rmap: support file thp
[cascardo/linux.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43
44 #include <asm/tlbflush.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
48
49 #include "internal.h"
50
51 /*
52  * migrate_prep() needs to be called before we start compiling a list of pages
53  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54  * undesirable, use migrate_prep_local()
55  */
56 int migrate_prep(void)
57 {
58         /*
59          * Clear the LRU lists so pages can be isolated.
60          * Note that pages may be moved off the LRU after we have
61          * drained them. Those pages will fail to migrate like other
62          * pages that may be busy.
63          */
64         lru_add_drain_all();
65
66         return 0;
67 }
68
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
71 {
72         lru_add_drain();
73
74         return 0;
75 }
76
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78 {
79         struct address_space *mapping;
80
81         /*
82          * Avoid burning cycles with pages that are yet under __free_pages(),
83          * or just got freed under us.
84          *
85          * In case we 'win' a race for a movable page being freed under us and
86          * raise its refcount preventing __free_pages() from doing its job
87          * the put_page() at the end of this block will take care of
88          * release this page, thus avoiding a nasty leakage.
89          */
90         if (unlikely(!get_page_unless_zero(page)))
91                 goto out;
92
93         /*
94          * Check PageMovable before holding a PG_lock because page's owner
95          * assumes anybody doesn't touch PG_lock of newly allocated page
96          * so unconditionally grapping the lock ruins page's owner side.
97          */
98         if (unlikely(!__PageMovable(page)))
99                 goto out_putpage;
100         /*
101          * As movable pages are not isolated from LRU lists, concurrent
102          * compaction threads can race against page migration functions
103          * as well as race against the releasing a page.
104          *
105          * In order to avoid having an already isolated movable page
106          * being (wrongly) re-isolated while it is under migration,
107          * or to avoid attempting to isolate pages being released,
108          * lets be sure we have the page lock
109          * before proceeding with the movable page isolation steps.
110          */
111         if (unlikely(!trylock_page(page)))
112                 goto out_putpage;
113
114         if (!PageMovable(page) || PageIsolated(page))
115                 goto out_no_isolated;
116
117         mapping = page_mapping(page);
118         VM_BUG_ON_PAGE(!mapping, page);
119
120         if (!mapping->a_ops->isolate_page(page, mode))
121                 goto out_no_isolated;
122
123         /* Driver shouldn't use PG_isolated bit of page->flags */
124         WARN_ON_ONCE(PageIsolated(page));
125         __SetPageIsolated(page);
126         unlock_page(page);
127
128         return true;
129
130 out_no_isolated:
131         unlock_page(page);
132 out_putpage:
133         put_page(page);
134 out:
135         return false;
136 }
137
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
140 {
141         struct address_space *mapping;
142
143         VM_BUG_ON_PAGE(!PageLocked(page), page);
144         VM_BUG_ON_PAGE(!PageMovable(page), page);
145         VM_BUG_ON_PAGE(!PageIsolated(page), page);
146
147         mapping = page_mapping(page);
148         mapping->a_ops->putback_page(page);
149         __ClearPageIsolated(page);
150 }
151
152 /*
153  * Put previously isolated pages back onto the appropriate lists
154  * from where they were once taken off for compaction/migration.
155  *
156  * This function shall be used whenever the isolated pageset has been
157  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158  * and isolate_huge_page().
159  */
160 void putback_movable_pages(struct list_head *l)
161 {
162         struct page *page;
163         struct page *page2;
164
165         list_for_each_entry_safe(page, page2, l, lru) {
166                 if (unlikely(PageHuge(page))) {
167                         putback_active_hugepage(page);
168                         continue;
169                 }
170                 list_del(&page->lru);
171                 dec_zone_page_state(page, NR_ISOLATED_ANON +
172                                 page_is_file_cache(page));
173                 /*
174                  * We isolated non-lru movable page so here we can use
175                  * __PageMovable because LRU page's mapping cannot have
176                  * PAGE_MAPPING_MOVABLE.
177                  */
178                 if (unlikely(__PageMovable(page))) {
179                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
180                         lock_page(page);
181                         if (PageMovable(page))
182                                 putback_movable_page(page);
183                         else
184                                 __ClearPageIsolated(page);
185                         unlock_page(page);
186                         put_page(page);
187                 } else {
188                         putback_lru_page(page);
189                 }
190         }
191 }
192
193 /*
194  * Restore a potential migration pte to a working pte entry
195  */
196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197                                  unsigned long addr, void *old)
198 {
199         struct mm_struct *mm = vma->vm_mm;
200         swp_entry_t entry;
201         pmd_t *pmd;
202         pte_t *ptep, pte;
203         spinlock_t *ptl;
204
205         if (unlikely(PageHuge(new))) {
206                 ptep = huge_pte_offset(mm, addr);
207                 if (!ptep)
208                         goto out;
209                 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
210         } else {
211                 pmd = mm_find_pmd(mm, addr);
212                 if (!pmd)
213                         goto out;
214
215                 ptep = pte_offset_map(pmd, addr);
216
217                 /*
218                  * Peek to check is_swap_pte() before taking ptlock?  No, we
219                  * can race mremap's move_ptes(), which skips anon_vma lock.
220                  */
221
222                 ptl = pte_lockptr(mm, pmd);
223         }
224
225         spin_lock(ptl);
226         pte = *ptep;
227         if (!is_swap_pte(pte))
228                 goto unlock;
229
230         entry = pte_to_swp_entry(pte);
231
232         if (!is_migration_entry(entry) ||
233             migration_entry_to_page(entry) != old)
234                 goto unlock;
235
236         get_page(new);
237         pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
238         if (pte_swp_soft_dirty(*ptep))
239                 pte = pte_mksoft_dirty(pte);
240
241         /* Recheck VMA as permissions can change since migration started  */
242         if (is_write_migration_entry(entry))
243                 pte = maybe_mkwrite(pte, vma);
244
245 #ifdef CONFIG_HUGETLB_PAGE
246         if (PageHuge(new)) {
247                 pte = pte_mkhuge(pte);
248                 pte = arch_make_huge_pte(pte, vma, new, 0);
249         }
250 #endif
251         flush_dcache_page(new);
252         set_pte_at(mm, addr, ptep, pte);
253
254         if (PageHuge(new)) {
255                 if (PageAnon(new))
256                         hugepage_add_anon_rmap(new, vma, addr);
257                 else
258                         page_dup_rmap(new, true);
259         } else if (PageAnon(new))
260                 page_add_anon_rmap(new, vma, addr, false);
261         else
262                 page_add_file_rmap(new, false);
263
264         if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
265                 mlock_vma_page(new);
266
267         /* No need to invalidate - it was non-present before */
268         update_mmu_cache(vma, addr, ptep);
269 unlock:
270         pte_unmap_unlock(ptep, ptl);
271 out:
272         return SWAP_AGAIN;
273 }
274
275 /*
276  * Get rid of all migration entries and replace them by
277  * references to the indicated page.
278  */
279 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
280 {
281         struct rmap_walk_control rwc = {
282                 .rmap_one = remove_migration_pte,
283                 .arg = old,
284         };
285
286         if (locked)
287                 rmap_walk_locked(new, &rwc);
288         else
289                 rmap_walk(new, &rwc);
290 }
291
292 /*
293  * Something used the pte of a page under migration. We need to
294  * get to the page and wait until migration is finished.
295  * When we return from this function the fault will be retried.
296  */
297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
298                                 spinlock_t *ptl)
299 {
300         pte_t pte;
301         swp_entry_t entry;
302         struct page *page;
303
304         spin_lock(ptl);
305         pte = *ptep;
306         if (!is_swap_pte(pte))
307                 goto out;
308
309         entry = pte_to_swp_entry(pte);
310         if (!is_migration_entry(entry))
311                 goto out;
312
313         page = migration_entry_to_page(entry);
314
315         /*
316          * Once radix-tree replacement of page migration started, page_count
317          * *must* be zero. And, we don't want to call wait_on_page_locked()
318          * against a page without get_page().
