mm: kasan: initial memory quarantine implementation
[cascardo/linux.git] / mm / kasan / kasan.c
1 /*
2  * This file contains shadow memory manipulation code.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6  *
7  * Some code borrowed from https://github.com/xairy/kasan-prototype by
8  *        Andrey Konovalov <adech.fo@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
18
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/stacktrace.h>
34 #include <linux/string.h>
35 #include <linux/types.h>
36 #include <linux/vmalloc.h>
37
38 #include "kasan.h"
39 #include "../slab.h"
40
41 /*
42  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
43  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
44  */
45 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
46 {
47         void *shadow_start, *shadow_end;
48
49         shadow_start = kasan_mem_to_shadow(address);
50         shadow_end = kasan_mem_to_shadow(address + size);
51
52         memset(shadow_start, value, shadow_end - shadow_start);
53 }
54
55 void kasan_unpoison_shadow(const void *address, size_t size)
56 {
57         kasan_poison_shadow(address, size, 0);
58
59         if (size & KASAN_SHADOW_MASK) {
60                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
61                 *shadow = size & KASAN_SHADOW_MASK;
62         }
63 }
64
65 static void __kasan_unpoison_stack(struct task_struct *task, void *sp)
66 {
67         void *base = task_stack_page(task);
68         size_t size = sp - base;
69
70         kasan_unpoison_shadow(base, size);
71 }
72
73 /* Unpoison the entire stack for a task. */
74 void kasan_unpoison_task_stack(struct task_struct *task)
75 {
76         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
77 }
78
79 /* Unpoison the stack for the current task beyond a watermark sp value. */
80 asmlinkage void kasan_unpoison_remaining_stack(void *sp)
81 {
82         __kasan_unpoison_stack(current, sp);
83 }
84
85 /*
86  * All functions below always inlined so compiler could
87  * perform better optimizations in each of __asan_loadX/__assn_storeX
88  * depending on memory access size X.
89  */
90
91 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
92 {
93         s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
94
95         if (unlikely(shadow_value)) {
96                 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
97                 return unlikely(last_accessible_byte >= shadow_value);
98         }
99
100         return false;
101 }
102
103 static __always_inline bool memory_is_poisoned_2(unsigned long addr)
104 {
105         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
106
107         if (unlikely(*shadow_addr)) {
108                 if (memory_is_poisoned_1(addr + 1))
109                         return true;
110
111                 /*
112                  * If single shadow byte covers 2-byte access, we don't
113                  * need to do anything more. Otherwise, test the first
114                  * shadow byte.
115                  */
116                 if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
117                         return false;
118
119                 return unlikely(*(u8 *)shadow_addr);
120         }
121
122         return false;
123 }
124
125 static __always_inline bool memory_is_poisoned_4(unsigned long addr)
126 {
127         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
128
129         if (unlikely(*shadow_addr)) {
130                 if (memory_is_poisoned_1(addr + 3))
131                         return true;
132
133                 /*
134                  * If single shadow byte covers 4-byte access, we don't
135                  * need to do anything more. Otherwise, test the first
136                  * shadow byte.
137                  */
138                 if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
139                         return false;
140
141                 return unlikely(*(u8 *)shadow_addr);
142         }
143
144         return false;
145 }
146
147 static __always_inline bool memory_is_poisoned_8(unsigned long addr)
148 {
149         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
150
151         if (unlikely(*shadow_addr)) {
152                 if (memory_is_poisoned_1(addr + 7))
153                         return true;
154
155                 /*
156                  * If single shadow byte covers 8-byte access, we don't
157                  * need to do anything more. Otherwise, test the first
158                  * shadow byte.
159                  */
160                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
161                         return false;
162
163                 return unlikely(*(u8 *)shadow_addr);
164         }
165
166         return false;
167 }
168
169 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
170 {
171         u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
172
173         if (unlikely(*shadow_addr)) {
174                 u16 shadow_first_bytes = *(u16 *)shadow_addr;
175
176                 if (unlikely(shadow_first_bytes))
177                         return true;
178
179                 /*
180                  * If two shadow bytes covers 16-byte access, we don't
181                  * need to do anything more. Otherwise, test the last
182                  * shadow byte.
