mm: account pmd page tables to the process
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232
233         __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238         if (!tlb->end)
239                 return;
240
241         tlb_flush(tlb);
242         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246         __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254                 free_pages_and_swap_cache(batch->pages, batch->nr);
255                 batch->nr = 0;
256         }
257         tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262         tlb_flush_mmu_tlbonly(tlb);
263         tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297
298         batch = tlb->active;
299         batch->pages[batch->nr++] = page;
300         if (batch->nr == batch->max) {
301                 if (!tlb_next_batch(tlb))
302                         return 0;
303                 batch = tlb->active;
304         }
305         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307         return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320         /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325         /*
326          * This isn't an RCU grace period and hence the page-tables cannot be
327          * assumed to be actually RCU-freed.
328          *
329          * It is however sufficient for software page-table walkers that rely on
330          * IRQ disabling. See the comment near struct mmu_table_batch.
331          */
332         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333         __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338         struct mmu_table_batch *batch;
339         int i;
340
341         batch = container_of(head, struct mmu_table_batch, rcu);
342
343         for (i = 0; i < batch->nr; i++)
344                 __tlb_remove_table(batch->tables[i]);
345
346         free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351         struct mmu_table_batch **batch = &tlb->batch;
352
353         if (*batch) {
354                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355                 *batch = NULL;
356         }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         /*
364          * When there's less then two users of this mm there cannot be a
365          * concurrent page-table walk.
366          */
367         if (atomic_read(&tlb->mm->mm_users) < 2) {
368                 __tlb_remove_table(table);
369                 return;
370         }
371
372         if (*batch == NULL) {
373                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374                 if (*batch == NULL) {
375                         tlb_remove_table_one(table);
376                         return;
377                 }
378                 (*batch)->nr = 0;
379         }
380         (*batch)->tables[(*batch)->nr++] = table;
381         if ((*batch)->nr == MAX_TABLE_BATCH)
382                 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392                            unsigned long addr)
393 {
394         pgtable_t token = pmd_pgtable(*pmd);
395         pmd_clear(pmd);
396         pte_free_tlb(tlb, token, addr);
397         atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401                                 unsigned long addr, unsigned long end,
402                                 unsigned long floor, unsigned long ceiling)
403 {
404         pmd_t *pmd;
405         unsigned long next;
406         unsigned long start;
407
408         start = addr;
409         pmd = pmd_offset(pud, addr);
410         do {
411                 next = pmd_addr_end(addr, end);
412                 if (pmd_none_or_clear_bad(pmd))
413                         continue;
414                 free_pte_range(tlb, pmd, addr);
415         } while (pmd++, addr = next, addr != end);
416
417         start &= PUD_MASK;
418         if (start < floor)
419                 return;
420         if (ceiling) {
421                 ceiling &= PUD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 return;
427
428         pmd = pmd_offset(pud, start);
429         pud_clear(pud);
430         pmd_free_tlb(tlb, pmd, start);
431         mm_dec_nr_pmds(tlb->mm);
432 }
433
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435                                 unsigned long addr, unsigned long end,
436                                 unsigned long floor, unsigned long ceiling)
437 {
438         pud_t *pud;
439         unsigned long next;
440         unsigned long start;
441
442         start = addr;
443         pud = pud_offset(pgd, addr);
444         do {
445                 next = pud_addr_end(addr, end);
446                 if (pud_none_or_clear_bad(pud))
447                         continue;
448                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449         } while (pud++, addr = next, addr != end);
450
451         start &= PGDIR_MASK;
452         if (start < floor)
453                 return;
454         if (ceiling) {
455                 ceiling &= PGDIR_MASK;
456                 if (!ceiling)
457                         return;
458         }
459         if (end - 1 > ceiling - 1)
460                 return;
461
462         pud = pud_offset(pgd, start);
463         pgd_clear(pgd);
464         pud_free_tlb(tlb, pud, start);
465 }
466
467 /*
468  * This function frees user-level page tables of a process.
469  */
470 void free_pgd_range(struct mmu_gather *tlb,
471                         unsigned long addr, unsigned long end,
472                         unsigned long floor, unsigned long ceiling)
473 {
474         pgd_t *pgd;
475         unsigned long next;
476
477         /*
478          * The next few lines have given us lots of grief...
479          *
480          * Why are we testing PMD* at this top level?  Because often
481          * there will be no work to do at all, and we'd prefer not to
482          * go all the way down to the bottom just to discover that.
483          *
484          * Why all these "- 1"s?  Because 0 represents both the bottom
485          * of the address space and the top of it (using -1 for the
486          * top wouldn't help much: the masks would do the wrong thing).
487          * The rule is that addr 0 and floor 0 refer to the bottom of
488          * the address space, but end 0 and ceiling 0 refer to the top
489          * Comparisons need to use "end - 1" and "ceiling - 1" (though
490          * that end 0 case should be mythical).
491          *
492          * Wherever addr is brought up or ceiling brought down, we must
493          * be careful to reject "the opposite 0" before it confuses the
494          * subsequent tests.  But what about where end is brought down
495          * by PMD_SIZE below? no, end can't go down to 0 there.
496          *
497          * Whereas we round start (addr) and ceiling down, by different
498          * masks at different levels, in order to test whether a table
499          * now has no other vmas using it, so can be freed, we don't
500          * bother to round floor or end up - the tests don't need that.
501          */
502
503         addr &= PMD_MASK;
504         if (addr < floor) {
505                 addr += PMD_SIZE;
506                 if (!addr)
507                         return;
508         }
509         if (ceiling) {
510                 ceiling &= PMD_MASK;
511                 if (!ceiling)
512                         return;
513         }
514         if (end - 1 > ceiling - 1)
515                 end -= PMD_SIZE;
516         if (addr > end - 1)
517                 return;
518
519         pgd = pgd_offset(tlb->mm, addr);
520         do {
521                 next = pgd_addr_end(addr, end);
522                 if (pgd_none_or_clear_bad(pgd))
523                         continue;
524                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525         } while (pgd++, addr = next, addr != end);
526 }
527
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529                 unsigned long floor, unsigned long ceiling)
530 {
531         while (vma) {
532                 struct vm_area_struct *next = vma->vm_next;
533                 unsigned long addr = vma->vm_start;
534
535                 /*
536                  * Hide vma from rmap and truncate_pagecache before freeing
537                  * pgtables
538                  */
539                 unlink_anon_vmas(vma);
540                 unlink_file_vma(vma);
541
542                 if (is_vm_hugetlb_page(vma)) {
543                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544                                 floor, next? next->vm_start: ceiling);
545                 } else {
546                         /*
547                          * Optimization: gather nearby vmas into one call down
548                          */
549                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550                                && !is_vm_hugetlb_page(next)) {
551                                 vma = next;
552                                 next = vma->vm_next;
553                                 unlink_anon_vmas(vma);
554                                 unlink_file_vma(vma);
555                         }
556                         free_pgd_range(tlb, addr, vma->vm_end,
557                                 floor, next? next->vm_start: ceiling);
558                 }
559                 vma = next;
560         }
561 }
562
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564                 pmd_t *pmd, unsigned long address)
565 {
566         spinlock_t *ptl;
567         pgtable_t new = pte_alloc_one(mm, address);
568         int wait_split_huge_page;
569         if (!new)
570                 return -ENOMEM;
571
572         /*
573          * Ensure all pte setup (eg. pte page lock and page clearing) are
574          * visible before the pte is made visible to other CPUs by being
575          * put into page tables.
576          *
577          * The other side of the story is the pointer chasing in the page
578          * table walking code (when walking the page table without locking;
579          * ie. most of the time). Fortunately, these data accesses consist
580          * of a chain of data-dependent loads, meaning most CPUs (alpha
581          * being the notable exception) will already guarantee loads are
582          * seen in-order. See the alpha page table accessors for the
583          * smp_read_barrier_depends() barriers in page table walking code.
584          */
585         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587         ptl = pmd_lock(mm, pmd);
588         wait_split_huge_page = 0;
589         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
590                 atomic_long_inc(&mm->nr_ptes);
591                 pmd_populate(mm, pmd, new);
592                 new = NULL;
593         } else if (unlikely(pmd_trans_splitting(*pmd)))
594                 wait_split_huge_page = 1;
595         spin_unlock(ptl);
596         if (new)
597                 pte_free(mm, new);
598         if (wait_split_huge_page)
599                 wait_split_huge_page(vma->anon_vma, pmd);
600         return 0;
601 }
602
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606         if (!new)
607                 return -ENOMEM;
608
609         smp_wmb(); /* See comment in __pte_alloc */
610
611         spin_lock(&init_mm.page_table_lock);
612         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
613                 pmd_populate_kernel(&init_mm, pmd, new);
614                 new = NULL;
615         } else
616                 VM_BUG_ON(pmd_trans_splitting(*pmd));
617         spin_unlock(&init_mm.page_table_lock);
618         if (new)
619                 pte_free_kernel(&init_mm, new);
620         return 0;
621 }
622
623 static inline void init_rss_vec(int *rss)
624 {
625         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630         int i;
631
632         if (current->mm == mm)
633                 sync_mm_rss(mm);
634         for (i = 0; i < NR_MM_COUNTERS; i++)
635                 if (rss[i])
636                         add_mm_counter(mm, i, rss[i]);
637 }
638
639 /*
640  * This function is called to print an error when a bad pte
641  * is found. For example, we might have a PFN-mapped pte in
642  * a region that doesn't allow it.
643  *
644  * The calling function must still handle the error.
645  */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647                           pte_t pte, struct page *page)
648 {
649         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650         pud_t *pud = pud_offset(pgd, addr);
651         pmd_t *pmd = pmd_offset(pud, addr);
652         struct address_space *mapping;
653         pgoff_t index;
654         static unsigned long resume;
655         static unsigned long nr_shown;
656         static unsigned long nr_unshown;
657
658         /*
659          * Allow a burst of 60 reports, then keep quiet for that minute;
660          * or allow a steady drip of one report per second.
661          */
662         if (nr_shown == 60) {
663                 if (time_before(jiffies, resume)) {
664                         nr_unshown++;
665                         return;
666                 }
667                 if (nr_unshown) {
668                         printk(KERN_ALERT
669                                 "BUG: Bad page map: %lu messages suppressed\n",
670                                 nr_unshown);
671                         nr_unshown = 0;
672                 }
673                 nr_shown = 0;
674         }
675         if (nr_shown++ == 0)
676                 resume = jiffies + 60 * HZ;
677
678         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679         index = linear_page_index(vma, addr);
680
681         printk(KERN_ALERT
682                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
683                 current->comm,
684                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
685         if (page)
686                 dump_page(page, "bad pte");
687         printk(KERN_ALERT
688                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690         /*
691          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692          */
693         if (vma->vm_ops)
694                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695                        vma->vm_ops->fault);
696         if (vma->vm_file)
697                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698                        vma->vm_file->f_op->mmap);
699         dump_stack();
700         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704  * vm_normal_page -- This function gets the "struct page" associated with a pte.
705  *
706  * "Special" mappings do not wish to be associated with a "struct page" (either
707  * it doesn't exist, or it exists but they don't want to touch it). In this
708  * case, NULL is returned here. "Normal" mappings do have a struct page.
709  *
710  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711  * pte bit, in which case this function is trivial. Secondly, an architecture
712  * may not have a spare pte bit, which requires a more complicated scheme,
713  * described below.
714  *
715  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716  * special mapping (even if there are underlying and valid "struct pages").
717  * COWed pages of a VM_PFNMAP are always normal.
718  *
719  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722  * mapping will always honor the rule
723  *
724  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725  *
726  * And for normal mappings this is false.
727  *
728  * This restricts such mappings to be a linear translation from virtual address
729  * to pfn. To get around this restriction, we allow arbitrary mappings so long
730  * as the vma is not a COW mapping; in that case, we know that all ptes are
731  * special (because none can have been COWed).
732  *
733  *
734  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735  *
736  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737  * page" backing, however the difference is that _all_ pages with a struct
738  * page (that is, those where pfn_valid is true) are refcounted and considered
739  * normal pages by the VM. The disadvantage is that pages are refcounted
740  * (which can be slower and simply not an option for some PFNMAP users). The
741  * advantage is that we don't have to follow the strict linearity rule of
742  * PFNMAP mappings in order to support COWable mappings.
743  *
744  */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751                                 pte_t pte)
752 {
753         unsigned long pfn = pte_pfn(pte);
754
755         if (HAVE_PTE_SPECIAL) {
756                 if (likely(!pte_special(pte)))
757                         goto check_pfn;
758                 if (vma->vm_ops && vma->vm_ops->find_special_page)
759                         return vma->vm_ops->find_special_page(vma, addr);
760                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761                         return NULL;
762                 if (!is_zero_pfn(pfn))
763                         print_bad_pte(vma, addr, pte, NULL);
764                 return NULL;
765         }
766
767         /* !HAVE_PTE_SPECIAL case follows: */
768
769         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770                 if (vma->vm_flags & VM_MIXEDMAP) {
771                         if (!pfn_valid(pfn))
772                                 return NULL;
773                         goto out;
774                 } else {
775                         unsigned long off;
776                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
777                         if (pfn == vma->vm_pgoff + off)
778                                 return NULL;
779                         if (!is_cow_mapping(vma->vm_flags))
780                                 return NULL;
781                 }
782         }
783
784         if (is_zero_pfn(pfn))
785                 return NULL;
786 check_pfn:
787         if (unlikely(pfn > highest_memmap_pfn)) {
788                 print_bad_pte(vma, addr, pte, NULL);
789                 return NULL;
790         }
791
792         /*
793          * NOTE! We still have PageReserved() pages in the page tables.