319          * So, we use get_page_unless_zero(), here. Even failed, page fault
320          * will occur again.
321          */
322         if (!get_page_unless_zero(page))
323                 goto out;
324         pte_unmap_unlock(ptep, ptl);
325         wait_on_page_locked(page);
326         put_page(page);
327         return;
328 out:
329         pte_unmap_unlock(ptep, ptl);
330 }
331
332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333                                 unsigned long address)
334 {
335         spinlock_t *ptl = pte_lockptr(mm, pmd);
336         pte_t *ptep = pte_offset_map(pmd, address);
337         __migration_entry_wait(mm, ptep, ptl);
338 }
339
340 void migration_entry_wait_huge(struct vm_area_struct *vma,
341                 struct mm_struct *mm, pte_t *pte)
342 {
343         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344         __migration_entry_wait(mm, pte, ptl);
345 }
346
347 #ifdef CONFIG_BLOCK
348 /* Returns true if all buffers are successfully locked */
349 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350                                                         enum migrate_mode mode)
351 {
352         struct buffer_head *bh = head;
353
354         /* Simple case, sync compaction */
355         if (mode != MIGRATE_ASYNC) {
356                 do {
357                         get_bh(bh);
358                         lock_buffer(bh);
359                         bh = bh->b_this_page;
360
361                 } while (bh != head);
362
363                 return true;
364         }
365
366         /* async case, we cannot block on lock_buffer so use trylock_buffer */
367         do {
368                 get_bh(bh);
369                 if (!trylock_buffer(bh)) {
370                         /*
371                          * We failed to lock the buffer and cannot stall in
372                          * async migration. Release the taken locks
373                          */
374                         struct buffer_head *failed_bh = bh;
375                         put_bh(failed_bh);
376                         bh = head;
377                         while (bh != failed_bh) {
378                                 unlock_buffer(bh);
379                                 put_bh(bh);
380                                 bh = bh->b_this_page;
381                         }
382                         return false;
383                 }
384
385                 bh = bh->b_this_page;
386         } while (bh != head);
387         return true;
388 }
389 #else
390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391                                                         enum migrate_mode mode)
392 {
393         return true;
394 }
395 #endif /* CONFIG_BLOCK */
396
397 /*
398  * Replace the page in the mapping.
399  *
400  * The number of remaining references must be:
401  * 1 for anonymous pages without a mapping
402  * 2 for pages with a mapping
403  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
404  */
405 int migrate_page_move_mapping(struct address_space *mapping,
406                 struct page *newpage, struct page *page,
407                 struct buffer_head *head, enum migrate_mode mode,
408                 int extra_count)
409 {
410         struct zone *oldzone, *newzone;
411         int dirty;
412         int expected_count = 1 + extra_count;
413         void **pslot;
414
415         if (!mapping) {
416                 /* Anonymous page without mapping */
417                 if (page_count(page) != expected_count)
418                         return -EAGAIN;
419
420                 /* No turning back from here */
421                 newpage->index = page->index;
422                 newpage->mapping = page->mapping;
423                 if (PageSwapBacked(page))
424                         __SetPageSwapBacked(newpage);
425
426                 return MIGRATEPAGE_SUCCESS;
427         }
428
429         oldzone = page_zone(page);
430         newzone = page_zone(newpage);
431
432         spin_lock_irq(&mapping->tree_lock);
433
434         pslot = radix_tree_lookup_slot(&mapping->page_tree,
435                                         page_index(page));
436
437         expected_count += 1 + page_has_private(page);
438         if (page_count(page) != expected_count ||
439                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440                 spin_unlock_irq(&mapping->tree_lock);
441                 return -EAGAIN;
442         }
443
444         if (!page_ref_freeze(page, expected_count)) {
445                 spin_unlock_irq(&mapping->tree_lock);
446                 return -EAGAIN;
447         }
448
449         /*
450          * In the async migration case of moving a page with buffers, lock the
451          * buffers using trylock before the mapping is moved. If the mapping
452          * was moved, we later failed to lock the buffers and could not move
453          * the mapping back due to an elevated page count, we would have to
454          * block waiting on other references to be dropped.
455          */
456         if (mode == MIGRATE_ASYNC && head &&
457                         !buffer_migrate_lock_buffers(head, mode)) {
458                 page_ref_unfreeze(page, expected_count);
459                 spin_unlock_irq(&mapping->tree_lock);
460                 return -EAGAIN;
461         }
462
463         /*
464          * Now we know that no one else is looking at the page:
465          * no turning back from here.
466          */
467         newpage->index = page->index;
468         newpage->mapping = page->mapping;
469         if (PageSwapBacked(page))
470                 __SetPageSwapBacked(newpage);
471
472         get_page(newpage);      /* add cache reference */
473         if (PageSwapCache(page)) {
474                 SetPageSwapCache(newpage);
475                 set_page_private(newpage, page_private(page));
476         }
477
478         /* Move dirty while page refs frozen and newpage not yet exposed */
479         dirty = PageDirty(page);
480         if (dirty) {
481                 ClearPageDirty(page);
482                 SetPageDirty(newpage);
483         }
484
485         radix_tree_replace_slot(pslot, newpage);
486
487         /*
488          * Drop cache reference from old page by unfreezing
489          * to one less reference.
490          * We know this isn't the last reference.
491          */
492         page_ref_unfreeze(page, expected_count - 1);
493
494         spin_unlock(&mapping->tree_lock);
495         /* Leave irq disabled to prevent preemption while updating stats */
496
497         /*
498          * If moved to a different zone then also account
499          * the page for that zone. Other VM counters will be
500          * taken care of when we establish references to the
501          * new page and drop references to the old page.
502          *
503          * Note that anonymous pages are accounted for
504          * via NR_FILE_PAGES and NR_ANON_PAGES if they
505          * are mapped to swap space.
506          */
507         if (newzone != oldzone) {
508                 __dec_zone_state(oldzone, NR_FILE_PAGES);
509                 __inc_zone_state(newzone, NR_FILE_PAGES);
510                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
511                         __dec_zone_state(oldzone, NR_SHMEM);
512                         __inc_zone_state(newzone, NR_SHMEM);
513                 }
514                 if (dirty && mapping_cap_account_dirty(mapping)) {
515                         __dec_zone_state(oldzone, NR_FILE_DIRTY);
516                         __inc_zone_state(newzone, NR_FILE_DIRTY);
517                 }
518         }
519         local_irq_enable();
520
521         return MIGRATEPAGE_SUCCESS;
522 }
523 EXPORT_SYMBOL(migrate_page_move_mapping);
524
525 /*
526  * The expected number of remaining references is the same as that
527  * of migrate_page_move_mapping().
528  */
529 int migrate_huge_page_move_mapping(struct address_space *mapping,
530                                    struct page *newpage, struct page *page)
531 {
532         int expected_count;
533         void **pslot;
534
535         spin_lock_irq(&mapping->tree_lock);
536
537         pslot = radix_tree_lookup_slot(&mapping->page_tree,
538                                         page_index(page));
539
540         expected_count = 2 + page_has_private(page);
541         if (page_count(page) != expected_count ||
542                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
543                 spin_unlock_irq(&mapping->tree_lock);
544                 return -EAGAIN;
545         }
546
547         if (!page_ref_freeze(page, expected_count)) {
548                 spin_unlock_irq(&mapping->tree_lock);
549                 return -EAGAIN;
550         }
551
552         newpage->index = page->index;
553         newpage->mapping = page->mapping;
554
555         get_page(newpage);
556
557         radix_tree_replace_slot(pslot, newpage);
558
559         page_ref_unfreeze(page, expected_count - 1);
560
561         spin_unlock_irq(&mapping->tree_lock);
562
563         return MIGRATEPAGE_SUCCESS;
564 }
565
566 /*
567  * Gigantic pages are so large that we do not guarantee that page++ pointer
568  * arithmetic will work across the entire page.  We need something more
569  * specialized.