183                  */
184                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
185                         return false;
186
187                 return memory_is_poisoned_1(addr + 15);
188         }
189
190         return false;
191 }
192
193 static __always_inline unsigned long bytes_is_zero(const u8 *start,
194                                         size_t size)
195 {
196         while (size) {
197                 if (unlikely(*start))
198                         return (unsigned long)start;
199                 start++;
200                 size--;
201         }
202
203         return 0;
204 }
205
206 static __always_inline unsigned long memory_is_zero(const void *start,
207                                                 const void *end)
208 {
209         unsigned int words;
210         unsigned long ret;
211         unsigned int prefix = (unsigned long)start % 8;
212
213         if (end - start <= 16)
214                 return bytes_is_zero(start, end - start);
215
216         if (prefix) {
217                 prefix = 8 - prefix;
218                 ret = bytes_is_zero(start, prefix);
219                 if (unlikely(ret))
220                         return ret;
221                 start += prefix;
222         }
223
224         words = (end - start) / 8;
225         while (words) {
226                 if (unlikely(*(u64 *)start))
227                         return bytes_is_zero(start, 8);
228                 start += 8;
229                 words--;
230         }
231
232         return bytes_is_zero(start, (end - start) % 8);
233 }
234
235 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
236                                                 size_t size)
237 {
238         unsigned long ret;
239
240         ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
241                         kasan_mem_to_shadow((void *)addr + size - 1) + 1);
242
243         if (unlikely(ret)) {
244                 unsigned long last_byte = addr + size - 1;
245                 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
246
247                 if (unlikely(ret != (unsigned long)last_shadow ||
248                         ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
249                         return true;
250         }
251         return false;
252 }
253
254 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
255 {
256         if (__builtin_constant_p(size)) {
257                 switch (size) {
258                 case 1:
259                         return memory_is_poisoned_1(addr);
260                 case 2:
261                         return memory_is_poisoned_2(addr);
262                 case 4:
263                         return memory_is_poisoned_4(addr);
264                 case 8:
265                         return memory_is_poisoned_8(addr);
266                 case 16:
267                         return memory_is_poisoned_16(addr);
268                 default:
269                         BUILD_BUG();
270                 }
271         }
272
273         return memory_is_poisoned_n(addr, size);
274 }
275
276
277 static __always_inline void check_memory_region(unsigned long addr,
278                                                 size_t size, bool write)
279 {
280         if (unlikely(size == 0))
281                 return;
282
283         if (unlikely((void *)addr <
284                 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
285                 kasan_report(addr, size, write, _RET_IP_);
286                 return;
287         }
288
289         if (likely(!memory_is_poisoned(addr, size)))
290                 return;
291
292         kasan_report(addr, size, write, _RET_IP_);
293 }
294
295 void __asan_loadN(unsigned long addr, size_t size);
296 void __asan_storeN(unsigned long addr, size_t size);
297
298 #undef memset
299 void *memset(void *addr, int c, size_t len)
300 {
301         __asan_storeN((unsigned long)addr, len);
302
303         return __memset(addr, c, len);
304 }
305
306 #undef memmove
307 void *memmove(void *dest, const void *src, size_t len)
308 {
309         __asan_loadN((unsigned long)src, len);
310         __asan_storeN((unsigned long)dest, len);
311
312         return __memmove(dest, src, len);
313 }
314
315 #undef memcpy
316 void *memcpy(void *dest, const void *src, size_t len)
317 {
318         __asan_loadN((unsigned long)src, len);
319         __asan_storeN((unsigned long)dest, len);
320
321         return __memcpy(dest, src, len);
322 }
323
324 void kasan_alloc_pages(struct page *page, unsigned int order)
325 {
326         if (likely(!PageHighMem(page)))
327                 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
328 }
329
330 void kasan_free_pages(struct page *page, unsigned int order)
331 {
332         if (likely(!PageHighMem(page)))
333                 kasan_poison_shadow(page_address(page),
334                                 PAGE_SIZE << order,
335                                 KASAN_FREE_PAGE);
336 }
337
338 #ifdef CONFIG_SLAB
339 /*
340  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
341  * For larger allocations larger redzones are used.