794          * eg. VDSO mappings can cause them to exist.
795          */
796 out:
797         return pfn_to_page(pfn);
798 }
799
800 /*
801  * copy one vm_area from one task to the other. Assumes the page tables
802  * already present in the new task to be cleared in the whole range
803  * covered by this vma.
804  */
805
806 static inline unsigned long
807 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
809                 unsigned long addr, int *rss)
810 {
811         unsigned long vm_flags = vma->vm_flags;
812         pte_t pte = *src_pte;
813         struct page *page;
814
815         /* pte contains position in swap or file, so copy. */
816         if (unlikely(!pte_present(pte))) {
817                 swp_entry_t entry = pte_to_swp_entry(pte);
818
819                 if (likely(!non_swap_entry(entry))) {
820                         if (swap_duplicate(entry) < 0)
821                                 return entry.val;
822
823                         /* make sure dst_mm is on swapoff's mmlist. */
824                         if (unlikely(list_empty(&dst_mm->mmlist))) {
825                                 spin_lock(&mmlist_lock);
826                                 if (list_empty(&dst_mm->mmlist))
827                                         list_add(&dst_mm->mmlist,
828                                                         &src_mm->mmlist);
829                                 spin_unlock(&mmlist_lock);
830                         }
831                         rss[MM_SWAPENTS]++;
832                 } else if (is_migration_entry(entry)) {
833                         page = migration_entry_to_page(entry);
834
835                         if (PageAnon(page))
836                                 rss[MM_ANONPAGES]++;
837                         else
838                                 rss[MM_FILEPAGES]++;
839
840                         if (is_write_migration_entry(entry) &&
841                                         is_cow_mapping(vm_flags)) {
842                                 /*
843                                  * COW mappings require pages in both
844                                  * parent and child to be set to read.
845                                  */
846                                 make_migration_entry_read(&entry);
847                                 pte = swp_entry_to_pte(entry);
848                                 if (pte_swp_soft_dirty(*src_pte))
849                                         pte = pte_swp_mksoft_dirty(pte);
850                                 set_pte_at(src_mm, addr, src_pte, pte);
851                         }
852                 }
853                 goto out_set_pte;
854         }
855
856         /*
857          * If it's a COW mapping, write protect it both
858          * in the parent and the child
859          */
860         if (is_cow_mapping(vm_flags)) {
861                 ptep_set_wrprotect(src_mm, addr, src_pte);
862                 pte = pte_wrprotect(pte);
863         }
864
865         /*
866          * If it's a shared mapping, mark it clean in
867          * the child
868          */
869         if (vm_flags & VM_SHARED)
870                 pte = pte_mkclean(pte);
871         pte = pte_mkold(pte);
872
873         page = vm_normal_page(vma, addr, pte);
874         if (page) {
875                 get_page(page);
876                 page_dup_rmap(page);
877                 if (PageAnon(page))
878                         rss[MM_ANONPAGES]++;
879                 else
880                         rss[MM_FILEPAGES]++;
881         }
882
883 out_set_pte:
884         set_pte_at(dst_mm, addr, dst_pte, pte);
885         return 0;
886 }
887
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890                    unsigned long addr, unsigned long end)
891 {
892         pte_t *orig_src_pte, *orig_dst_pte;
893         pte_t *src_pte, *dst_pte;
894         spinlock_t *src_ptl, *dst_ptl;
895         int progress = 0;
896         int rss[NR_MM_COUNTERS];
897         swp_entry_t entry = (swp_entry_t){0};
898
899 again:
900         init_rss_vec(rss);
901
902         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903         if (!dst_pte)
904                 return -ENOMEM;
905         src_pte = pte_offset_map(src_pmd, addr);
906         src_ptl = pte_lockptr(src_mm, src_pmd);
907         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908         orig_src_pte = src_pte;
909         orig_dst_pte = dst_pte;
910         arch_enter_lazy_mmu_mode();
911
912         do {
913                 /*
914                  * We are holding two locks at this point - either of them
915                  * could generate latencies in another task on another CPU.
916                  */
917                 if (progress >= 32) {
918                         progress = 0;
919                         if (need_resched() ||
920                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921                                 break;
922                 }
923                 if (pte_none(*src_pte)) {
924                         progress++;
925                         continue;
926                 }
927                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928                                                         vma, addr, rss);
929                 if (entry.val)
930                         break;
931                 progress += 8;
932         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933
934         arch_leave_lazy_mmu_mode();
935         spin_unlock(src_ptl);
936         pte_unmap(orig_src_pte);
937         add_mm_rss_vec(dst_mm, rss);
938         pte_unmap_unlock(orig_dst_pte, dst_ptl);
939         cond_resched();
940
941         if (entry.val) {
942                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943                         return -ENOMEM;
944                 progress = 0;
945         }
946         if (addr != end)
947                 goto again;
948         return 0;
949 }
950
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953                 unsigned long addr, unsigned long end)
954 {
955         pmd_t *src_pmd, *dst_pmd;
956         unsigned long next;
957
958         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959         if (!dst_pmd)
960                 return -ENOMEM;
961         src_pmd = pmd_offset(src_pud, addr);
962         do {
963                 next = pmd_addr_end(addr, end);
964                 if (pmd_trans_huge(*src_pmd)) {
965                         int err;
966                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967                         err = copy_huge_pmd(dst_mm, src_mm,
968                                             dst_pmd, src_pmd, addr, vma);
969                         if (err == -ENOMEM)
970                                 return -ENOMEM;
971                         if (!err)
972                                 continue;
973                         /* fall through */
974                 }
975                 if (pmd_none_or_clear_bad(src_pmd))
976                         continue;
977                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978                                                 vma, addr, next))
979                         return -ENOMEM;
980         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
981         return 0;
982 }
983
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986                 unsigned long addr, unsigned long end)
987 {
988         pud_t *src_pud, *dst_pud;
989         unsigned long next;
990
991         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992         if (!dst_pud)
993                 return -ENOMEM;
994         src_pud = pud_offset(src_pgd, addr);
995         do {
996                 next = pud_addr_end(addr, end);
997                 if (pud_none_or_clear_bad(src_pud))
998                         continue;
999                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000                                                 vma, addr, next))
1001                         return -ENOMEM;
1002         } while (dst_pud++, src_pud++, addr = next, addr != end);
1003         return 0;
1004 }
1005
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007                 struct vm_area_struct *vma)
1008 {
1009         pgd_t *src_pgd, *dst_pgd;
1010         unsigned long next;
1011         unsigned long addr = vma->vm_start;
1012         unsigned long end = vma->vm_end;
1013         unsigned long mmun_start;       /* For mmu_notifiers */
1014         unsigned long mmun_end;         /* For mmu_notifiers */
1015         bool is_cow;
1016         int ret;
1017
1018         /*
1019          * Don't copy ptes where a page fault will fill them correctly.
1020          * Fork becomes much lighter when there are big shared or private
1021          * readonly mappings. The tradeoff is that copy_page_range is more
1022          * efficient than faulting.
1023          */
1024         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1025                         !vma->anon_vma)
1026                 return 0;
1027
1028         if (is_vm_hugetlb_page(vma))
1029                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
1031         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032                 /*
1033                  * We do not free on error cases below as remove_vma
1034                  * gets called on error from higher level routine
1035                  */
1036                 ret = track_pfn_copy(vma);
1037                 if (ret)
1038                         return ret;
1039         }
1040
1041         /*
1042          * We need to invalidate the secondary MMU mappings only when
1043          * there could be a permission downgrade on the ptes of the
1044          * parent mm. And a permission downgrade will only happen if
1045          * is_cow_mapping() returns true.
1046          */
1047         is_cow = is_cow_mapping(vma->vm_flags);
1048         mmun_start = addr;
1049         mmun_end   = end;
1050         if (is_cow)
1051                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052                                                     mmun_end);
1053
1054         ret = 0;
1055         dst_pgd = pgd_offset(dst_mm, addr);
1056         src_pgd = pgd_offset(src_mm, addr);
1057         do {
1058                 next = pgd_addr_end(addr, end);
1059                 if (pgd_none_or_clear_bad(src_pgd))
1060                         continue;
1061                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062                                             vma, addr, next))) {
1063                         ret = -ENOMEM;
1064                         break;
1065                 }
1066         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067
1068         if (is_cow)
1069                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070         return ret;
1071 }
1072
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074                                 struct vm_area_struct *vma, pmd_t *pmd,
1075                                 unsigned long addr, unsigned long end,
1076                                 struct zap_details *details)
1077 {
1078         struct mm_struct *mm = tlb->mm;
1079         int force_flush = 0;
1080         int rss[NR_MM_COUNTERS];
1081         spinlock_t *ptl;
1082         pte_t *start_pte;
1083         pte_t *pte;
1084         swp_entry_t entry;
1085
1086 again:
1087         init_rss_vec(rss);
1088         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089         pte = start_pte;
1090         arch_enter_lazy_mmu_mode();
1091         do {
1092                 pte_t ptent = *pte;
1093                 if (pte_none(ptent)) {
1094                         continue;
1095                 }
1096
1097                 if (pte_present(ptent)) {
1098                         struct page *page;
1099
1100                         page = vm_normal_page(vma, addr, ptent);
1101                         if (unlikely(details) && page) {
1102                                 /*
1103                                  * unmap_shared_mapping_pages() wants to
1104                                  * invalidate cache without truncating:
1105                                  * unmap shared but keep private pages.
1106                                  */
1107                                 if (details->check_mapping &&
1108                                     details->check_mapping != page->mapping)
1109                                         continue;
1110                         }
1111                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1112                                                         tlb->fullmm);
1113                         tlb_remove_tlb_entry(tlb, pte, addr);
1114                         if (unlikely(!page))
1115                                 continue;
1116                         if (PageAnon(page))
1117                                 rss[MM_ANONPAGES]--;
1118                         else {
1119                                 if (pte_dirty(ptent)) {
1120                                         force_flush = 1;
1121                                         set_page_dirty(page);
1122                                 }
1123                                 if (pte_young(ptent) &&
1124                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1125                                         mark_page_accessed(page);
1126                                 rss[MM_FILEPAGES]--;
1127                         }
1128                         page_remove_rmap(page);
1129                         if (unlikely(page_mapcount(page) < 0))
1130                                 print_bad_pte(vma, addr, ptent, page);
1131                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1132                                 force_flush = 1;
1133                                 addr += PAGE_SIZE;
1134                                 break;
1135                         }
1136                         continue;
1137                 }
1138                 /* If details->check_mapping, we leave swap entries. */
1139                 if (unlikely(details))
1140                         continue;
1141
1142                 entry = pte_to_swp_entry(ptent);
1143                 if (!non_swap_entry(entry))
1144                         rss[MM_SWAPENTS]--;
1145                 else if (is_migration_entry(entry)) {
1146                         struct page *page;
1147
1148                         page = migration_entry_to_page(entry);
1149
1150                         if (PageAnon(page))
1151                                 rss[MM_ANONPAGES]--;
1152                         else
1153                                 rss[MM_FILEPAGES]--;
1154                 }
1155                 if (unlikely(!free_swap_and_cache(entry)))
1156                         print_bad_pte(vma, addr, ptent, NULL);
1157                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1158         } while (pte++, addr += PAGE_SIZE, addr != end);
1159
1160         add_mm_rss_vec(mm, rss);
1161         arch_leave_lazy_mmu_mode();
1162
1163         /* Do the actual TLB flush before dropping ptl */
1164         if (force_flush)
1165                 tlb_flush_mmu_tlbonly(tlb);
1166         pte_unmap_unlock(start_pte, ptl);
1167
1168         /*
1169          * If we forced a TLB flush (either due to running out of
1170          * batch buffers or because we needed to flush dirty TLB
1171          * entries before releasing the ptl), free the batched
1172          * memory too. Restart if we didn't do everything.
1173          */
1174         if (force_flush) {
1175                 force_flush = 0;
1176                 tlb_flush_mmu_free(tlb);
1177
1178                 if (addr != end)
1179                         goto again;
1180         }
1181
1182         return addr;
1183 }
1184
1185 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1186                                 struct vm_area_struct *vma, pud_t *pud,
1187                                 unsigned long addr, unsigned long end,
1188                                 struct zap_details *details)
1189 {
1190         pmd_t *pmd;
1191         unsigned long next;
1192
1193         pmd = pmd_offset(pud, addr);
1194         do {
1195                 next = pmd_addr_end(addr, end);
1196                 if (pmd_trans_huge(*pmd)) {
1197                         if (next - addr != HPAGE_PMD_SIZE) {
1198 #ifdef CONFIG_DEBUG_VM
1199                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1200                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1201                                                 __func__, addr, end,
1202                                                 vma->vm_start,
1203                                                 vma->vm_end);
1204                                         BUG();
1205                                 }
1206 #endif
1207                                 split_huge_page_pmd(vma, addr, pmd);
1208                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1209                                 goto next;
1210                         /* fall through */
1211                 }
1212                 /*
1213                  * Here there can be other concurrent MADV_DONTNEED or
1214                  * trans huge page faults running, and if the pmd is
1215                  * none or trans huge it can change under us. This is
1216                  * because MADV_DONTNEED holds the mmap_sem in read
1217                  * mode.