570  */
571 static void __copy_gigantic_page(struct page *dst, struct page *src,
572                                 int nr_pages)
573 {
574         int i;
575         struct page *dst_base = dst;
576         struct page *src_base = src;
577
578         for (i = 0; i < nr_pages; ) {
579                 cond_resched();
580                 copy_highpage(dst, src);
581
582                 i++;
583                 dst = mem_map_next(dst, dst_base, i);
584                 src = mem_map_next(src, src_base, i);
585         }
586 }
587
588 static void copy_huge_page(struct page *dst, struct page *src)
589 {
590         int i;
591         int nr_pages;
592
593         if (PageHuge(src)) {
594                 /* hugetlbfs page */
595                 struct hstate *h = page_hstate(src);
596                 nr_pages = pages_per_huge_page(h);
597
598                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
599                         __copy_gigantic_page(dst, src, nr_pages);
600                         return;
601                 }
602         } else {
603                 /* thp page */
604                 BUG_ON(!PageTransHuge(src));
605                 nr_pages = hpage_nr_pages(src);
606         }
607
608         for (i = 0; i < nr_pages; i++) {
609                 cond_resched();
610                 copy_highpage(dst + i, src + i);
611         }
612 }
613
614 /*
615  * Copy the page to its new location
616  */
617 void migrate_page_copy(struct page *newpage, struct page *page)
618 {
619         int cpupid;
620
621         if (PageHuge(page) || PageTransHuge(page))
622                 copy_huge_page(newpage, page);
623         else
624                 copy_highpage(newpage, page);
625
626         if (PageError(page))
627                 SetPageError(newpage);
628         if (PageReferenced(page))
629                 SetPageReferenced(newpage);
630         if (PageUptodate(page))
631                 SetPageUptodate(newpage);
632         if (TestClearPageActive(page)) {
633                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
634                 SetPageActive(newpage);
635         } else if (TestClearPageUnevictable(page))
636                 SetPageUnevictable(newpage);
637         if (PageChecked(page))
638                 SetPageChecked(newpage);
639         if (PageMappedToDisk(page))
640                 SetPageMappedToDisk(newpage);
641
642         /* Move dirty on pages not done by migrate_page_move_mapping() */
643         if (PageDirty(page))
644                 SetPageDirty(newpage);
645
646         if (page_is_young(page))
647                 set_page_young(newpage);
648         if (page_is_idle(page))
649                 set_page_idle(newpage);
650
651         /*
652          * Copy NUMA information to the new page, to prevent over-eager
653          * future migrations of this same page.
654          */
655         cpupid = page_cpupid_xchg_last(page, -1);
656         page_cpupid_xchg_last(newpage, cpupid);
657
658         ksm_migrate_page(newpage, page);
659         /*
660          * Please do not reorder this without considering how mm/ksm.c's
661          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
662          */
663         if (PageSwapCache(page))
664                 ClearPageSwapCache(page);
665         ClearPagePrivate(page);
666         set_page_private(page, 0);
667
668         /*
669          * If any waiters have accumulated on the new page then
670          * wake them up.
671          */
672         if (PageWriteback(newpage))
673                 end_page_writeback(newpage);
674
675         copy_page_owner(page, newpage);
676
677         mem_cgroup_migrate(page, newpage);
678 }
679 EXPORT_SYMBOL(migrate_page_copy);
680
681 /************************************************************
682  *                    Migration functions
683  ***********************************************************/
684
685 /*
686  * Common logic to directly migrate a single LRU page suitable for
687  * pages that do not use PagePrivate/PagePrivate2.
688  *
689  * Pages are locked upon entry and exit.
690  */
691 int migrate_page(struct address_space *mapping,
692                 struct page *newpage, struct page *page,
693                 enum migrate_mode mode)
694 {
695         int rc;
696
697         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
698
699         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
700
701         if (rc != MIGRATEPAGE_SUCCESS)
702                 return rc;
703
704         migrate_page_copy(newpage, page);
705         return MIGRATEPAGE_SUCCESS;
706 }
707 EXPORT_SYMBOL(migrate_page);
708
709 #ifdef CONFIG_BLOCK
710 /*
711  * Migration function for pages with buffers. This function can only be used
712  * if the underlying filesystem guarantees that no other references to "page"
713  * exist.
714  */
715 int buffer_migrate_page(struct address_space *mapping,
716                 struct page *newpage, struct page *page, enum migrate_mode mode)
717 {
718         struct buffer_head *bh, *head;
719         int rc;
720
721         if (!page_has_buffers(page))
722                 return migrate_page(mapping, newpage, page, mode);
723
724         head = page_buffers(page);
725
726         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
727
728         if (rc != MIGRATEPAGE_SUCCESS)
729                 return rc;
730
731         /*
732          * In the async case, migrate_page_move_mapping locked the buffers
733          * with an IRQ-safe spinlock held. In the sync case, the buffers
734          * need to be locked now
735          */
736         if (mode != MIGRATE_ASYNC)
737                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
738
739         ClearPagePrivate(page);
740         set_page_private(newpage, page_private(page));
741         set_page_private(page, 0);
742         put_page(page);
743         get_page(newpage);
744
745         bh = head;
746         do {
747                 set_bh_page(bh, newpage, bh_offset(bh));
748                 bh = bh->b_this_page;
749
750         } while (bh != head);
751
752         SetPagePrivate(newpage);
753
754         migrate_page_copy(newpage, page);
755
756         bh = head;
757         do {
758                 unlock_buffer(bh);
759                 put_bh(bh);
760                 bh = bh->b_this_page;
761
762         } while (bh != head);
763
764         return MIGRATEPAGE_SUCCESS;
765 }
766 EXPORT_SYMBOL(buffer_migrate_page);
767 #endif
768
769 /*
770  * Writeback a page to clean the dirty state
771  */
772 static int writeout(struct address_space *mapping, struct page *page)
773 {
774         struct writeback_control wbc = {
775                 .sync_mode = WB_SYNC_NONE,
776                 .nr_to_write = 1,
777                 .range_start = 0,
778                 .range_end = LLONG_MAX,
779                 .for_reclaim = 1
780         };
781         int rc;
782
783         if (!mapping->a_ops->writepage)
784                 /* No write method for the address space */
785                 return -EINVAL;
786
787         if (!clear_page_dirty_for_io(page))
788                 /* Someone else already triggered a write */
789                 return -EAGAIN;
790
791         /*
792          * A dirty page may imply that the underlying filesystem has
793          * the page on some queue. So the page must be clean for
794          * migration. Writeout may mean we loose the lock and the
795          * page state is no longer what we checked for earlier.
796          * At this point we know that the migration attempt cannot
797          * be successful.
798          */
799         remove_migration_ptes(page, page, false);
800
801         rc = mapping->a_ops->writepage(page, &wbc);
802
803         if (rc != AOP_WRITEPAGE_ACTIVATE)
804                 /* unlocked. Relock */
805                 lock_page(page);
806
807         return (rc < 0) ? -EIO : -EAGAIN;
808 }
809
810 /*
811  * Default handling if a filesystem does not provide a migration function.
812  */
813 static int fallback_migrate_page(struct address_space *mapping,
814         struct page *newpage, struct page *page, enum migrate_mode mode)
815 {
816         if (PageDirty(page)) {
817                 /* Only writeback pages in full synchronous migration */
818                 if (mode != MIGRATE_SYNC)
819                         return -EBUSY;
820                 return writeout(mapping, page);
821         }
822
823         /*
824          * Buffers may be managed in a filesystem specific way.