342  */
343 static size_t optimal_redzone(size_t object_size)
344 {
345         int rz =
346                 object_size <= 64        - 16   ? 16 :
347                 object_size <= 128       - 32   ? 32 :
348                 object_size <= 512       - 64   ? 64 :
349                 object_size <= 4096      - 128  ? 128 :
350                 object_size <= (1 << 14) - 256  ? 256 :
351                 object_size <= (1 << 15) - 512  ? 512 :
352                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
353         return rz;
354 }
355
356 void kasan_cache_create(struct kmem_cache *cache, size_t *size,
357                         unsigned long *flags)
358 {
359         int redzone_adjust;
360         /* Make sure the adjusted size is still less than
361          * KMALLOC_MAX_CACHE_SIZE.
362          * TODO: this check is only useful for SLAB, but not SLUB. We'll need
363          * to skip it for SLUB when it starts using kasan_cache_create().
364          */
365         if (*size > KMALLOC_MAX_CACHE_SIZE -
366             sizeof(struct kasan_alloc_meta) -
367             sizeof(struct kasan_free_meta))
368                 return;
369         *flags |= SLAB_KASAN;
370         /* Add alloc meta. */
371         cache->kasan_info.alloc_meta_offset = *size;
372         *size += sizeof(struct kasan_alloc_meta);
373
374         /* Add free meta. */
375         if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
376             cache->object_size < sizeof(struct kasan_free_meta)) {
377                 cache->kasan_info.free_meta_offset = *size;
378                 *size += sizeof(struct kasan_free_meta);
379         }
380         redzone_adjust = optimal_redzone(cache->object_size) -
381                 (*size - cache->object_size);
382         if (redzone_adjust > 0)
383                 *size += redzone_adjust;
384         *size = min(KMALLOC_MAX_CACHE_SIZE,
385                     max(*size,
386                         cache->object_size +
387                         optimal_redzone(cache->object_size)));
388 }
389 #endif
390
391 void kasan_cache_shrink(struct kmem_cache *cache)
392 {
393         quarantine_remove_cache(cache);
394 }
395
396 void kasan_cache_destroy(struct kmem_cache *cache)
397 {
398         quarantine_remove_cache(cache);
399 }
400
401 void kasan_poison_slab(struct page *page)
402 {
403         kasan_poison_shadow(page_address(page),
404                         PAGE_SIZE << compound_order(page),
405                         KASAN_KMALLOC_REDZONE);
406 }
407
408 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
409 {
410         kasan_unpoison_shadow(object, cache->object_size);
411 }
412
413 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
414 {
415         kasan_poison_shadow(object,
416                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
417                         KASAN_KMALLOC_REDZONE);
418 #ifdef CONFIG_SLAB
419         if (cache->flags & SLAB_KASAN) {
420                 struct kasan_alloc_meta *alloc_info =
421                         get_alloc_info(cache, object);
422                 alloc_info->state = KASAN_STATE_INIT;
423         }
424 #endif
425 }
426
427 #ifdef CONFIG_SLAB
428 static inline int in_irqentry_text(unsigned long ptr)
429 {
430         return (ptr >= (unsigned long)&__irqentry_text_start &&
431                 ptr < (unsigned long)&__irqentry_text_end) ||
432                 (ptr >= (unsigned long)&__softirqentry_text_start &&
433                  ptr < (unsigned long)&__softirqentry_text_end);
434 }
435
436 static inline void filter_irq_stacks(struct stack_trace *trace)
437 {
438         int i;
439
440         if (!trace->nr_entries)
441                 return;
442         for (i = 0; i < trace->nr_entries; i++)
443                 if (in_irqentry_text(trace->entries[i])) {
444                         /* Include the irqentry function into the stack. */
445                         trace->nr_entries = i + 1;
446                         break;
447                 }
448 }
449
450 static inline depot_stack_handle_t save_stack(gfp_t flags)
451 {
452         unsigned long entries[KASAN_STACK_DEPTH];
453         struct stack_trace trace = {
454                 .nr_entries = 0,
455                 .entries = entries,
456                 .max_entries = KASAN_STACK_DEPTH,
457                 .skip = 0
458         };
459
460         save_stack_trace(&trace);
461         filter_irq_stacks(&trace);
462         if (trace.nr_entries != 0 &&
463             trace.entries[trace.nr_entries-1] == ULONG_MAX)
464                 trace.nr_entries--;
465
466         return depot_save_stack(&trace, flags);
467 }
468
469 static inline void set_track(struct kasan_track *track, gfp_t flags)
470 {
471         track->pid = current->pid;
472         track->stack = save_stack(flags);
473 }
474
475 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
476                                         const void *object)
477 {