1218                  */
1219                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220                         goto next;
1221                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1222 next:
1223                 cond_resched();
1224         } while (pmd++, addr = next, addr != end);
1225
1226         return addr;
1227 }
1228
1229 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1230                                 struct vm_area_struct *vma, pgd_t *pgd,
1231                                 unsigned long addr, unsigned long end,
1232                                 struct zap_details *details)
1233 {
1234         pud_t *pud;
1235         unsigned long next;
1236
1237         pud = pud_offset(pgd, addr);
1238         do {
1239                 next = pud_addr_end(addr, end);
1240                 if (pud_none_or_clear_bad(pud))
1241                         continue;
1242                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1243         } while (pud++, addr = next, addr != end);
1244
1245         return addr;
1246 }
1247
1248 static void unmap_page_range(struct mmu_gather *tlb,
1249                              struct vm_area_struct *vma,
1250                              unsigned long addr, unsigned long end,
1251                              struct zap_details *details)
1252 {
1253         pgd_t *pgd;
1254         unsigned long next;
1255
1256         if (details && !details->check_mapping)
1257                 details = NULL;
1258
1259         BUG_ON(addr >= end);
1260         tlb_start_vma(tlb, vma);
1261         pgd = pgd_offset(vma->vm_mm, addr);
1262         do {
1263                 next = pgd_addr_end(addr, end);
1264                 if (pgd_none_or_clear_bad(pgd))
1265                         continue;
1266                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1267         } while (pgd++, addr = next, addr != end);
1268         tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273                 struct vm_area_struct *vma, unsigned long start_addr,
1274                 unsigned long end_addr,
1275                 struct zap_details *details)
1276 {
1277         unsigned long start = max(vma->vm_start, start_addr);
1278         unsigned long end;
1279
1280         if (start >= vma->vm_end)
1281                 return;
1282         end = min(vma->vm_end, end_addr);
1283         if (end <= vma->vm_start)
1284                 return;
1285
1286         if (vma->vm_file)
1287                 uprobe_munmap(vma, start, end);
1288
1289         if (unlikely(vma->vm_flags & VM_PFNMAP))
1290                 untrack_pfn(vma, 0, 0);
1291
1292         if (start != end) {
1293                 if (unlikely(is_vm_hugetlb_page(vma))) {
1294                         /*
1295                          * It is undesirable to test vma->vm_file as it
1296                          * should be non-null for valid hugetlb area.
1297                          * However, vm_file will be NULL in the error
1298                          * cleanup path of mmap_region. When
1299                          * hugetlbfs ->mmap method fails,
1300                          * mmap_region() nullifies vma->vm_file
1301                          * before calling this function to clean up.
1302                          * Since no pte has actually been setup, it is
1303                          * safe to do nothing in this case.
1304                          */
1305                         if (vma->vm_file) {
1306                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1307                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309                         }
1310                 } else
1311                         unmap_page_range(tlb, vma, start, end, details);
1312         }
1313 }
1314
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334                 struct vm_area_struct *vma, unsigned long start_addr,
1335                 unsigned long end_addr)
1336 {
1337         struct mm_struct *mm = vma->vm_mm;
1338
1339         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1340         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1343 }
1344
1345 /**
1346  * zap_page_range - remove user pages in a given range
1347  * @vma: vm_area_struct holding the applicable pages
1348  * @start: starting address of pages to zap
1349  * @size: number of bytes to zap
1350  * @details: details of shared cache invalidation
1351  *
1352  * Caller must protect the VMA list
1353  */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355                 unsigned long size, struct zap_details *details)
1356 {
1357         struct mm_struct *mm = vma->vm_mm;
1358         struct mmu_gather tlb;
1359         unsigned long end = start + size;
1360
1361         lru_add_drain();
1362         tlb_gather_mmu(&tlb, mm, start, end);
1363         update_hiwater_rss(mm);
1364         mmu_notifier_invalidate_range_start(mm, start, end);
1365         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1366                 unmap_single_vma(&tlb, vma, start, end, details);
1367         mmu_notifier_invalidate_range_end(mm, start, end);
1368         tlb_finish_mmu(&tlb, start, end);
1369 }
1370
1371 /**
1372  * zap_page_range_single - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @address: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of shared cache invalidation
1377  *
1378  * The range must fit into one VMA.
1379  */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381                 unsigned long size, struct zap_details *details)
1382 {
1383         struct mm_struct *mm = vma->vm_mm;
1384         struct mmu_gather tlb;
1385         unsigned long end = address + size;
1386
1387         lru_add_drain();
1388         tlb_gather_mmu(&tlb, mm, address, end);
1389         update_hiwater_rss(mm);
1390         mmu_notifier_invalidate_range_start(mm, address, end);
1391         unmap_single_vma(&tlb, vma, address, end, details);
1392         mmu_notifier_invalidate_range_end(mm, address, end);
1393         tlb_finish_mmu(&tlb, address, end);
1394 }
1395
1396 /**
1397  * zap_vma_ptes - remove ptes mapping the vma
1398  * @vma: vm_area_struct holding ptes to be zapped
1399  * @address: starting address of pages to zap
1400  * @size: number of bytes to zap
1401  *
1402  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1403  *
1404  * The entire address range must be fully contained within the vma.
1405  *
1406  * Returns 0 if successful.
1407  */
1408 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409                 unsigned long size)
1410 {
1411         if (address < vma->vm_start || address + size > vma->vm_end ||
1412                         !(vma->vm_flags & VM_PFNMAP))
1413                 return -1;
1414         zap_page_range_single(vma, address, size, NULL);
1415         return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
1419 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1420                         spinlock_t **ptl)
1421 {
1422         pgd_t * pgd = pgd_offset(mm, addr);
1423         pud_t * pud = pud_alloc(mm, pgd, addr);
1424         if (pud) {
1425                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1426                 if (pmd) {
1427                         VM_BUG_ON(pmd_trans_huge(*pmd));
1428                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1429                 }
1430         }
1431         return NULL;
1432 }
1433
1434 /*
1435  * This is the old fallback for page remapping.
1436  *
1437  * For historical reasons, it only allows reserved pages. Only
1438  * old drivers should use this, and they needed to mark their
1439  * pages reserved for the old functions anyway.
1440  */
1441 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1442                         struct page *page, pgprot_t prot)
1443 {
1444         struct mm_struct *mm = vma->vm_mm;
1445         int retval;
1446         pte_t *pte;
1447         spinlock_t *ptl;
1448
1449         retval = -EINVAL;
1450         if (PageAnon(page))
1451                 goto out;
1452         retval = -ENOMEM;
1453         flush_dcache_page(page);
1454         pte = get_locked_pte(mm, addr, &ptl);
1455         if (!pte)
1456                 goto out;
1457         retval = -EBUSY;
1458         if (!pte_none(*pte))
1459                 goto out_unlock;
1460
1461         /* Ok, finally just insert the thing.. */
1462         get_page(page);
1463         inc_mm_counter_fast(mm, MM_FILEPAGES);
1464         page_add_file_rmap(page);
1465         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1466
1467         retval = 0;
1468         pte_unmap_unlock(pte, ptl);
1469         return retval;
1470 out_unlock:
1471         pte_unmap_unlock(pte, ptl);
1472 out:
1473         return retval;
1474 }
1475
1476 /**
1477  * vm_insert_page - insert single page into user vma
1478  * @vma: user vma to map to
1479  * @addr: target user address of this page
1480  * @page: source kernel page
1481  *
1482  * This allows drivers to insert individual pages they've allocated
1483  * into a user vma.
1484  *
1485  * The page has to be a nice clean _individual_ kernel allocation.
1486  * If you allocate a compound page, you need to have marked it as
1487  * such (__GFP_COMP), or manually just split the page up yourself
1488  * (see split_page()).
1489  *
1490  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1491  * took an arbitrary page protection parameter. This doesn't allow
1492  * that. Your vma protection will have to be set up correctly, which
1493  * means that if you want a shared writable mapping, you'd better
1494  * ask for a shared writable mapping!
1495  *
1496  * The page does not need to be reserved.
1497  *
1498  * Usually this function is called from f_op->mmap() handler
1499  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1500  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1501  * function from other places, for example from page-fault handler.
1502  */
1503 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1504                         struct page *page)
1505 {
1506         if (addr < vma->vm_start || addr >= vma->vm_end)
1507                 return -EFAULT;
1508         if (!page_count(page))
1509                 return -EINVAL;
1510         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1511                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1512                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1513                 vma->vm_flags |= VM_MIXEDMAP;
1514         }
1515         return insert_page(vma, addr, page, vma->vm_page_prot);
1516 }
1517 EXPORT_SYMBOL(vm_insert_page);
1518
1519 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520                         unsigned long pfn, pgprot_t prot)
1521 {
1522         struct mm_struct *mm = vma->vm_mm;
1523         int retval;
1524         pte_t *pte, entry;
1525         spinlock_t *ptl;
1526
1527         retval = -ENOMEM;
1528         pte = get_locked_pte(mm, addr, &ptl);
1529         if (!pte)
1530                 goto out;
1531         retval = -EBUSY;
1532         if (!pte_none(*pte))
1533                 goto out_unlock;
1534
1535         /* Ok, finally just insert the thing.. */
1536         entry = pte_mkspecial(pfn_pte(pfn, prot));
1537         set_pte_at(mm, addr, pte, entry);
1538         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1539
1540         retval = 0;
1541 out_unlock:
1542         pte_unmap_unlock(pte, ptl);
1543 out:
1544         return retval;
1545 }
1546
1547 /**
1548  * vm_insert_pfn - insert single pfn into user vma
1549  * @vma: user vma to map to
1550  * @addr: target user address of this page
1551  * @pfn: source kernel pfn
1552  *
1553  * Similar to vm_insert_page, this allows drivers to insert individual pages
1554  * they've allocated into a user vma. Same comments apply.
1555  *
1556  * This function should only be called from a vm_ops->fault handler, and
1557  * in that case the handler should return NULL.
1558  *
1559  * vma cannot be a COW mapping.
1560  *
1561  * As this is called only for pages that do not currently exist, we
1562  * do not need to flush old virtual caches or the TLB.
1563  */
1564 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1565                         unsigned long pfn)
1566 {
1567         int ret;
1568         pgprot_t pgprot = vma->vm_page_prot;
1569         /*
1570          * Technically, architectures with pte_special can avoid all these
1571          * restrictions (same for remap_pfn_range).  However we would like
1572          * consistency in testing and feature parity among all, so we should
1573          * try to keep these invariants in place for everybody.
1574          */
1575         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1576         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1577                                                 (VM_PFNMAP|VM_MIXEDMAP));
1578         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1579         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1580
1581         if (addr < vma->vm_start || addr >= vma->vm_end)
1582                 return -EFAULT;
1583         if (track_pfn_insert(vma, &pgprot, pfn))
1584                 return -EINVAL;
1585
1586         ret = insert_pfn(vma, addr, pfn, pgprot);
1587
1588         return ret;
1589 }
1590 EXPORT_SYMBOL(vm_insert_pfn);
1591
1592 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1593                         unsigned long pfn)
1594 {
1595         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1596
1597         if (addr < vma->vm_start || addr >= vma->vm_end)
1598                 return -EFAULT;
1599
1600         /*
1601          * If we don't have pte special, then we have to use the pfn_valid()
1602          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1603          * refcount the page if pfn_valid is true (hence insert_page rather
1604          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1605          * without pte special, it would there be refcounted as a normal page.