825          * We must have no buffers or drop them.
826          */
827         if (page_has_private(page) &&
828             !try_to_release_page(page, GFP_KERNEL))
829                 return -EAGAIN;
830
831         return migrate_page(mapping, newpage, page, mode);
832 }
833
834 /*
835  * Move a page to a newly allocated page
836  * The page is locked and all ptes have been successfully removed.
837  *
838  * The new page will have replaced the old page if this function
839  * is successful.
840  *
841  * Return value:
842  *   < 0 - error code
843  *  MIGRATEPAGE_SUCCESS - success
844  */
845 static int move_to_new_page(struct page *newpage, struct page *page,
846                                 enum migrate_mode mode)
847 {
848         struct address_space *mapping;
849         int rc = -EAGAIN;
850         bool is_lru = !__PageMovable(page);
851
852         VM_BUG_ON_PAGE(!PageLocked(page), page);
853         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
854
855         mapping = page_mapping(page);
856
857         if (likely(is_lru)) {
858                 if (!mapping)
859                         rc = migrate_page(mapping, newpage, page, mode);
860                 else if (mapping->a_ops->migratepage)
861                         /*
862                          * Most pages have a mapping and most filesystems
863                          * provide a migratepage callback. Anonymous pages
864                          * are part of swap space which also has its own
865                          * migratepage callback. This is the most common path
866                          * for page migration.
867                          */
868                         rc = mapping->a_ops->migratepage(mapping, newpage,
869                                                         page, mode);
870                 else
871                         rc = fallback_migrate_page(mapping, newpage,
872                                                         page, mode);
873         } else {
874                 /*
875                  * In case of non-lru page, it could be released after
876                  * isolation step. In that case, we shouldn't try migration.
877                  */
878                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
879                 if (!PageMovable(page)) {
880                         rc = MIGRATEPAGE_SUCCESS;
881                         __ClearPageIsolated(page);
882                         goto out;
883                 }
884
885                 rc = mapping->a_ops->migratepage(mapping, newpage,
886                                                 page, mode);
887                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
888                         !PageIsolated(page));
889         }
890
891         /*
892          * When successful, old pagecache page->mapping must be cleared before
893          * page is freed; but stats require that PageAnon be left as PageAnon.
894          */
895         if (rc == MIGRATEPAGE_SUCCESS) {
896                 if (__PageMovable(page)) {
897                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
898
899                         /*
900                          * We clear PG_movable under page_lock so any compactor
901                          * cannot try to migrate this page.
902                          */
903                         __ClearPageIsolated(page);
904                 }
905
906                 /*
907                  * Anonymous and movable page->mapping will be cleard by
908                  * free_pages_prepare so don't reset it here for keeping
909                  * the type to work PageAnon, for example.
910                  */
911                 if (!PageMappingFlags(page))
912                         page->mapping = NULL;
913         }
914 out:
915         return rc;
916 }
917
918 static int __unmap_and_move(struct page *page, struct page *newpage,
919                                 int force, enum migrate_mode mode)
920 {
921         int rc = -EAGAIN;
922         int page_was_mapped = 0;
923         struct anon_vma *anon_vma = NULL;
924         bool is_lru = !__PageMovable(page);
925
926         if (!trylock_page(page)) {
927                 if (!force || mode == MIGRATE_ASYNC)
928                         goto out;
929
930                 /*
931                  * It's not safe for direct compaction to call lock_page.
932                  * For example, during page readahead pages are added locked
933                  * to the LRU. Later, when the IO completes the pages are
934                  * marked uptodate and unlocked. However, the queueing
935                  * could be merging multiple pages for one bio (e.g.
936                  * mpage_readpages). If an allocation happens for the
937                  * second or third page, the process can end up locking
938                  * the same page twice and deadlocking. Rather than
939                  * trying to be clever about what pages can be locked,
940                  * avoid the use of lock_page for direct compaction
941                  * altogether.
942                  */
943                 if (current->flags & PF_MEMALLOC)
944                         goto out;
945
946                 lock_page(page);
947         }
948
949         if (PageWriteback(page)) {
950                 /*
951                  * Only in the case of a full synchronous migration is it
952                  * necessary to wait for PageWriteback. In the async case,
953                  * the retry loop is too short and in the sync-light case,
954                  * the overhead of stalling is too much
955                  */
956                 if (mode != MIGRATE_SYNC) {
957                         rc = -EBUSY;
958                         goto out_unlock;
959                 }
960                 if (!force)
961                         goto out_unlock;
962                 wait_on_page_writeback(page);
963         }
964
965         /*
966          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
967          * we cannot notice that anon_vma is freed while we migrates a page.
968          * This get_anon_vma() delays freeing anon_vma pointer until the end
969          * of migration. File cache pages are no problem because of page_lock()
970          * File Caches may use write_page() or lock_page() in migration, then,
971          * just care Anon page here.
972          *
973          * Only page_get_anon_vma() understands the subtleties of
974          * getting a hold on an anon_vma from outside one of its mms.
975          * But if we cannot get anon_vma, then we won't need it anyway,
976          * because that implies that the anon page is no longer mapped
977          * (and cannot be remapped so long as we hold the page lock).
978          */
979         if (PageAnon(page) && !PageKsm(page))
980                 anon_vma = page_get_anon_vma(page);
981
982         /*
983          * Block others from accessing the new page when we get around to
984          * establishing additional references. We are usually the only one
985          * holding a reference to newpage at this point. We used to have a BUG
986          * here if trylock_page(newpage) fails, but would like to allow for
987          * cases where there might be a race with the previous use of newpage.
988          * This is much like races on refcount of oldpage: just don't BUG().
989          */
990         if (unlikely(!trylock_page(newpage)))
991                 goto out_unlock;
992
993         if (unlikely(!is_lru)) {
994                 rc = move_to_new_page(newpage, page, mode);
995                 goto out_unlock_both;
996         }
997
998         /*
999          * Corner case handling:
1000          * 1. When a new swap-cache page is read into, it is added to the LRU
1001          * and treated as swapcache but it has no rmap yet.
1002          * Calling try_to_unmap() against a page->mapping==NULL page will
1003          * trigger a BUG.  So handle it here.
1004          * 2. An orphaned page (see truncate_complete_page) might have
1005          * fs-private metadata. The page can be picked up due to memory
1006          * offlining.  Everywhere else except page reclaim, the page is
1007          * invisible to the vm, so the page can not be migrated.  So try to
1008          * free the metadata, so the page can be freed.
1009          */
1010         if (!page->mapping) {
1011                 VM_BUG_ON_PAGE(PageAnon(page), page);
1012                 if (page_has_private(page)) {
1013                         try_to_free_buffers(page);
1014                         goto out_unlock_both;
1015                 }
1016         } else if (page_mapped(page)) {
1017                 /* Establish migration ptes */
1018                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1019                                 page);
1020                 try_to_unmap(page,
1021                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1022                 page_was_mapped = 1;
1023         }
1024
1025         if (!page_mapped(page))
1026                 rc = move_to_new_page(newpage, page, mode);
1027
1028         if (page_was_mapped)
1029                 remove_migration_ptes(page,
1030                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1031
1032 out_unlock_both:
1033         unlock_page(newpage);
1034 out_unlock:
1035         /* Drop an anon_vma reference if we took one */
1036         if (anon_vma)
1037                 put_anon_vma(anon_vma);
1038         unlock_page(page);
1039 out:
1040         /*
1041          * If migration is successful, decrease refcount of the newpage
1042          * which will not free the page because new page owner increased
1043          * refcounter. As well, if it is LRU page, add the page to LRU
1044          * list in here.
1045          */
1046         if (rc == MIGRATEPAGE_SUCCESS) {
1047                 if (unlikely(__PageMovable(newpage)))
1048                         put_page(newpage);
1049                 else
1050                         putback_lru_page(newpage);
1051         }
1052
1053         return rc;
1054 }
1055
1056 /*
1057  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1058  * around it.