478         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
479         return (void *)object + cache->kasan_info.alloc_meta_offset;
480 }
481
482 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
483                                       const void *object)
484 {
485         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
486         return (void *)object + cache->kasan_info.free_meta_offset;
487 }
488 #endif
489
490 void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
491 {
492         kasan_kmalloc(cache, object, cache->object_size, flags);
493 }
494
495 void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
496 {
497         unsigned long size = cache->object_size;
498         unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
499
500         /* RCU slabs could be legally used after free within the RCU period */
501         if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
502                 return;
503
504         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
505 }
506
507 bool kasan_slab_free(struct kmem_cache *cache, void *object)
508 {
509 #ifdef CONFIG_SLAB
510         /* RCU slabs could be legally used after free within the RCU period */
511         if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
512                 return false;
513
514         if (likely(cache->flags & SLAB_KASAN)) {
515                 struct kasan_alloc_meta *alloc_info =
516                         get_alloc_info(cache, object);
517                 struct kasan_free_meta *free_info =
518                         get_free_info(cache, object);
519
520                 switch (alloc_info->state) {
521                 case KASAN_STATE_ALLOC:
522                         alloc_info->state = KASAN_STATE_QUARANTINE;
523                         quarantine_put(free_info, cache);
524                         set_track(&free_info->track, GFP_NOWAIT);
525                         kasan_poison_slab_free(cache, object);
526                         return true;
527                 case KASAN_STATE_QUARANTINE:
528                 case KASAN_STATE_FREE:
529                         pr_err("Double free");
530                         dump_stack();
531                         break;
532                 default:
533                         break;
534                 }
535         }
536         return false;
537 #else
538         kasan_poison_slab_free(cache, object);
539         return false;
540 #endif
541 }
542
543 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
544                    gfp_t flags)
545 {
546         unsigned long redzone_start;
547         unsigned long redzone_end;
548
549         if (flags & __GFP_RECLAIM)
550                 quarantine_reduce();
551
552         if (unlikely(object == NULL))
553                 return;
554
555         redzone_start = round_up((unsigned long)(object + size),
556                                 KASAN_SHADOW_SCALE_SIZE);
557         redzone_end = round_up((unsigned long)object + cache->object_size,
558                                 KASAN_SHADOW_SCALE_SIZE);
559
560         kasan_unpoison_shadow(object, size);
561         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
562                 KASAN_KMALLOC_REDZONE);
563 #ifdef CONFIG_SLAB
564         if (cache->flags & SLAB_KASAN) {
565                 struct kasan_alloc_meta *alloc_info =
566                         get_alloc_info(cache, object);
567
568                 alloc_info->state = KASAN_STATE_ALLOC;
569                 alloc_info->alloc_size = size;
570                 set_track(&alloc_info->track, flags);
571         }
572 #endif
573 }
574 EXPORT_SYMBOL(kasan_kmalloc);
575
576 void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
577 {
578         struct page *page;
579         unsigned long redzone_start;
580         unsigned long redzone_end;
581
582         if (flags & __GFP_RECLAIM)
583                 quarantine_reduce();
584
585         if (unlikely(ptr == NULL))
586                 return;
587
588         page = virt_to_page(ptr);
589         redzone_start = round_up((unsigned long)(ptr + size),
590                                 KASAN_SHADOW_SCALE_SIZE);
591         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
592
593         kasan_unpoison_shadow(ptr, size);
594         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
595                 KASAN_PAGE_REDZONE);
596 }
597
598 void kasan_krealloc(const void *object, size_t size, gfp_t flags)
599 {
600         struct page *page;
601
602         if (unlikely(object == ZERO_SIZE_PTR))
603                 return;
604
605         page = virt_to_head_page(object);
606
607         if (unlikely(!PageSlab(page)))
608                 kasan_kmalloc_large(object, size, flags);
609         else
610                 kasan_kmalloc(page->slab_cache, object, size, flags);
611 }
612
613 void kasan_kfree(void *ptr)
614 {
615         struct page *page;
616
617         page = virt_to_head_page(ptr);
618