1606          */
1607         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1608                 struct page *page;
1609
1610                 page = pfn_to_page(pfn);
1611                 return insert_page(vma, addr, page, vma->vm_page_prot);
1612         }
1613         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1614 }
1615 EXPORT_SYMBOL(vm_insert_mixed);
1616
1617 /*
1618  * maps a range of physical memory into the requested pages. the old
1619  * mappings are removed. any references to nonexistent pages results
1620  * in null mappings (currently treated as "copy-on-access")
1621  */
1622 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1623                         unsigned long addr, unsigned long end,
1624                         unsigned long pfn, pgprot_t prot)
1625 {
1626         pte_t *pte;
1627         spinlock_t *ptl;
1628
1629         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1630         if (!pte)
1631                 return -ENOMEM;
1632         arch_enter_lazy_mmu_mode();
1633         do {
1634                 BUG_ON(!pte_none(*pte));
1635                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1636                 pfn++;
1637         } while (pte++, addr += PAGE_SIZE, addr != end);
1638         arch_leave_lazy_mmu_mode();
1639         pte_unmap_unlock(pte - 1, ptl);
1640         return 0;
1641 }
1642
1643 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1644                         unsigned long addr, unsigned long end,
1645                         unsigned long pfn, pgprot_t prot)
1646 {
1647         pmd_t *pmd;
1648         unsigned long next;
1649
1650         pfn -= addr >> PAGE_SHIFT;
1651         pmd = pmd_alloc(mm, pud, addr);
1652         if (!pmd)
1653                 return -ENOMEM;
1654         VM_BUG_ON(pmd_trans_huge(*pmd));
1655         do {
1656                 next = pmd_addr_end(addr, end);
1657                 if (remap_pte_range(mm, pmd, addr, next,
1658                                 pfn + (addr >> PAGE_SHIFT), prot))
1659                         return -ENOMEM;
1660         } while (pmd++, addr = next, addr != end);
1661         return 0;
1662 }
1663
1664 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1665                         unsigned long addr, unsigned long end,
1666                         unsigned long pfn, pgprot_t prot)
1667 {
1668         pud_t *pud;
1669         unsigned long next;
1670
1671         pfn -= addr >> PAGE_SHIFT;
1672         pud = pud_alloc(mm, pgd, addr);
1673         if (!pud)
1674                 return -ENOMEM;
1675         do {
1676                 next = pud_addr_end(addr, end);
1677                 if (remap_pmd_range(mm, pud, addr, next,
1678                                 pfn + (addr >> PAGE_SHIFT), prot))
1679                         return -ENOMEM;
1680         } while (pud++, addr = next, addr != end);
1681         return 0;
1682 }
1683
1684 /**
1685  * remap_pfn_range - remap kernel memory to userspace
1686  * @vma: user vma to map to
1687  * @addr: target user address to start at
1688  * @pfn: physical address of kernel memory
1689  * @size: size of map area
1690  * @prot: page protection flags for this mapping
1691  *
1692  *  Note: this is only safe if the mm semaphore is held when called.
1693  */
1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1695                     unsigned long pfn, unsigned long size, pgprot_t prot)
1696 {
1697         pgd_t *pgd;
1698         unsigned long next;
1699         unsigned long end = addr + PAGE_ALIGN(size);
1700         struct mm_struct *mm = vma->vm_mm;
1701         int err;
1702
1703         /*
1704          * Physically remapped pages are special. Tell the
1705          * rest of the world about it:
1706          *   VM_IO tells people not to look at these pages
1707          *      (accesses can have side effects).
1708          *   VM_PFNMAP tells the core MM that the base pages are just
1709          *      raw PFN mappings, and do not have a "struct page" associated
1710          *      with them.
1711          *   VM_DONTEXPAND
1712          *      Disable vma merging and expanding with mremap().
1713          *   VM_DONTDUMP
1714          *      Omit vma from core dump, even when VM_IO turned off.
1715          *
1716          * There's a horrible special case to handle copy-on-write
1717          * behaviour that some programs depend on. We mark the "original"
1718          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1719          * See vm_normal_page() for details.
1720          */
1721         if (is_cow_mapping(vma->vm_flags)) {
1722                 if (addr != vma->vm_start || end != vma->vm_end)
1723                         return -EINVAL;
1724                 vma->vm_pgoff = pfn;
1725         }
1726
1727         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1728         if (err)
1729                 return -EINVAL;
1730
1731         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1732
1733         BUG_ON(addr >= end);
1734         pfn -= addr >> PAGE_SHIFT;
1735         pgd = pgd_offset(mm, addr);
1736         flush_cache_range(vma, addr, end);
1737         do {
1738                 next = pgd_addr_end(addr, end);
1739                 err = remap_pud_range(mm, pgd, addr, next,
1740                                 pfn + (addr >> PAGE_SHIFT), prot);
1741                 if (err)
1742                         break;
1743         } while (pgd++, addr = next, addr != end);
1744
1745         if (err)
1746                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1747
1748         return err;
1749 }
1750 EXPORT_SYMBOL(remap_pfn_range);
1751
1752 /**
1753  * vm_iomap_memory - remap memory to userspace
1754  * @vma: user vma to map to
1755  * @start: start of area
1756  * @len: size of area
1757  *
1758  * This is a simplified io_remap_pfn_range() for common driver use. The
1759  * driver just needs to give us the physical memory range to be mapped,
1760  * we'll figure out the rest from the vma information.
1761  *
1762  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1763  * whatever write-combining details or similar.
1764  */
1765 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1766 {
1767         unsigned long vm_len, pfn, pages;
1768
1769         /* Check that the physical memory area passed in looks valid */
1770         if (start + len < start)
1771                 return -EINVAL;
1772         /*
1773          * You *really* shouldn't map things that aren't page-aligned,
1774          * but we've historically allowed it because IO memory might
1775          * just have smaller alignment.
1776          */
1777         len += start & ~PAGE_MASK;
1778         pfn = start >> PAGE_SHIFT;
1779         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1780         if (pfn + pages < pfn)
1781                 return -EINVAL;
1782
1783         /* We start the mapping 'vm_pgoff' pages into the area */
1784         if (vma->vm_pgoff > pages)
1785                 return -EINVAL;
1786         pfn += vma->vm_pgoff;
1787         pages -= vma->vm_pgoff;
1788
1789         /* Can we fit all of the mapping? */
1790         vm_len = vma->vm_end - vma->vm_start;
1791         if (vm_len >> PAGE_SHIFT > pages)
1792                 return -EINVAL;
1793
1794         /* Ok, let it rip */
1795         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1796 }
1797 EXPORT_SYMBOL(vm_iomap_memory);
1798
1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800                                      unsigned long addr, unsigned long end,
1801                                      pte_fn_t fn, void *data)
1802 {
1803         pte_t *pte;
1804         int err;
1805         pgtable_t token;
1806         spinlock_t *uninitialized_var(ptl);
1807
1808         pte = (mm == &init_mm) ?
1809                 pte_alloc_kernel(pmd, addr) :
1810                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811         if (!pte)
1812                 return -ENOMEM;
1813
1814         BUG_ON(pmd_huge(*pmd));
1815
1816         arch_enter_lazy_mmu_mode();
1817
1818         token = pmd_pgtable(*pmd);
1819
1820         do {
1821                 err = fn(pte++, token, addr, data);
1822                 if (err)
1823                         break;
1824         } while (addr += PAGE_SIZE, addr != end);
1825
1826         arch_leave_lazy_mmu_mode();
1827
1828         if (mm != &init_mm)
1829                 pte_unmap_unlock(pte-1, ptl);
1830         return err;
1831 }
1832
1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834                                      unsigned long addr, unsigned long end,
1835                                      pte_fn_t fn, void *data)
1836 {
1837         pmd_t *pmd;
1838         unsigned long next;
1839         int err;
1840
1841         BUG_ON(pud_huge(*pud));
1842
1843         pmd = pmd_alloc(mm, pud, addr);
1844         if (!pmd)
1845                 return -ENOMEM;
1846         do {
1847                 next = pmd_addr_end(addr, end);
1848                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849                 if (err)
1850                         break;
1851         } while (pmd++, addr = next, addr != end);
1852         return err;
1853 }
1854
1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856                                      unsigned long addr, unsigned long end,
1857                                      pte_fn_t fn, void *data)
1858 {
1859         pud_t *pud;
1860         unsigned long next;
1861         int err;
1862
1863         pud = pud_alloc(mm, pgd, addr);
1864         if (!pud)
1865                 return -ENOMEM;
1866         do {
1867                 next = pud_addr_end(addr, end);
1868                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869                 if (err)
1870                         break;
1871         } while (pud++, addr = next, addr != end);
1872         return err;
1873 }
1874
1875 /*
1876  * Scan a region of virtual memory, filling in page tables as necessary
1877  * and calling a provided function on each leaf page table.
1878  */
1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880                         unsigned long size, pte_fn_t fn, void *data)
1881 {
1882         pgd_t *pgd;
1883         unsigned long next;
1884         unsigned long end = addr + size;
1885         int err;
1886
1887         BUG_ON(addr >= end);
1888         pgd = pgd_offset(mm, addr);
1889         do {
1890                 next = pgd_addr_end(addr, end);
1891                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892                 if (err)
1893                         break;
1894         } while (pgd++, addr = next, addr != end);
1895
1896         return err;
1897 }
1898 EXPORT_SYMBOL_GPL(apply_to_page_range);
1899
1900 /*
1901  * handle_pte_fault chooses page fault handler according to an entry which was
1902  * read non-atomically.  Before making any commitment, on those architectures
1903  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1904  * parts, do_swap_page must check under lock before unmapping the pte and
1905  * proceeding (but do_wp_page is only called after already making such a check;
1906  * and do_anonymous_page can safely check later on).
1907  */
1908 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1909                                 pte_t *page_table, pte_t orig_pte)
1910 {
1911         int same = 1;
1912 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1913         if (sizeof(pte_t) > sizeof(unsigned long)) {
1914                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1915                 spin_lock(ptl);
1916                 same = pte_same(*page_table, orig_pte);
1917                 spin_unlock(ptl);
1918         }
1919 #endif
1920         pte_unmap(page_table);
1921         return same;
1922 }
1923
1924 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1925 {
1926         debug_dma_assert_idle(src);
1927
1928         /*
1929          * If the source page was a PFN mapping, we don't have
1930          * a "struct page" for it. We do a best-effort copy by
1931          * just copying from the original user address. If that
1932          * fails, we just zero-fill it. Live with it.
1933          */
1934         if (unlikely(!src)) {
1935                 void *kaddr = kmap_atomic(dst);
1936                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1937
1938                 /*
1939                  * This really shouldn't fail, because the page is there
1940                  * in the page tables. But it might just be unreadable,
1941                  * in which case we just give up and fill the result with
1942                  * zeroes.
1943                  */
1944                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1945                         clear_page(kaddr);
1946                 kunmap_atomic(kaddr);
1947                 flush_dcache_page(dst);
1948         } else
1949                 copy_user_highpage(dst, src, va, vma);
1950 }
1951
1952 /*
1953  * Notify the address space that the page is about to become writable so that
1954  * it can prohibit this or wait for the page to get into an appropriate state.
1955  *
1956  * We do this without the lock held, so that it can sleep if it needs to.
1957  */
1958 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1959                unsigned long address)
1960 {
1961         struct vm_fault vmf;
1962         int ret;
1963
1964         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1965         vmf.pgoff = page->index;
1966         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1967         vmf.page = page;
1968
1969         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1970         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1971                 return ret;
1972         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1973                 lock_page(page);
1974                 if (!page->mapping) {
1975                         unlock_page(page);
1976                         return 0; /* retry */
1977                 }
1978                 ret |= VM_FAULT_LOCKED;
1979         } else
1980                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1981         return ret;
1982 }
1983
1984 /*
1985  * This routine handles present pages, when users try to write
1986  * to a shared page. It is done by copying the page to a new address
1987  * and decrementing the shared-page counter for the old page.
1988  *
1989  * Note that this routine assumes that the protection checks have been
1990  * done by the caller (the low-level page fault routine in most cases).
1991  * Thus we can safely just mark it writable once we've done any necessary
1992  * COW.
1993  *
1994  * We also mark the page dirty at this point even though the page will
1995  * change only once the write actually happens. This avoids a few races,
1996  * and potentially makes it more efficient.
1997  *
1998  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1999  * but allow concurrent faults), with pte both mapped and locked.
2000  * We return with mmap_sem still held, but pte unmapped and unlocked.
2001  */
2002 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2003                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2004                 spinlock_t *ptl, pte_t orig_pte)
2005         __releases(ptl)
2006 {
2007         struct page *old_page, *new_page = NULL;
2008         pte_t entry;
2009         int ret = 0;
2010         int page_mkwrite = 0;
2011         bool dirty_shared = false;
2012         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2013         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2014         struct mem_cgroup *memcg;
2015
2016         old_page = vm_normal_page(vma, address, orig_pte);
2017         if (!old_page) {
2018                 /*
2019                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2020                  * VM_PFNMAP VMA.
2021                  *
2022                  * We should not cow pages in a shared writeable mapping.
2023                  * Just mark the pages writable as we can't do any dirty
2024                  * accounting on raw pfn maps.
2025                  */
2026                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2027                                      (VM_WRITE|VM_SHARED))
2028                         goto reuse;
2029                 goto gotten;
2030         }
2031
2032         /*
2033          * Take out anonymous pages first, anonymous shared vmas are
2034          * not dirty accountable.
2035          */
2036         if (PageAnon(old_page) && !PageKsm(old_page)) {
2037                 if (!trylock_page(old_page)) {
2038                         page_cache_get(old_page);
2039                         pte_unmap_unlock(page_table, ptl);
2040                         lock_page(old_page);
2041                         page_table = pte_offset_map_lock(mm, pmd, address,
2042                                                          &ptl);
2043                         if (!pte_same(*page_table, orig_pte)) {
2044                                 unlock_page(old_page);
2045                                 goto unlock;
2046                         }
2047                         page_cache_release(old_page);
2048                 }
2049                 if (reuse_swap_page(old_page)) {
2050                         /*
2051                          * The page is all ours.  Move it to our anon_vma so
2052                          * the rmap code will not search our parent or siblings.
2053                          * Protected against the rmap code by the page lock.