1059  */
1060 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1061 #define ICE_noinline noinline
1062 #else
1063 #define ICE_noinline
1064 #endif
1065
1066 /*
1067  * Obtain the lock on page, remove all ptes and migrate the page
1068  * to the newly allocated page in newpage.
1069  */
1070 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1071                                    free_page_t put_new_page,
1072                                    unsigned long private, struct page *page,
1073                                    int force, enum migrate_mode mode,
1074                                    enum migrate_reason reason)
1075 {
1076         int rc = MIGRATEPAGE_SUCCESS;
1077         int *result = NULL;
1078         struct page *newpage;
1079
1080         newpage = get_new_page(page, private, &result);
1081         if (!newpage)
1082                 return -ENOMEM;
1083
1084         if (page_count(page) == 1) {
1085                 /* page was freed from under us. So we are done. */
1086                 ClearPageActive(page);
1087                 ClearPageUnevictable(page);
1088                 if (unlikely(__PageMovable(page))) {
1089                         lock_page(page);
1090                         if (!PageMovable(page))
1091                                 __ClearPageIsolated(page);
1092                         unlock_page(page);
1093                 }
1094                 if (put_new_page)
1095                         put_new_page(newpage, private);
1096                 else
1097                         put_page(newpage);
1098                 goto out;
1099         }
1100
1101         if (unlikely(PageTransHuge(page))) {
1102                 lock_page(page);
1103                 rc = split_huge_page(page);
1104                 unlock_page(page);
1105                 if (rc)
1106                         goto out;
1107         }
1108
1109         rc = __unmap_and_move(page, newpage, force, mode);
1110         if (rc == MIGRATEPAGE_SUCCESS)
1111                 set_page_owner_migrate_reason(newpage, reason);
1112
1113 out:
1114         if (rc != -EAGAIN) {
1115                 /*
1116                  * A page that has been migrated has all references
1117                  * removed and will be freed. A page that has not been
1118                  * migrated will have kepts its references and be
1119                  * restored.
1120                  */
1121                 list_del(&page->lru);
1122                 dec_zone_page_state(page, NR_ISOLATED_ANON +
1123                                 page_is_file_cache(page));
1124         }
1125
1126         /*
1127          * If migration is successful, releases reference grabbed during
1128          * isolation. Otherwise, restore the page to right list unless
1129          * we want to retry.
1130          */
1131         if (rc == MIGRATEPAGE_SUCCESS) {
1132                 put_page(page);
1133                 if (reason == MR_MEMORY_FAILURE) {
1134                         /*
1135                          * Set PG_HWPoison on just freed page
1136                          * intentionally. Although it's rather weird,
1137                          * it's how HWPoison flag works at the moment.
1138                          */
1139                         if (!test_set_page_hwpoison(page))
1140                                 num_poisoned_pages_inc();
1141                 }
1142         } else {
1143                 if (rc != -EAGAIN) {
1144                         if (likely(!__PageMovable(page))) {
1145                                 putback_lru_page(page);
1146                                 goto put_new;
1147                         }
1148
1149                         lock_page(page);
1150                         if (PageMovable(page))
1151                                 putback_movable_page(page);
1152                         else
1153                                 __ClearPageIsolated(page);
1154                         unlock_page(page);
1155                         put_page(page);
1156                 }
1157 put_new:
1158                 if (put_new_page)
1159                         put_new_page(newpage, private);
1160                 else
1161                         put_page(newpage);
1162         }
1163
1164         if (result) {
1165                 if (rc)
1166                         *result = rc;
1167                 else
1168                         *result = page_to_nid(newpage);
1169         }
1170         return rc;
1171 }
1172
1173 /*
1174  * Counterpart of unmap_and_move_page() for hugepage migration.
1175  *
1176  * This function doesn't wait the completion of hugepage I/O
1177  * because there is no race between I/O and migration for hugepage.
1178  * Note that currently hugepage I/O occurs only in direct I/O
1179  * where no lock is held and PG_writeback is irrelevant,
1180  * and writeback status of all subpages are counted in the reference
1181  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1182  * under direct I/O, the reference of the head page is 512 and a bit more.)
1183  * This means that when we try to migrate hugepage whose subpages are
1184  * doing direct I/O, some references remain after try_to_unmap() and
1185  * hugepage migration fails without data corruption.
1186  *
1187  * There is also no race when direct I/O is issued on the page under migration,
1188  * because then pte is replaced with migration swap entry and direct I/O code
1189  * will wait in the page fault for migration to complete.
1190  */
1191 static int unmap_and_move_huge_page(new_page_t get_new_page,
1192                                 free_page_t put_new_page, unsigned long private,
1193                                 struct page *hpage, int force,
1194                                 enum migrate_mode mode, int reason)
1195 {
1196         int rc = -EAGAIN;
1197         int *result = NULL;
1198         int page_was_mapped = 0;
1199         struct page *new_hpage;
1200         struct anon_vma *anon_vma = NULL;
1201
1202         /*
1203          * Movability of hugepages depends on architectures and hugepage size.
1204          * This check is necessary because some callers of hugepage migration
1205          * like soft offline and memory hotremove don't walk through page
1206          * tables or check whether the hugepage is pmd-based or not before
1207          * kicking migration.
1208          */
1209         if (!hugepage_migration_supported(page_hstate(hpage))) {
1210                 putback_active_hugepage(hpage);
1211                 return -ENOSYS;
1212         }
1213
1214         new_hpage = get_new_page(hpage, private, &result);
1215         if (!new_hpage)
1216                 return -ENOMEM;
1217
1218         if (!trylock_page(hpage)) {
1219                 if (!force || mode != MIGRATE_SYNC)
1220                         goto out;
1221                 lock_page(hpage);
1222         }
1223
1224         if (PageAnon(hpage))
1225                 anon_vma = page_get_anon_vma(hpage);
1226
1227         if (unlikely(!trylock_page(new_hpage)))
1228                 goto put_anon;
1229
1230         if (page_mapped(hpage)) {
1231                 try_to_unmap(hpage,
1232                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1233                 page_was_mapped = 1;
1234         }
1235
1236         if (!page_mapped(hpage))
1237                 rc = move_to_new_page(new_hpage, hpage, mode);
1238
1239         if (page_was_mapped)
1240                 remove_migration_ptes(hpage,
1241                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1242
1243         unlock_page(new_hpage);
1244
1245 put_anon:
1246         if (anon_vma)
1247                 put_anon_vma(anon_vma);
1248
1249         if (rc == MIGRATEPAGE_SUCCESS) {
1250                 hugetlb_cgroup_migrate(hpage, new_hpage);
1251                 put_new_page = NULL;
1252                 set_page_owner_migrate_reason(new_hpage, reason);
1253         }
1254
1255         unlock_page(hpage);
1256 out:
1257         if (rc != -EAGAIN)
1258                 putback_active_hugepage(hpage);
1259
1260         /*
1261          * If migration was not successful and there's a freeing callback, use
1262          * it.  Otherwise, put_page() will drop the reference grabbed during
1263          * isolation.
1264          */
1265         if (put_new_page)
1266                 put_new_page(new_hpage, private);
1267         else
1268                 putback_active_hugepage(new_hpage);
1269
1270         if (result) {
1271                 if (rc)
1272                         *result = rc;
1273                 else
1274                         *result = page_to_nid(new_hpage);
1275         }
1276         return rc;
1277 }
1278
1279 /*
1280  * migrate_pages - migrate the pages specified in a list, to the free pages
1281  *                 supplied as the target for the page migration
1282  *
1283  * @from:               The list of pages to be migrated.
1284  * @get_new_page:       The function used to allocate free pages to be used
1285  *                      as the target of the page migration.
