 out:
2772         current->backing_dev_info = NULL;
2773         return written ? written : err;
2774 }
2775 EXPORT_SYMBOL(__generic_file_write_iter);
2776
2777 /**
2778  * generic_file_write_iter - write data to a file
2779  * @iocb:       IO state structure
2780  * @from:       iov_iter with data to write
2781  *
2782  * This is a wrapper around __generic_file_write_iter() to be used by most
2783  * filesystems. It takes care of syncing the file in case of O_SYNC file
2784  * and acquires i_mutex as needed.
2785  */
2786 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2787 {
2788         struct file *file = iocb->ki_filp;
2789         struct inode *inode = file->f_mapping->host;
2790         ssize_t ret;
2791
2792         inode_lock(inode);
2793         ret = generic_write_checks(iocb, from);
2794         if (ret > 0)
2795                 ret = __generic_file_write_iter(iocb, from);
2796         inode_unlock(inode);
2797
2798         if (ret > 0)
2799                 ret = generic_write_sync(iocb, ret);
2800         return ret;
2801 }
2802 EXPORT_SYMBOL(generic_file_write_iter);
2803
2804 /**
2805  * try_to_release_page() - release old fs-specific metadata on a page
2806  *
2807  * @page: the page which the kernel is trying to free
2808  * @gfp_mask: memory allocation flags (and I/O mode)
2809  *
2810  * The address_space is to try to release any data against the page
2811  * (presumably at page->private).  If the release was successful, return `1'.
2812  * Otherwise return zero.
2813  *
2814  * This may also be called if PG_fscache is set on a page, indicating that the
2815  * page is known to the local caching routines.
2816  *
2817  * The @gfp_mask argument specifies whether I/O may be performed to release
2818  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2819  *
2820  */
2821 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2822 {
2823         struct address_space * const mapping = page->mapping;
2824
2825         BUG_ON(!PageLocked(page));
2826         if (PageWriteback(page))
2827                 return 0;
2828
2829         if (mapping && mapping->a_ops->releasepage)
2830                 return mapping->a_ops->releasepage(page, gfp_mask);
2831         return try_to_free_buffers(page);
2832 }
2833
2834 EXPORT_SYMBOL(try_to_release_page);