2054                          */
2055                         page_move_anon_rmap(old_page, vma, address);
2056                         unlock_page(old_page);
2057                         goto reuse;
2058                 }
2059                 unlock_page(old_page);
2060         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2061                                         (VM_WRITE|VM_SHARED))) {
2062                 page_cache_get(old_page);
2063                 /*
2064                  * Only catch write-faults on shared writable pages,
2065                  * read-only shared pages can get COWed by
2066                  * get_user_pages(.write=1, .force=1).
2067                  */
2068                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2069                         int tmp;
2070
2071                         pte_unmap_unlock(page_table, ptl);
2072                         tmp = do_page_mkwrite(vma, old_page, address);
2073                         if (unlikely(!tmp || (tmp &
2074                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2075                                 page_cache_release(old_page);
2076                                 return tmp;
2077                         }
2078                         /*
2079                          * Since we dropped the lock we need to revalidate
2080                          * the PTE as someone else may have changed it.  If
2081                          * they did, we just return, as we can count on the
2082                          * MMU to tell us if they didn't also make it writable.
2083                          */
2084                         page_table = pte_offset_map_lock(mm, pmd, address,
2085                                                          &ptl);
2086                         if (!pte_same(*page_table, orig_pte)) {
2087                                 unlock_page(old_page);
2088                                 goto unlock;
2089                         }
2090                         page_mkwrite = 1;
2091                 }
2092
2093                 dirty_shared = true;
2094
2095 reuse:
2096                 /*
2097                  * Clear the pages cpupid information as the existing
2098                  * information potentially belongs to a now completely
2099                  * unrelated process.
2100                  */
2101                 if (old_page)
2102                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2103
2104                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2105                 entry = pte_mkyoung(orig_pte);
2106                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2107                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2108                         update_mmu_cache(vma, address, page_table);
2109                 pte_unmap_unlock(page_table, ptl);
2110                 ret |= VM_FAULT_WRITE;
2111
2112                 if (dirty_shared) {
2113                         struct address_space *mapping;
2114                         int dirtied;
2115
2116                         if (!page_mkwrite)
2117                                 lock_page(old_page);
2118
2119                         dirtied = set_page_dirty(old_page);
2120                         VM_BUG_ON_PAGE(PageAnon(old_page), old_page);
2121                         mapping = old_page->mapping;
2122                         unlock_page(old_page);
2123                         page_cache_release(old_page);
2124
2125                         if ((dirtied || page_mkwrite) && mapping) {
2126                                 /*
2127                                  * Some device drivers do not set page.mapping
2128                                  * but still dirty their pages
2129                                  */
2130                                 balance_dirty_pages_ratelimited(mapping);
2131                         }
2132
2133                         if (!page_mkwrite)
2134                                 file_update_time(vma->vm_file);
2135                 }
2136
2137                 return ret;
2138         }
2139
2140         /*
2141          * Ok, we need to copy. Oh, well..
2142          */
2143         page_cache_get(old_page);
2144 gotten:
2145         pte_unmap_unlock(page_table, ptl);
2146
2147         if (unlikely(anon_vma_prepare(vma)))
2148                 goto oom;
2149
2150         if (is_zero_pfn(pte_pfn(orig_pte))) {
2151                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2152                 if (!new_page)
2153                         goto oom;
2154         } else {
2155                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2156                 if (!new_page)
2157                         goto oom;
2158                 cow_user_page(new_page, old_page, address, vma);
2159         }
2160         __SetPageUptodate(new_page);
2161
2162         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2163                 goto oom_free_new;
2164
2165         mmun_start  = address & PAGE_MASK;
2166         mmun_end    = mmun_start + PAGE_SIZE;
2167         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2168
2169         /*
2170          * Re-check the pte - we dropped the lock
2171          */
2172         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2173         if (likely(pte_same(*page_table, orig_pte))) {
2174                 if (old_page) {
2175                         if (!PageAnon(old_page)) {
2176                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2177                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2178                         }
2179                 } else
2180                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2181                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2182                 entry = mk_pte(new_page, vma->vm_page_prot);
2183                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2184                 /*
2185                  * Clear the pte entry and flush it first, before updating the
2186                  * pte with the new entry. This will avoid a race condition
2187                  * seen in the presence of one thread doing SMC and another
2188                  * thread doing COW.
2189                  */
2190                 ptep_clear_flush_notify(vma, address, page_table);
2191                 page_add_new_anon_rmap(new_page, vma, address);
2192                 mem_cgroup_commit_charge(new_page, memcg, false);
2193                 lru_cache_add_active_or_unevictable(new_page, vma);
2194                 /*
2195                  * We call the notify macro here because, when using secondary
2196                  * mmu page tables (such as kvm shadow page tables), we want the
2197                  * new page to be mapped directly into the secondary page table.
2198                  */
2199                 set_pte_at_notify(mm, address, page_table, entry);
2200                 update_mmu_cache(vma, address, page_table);
2201                 if (old_page) {
2202                         /*
2203                          * Only after switching the pte to the new page may
2204                          * we remove the mapcount here. Otherwise another
2205                          * process may come and find the rmap count decremented
2206                          * before the pte is switched to the new page, and
2207                          * "reuse" the old page writing into it while our pte
2208                          * here still points into it and can be read by other
2209                          * threads.
2210                          *
2211                          * The critical issue is to order this
2212                          * page_remove_rmap with the ptp_clear_flush above.
2213                          * Those stores are ordered by (if nothing else,)
2214                          * the barrier present in the atomic_add_negative
2215                          * in page_remove_rmap.
2216                          *
2217                          * Then the TLB flush in ptep_clear_flush ensures that
2218                          * no process can access the old page before the
2219                          * decremented mapcount is visible. And the old page
2220                          * cannot be reused until after the decremented
2221                          * mapcount is visible. So transitively, TLBs to
2222                          * old page will be flushed before it can be reused.
2223                          */
2224                         page_remove_rmap(old_page);
2225                 }
2226
2227                 /* Free the old page.. */
2228                 new_page = old_page;
2229                 ret |= VM_FAULT_WRITE;
2230         } else
2231                 mem_cgroup_cancel_charge(new_page, memcg);
2232
2233         if (new_page)
2234                 page_cache_release(new_page);
2235 unlock:
2236         pte_unmap_unlock(page_table, ptl);
2237         if (mmun_end > mmun_start)
2238                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2239         if (old_page) {
2240                 /*
2241                  * Don't let another task, with possibly unlocked vma,
2242                  * keep the mlocked page.
2243                  */
2244                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2245                         lock_page(old_page);    /* LRU manipulation */
2246                         munlock_vma_page(old_page);
2247                         unlock_page(old_page);
2248                 }
2249                 page_cache_release(old_page);
2250         }
2251         return ret;
2252 oom_free_new:
2253         page_cache_release(new_page);
2254 oom:
2255         if (old_page)
2256                 page_cache_release(old_page);
2257         return VM_FAULT_OOM;
2258 }
2259
2260 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2261                 unsigned long start_addr, unsigned long end_addr,
2262                 struct zap_details *details)
2263 {
2264         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2265 }
2266
2267 static inline void unmap_mapping_range_tree(struct rb_root *root,
2268                                             struct zap_details *details)
2269 {
2270         struct vm_area_struct *vma;
2271         pgoff_t vba, vea, zba, zea;
2272
2273         vma_interval_tree_foreach(vma, root,
2274                         details->first_index, details->last_index) {
2275
2276                 vba = vma->vm_pgoff;
2277                 vea = vba + vma_pages(vma) - 1;
2278                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2279                 zba = details->first_index;
2280                 if (zba < vba)
2281                         zba = vba;
2282                 zea = details->last_index;
2283                 if (zea > vea)
2284                         zea = vea;
2285
2286                 unmap_mapping_range_vma(vma,
2287                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2288                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2289                                 details);
2290         }
2291 }
2292
2293 /**
2294  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2295  * address_space corresponding to the specified page range in the underlying
2296  * file.
2297  *
2298  * @mapping: the address space containing mmaps to be unmapped.
2299  * @holebegin: byte in first page to unmap, relative to the start of
2300  * the underlying file.  This will be rounded down to a PAGE_SIZE
2301  * boundary.  Note that this is different from truncate_pagecache(), which
2302  * must keep the partial page.  In contrast, we must get rid of
2303  * partial pages.
2304  * @holelen: size of prospective hole in bytes.  This will be rounded
2305  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2306  * end of the file.
2307  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2308  * but 0 when invalidating pagecache, don't throw away private data.
2309  */
2310 void unmap_mapping_range(struct address_space *mapping,
2311                 loff_t const holebegin, loff_t const holelen, int even_cows)
2312 {
2313         struct zap_details details;
2314         pgoff_t hba = holebegin >> PAGE_SHIFT;
2315         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2316
2317         /* Check for overflow. */
2318         if (sizeof(holelen) > sizeof(hlen)) {
2319                 long long holeend =
2320                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2321                 if (holeend & ~(long long)ULONG_MAX)
2322                         hlen = ULONG_MAX - hba + 1;
2323         }
2324
2325         details.check_mapping = even_cows? NULL: mapping;
2326         details.first_index = hba;
2327         details.last_index = hba + hlen - 1;
2328         if (details.last_index < details.first_index)
2329                 details.last_index = ULONG_MAX;
2330
2331
2332         i_mmap_lock_write(mapping);
2333         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2334                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2335         i_mmap_unlock_write(mapping);
2336 }
2337 EXPORT_SYMBOL(unmap_mapping_range);
2338
2339 /*
2340  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2341  * but allow concurrent faults), and pte mapped but not yet locked.
2342  * We return with pte unmapped and unlocked.
2343  *
2344  * We return with the mmap_sem locked or unlocked in the same cases
2345  * as does filemap_fault().
2346  */
2347 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2348                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2349                 unsigned int flags, pte_t orig_pte)
2350 {
2351         spinlock_t *ptl;
2352         struct page *page, *swapcache;
2353         struct mem_cgroup *memcg;
2354         swp_entry_t entry;
2355         pte_t pte;
2356         int locked;
2357         int exclusive = 0;
2358         int ret = 0;
2359
2360         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2361                 goto out;
2362
2363         entry = pte_to_swp_entry(orig_pte);
2364         if (unlikely(non_swap_entry(entry))) {
2365                 if (is_migration_entry(entry)) {
2366                         migration_entry_wait(mm, pmd, address);
2367                 } else if (is_hwpoison_entry(entry)) {
2368                         ret = VM_FAULT_HWPOISON;
2369                 } else {
2370                         print_bad_pte(vma, address, orig_pte, NULL);
2371                         ret = VM_FAULT_SIGBUS;
2372                 }
2373                 goto out;
2374         }
2375         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2376         page = lookup_swap_cache(entry);
2377         if (!page) {
2378                 page = swapin_readahead(entry,
2379                                         GFP_HIGHUSER_MOVABLE, vma, address);
2380                 if (!page) {
2381                         /*
2382                          * Back out if somebody else faulted in this pte
2383                          * while we released the pte lock.
2384                          */
2385                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2386                         if (likely(pte_same(*page_table, orig_pte)))
2387                                 ret = VM_FAULT_OOM;
2388                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2389                         goto unlock;
2390                 }
2391
2392                 /* Had to read the page from swap area: Major fault */
2393                 ret = VM_FAULT_MAJOR;
2394                 count_vm_event(PGMAJFAULT);
2395                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2396         } else if (PageHWPoison(page)) {
2397                 /*
2398                  * hwpoisoned dirty swapcache pages are kept for killing
2399                  * owner processes (which may be unknown at hwpoison time)
2400                  */
2401                 ret = VM_FAULT_HWPOISON;
2402                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2403                 swapcache = page;
2404                 goto out_release;
2405         }
2406
2407         swapcache = page;
2408         locked = lock_page_or_retry(page, mm, flags);
2409
2410         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2411         if (!locked) {
2412                 ret |= VM_FAULT_RETRY;
2413                 goto out_release;
2414         }
2415
2416         /*
2417          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2418          * release the swapcache from under us.  The page pin, and pte_same
2419          * test below, are not enough to exclude that.  Even if it is still
2420          * swapcache, we need to check that the page's swap has not changed.
2421          */
2422         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2423                 goto out_page;
2424
2425         page = ksm_might_need_to_copy(page, vma, address);
2426         if (unlikely(!page)) {
2427                 ret = VM_FAULT_OOM;
2428                 page = swapcache;
2429                 goto out_page;
2430         }
2431
2432         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2433                 ret = VM_FAULT_OOM;
2434                 goto out_page;
2435         }
2436
2437         /*
2438          * Back out if somebody else already faulted in this pte.
2439          */
2440         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2441         if (unlikely(!pte_same(*page_table, orig_pte)))
2442                 goto out_nomap;
2443
2444         if (unlikely(!PageUptodate(page))) {
2445                 ret = VM_FAULT_SIGBUS;
2446                 goto out_nomap;
2447         }
2448
2449         /*
2450          * The page isn't present yet, go ahead with the fault.
2451          *
2452          * Be careful about the sequence of operations here.
2453          * To get its accounting right, reuse_swap_page() must be called
2454          * while the page is counted on swap but not yet in mapcount i.e.
2455          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2456          * must be called after the swap_free(), or it will never succeed.