1286  * @put_new_page:       The function used to free target pages if migration
1287  *                      fails, or NULL if no special handling is necessary.
1288  * @private:            Private data to be passed on to get_new_page()
1289  * @mode:               The migration mode that specifies the constraints for
1290  *                      page migration, if any.
1291  * @reason:             The reason for page migration.
1292  *
1293  * The function returns after 10 attempts or if no pages are movable any more
1294  * because the list has become empty or no retryable pages exist any more.
1295  * The caller should call putback_movable_pages() to return pages to the LRU
1296  * or free list only if ret != 0.
1297  *
1298  * Returns the number of pages that were not migrated, or an error code.
1299  */
1300 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1301                 free_page_t put_new_page, unsigned long private,
1302                 enum migrate_mode mode, int reason)
1303 {
1304         int retry = 1;
1305         int nr_failed = 0;
1306         int nr_succeeded = 0;
1307         int pass = 0;
1308         struct page *page;
1309         struct page *page2;
1310         int swapwrite = current->flags & PF_SWAPWRITE;
1311         int rc;
1312
1313         if (!swapwrite)
1314                 current->flags |= PF_SWAPWRITE;
1315
1316         for(pass = 0; pass < 10 && retry; pass++) {
1317                 retry = 0;
1318
1319                 list_for_each_entry_safe(page, page2, from, lru) {
1320                         cond_resched();
1321
1322                         if (PageHuge(page))
1323                                 rc = unmap_and_move_huge_page(get_new_page,
1324                                                 put_new_page, private, page,
1325                                                 pass > 2, mode, reason);
1326                         else
1327                                 rc = unmap_and_move(get_new_page, put_new_page,
1328                                                 private, page, pass > 2, mode,
1329                                                 reason);
1330
1331                         switch(rc) {
1332                         case -ENOMEM:
1333                                 nr_failed++;
1334                                 goto out;
1335                         case -EAGAIN:
1336                                 retry++;
1337                                 break;
1338                         case MIGRATEPAGE_SUCCESS:
1339                                 nr_succeeded++;
1340                                 break;
1341                         default:
1342                                 /*
1343                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1344                                  * unlike -EAGAIN case, the failed page is
1345                                  * removed from migration page list and not
1346                                  * retried in the next outer loop.
1347                                  */
1348                                 nr_failed++;
1349                                 break;
1350                         }
1351                 }
1352         }
1353         nr_failed += retry;
1354         rc = nr_failed;
1355 out:
1356         if (nr_succeeded)
1357                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1358         if (nr_failed)
1359                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1360         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1361
1362         if (!swapwrite)
1363                 current->flags &= ~PF_SWAPWRITE;
1364
1365         return rc;
1366 }
1367
1368 #ifdef CONFIG_NUMA
1369 /*
1370  * Move a list of individual pages
1371  */
1372 struct page_to_node {
1373         unsigned long addr;
1374         struct page *page;
1375         int node;
1376         int status;
1377 };
1378
1379 static struct page *new_page_node(struct page *p, unsigned long private,
1380                 int **result)
1381 {
1382         struct page_to_node *pm = (struct page_to_node *)private;
1383
1384         while (pm->node != MAX_NUMNODES && pm->page != p)
1385                 pm++;
1386
1387         if (pm->node == MAX_NUMNODES)
1388                 return NULL;
1389
1390         *result = &pm->status;
1391
1392         if (PageHuge(p))
1393                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1394                                         pm->node);
1395         else
1396                 return __alloc_pages_node(pm->node,
1397                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1398 }
1399
1400 /*
1401  * Move a set of pages as indicated in the pm array. The addr
1402  * field must be set to the virtual address of the page to be moved
1403  * and the node number must contain a valid target node.
1404  * The pm array ends with node = MAX_NUMNODES.
1405  */
1406 static int do_move_page_to_node_array(struct mm_struct *mm,
1407                                       struct page_to_node *pm,
1408                                       int migrate_all)
1409 {
1410         int err;
1411         struct page_to_node *pp;
1412         LIST_HEAD(pagelist);
1413
1414         down_read(&mm->mmap_sem);
1415
1416         /*
1417          * Build a list of pages to migrate
1418          */
1419         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1420                 struct vm_area_struct *vma;
1421                 struct page *page;
1422
1423                 err = -EFAULT;
1424                 vma = find_vma(mm, pp->addr);
1425                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1426                         goto set_status;
1427
1428                 /* FOLL_DUMP to ignore special (like zero) pages */
1429                 page = follow_page(vma, pp->addr,
1430                                 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1431
1432                 err = PTR_ERR(page);
1433                 if (IS_ERR(page))
1434                         goto set_status;
1435
1436                 err = -ENOENT;
1437                 if (!page)
1438                         goto set_status;
1439
1440                 pp->page = page;
1441                 err = page_to_nid(page);
1442
1443                 if (err == pp->node)
1444                         /*
1445                          * Node already in the right place
1446                          */
1447                         goto put_and_set;
1448
1449                 err = -EACCES;
1450                 if (page_mapcount(page) > 1 &&
1451                                 !migrate_all)
1452                         goto put_and_set;
1453
1454                 if (PageHuge(page)) {
1455                         if (PageHead(page))
1456                                 isolate_huge_page(page, &pagelist);
1457                         goto put_and_set;
1458                 }
1459
1460                 err = isolate_lru_page(page);
1461                 if (!err) {
1462                         list_add_tail(&page->lru, &pagelist);
1463                         inc_zone_page_state(page, NR_ISOLATED_ANON +
1464                                             page_is_file_cache(page));
1465                 }
1466 put_and_set:
1467                 /*
1468                  * Either remove the duplicate refcount from
1469                  * isolate_lru_page() or drop the page ref if it was
1470                  * not isolated.
1471                  */
1472                 put_page(page);
1473 set_status:
1474                 pp->status = err;
1475         }
1476
1477         err = 0;
1478         if (!list_empty(&pagelist)) {
1479                 err = migrate_pages(&pagelist, new_page_node, NULL,
1480                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1481                 if (err)
1482                         putback_movable_pages(&pagelist);
1483         }
1484
1485         up_read(&mm->mmap_sem);
1486         return err;
1487 }
1488
1489 /*
1490  * Migrate an array of page address onto an array of nodes and fill
1491  * the corresponding array of status.
1492  */
1493 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1494                          unsigned long nr_pages,
1495                          const void __user * __user *pages,
1496                          const int __user *nodes,
1497                          int __user *status, int flags)
1498 {
1499         struct page_to_node *pm;
1500         unsigned long chunk_nr_pages;
1501         unsigned long chunk_start;
1502         int err;
1503
1504         err = -ENOMEM;
1505         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1506         if (!pm)
1507                 goto out;
1508
1509         migrate_prep();
1510
1511         /*
1512          * Store a chunk of page_to_node array in a page,
1513          * but keep the last one as a marker
1514          */
1515         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1516
1517         for (chunk_start = 0;
1518              chunk_start < nr_pages;
1519              chunk_start += chunk_nr_pages) {
1520                 int j;
1521
1522                 if (chunk_start + chunk_nr_pages > nr_pages)
1523                         chunk_nr_pages = nr_pages - chunk_start;
1524
1525                 /* fill the chunk pm with addrs and nodes from user-space */
1526                 for (j = 0; j < chunk_nr_pages; j++) {
1527                         const void __user *p;
1528                         int node;
1529
1530                         err = -EFAULT;
1531                         if (get_user(p, pages + j + chunk_start))
1532                                 goto out_pm;
1533                         pm[j].addr = (unsigned long) p;
1534
1535                         if (get_user(node, nodes + j + chunk_start))
1536                                 goto out_pm;
1537
1538                         err = -ENODEV;
1539                         if (node < 0 || node >= MAX_NUMNODES)
1540                                 goto out_pm;
1541
1542                         if (!node_state(node, N_MEMORY))
1543                                 goto out_pm;
1544
1545                         err = -EACCES;
1546                         if (!node_isset(node, task_nodes))
1547                                 goto out_pm;
1548
1549                         pm[j].node = node;
1550                 }
1551
1552                 /* End marker for this chunk */
1553                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1554
1555                 /* Migrate this chunk */
1556                 err = do_move_page_to_node_array(mm, pm,
1557                                                  flags & MPOL_MF_MOVE_ALL);
1558                 if (err < 0)
1559                         goto out_pm;
1560
1561                 /* Return status information */
1562                 for (j = 0; j < chunk_nr_pages; j++)
1563                         if (put_user(pm[j].status, status + j + chunk_start)) {
1564                                 err = -EFAULT;
1565                                 goto out_pm;
1566                         }
1567         }
1568         err = 0;
1569
1570 out_pm:
1571         free_page((unsigned long)pm);
1572 out:
1573         return err;
1574 }
1575
1576 /*
1577  * Determine the nodes of an array of pages and store it in an array of status.