619         if (unlikely(!PageSlab(page)))
620                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
621                                 KASAN_FREE_PAGE);
622         else
623                 kasan_slab_free(page->slab_cache, ptr);
624 }
625
626 void kasan_kfree_large(const void *ptr)
627 {
628         struct page *page = virt_to_page(ptr);
629
630         kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
631                         KASAN_FREE_PAGE);
632 }
633
634 int kasan_module_alloc(void *addr, size_t size)
635 {
636         void *ret;
637         size_t shadow_size;
638         unsigned long shadow_start;
639
640         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
641         shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
642                         PAGE_SIZE);
643
644         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
645                 return -EINVAL;
646
647         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
648                         shadow_start + shadow_size,
649                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
650                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
651                         __builtin_return_address(0));
652
653         if (ret) {
654                 find_vm_area(addr)->flags |= VM_KASAN;
655                 kmemleak_ignore(ret);
656                 return 0;
657         }
658
659         return -ENOMEM;
660 }
661
662 void kasan_free_shadow(const struct vm_struct *vm)
663 {
664         if (vm->flags & VM_KASAN)
665                 vfree(kasan_mem_to_shadow(vm->addr));
666 }
667
668 static void register_global(struct kasan_global *global)
669 {
670         size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
671
672         kasan_unpoison_shadow(global->beg, global->size);
673
674         kasan_poison_shadow(global->beg + aligned_size,
675                 global->size_with_redzone - aligned_size,
676                 KASAN_GLOBAL_REDZONE);
677 }
678
679 void __asan_register_globals(struct kasan_global *globals, size_t size)
680 {
681         int i;
682
683         for (i = 0; i < size; i++)
684                 register_global(&globals[i]);
685 }
686 EXPORT_SYMBOL(__asan_register_globals);
687
688 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
689 {
690 }
691 EXPORT_SYMBOL(__asan_unregister_globals);
692
693 #define DEFINE_ASAN_LOAD_STORE(size)                            \
694         void __asan_load##size(unsigned long addr)              \
695         {                                                       \
696                 check_memory_region(addr, size, false);         \
697         }                                                       \
698         EXPORT_SYMBOL(__asan_load##size);                       \
699         __alias(__asan_load##size)                              \
700         void __asan_load##size##_noabort(unsigned long);        \
701         EXPORT_SYMBOL(__asan_load##size##_noabort);             \
702         void __asan_store##size(unsigned long addr)             \
703         {                                                       \
704                 check_memory_region(addr, size, true);          \
705         }                                                       \
706         EXPORT_SYMBOL(__asan_store##size);                      \
707         __alias(__asan_store##size)                             \
708         void __asan_store##size##_noabort(unsigned long);       \
709         EXPORT_SYMBOL(__asan_store##size##_noabort)
710
711 DEFINE_ASAN_LOAD_STORE(1);
712 DEFINE_ASAN_LOAD_STORE(2);
713 DEFINE_ASAN_LOAD_STORE(4);
714 DEFINE_ASAN_LOAD_STORE(8);
715 DEFINE_ASAN_LOAD_STORE(16);
716
717 void __asan_loadN(unsigned long addr, size_t size)
718 {
719         check_memory_region(addr, size, false);
720 }
721 EXPORT_SYMBOL(__asan_loadN);
722
723 __alias(__asan_loadN)
724 void __asan_loadN_noabort(unsigned long, size_t);
725 EXPORT_SYMBOL(__asan_loadN_noabort);
726
727 void __asan_storeN(unsigned long addr, size_t size)
728 {
729         check_memory_region(addr, size, true);
730 }
731 EXPORT_SYMBOL(__asan_storeN);
732
733 __alias(__asan_storeN)
734 void __asan_storeN_noabort(unsigned long, size_t);
735 EXPORT_SYMBOL(__asan_storeN_noabort);
736
737 /* to shut up compiler complaints */
738 void __asan_handle_no_return(void) {}
739 EXPORT_SYMBOL(__asan_handle_no_return);
740
741 #ifdef CONFIG_MEMORY_HOTPLUG
742 static int kasan_mem_notifier(struct notifier_block *nb,
743                         unsigned long action, void *data)
744 {
745         return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
746 }
747
748 static int __init kasan_memhotplug_init(void)
749 {
750         pr_err("WARNING: KASAN doesn't support memory hot-add\n");
751         pr_err("Memory hot-add will be disabled\n");
752
753         hotplug_memory_notifier(kasan_mem_notifier, 0);
754
755         return 0;
756 }
757
758 module_init(kasan_memhotplug_init);
759 #endif