2457          */
2458
2459         inc_mm_counter_fast(mm, MM_ANONPAGES);
2460         dec_mm_counter_fast(mm, MM_SWAPENTS);
2461         pte = mk_pte(page, vma->vm_page_prot);
2462         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2463                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2464                 flags &= ~FAULT_FLAG_WRITE;
2465                 ret |= VM_FAULT_WRITE;
2466                 exclusive = 1;
2467         }
2468         flush_icache_page(vma, page);
2469         if (pte_swp_soft_dirty(orig_pte))
2470                 pte = pte_mksoft_dirty(pte);
2471         set_pte_at(mm, address, page_table, pte);
2472         if (page == swapcache) {
2473                 do_page_add_anon_rmap(page, vma, address, exclusive);
2474                 mem_cgroup_commit_charge(page, memcg, true);
2475         } else { /* ksm created a completely new copy */
2476                 page_add_new_anon_rmap(page, vma, address);
2477                 mem_cgroup_commit_charge(page, memcg, false);
2478                 lru_cache_add_active_or_unevictable(page, vma);
2479         }
2480
2481         swap_free(entry);
2482         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2483                 try_to_free_swap(page);
2484         unlock_page(page);
2485         if (page != swapcache) {
2486                 /*
2487                  * Hold the lock to avoid the swap entry to be reused
2488                  * until we take the PT lock for the pte_same() check
2489                  * (to avoid false positives from pte_same). For
2490                  * further safety release the lock after the swap_free
2491                  * so that the swap count won't change under a
2492                  * parallel locked swapcache.
2493                  */
2494                 unlock_page(swapcache);
2495                 page_cache_release(swapcache);
2496         }
2497
2498         if (flags & FAULT_FLAG_WRITE) {
2499                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2500                 if (ret & VM_FAULT_ERROR)
2501                         ret &= VM_FAULT_ERROR;
2502                 goto out;
2503         }
2504
2505         /* No need to invalidate - it was non-present before */
2506         update_mmu_cache(vma, address, page_table);
2507 unlock:
2508         pte_unmap_unlock(page_table, ptl);
2509 out:
2510         return ret;
2511 out_nomap:
2512         mem_cgroup_cancel_charge(page, memcg);
2513         pte_unmap_unlock(page_table, ptl);
2514 out_page:
2515         unlock_page(page);
2516 out_release:
2517         page_cache_release(page);
2518         if (page != swapcache) {
2519                 unlock_page(swapcache);
2520                 page_cache_release(swapcache);
2521         }
2522         return ret;
2523 }
2524
2525 /*
2526  * This is like a special single-page "expand_{down|up}wards()",
2527  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2528  * doesn't hit another vma.
2529  */
2530 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2531 {
2532         address &= PAGE_MASK;
2533         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2534                 struct vm_area_struct *prev = vma->vm_prev;
2535
2536                 /*
2537                  * Is there a mapping abutting this one below?
2538                  *
2539                  * That's only ok if it's the same stack mapping
2540                  * that has gotten split..
2541                  */
2542                 if (prev && prev->vm_end == address)
2543                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2544
2545                 return expand_downwards(vma, address - PAGE_SIZE);
2546         }
2547         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2548                 struct vm_area_struct *next = vma->vm_next;
2549
2550                 /* As VM_GROWSDOWN but s/below/above/ */
2551                 if (next && next->vm_start == address + PAGE_SIZE)
2552                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2553
2554                 return expand_upwards(vma, address + PAGE_SIZE);
2555         }
2556         return 0;
2557 }
2558
2559 /*
2560  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2561  * but allow concurrent faults), and pte mapped but not yet locked.
2562  * We return with mmap_sem still held, but pte unmapped and unlocked.
2563  */
2564 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2565                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2566                 unsigned int flags)
2567 {
2568         struct mem_cgroup *memcg;
2569         struct page *page;
2570         spinlock_t *ptl;
2571         pte_t entry;
2572
2573         pte_unmap(page_table);
2574
2575         /* Check if we need to add a guard page to the stack */
2576         if (check_stack_guard_page(vma, address) < 0)
2577                 return VM_FAULT_SIGSEGV;
2578
2579         /* Use the zero-page for reads */
2580         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2581                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2582                                                 vma->vm_page_prot));
2583                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2584                 if (!pte_none(*page_table))
2585                         goto unlock;
2586                 goto setpte;
2587         }
2588
2589         /* Allocate our own private page. */
2590         if (unlikely(anon_vma_prepare(vma)))
2591                 goto oom;
2592         page = alloc_zeroed_user_highpage_movable(vma, address);
2593         if (!page)
2594                 goto oom;
2595         /*
2596          * The memory barrier inside __SetPageUptodate makes sure that
2597          * preceeding stores to the page contents become visible before
2598          * the set_pte_at() write.
2599          */
2600         __SetPageUptodate(page);
2601
2602         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2603                 goto oom_free_page;
2604
2605         entry = mk_pte(page, vma->vm_page_prot);
2606         if (vma->vm_flags & VM_WRITE)
2607                 entry = pte_mkwrite(pte_mkdirty(entry));
2608
2609         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2610         if (!pte_none(*page_table))
2611                 goto release;
2612
2613         inc_mm_counter_fast(mm, MM_ANONPAGES);
2614         page_add_new_anon_rmap(page, vma, address);
2615         mem_cgroup_commit_charge(page, memcg, false);
2616         lru_cache_add_active_or_unevictable(page, vma);
2617 setpte:
2618         set_pte_at(mm, address, page_table, entry);
2619
2620         /* No need to invalidate - it was non-present before */
2621         update_mmu_cache(vma, address, page_table);
2622 unlock:
2623         pte_unmap_unlock(page_table, ptl);
2624         return 0;
2625 release:
2626         mem_cgroup_cancel_charge(page, memcg);
2627         page_cache_release(page);
2628         goto unlock;
2629 oom_free_page:
2630         page_cache_release(page);
2631 oom:
2632         return VM_FAULT_OOM;
2633 }
2634
2635 /*
2636  * The mmap_sem must have been held on entry, and may have been
2637  * released depending on flags and vma->vm_ops->fault() return value.
2638  * See filemap_fault() and __lock_page_retry().
2639  */
2640 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2641                 pgoff_t pgoff, unsigned int flags, struct page **page)
2642 {
2643         struct vm_fault vmf;
2644         int ret;
2645
2646         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2647         vmf.pgoff = pgoff;
2648         vmf.flags = flags;
2649         vmf.page = NULL;
2650
2651         ret = vma->vm_ops->fault(vma, &vmf);
2652         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2653                 return ret;
2654
2655         if (unlikely(PageHWPoison(vmf.page))) {
2656                 if (ret & VM_FAULT_LOCKED)
2657                         unlock_page(vmf.page);
2658                 page_cache_release(vmf.page);
2659                 return VM_FAULT_HWPOISON;
2660         }
2661
2662         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2663                 lock_page(vmf.page);
2664         else
2665                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2666
2667         *page = vmf.page;
2668         return ret;
2669 }
2670
2671 /**
2672  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2673  *
2674  * @vma: virtual memory area
2675  * @address: user virtual address
2676  * @page: page to map
2677  * @pte: pointer to target page table entry
2678  * @write: true, if new entry is writable
2679  * @anon: true, if it's anonymous page
2680  *
2681  * Caller must hold page table lock relevant for @pte.
2682  *
2683  * Target users are page handler itself and implementations of
2684  * vm_ops->map_pages.
2685  */
2686 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2687                 struct page *page, pte_t *pte, bool write, bool anon)
2688 {
2689         pte_t entry;
2690
2691         flush_icache_page(vma, page);
2692         entry = mk_pte(page, vma->vm_page_prot);
2693         if (write)
2694                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2695         if (anon) {
2696                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2697                 page_add_new_anon_rmap(page, vma, address);
2698         } else {
2699                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2700                 page_add_file_rmap(page);
2701         }
2702         set_pte_at(vma->vm_mm, address, pte, entry);
2703
2704         /* no need to invalidate: a not-present page won't be cached */
2705         update_mmu_cache(vma, address, pte);
2706 }
2707
2708 static unsigned long fault_around_bytes __read_mostly =
2709         rounddown_pow_of_two(65536);
2710
2711 #ifdef CONFIG_DEBUG_FS
2712 static int fault_around_bytes_get(void *data, u64 *val)
2713 {
2714         *val = fault_around_bytes;
2715         return 0;
2716 }
2717
2718 /*
2719  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2720  * rounded down to nearest page order. It's what do_fault_around() expects to
2721  * see.
2722  */
2723 static int fault_around_bytes_set(void *data, u64 val)
2724 {
2725         if (val / PAGE_SIZE > PTRS_PER_PTE)
2726                 return -EINVAL;
2727         if (val > PAGE_SIZE)
2728                 fault_around_bytes = rounddown_pow_of_two(val);
2729         else
2730                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2731         return 0;
2732 }
2733 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2734                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2735
2736 static int __init fault_around_debugfs(void)
2737 {
2738         void *ret;
2739
2740         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2741                         &fault_around_bytes_fops);
2742         if (!ret)
2743                 pr_warn("Failed to create fault_around_bytes in debugfs");
2744         return 0;
2745 }
2746 late_initcall(fault_around_debugfs);
2747 #endif
2748
2749 /*
2750  * do_fault_around() tries to map few pages around the fault address. The hope
2751  * is that the pages will be needed soon and this will lower the number of
2752  * faults to handle.
2753  *
2754  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2755  * not ready to be mapped: not up-to-date, locked, etc.
2756  *
2757  * This function is called with the page table lock taken. In the split ptlock
2758  * case the page table lock only protects only those entries which belong to
2759  * the page table corresponding to the fault address.
2760  *
2761  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2762  * only once.
2763  *
2764  * fault_around_pages() defines how many pages we'll try to map.
2765  * do_fault_around() expects it to return a power of two less than or equal to
2766  * PTRS_PER_PTE.
2767  *
2768  * The virtual address of the area that we map is naturally aligned to the
2769  * fault_around_pages() value (and therefore to page order).  This way it's
2770  * easier to guarantee that we don't cross page table boundaries.
2771  */
2772 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2773                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2774 {
2775         unsigned long start_addr, nr_pages, mask;
2776         pgoff_t max_pgoff;
2777         struct vm_fault vmf;
2778         int off;
2779
2780         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2781         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2782
2783         start_addr = max(address & mask, vma->vm_start);
2784         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2785         pte -= off;
2786         pgoff -= off;
2787
2788         /*
2789          *  max_pgoff is either end of page table or end of vma
2790          *  or fault_around_pages() from pgoff, depending what is nearest.
2791          */
2792         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2793                 PTRS_PER_PTE - 1;
2794         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2795                         pgoff + nr_pages - 1);
2796
2797         /* Check if it makes any sense to call ->map_pages */
2798         while (!pte_none(*pte)) {
2799                 if (++pgoff > max_pgoff)
2800                         return;
2801                 start_addr += PAGE_SIZE;
2802                 if (start_addr >= vma->vm_end)
2803                         return;
2804                 pte++;
2805         }
2806
2807         vmf.virtual_address = (void __user *) start_addr;
2808         vmf.pte = pte;
2809         vmf.pgoff = pgoff;
2810         vmf.max_pgoff = max_pgoff;
2811         vmf.flags = flags;
2812         vma->vm_ops->map_pages(vma, &vmf);
2813 }
2814
2815 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2816                 unsigned long address, pmd_t *pmd,
2817                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2818 {
2819         struct page *fault_page;
2820         spinlock_t *ptl;
2821         pte_t *pte;
2822         int ret = 0;
2823
2824         /*
2825          * Let's call ->map_pages() first and use ->fault() as fallback
2826          * if page by the offset is not ready to be mapped (cold cache or
2827          * something).