1578  */
1579 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1580                                 const void __user **pages, int *status)
1581 {
1582         unsigned long i;
1583
1584         down_read(&mm->mmap_sem);
1585
1586         for (i = 0; i < nr_pages; i++) {
1587                 unsigned long addr = (unsigned long)(*pages);
1588                 struct vm_area_struct *vma;
1589                 struct page *page;
1590                 int err = -EFAULT;
1591
1592                 vma = find_vma(mm, addr);
1593                 if (!vma || addr < vma->vm_start)
1594                         goto set_status;
1595
1596                 /* FOLL_DUMP to ignore special (like zero) pages */
1597                 page = follow_page(vma, addr, FOLL_DUMP);
1598
1599                 err = PTR_ERR(page);
1600                 if (IS_ERR(page))
1601                         goto set_status;
1602
1603                 err = page ? page_to_nid(page) : -ENOENT;
1604 set_status:
1605                 *status = err;
1606
1607                 pages++;
1608                 status++;
1609         }
1610
1611         up_read(&mm->mmap_sem);
1612 }
1613
1614 /*
1615  * Determine the nodes of a user array of pages and store it in
1616  * a user array of status.
1617  */
1618 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1619                          const void __user * __user *pages,
1620                          int __user *status)
1621 {
1622 #define DO_PAGES_STAT_CHUNK_NR 16
1623         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1624         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1625
1626         while (nr_pages) {
1627                 unsigned long chunk_nr;
1628
1629                 chunk_nr = nr_pages;
1630                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1631                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1632
1633                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1634                         break;
1635
1636                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1637
1638                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1639                         break;
1640
1641                 pages += chunk_nr;
1642                 status += chunk_nr;
1643                 nr_pages -= chunk_nr;
1644         }
1645         return nr_pages ? -EFAULT : 0;
1646 }
1647
1648 /*
1649  * Move a list of pages in the address space of the currently executing
1650  * process.
1651  */
1652 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1653                 const void __user * __user *, pages,
1654                 const int __user *, nodes,
1655                 int __user *, status, int, flags)
1656 {
1657         const struct cred *cred = current_cred(), *tcred;
1658         struct task_struct *task;
1659         struct mm_struct *mm;
1660         int err;
1661         nodemask_t task_nodes;
1662
1663         /* Check flags */
1664         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1665                 return -EINVAL;
1666
1667         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1668                 return -EPERM;
1669
1670         /* Find the mm_struct */
1671         rcu_read_lock();
1672         task = pid ? find_task_by_vpid(pid) : current;
1673         if (!task) {
1674                 rcu_read_unlock();
1675                 return -ESRCH;
1676         }
1677         get_task_struct(task);
1678
1679         /*
1680          * Check if this process has the right to modify the specified
1681          * process. The right exists if the process has administrative
1682          * capabilities, superuser privileges or the same
1683          * userid as the target process.
1684          */
1685         tcred = __task_cred(task);
1686         if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1687             !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1688             !capable(CAP_SYS_NICE)) {
1689                 rcu_read_unlock();
1690                 err = -EPERM;
1691                 goto out;
1692         }
1693         rcu_read_unlock();
1694
1695         err = security_task_movememory(task);
1696         if (err)
1697                 goto out;
1698
1699         task_nodes = cpuset_mems_allowed(task);
1700         mm = get_task_mm(task);
1701         put_task_struct(task);
1702
1703         if (!mm)
1704                 return -EINVAL;
1705
1706         if (nodes)
1707                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1708                                     nodes, status, flags);
1709         else
1710                 err = do_pages_stat(mm, nr_pages, pages, status);
1711
1712         mmput(mm);
1713         return err;
1714
1715 out:
1716         put_task_struct(task);
1717         return err;
1718 }
1719
1720 #ifdef CONFIG_NUMA_BALANCING
1721 /*
1722  * Returns true if this is a safe migration target node for misplaced NUMA
1723  * pages. Currently it only checks the watermarks which crude
1724  */
1725 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1726                                    unsigned long nr_migrate_pages)
1727 {
1728         int z;
1729         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1730                 struct zone *zone = pgdat->node_zones + z;
1731
1732                 if (!populated_zone(zone))
1733                         continue;
1734
1735                 if (!zone_reclaimable(zone))
1736                         continue;
1737
1738                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1739                 if (!zone_watermark_ok(zone, 0,
1740                                        high_wmark_pages(zone) +
1741                                        nr_migrate_pages,
1742                                        0, 0))
1743                         continue;
1744                 return true;
1745         }
1746         return false;
1747 }
1748
1749 static struct page *alloc_misplaced_dst_page(struct page *page,
1750                                            unsigned long data,
1751                                            int **result)
1752 {
1753         int nid = (int) data;
1754         struct page *newpage;
1755
1756         newpage = __alloc_pages_node(nid,
1757                                          (GFP_HIGHUSER_MOVABLE |
1758                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1759                                           __GFP_NORETRY | __GFP_NOWARN) &
1760                                          ~__GFP_RECLAIM, 0);
1761
1762         return newpage;
1763 }
1764
1765 /*
1766  * page migration rate limiting control.
1767  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1768  * window of time. Default here says do not migrate more than 1280M per second.
1769  */
1770 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1771 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1772
1773 /* Returns true if the node is migrate rate-limited after the update */
1774 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1775                                         unsigned long nr_pages)
1776 {
1777         /*
1778          * Rate-limit the amount of data that is being migrated to a node.
1779          * Optimal placement is no good if the memory bus is saturated and
1780          * all the time is being spent migrating!
1781          */
1782         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1783                 spin_lock(&pgdat->numabalancing_migrate_lock);
1784                 pgdat->numabalancing_migrate_nr_pages = 0;
1785                 pgdat->numabalancing_migrate_next_window = jiffies +
1786                         msecs_to_jiffies(migrate_interval_millisecs);
1787                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1788         }
1789         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1790                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1791                                                                 nr_pages);
1792                 return true;
1793         }
1794
1795         /*
1796          * This is an unlocked non-atomic update so errors are possible.
1797          * The consequences are failing to migrate when we potentiall should
1798          * have which is not severe enough to warrant locking. If it is ever
1799          * a problem, it can be converted to a per-cpu counter.
1800          */
1801         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1802         return false;
1803 }
1804
1805 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1806 {
1807         int page_lru;
1808
1809         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1810
1811         /* Avoid migrating to a node that is nearly full */
1812         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1813                 return 0;
1814
1815         if (isolate_lru_page(page))
1816                 return 0;
1817
1818         /*
1819          * migrate_misplaced_transhuge_page() skips page migration's usual
1820          * check on page_count(), so we must do it here, now that the page
1821          * has been isolated: a GUP pin, or any other pin, prevents migration.