2828          */
2829         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2830                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2831                 do_fault_around(vma, address, pte, pgoff, flags);
2832                 if (!pte_same(*pte, orig_pte))
2833                         goto unlock_out;
2834                 pte_unmap_unlock(pte, ptl);
2835         }
2836
2837         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2838         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2839                 return ret;
2840
2841         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2842         if (unlikely(!pte_same(*pte, orig_pte))) {
2843                 pte_unmap_unlock(pte, ptl);
2844                 unlock_page(fault_page);
2845                 page_cache_release(fault_page);
2846                 return ret;
2847         }
2848         do_set_pte(vma, address, fault_page, pte, false, false);
2849         unlock_page(fault_page);
2850 unlock_out:
2851         pte_unmap_unlock(pte, ptl);
2852         return ret;
2853 }
2854
2855 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2856                 unsigned long address, pmd_t *pmd,
2857                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2858 {
2859         struct page *fault_page, *new_page;
2860         struct mem_cgroup *memcg;
2861         spinlock_t *ptl;
2862         pte_t *pte;
2863         int ret;
2864
2865         if (unlikely(anon_vma_prepare(vma)))
2866                 return VM_FAULT_OOM;
2867
2868         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2869         if (!new_page)
2870                 return VM_FAULT_OOM;
2871
2872         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2873                 page_cache_release(new_page);
2874                 return VM_FAULT_OOM;
2875         }
2876
2877         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2878         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2879                 goto uncharge_out;
2880
2881         copy_user_highpage(new_page, fault_page, address, vma);
2882         __SetPageUptodate(new_page);
2883
2884         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2885         if (unlikely(!pte_same(*pte, orig_pte))) {
2886                 pte_unmap_unlock(pte, ptl);
2887                 unlock_page(fault_page);
2888                 page_cache_release(fault_page);
2889                 goto uncharge_out;
2890         }
2891         do_set_pte(vma, address, new_page, pte, true, true);
2892         mem_cgroup_commit_charge(new_page, memcg, false);
2893         lru_cache_add_active_or_unevictable(new_page, vma);
2894         pte_unmap_unlock(pte, ptl);
2895         unlock_page(fault_page);
2896         page_cache_release(fault_page);
2897         return ret;
2898 uncharge_out:
2899         mem_cgroup_cancel_charge(new_page, memcg);
2900         page_cache_release(new_page);
2901         return ret;
2902 }
2903
2904 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2905                 unsigned long address, pmd_t *pmd,
2906                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2907 {
2908         struct page *fault_page;
2909         struct address_space *mapping;
2910         spinlock_t *ptl;
2911         pte_t *pte;
2912         int dirtied = 0;
2913         int ret, tmp;
2914
2915         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2916         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2917                 return ret;
2918
2919         /*
2920          * Check if the backing address space wants to know that the page is
2921          * about to become writable
2922          */
2923         if (vma->vm_ops->page_mkwrite) {
2924                 unlock_page(fault_page);
2925                 tmp = do_page_mkwrite(vma, fault_page, address);
2926                 if (unlikely(!tmp ||
2927                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2928                         page_cache_release(fault_page);
2929                         return tmp;
2930                 }
2931         }
2932
2933         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2934         if (unlikely(!pte_same(*pte, orig_pte))) {
2935                 pte_unmap_unlock(pte, ptl);
2936                 unlock_page(fault_page);
2937                 page_cache_release(fault_page);
2938                 return ret;
2939         }
2940         do_set_pte(vma, address, fault_page, pte, true, false);
2941         pte_unmap_unlock(pte, ptl);
2942
2943         if (set_page_dirty(fault_page))
2944                 dirtied = 1;
2945         /*
2946          * Take a local copy of the address_space - page.mapping may be zeroed
2947          * by truncate after unlock_page().   The address_space itself remains
2948          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2949          * release semantics to prevent the compiler from undoing this copying.
2950          */
2951         mapping = fault_page->mapping;
2952         unlock_page(fault_page);
2953         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2954                 /*
2955                  * Some device drivers do not set page.mapping but still
2956                  * dirty their pages
2957                  */
2958                 balance_dirty_pages_ratelimited(mapping);
2959         }
2960
2961         if (!vma->vm_ops->page_mkwrite)
2962                 file_update_time(vma->vm_file);
2963
2964         return ret;
2965 }
2966
2967 /*
2968  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2969  * but allow concurrent faults).
2970  * The mmap_sem may have been released depending on flags and our
2971  * return value.  See filemap_fault() and __lock_page_or_retry().
2972  */
2973 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2974                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2975                 unsigned int flags, pte_t orig_pte)
2976 {
2977         pgoff_t pgoff = (((address & PAGE_MASK)
2978                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2979
2980         pte_unmap(page_table);
2981         if (!(flags & FAULT_FLAG_WRITE))
2982                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
2983                                 orig_pte);
2984         if (!(vma->vm_flags & VM_SHARED))
2985                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
2986                                 orig_pte);
2987         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2988 }
2989
2990 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
2991                                 unsigned long addr, int page_nid,
2992                                 int *flags)
2993 {
2994         get_page(page);
2995
2996         count_vm_numa_event(NUMA_HINT_FAULTS);
2997         if (page_nid == numa_node_id()) {
2998                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
2999                 *flags |= TNF_FAULT_LOCAL;
3000         }
3001
3002         return mpol_misplaced(page, vma, addr);
3003 }
3004
3005 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3006                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3007 {
3008         struct page *page = NULL;
3009         spinlock_t *ptl;
3010         int page_nid = -1;
3011         int last_cpupid;
3012         int target_nid;
3013         bool migrated = false;
3014         int flags = 0;
3015
3016         /*
3017         * The "pte" at this point cannot be used safely without
3018         * validation through pte_unmap_same(). It's of NUMA type but
3019         * the pfn may be screwed if the read is non atomic.
3020         *
3021         * ptep_modify_prot_start is not called as this is clearing
3022         * the _PAGE_NUMA bit and it is not really expected that there
3023         * would be concurrent hardware modifications to the PTE.
3024         */
3025         ptl = pte_lockptr(mm, pmd);
3026         spin_lock(ptl);
3027         if (unlikely(!pte_same(*ptep, pte))) {
3028                 pte_unmap_unlock(ptep, ptl);
3029                 goto out;
3030         }
3031
3032         pte = pte_mknonnuma(pte);
3033         set_pte_at(mm, addr, ptep, pte);
3034         update_mmu_cache(vma, addr, ptep);
3035
3036         page = vm_normal_page(vma, addr, pte);
3037         if (!page) {
3038                 pte_unmap_unlock(ptep, ptl);
3039                 return 0;
3040         }
3041         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3042
3043         /*
3044          * Avoid grouping on DSO/COW pages in specific and RO pages
3045          * in general, RO pages shouldn't hurt as much anyway since
3046          * they can be in shared cache state.
3047          */
3048         if (!pte_write(pte))
3049                 flags |= TNF_NO_GROUP;
3050
3051         /*
3052          * Flag if the page is shared between multiple address spaces. This
3053          * is later used when determining whether to group tasks together
3054          */
3055         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3056                 flags |= TNF_SHARED;
3057
3058         last_cpupid = page_cpupid_last(page);
3059         page_nid = page_to_nid(page);
3060         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3061         pte_unmap_unlock(ptep, ptl);
3062         if (target_nid == -1) {
3063                 put_page(page);
3064                 goto out;
3065         }
3066
3067         /* Migrate to the requested node */
3068         migrated = migrate_misplaced_page(page, vma, target_nid);
3069         if (migrated) {
3070                 page_nid = target_nid;
3071                 flags |= TNF_MIGRATED;
3072         }
3073
3074 out:
3075         if (page_nid != -1)
3076                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3077         return 0;
3078 }
3079
3080 /*
3081  * These routines also need to handle stuff like marking pages dirty
3082  * and/or accessed for architectures that don't do it in hardware (most
3083  * RISC architectures).  The early dirtying is also good on the i386.
3084  *
3085  * There is also a hook called "update_mmu_cache()" that architectures
3086  * with external mmu caches can use to update those (ie the Sparc or
3087  * PowerPC hashed page tables that act as extended TLBs).
3088  *
3089  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3090  * but allow concurrent faults), and pte mapped but not yet locked.
3091  * We return with pte unmapped and unlocked.
3092  *
3093  * The mmap_sem may have been released depending on flags and our
3094  * return value.  See filemap_fault() and __lock_page_or_retry().
3095  */
3096 static int handle_pte_fault(struct mm_struct *mm,
3097                      struct vm_area_struct *vma, unsigned long address,
3098                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3099 {
3100         pte_t entry;
3101         spinlock_t *ptl;
3102
3103         /*
3104          * some architectures can have larger ptes than wordsize,
3105          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3106          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3107          * The code below just needs a consistent view for the ifs and
3108          * we later double check anyway with the ptl lock held. So here
3109          * a barrier will do.
3110          */
3111         entry = *pte;
3112         barrier();
3113         if (!pte_present(entry)) {
3114                 if (pte_none(entry)) {
3115                         if (vma->vm_ops) {
3116                                 if (likely(vma->vm_ops->fault))
3117                                         return do_fault(mm, vma, address, pte,
3118                                                         pmd, flags, entry);
3119                         }
3120                         return do_anonymous_page(mm, vma, address,
3121                                                  pte, pmd, flags);
3122                 }
3123                 return do_swap_page(mm, vma, address,
3124                                         pte, pmd, flags, entry);
3125         }
3126
3127         if (pte_numa(entry))
3128                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3129
3130         ptl = pte_lockptr(mm, pmd);
3131         spin_lock(ptl);
3132         if (unlikely(!pte_same(*pte, entry)))
3133                 goto unlock;
3134         if (flags & FAULT_FLAG_WRITE) {
3135                 if (!pte_write(entry))
3136                         return do_wp_page(mm, vma, address,
3137                                         pte, pmd, ptl, entry);
3138                 entry = pte_mkdirty(entry);
3139         }
3140         entry = pte_mkyoung(entry);
3141         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3142                 update_mmu_cache(vma, address, pte);
3143         } else {
3144                 /*
3145                  * This is needed only for protection faults but the arch code
3146                  * is not yet telling us if this is a protection fault or not.
3147                  * This still avoids useless tlb flushes for .text page faults
3148                  * with threads.
3149                  */
3150                 if (flags & FAULT_FLAG_WRITE)
3151                         flush_tlb_fix_spurious_fault(vma, address);
3152         }
3153 unlock:
3154         pte_unmap_unlock(pte, ptl);
3155         return 0;
3156 }
3157
3158 /*
3159  * By the time we get here, we already hold the mm semaphore
3160  *
3161  * The mmap_sem may have been released depending on flags and our
3162  * return value.  See filemap_fault() and __lock_page_or_retry().
3163  */
3164 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3165                              unsigned long address, unsigned int flags)
3166 {
3167         pgd_t *pgd;
3168         pud_t *pud;
3169         pmd_t *pmd;
3170         pte_t *pte;
3171
3172         if (unlikely(is_vm_hugetlb_page(vma)))
3173                 return hugetlb_fault(mm, vma, address, flags);
3174
3175         pgd = pgd_offset(mm, address);
3176         pud = pud_alloc(mm, pgd, address);
3177         if (!pud)
3178                 return VM_FAULT_OOM;
3179         pmd = pmd_alloc(mm, pud, address);
3180         if (!pmd)
3181                 return VM_FAULT_OOM;
3182         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3183                 int ret = VM_FAULT_FALLBACK;
3184                 if (!vma->vm_ops)
3185                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3186                                         pmd, flags);
3187                 if (!(ret & VM_FAULT_FALLBACK))
3188                         return ret;
3189         } else {
3190                 pmd_t orig_pmd = *pmd;
3191                 int ret;
3192
3193                 barrier();
3194                 if (pmd_trans_huge(orig_pmd)) {
3195                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3196
3197                         /*
3198                          * If the pmd is splitting, return and retry the
3199                          * the fault.  Alternative: wait until the split
3200                          * is done, and goto retry.
3201                          */
3202                         if (pmd_trans_splitting(orig_pmd))
3203                                 return 0;
3204
3205                         if (pmd_numa(orig_pmd))
3206                                 return do_huge_pmd_numa_page(mm, vma, address,
3207                                                              orig_pmd, pmd);
3208
3209                         if (dirty && !pmd_write(orig_pmd)) {
3210                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3211                                                           orig_pmd);
3212                                 if (!(ret & VM_FAULT_FALLBACK))
3213                                         return ret;
3214                         } else {
3215                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3216                                                       orig_pmd, dirty);
3217                                 return 0;
3218                         }
3219                 }
3220         }
3221
3222         /*
3223          * Use __pte_alloc instead of pte_alloc_map, because we can't
3224          * run pte_offset_map on the pmd, if an huge pmd could
3225          * materialize from under us from a different thread.
3226          */
3227         if (unlikely(pmd_none(*pmd)) &&
3228             unlikely(__pte_alloc(mm, vma, pmd, address)))
3229                 return VM_FAULT_OOM;
3230         /* if an huge pmd materialized from under us just retry later */
3231         if (unlikely(pmd_trans_huge(*pmd)))
3232                 return 0;
3233         /*
3234          * A regular pmd is established and it can't morph into a huge pmd
3235          * from under us anymore at this point because we hold the mmap_sem
3236          * read mode and khugepaged takes it in write mode. So now it's
3237          * safe to run pte_offset_map().
3238          */
3239         pte = pte_offset_map(pmd, address);
3240
3241         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3242 }
3243
3244 /*
3245  * By the time we get here, we already hold the mm semaphore
3246  *
3247  * The mmap_sem may have been released depending on flags and our
3248  * return value.  See filemap_fault() and __lock_page_or_retry().
3249  */
3250 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3251                     unsigned long address, unsigned int flags)
3252 {
3253         int ret;
3254
3255         __set_current_state(TASK_RUNNING);
3256
3257         count_vm_event(PGFAULT);
3258         mem_cgroup_count_vm_event(mm, PGFAULT);
3259
3260         /* do counter updates before entering really critical section. */
3261         check_sync_rss_stat(current);
3262
3263         /*
3264          * Enable the memcg OOM handling for faults triggered in user
3265          * space.  Kernel faults are handled more gracefully.
3266          */
3267         if (flags & FAULT_FLAG_USER)
3268                 mem_cgroup_oom_enable();
3269
3270         ret = __handle_mm_fault(mm, vma, address, flags);
3271
3272         if (flags & FAULT_FLAG_USER) {
3273                 mem_cgroup_oom_disable();
3274                 /*
3275                  * The task may have entered a memcg OOM situation but
3276                  * if the allocation error was handled gracefully (no
3277                  * VM_FAULT_OOM), there is no need to kill anything.