1822          * The expected page count is 3: 1 for page's mapcount and 1 for the
1823          * caller's pin and 1 for the reference taken by isolate_lru_page().
1824          */
1825         if (PageTransHuge(page) && page_count(page) != 3) {
1826                 putback_lru_page(page);
1827                 return 0;
1828         }
1829
1830         page_lru = page_is_file_cache(page);
1831         mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1832                                 hpage_nr_pages(page));
1833
1834         /*
1835          * Isolating the page has taken another reference, so the
1836          * caller's reference can be safely dropped without the page
1837          * disappearing underneath us during migration.
1838          */
1839         put_page(page);
1840         return 1;
1841 }
1842
1843 bool pmd_trans_migrating(pmd_t pmd)
1844 {
1845         struct page *page = pmd_page(pmd);
1846         return PageLocked(page);
1847 }
1848
1849 /*
1850  * Attempt to migrate a misplaced page to the specified destination
1851  * node. Caller is expected to have an elevated reference count on
1852  * the page that will be dropped by this function before returning.
1853  */
1854 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1855                            int node)
1856 {
1857         pg_data_t *pgdat = NODE_DATA(node);
1858         int isolated;
1859         int nr_remaining;
1860         LIST_HEAD(migratepages);
1861
1862         /*
1863          * Don't migrate file pages that are mapped in multiple processes
1864          * with execute permissions as they are probably shared libraries.
1865          */
1866         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1867             (vma->vm_flags & VM_EXEC))
1868                 goto out;
1869
1870         /*
1871          * Rate-limit the amount of data that is being migrated to a node.
1872          * Optimal placement is no good if the memory bus is saturated and
1873          * all the time is being spent migrating!
1874          */
1875         if (numamigrate_update_ratelimit(pgdat, 1))
1876                 goto out;
1877
1878         isolated = numamigrate_isolate_page(pgdat, page);
1879         if (!isolated)
1880                 goto out;
1881
1882         list_add(&page->lru, &migratepages);
1883         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1884                                      NULL, node, MIGRATE_ASYNC,
1885                                      MR_NUMA_MISPLACED);
1886         if (nr_remaining) {
1887                 if (!list_empty(&migratepages)) {
1888                         list_del(&page->lru);
1889                         dec_zone_page_state(page, NR_ISOLATED_ANON +
1890                                         page_is_file_cache(page));
1891                         putback_lru_page(page);
1892                 }
1893                 isolated = 0;
1894         } else
1895                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1896         BUG_ON(!list_empty(&migratepages));
1897         return isolated;
1898
1899 out:
1900         put_page(page);
1901         return 0;
1902 }
1903 #endif /* CONFIG_NUMA_BALANCING */
1904
1905 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1906 /*
1907  * Migrates a THP to a given target node. page must be locked and is unlocked
1908  * before returning.
1909  */
1910 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1911                                 struct vm_area_struct *vma,
1912                                 pmd_t *pmd, pmd_t entry,
1913                                 unsigned long address,
1914                                 struct page *page, int node)
1915 {
1916         spinlock_t *ptl;
1917         pg_data_t *pgdat = NODE_DATA(node);
1918         int isolated = 0;
1919         struct page *new_page = NULL;
1920         int page_lru = page_is_file_cache(page);
1921         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1922         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1923         pmd_t orig_entry;
1924
1925         /*
1926          * Rate-limit the amount of data that is being migrated to a node.
1927          * Optimal placement is no good if the memory bus is saturated and
1928          * all the time is being spent migrating!
1929          */
1930         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1931                 goto out_dropref;
1932
1933         new_page = alloc_pages_node(node,
1934                 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1935                 HPAGE_PMD_ORDER);
1936         if (!new_page)
1937                 goto out_fail;
1938         prep_transhuge_page(new_page);
1939
1940         isolated = numamigrate_isolate_page(pgdat, page);
1941         if (!isolated) {
1942                 put_page(new_page);
1943                 goto out_fail;
1944         }
1945         /*
1946          * We are not sure a pending tlb flush here is for a huge page
1947          * mapping or not. Hence use the tlb range variant
1948          */
1949         if (mm_tlb_flush_pending(mm))
1950                 flush_tlb_range(vma, mmun_start, mmun_end);
1951
1952         /* Prepare a page as a migration target */
1953         __SetPageLocked(new_page);
1954         __SetPageSwapBacked(new_page);
1955
1956         /* anon mapping, we can simply copy page->mapping to the new page: */
1957         new_page->mapping = page->mapping;
1958         new_page->index = page->index;
1959         migrate_page_copy(new_page, page);
1960         WARN_ON(PageLRU(new_page));
1961
1962         /* Recheck the target PMD */
1963         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1964         ptl = pmd_lock(mm, pmd);
1965         if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1966 fail_putback:
1967                 spin_unlock(ptl);
1968                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1969
1970                 /* Reverse changes made by migrate_page_copy() */
1971                 if (TestClearPageActive(new_page))
1972                         SetPageActive(page);
1973                 if (TestClearPageUnevictable(new_page))
1974                         SetPageUnevictable(page);
1975
1976                 unlock_page(new_page);
1977                 put_page(new_page);             /* Free it */
1978
1979                 /* Retake the callers reference and putback on LRU */
1980                 get_page(page);
1981                 putback_lru_page(page);
1982                 mod_zone_page_state(page_zone(page),
1983                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1984
1985                 goto out_unlock;
1986         }
1987
1988         orig_entry = *pmd;
1989         entry = mk_pmd(new_page, vma->vm_page_prot);
1990         entry = pmd_mkhuge(entry);
1991         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1992
1993         /*
1994          * Clear the old entry under pagetable lock and establish the new PTE.
1995          * Any parallel GUP will either observe the old page blocking on the
1996          * page lock, block on the page table lock or observe the new page.
1997          * The SetPageUptodate on the new page and page_add_new_anon_rmap
1998          * guarantee the copy is visible before the pagetable update.
1999          */
2000         flush_cache_range(vma, mmun_start, mmun_end);
2001         page_add_anon_rmap(new_page, vma, mmun_start, true);
2002         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2003         set_pmd_at(mm, mmun_start, pmd, entry);
2004         update_mmu_cache_pmd(vma, address, &entry);
2005
2006         if (page_count(page) != 2) {
2007                 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2008                 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2009                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2010                 update_mmu_cache_pmd(vma, address, &entry);
2011                 page_remove_rmap(new_page, true);
2012                 goto fail_putback;
2013         }
2014
2015         mlock_migrate_page(new_page, page);
2016         page_remove_rmap(page, true);
2017         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2018
2019         spin_unlock(ptl);
2020         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2021
2022         /* Take an "isolate" reference and put new page on the LRU. */
2023         get_page(new_page);
2024         putback_lru_page(new_page);
2025
2026         unlock_page(new_page);
2027         unlock_page(page);
2028         put_page(page);                 /* Drop the rmap reference */
2029         put_page(page);                 /* Drop the LRU isolation reference */
2030
2031         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2032         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2033
2034         mod_zone_page_state(page_zone(page),
2035                         NR_ISOLATED_ANON + page_lru,
2036                         -HPAGE_PMD_NR);
2037         return isolated;
2038
2039 out_fail:
2040         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2041 out_dropref:
2042         ptl = pmd_lock(mm, pmd);
2043         if (pmd_same(*pmd, entry)) {
2044                 entry = pmd_modify(entry, vma->vm_page_prot);
2045                 set_pmd_at(mm, mmun_start, pmd, entry);
2046                 update_mmu_cache_pmd(vma, address, &entry);
2047         }
2048         spin_unlock(ptl);
2049
2050 out_unlock:
2051         unlock_page(page);
2052         put_page(page);
2053         return 0;
2054 }
2055 #endif /* CONFIG_NUMA_BALANCING */
2056
2057 #endif /* CONFIG_NUMA */