3278                  * Just clean up the OOM state peacefully.
3279                  */
3280                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3281                         mem_cgroup_oom_synchronize(false);
3282         }
3283
3284         return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(handle_mm_fault);
3287
3288 #ifndef __PAGETABLE_PUD_FOLDED
3289 /*
3290  * Allocate page upper directory.
3291  * We've already handled the fast-path in-line.
3292  */
3293 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3294 {
3295         pud_t *new = pud_alloc_one(mm, address);
3296         if (!new)
3297                 return -ENOMEM;
3298
3299         smp_wmb(); /* See comment in __pte_alloc */
3300
3301         spin_lock(&mm->page_table_lock);
3302         if (pgd_present(*pgd))          /* Another has populated it */
3303                 pud_free(mm, new);
3304         else
3305                 pgd_populate(mm, pgd, new);
3306         spin_unlock(&mm->page_table_lock);
3307         return 0;
3308 }
3309 #endif /* __PAGETABLE_PUD_FOLDED */
3310
3311 #ifndef __PAGETABLE_PMD_FOLDED
3312 /*
3313  * Allocate page middle directory.
3314  * We've already handled the fast-path in-line.
3315  */
3316 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3317 {
3318         pmd_t *new = pmd_alloc_one(mm, address);
3319         if (!new)
3320                 return -ENOMEM;
3321
3322         smp_wmb(); /* See comment in __pte_alloc */
3323
3324         spin_lock(&mm->page_table_lock);
3325 #ifndef __ARCH_HAS_4LEVEL_HACK
3326         if (!pud_present(*pud)) {
3327                 mm_inc_nr_pmds(mm);
3328                 pud_populate(mm, pud, new);
3329         } else  /* Another has populated it */
3330                 pmd_free(mm, new);
3331 #else
3332         if (!pgd_present(*pud)) {
3333                 mm_inc_nr_pmds(mm);
3334                 pgd_populate(mm, pud, new);
3335         } else /* Another has populated it */
3336                 pmd_free(mm, new);
3337 #endif /* __ARCH_HAS_4LEVEL_HACK */
3338         spin_unlock(&mm->page_table_lock);
3339         return 0;
3340 }
3341 #endif /* __PAGETABLE_PMD_FOLDED */
3342
3343 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3344                 pte_t **ptepp, spinlock_t **ptlp)
3345 {
3346         pgd_t *pgd;
3347         pud_t *pud;
3348         pmd_t *pmd;
3349         pte_t *ptep;
3350
3351         pgd = pgd_offset(mm, address);
3352         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3353                 goto out;
3354
3355         pud = pud_offset(pgd, address);
3356         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3357                 goto out;
3358
3359         pmd = pmd_offset(pud, address);
3360         VM_BUG_ON(pmd_trans_huge(*pmd));
3361         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3362                 goto out;
3363
3364         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3365         if (pmd_huge(*pmd))
3366                 goto out;
3367
3368         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3369         if (!ptep)
3370                 goto out;
3371         if (!pte_present(*ptep))
3372                 goto unlock;
3373         *ptepp = ptep;
3374         return 0;
3375 unlock:
3376         pte_unmap_unlock(ptep, *ptlp);
3377 out:
3378         return -EINVAL;
3379 }
3380
3381 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3382                              pte_t **ptepp, spinlock_t **ptlp)
3383 {
3384         int res;
3385
3386         /* (void) is needed to make gcc happy */
3387         (void) __cond_lock(*ptlp,
3388                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3389         return res;
3390 }
3391
3392 /**
3393  * follow_pfn - look up PFN at a user virtual address
3394  * @vma: memory mapping
3395  * @address: user virtual address
3396  * @pfn: location to store found PFN
3397  *
3398  * Only IO mappings and raw PFN mappings are allowed.
3399  *
3400  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3401  */
3402 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3403         unsigned long *pfn)
3404 {
3405         int ret = -EINVAL;
3406         spinlock_t *ptl;
3407         pte_t *ptep;
3408
3409         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3410                 return ret;
3411
3412         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3413         if (ret)
3414                 return ret;
3415         *pfn = pte_pfn(*ptep);
3416         pte_unmap_unlock(ptep, ptl);
3417         return 0;
3418 }
3419 EXPORT_SYMBOL(follow_pfn);
3420
3421 #ifdef CONFIG_HAVE_IOREMAP_PROT
3422 int follow_phys(struct vm_area_struct *vma,
3423                 unsigned long address, unsigned int flags,
3424                 unsigned long *prot, resource_size_t *phys)
3425 {
3426         int ret = -EINVAL;
3427         pte_t *ptep, pte;
3428         spinlock_t *ptl;
3429
3430         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3431                 goto out;
3432
3433         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3434                 goto out;
3435         pte = *ptep;
3436
3437         if ((flags & FOLL_WRITE) && !pte_write(pte))
3438                 goto unlock;
3439
3440         *prot = pgprot_val(pte_pgprot(pte));
3441         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3442
3443         ret = 0;
3444 unlock:
3445         pte_unmap_unlock(ptep, ptl);
3446 out:
3447         return ret;
3448 }
3449
3450 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3451                         void *buf, int len, int write)
3452 {
3453         resource_size_t phys_addr;
3454         unsigned long prot = 0;
3455         void __iomem *maddr;
3456         int offset = addr & (PAGE_SIZE-1);
3457
3458         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3459                 return -EINVAL;
3460
3461         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3462         if (write)
3463                 memcpy_toio(maddr + offset, buf, len);
3464         else
3465                 memcpy_fromio(buf, maddr + offset, len);
3466         iounmap(maddr);
3467
3468         return len;
3469 }
3470 EXPORT_SYMBOL_GPL(generic_access_phys);
3471 #endif
3472
3473 /*
3474  * Access another process' address space as given in mm.  If non-NULL, use the
3475  * given task for page fault accounting.
3476  */
3477 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3478                 unsigned long addr, void *buf, int len, int write)
3479 {
3480         struct vm_area_struct *vma;
3481         void *old_buf = buf;
3482
3483         down_read(&mm->mmap_sem);
3484         /* ignore errors, just check how much was successfully transferred */
3485         while (len) {
3486                 int bytes, ret, offset;
3487                 void *maddr;
3488                 struct page *page = NULL;
3489
3490                 ret = get_user_pages(tsk, mm, addr, 1,
3491                                 write, 1, &page, &vma);
3492                 if (ret <= 0) {
3493 #ifndef CONFIG_HAVE_IOREMAP_PROT
3494                         break;
3495 #else
3496                         /*
3497                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3498                          * we can access using slightly different code.
3499                          */
3500                         vma = find_vma(mm, addr);
3501                         if (!vma || vma->vm_start > addr)
3502                                 break;
3503                         if (vma->vm_ops && vma->vm_ops->access)
3504                                 ret = vma->vm_ops->access(vma, addr, buf,
3505                                                           len, write);
3506                         if (ret <= 0)
3507                                 break;
3508                         bytes = ret;
3509 #endif
3510                 } else {
3511                         bytes = len;
3512                         offset = addr & (PAGE_SIZE-1);
3513                         if (bytes > PAGE_SIZE-offset)
3514                                 bytes = PAGE_SIZE-offset;
3515
3516                         maddr = kmap(page);
3517                         if (write) {
3518                                 copy_to_user_page(vma, page, addr,
3519                                                   maddr + offset, buf, bytes);
3520                                 set_page_dirty_lock(page);
3521                         } else {
3522                                 copy_from_user_page(vma, page, addr,
3523                                                     buf, maddr + offset, bytes);
3524                         }
3525                         kunmap(page);
3526                         page_cache_release(page);
3527                 }
3528                 len -= bytes;
3529                 buf += bytes;
3530                 addr += bytes;
3531         }
3532         up_read(&mm->mmap_sem);
3533
3534         return buf - old_buf;
3535 }
3536
3537 /**
3538  * access_remote_vm - access another process' address space
3539  * @mm:         the mm_struct of the target address space
3540  * @addr:       start address to access
3541  * @buf:        source or destination buffer
3542  * @len:        number of bytes to transfer
3543  * @write:      whether the access is a write
3544  *
3545  * The caller must hold a reference on @mm.
3546  */
3547 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3548                 void *buf, int len, int write)
3549 {
3550         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3551 }
3552
3553 /*
3554  * Access another process' address space.
3555  * Source/target buffer must be kernel space,
3556  * Do not walk the page table directly, use get_user_pages
3557  */
3558 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3559                 void *buf, int len, int write)
3560 {
3561         struct mm_struct *mm;
3562         int ret;
3563
3564         mm = get_task_mm(tsk);
3565         if (!mm)
3566                 return 0;
3567
3568         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3569         mmput(mm);
3570
3571         return ret;
3572 }
3573
3574 /*
3575  * Print the name of a VMA.
3576  */
3577 void print_vma_addr(char *prefix, unsigned long ip)
3578 {
3579         struct mm_struct *mm = current->mm;
3580         struct vm_area_struct *vma;
3581
3582         /*
3583          * Do not print if we are in atomic
3584          * contexts (in exception stacks, etc.):
3585          */
3586         if (preempt_count())
3587                 return;
3588
3589         down_read(&mm->mmap_sem);
3590         vma = find_vma(mm, ip);
3591         if (vma && vma->vm_file) {
3592                 struct file *f = vma->vm_file;
3593                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3594                 if (buf) {
3595                         char *p;
3596
3597                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3598                         if (IS_ERR(p))
3599                                 p = "?";
3600                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3601                                         vma->vm_start,
3602                                         vma->vm_end - vma->vm_start);
3603                         free_page((unsigned long)buf);
3604                 }
3605         }
3606         up_read(&mm->mmap_sem);
3607 }
3608
3609 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3610 void might_fault(void)
3611 {
3612         /*
3613          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3614          * holding the mmap_sem, this is safe because kernel memory doesn't
3615          * get paged out, therefore we'll never actually fault, and the
3616          * below annotations will generate false positives.
3617          */
3618         if (segment_eq(get_fs(), KERNEL_DS))
3619                 return;
3620
3621         /*
3622          * it would be nicer only to annotate paths which are not under
3623          * pagefault_disable, however that requires a larger audit and
3624          * providing helpers like get_user_atomic.
3625          */
3626         if (in_atomic())
3627                 return;
3628
3629         __might_sleep(__FILE__, __LINE__, 0);
3630
3631         if (current->mm)
3632                 might_lock_read(&current->mm->mmap_sem);
3633 }
3634 EXPORT_SYMBOL(might_fault);
3635 #endif
3636
3637 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3638 static void clear_gigantic_page(struct page *page,
3639                                 unsigned long addr,
3640                                 unsigned int pages_per_huge_page)
3641 {
3642         int i;
3643         struct page *p = page;
3644
3645         might_sleep();
3646         for (i = 0; i < pages_per_huge_page;
3647              i++, p = mem_map_next(p, page, i)) {
3648                 cond_resched();
3649                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3650         }
3651 }
3652 void clear_huge_page(struct page *page,
3653                      unsigned long addr, unsigned int pages_per_huge_page)
3654 {
3655         int i;
3656
3657         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3658                 clear_gigantic_page(page, addr, pages_per_huge_page);
3659                 return;
3660         }
3661
3662         might_sleep();
3663         for (i = 0; i < pages_per_huge_page; i++) {
3664                 cond_resched();
3665                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3666         }
3667 }
3668
3669 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3670                                     unsigned long addr,
3671                                     struct vm_area_struct *vma,
3672                                     unsigned int pages_per_huge_page)
3673 {
3674         int i;
3675         struct page *dst_base = dst;
3676         struct page *src_base = src;
3677
3678         for (i = 0; i < pages_per_huge_page; ) {
3679                 cond_resched();
3680                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3681
3682                 i++;
3683                 dst = mem_map_next(dst, dst_base, i);
3684                 src = mem_map_next(src, src_base, i);
3685         }
3686 }
3687
3688 void copy_user_huge_page(struct page *dst, struct page *src,
3689                          unsigned long addr, struct vm_area_struct *vma,
3690                          unsigned int pages_per_huge_page)
3691 {
3692         int i;
3693
3694         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3695                 copy_user_gigantic_page(dst, src, addr, vma,
3696                                         pages_per_huge_page);
3697                 return;
3698         }
3699
3700         might_sleep();
3701         for (i = 0; i < pages_per_huge_page; i++) {
3702                 cond_resched();
3703                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3704         }
3705 }
3706 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3707
3708 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3709
3710 static struct kmem_cache *page_ptl_cachep;
3711
3712 void __init ptlock_cache_init(void)
3713 {
3714         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3715                         SLAB_PANIC, NULL);
3716 }
3717
3718 bool ptlock_alloc(struct page *page)
3719 {
3720         spinlock_t *ptl;
3721
3722         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3723         if (!ptl)
3724                 return false;
3725         page->ptl = ptl;
3726         return true;
3727 }
3728
3729 void ptlock_free(struct page *page)
3730 {
3731         kmem_cache_free(page_ptl_cachep, page->ptl);
3732 }
3733 #endif