Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct net_device *dev,
162                                          struct netdev_notifier_info *info);
163
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196         while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357                 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362  *      Add a protocol ID to the list. Now that the input handler is
363  *      smarter we can dispense with all the messy stuff that used to be
364  *      here.
365  *
366  *      BEWARE!!! Protocol handlers, mangling input packets,
367  *      MUST BE last in hash buckets and checking protocol handlers
368  *      MUST start from promiscuous ptype_all chain in net_bh.
369  *      It is true now, do not change it.
370  *      Explanation follows: if protocol handler, mangling packet, will
371  *      be the first on list, it is not able to sense, that packet
372  *      is cloned and should be copied-on-write, so that it will
373  *      change it and subsequent readers will get broken packet.
374  *                                                      --ANK (980803)
375  */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379         if (pt->type == htons(ETH_P_ALL))
380                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381         else
382                 return pt->dev ? &pt->dev->ptype_specific :
383                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387  *      dev_add_pack - add packet handler
388  *      @pt: packet type declaration
389  *
390  *      Add a protocol handler to the networking stack. The passed &packet_type
391  *      is linked into kernel lists and may not be freed until it has been
392  *      removed from the kernel lists.
393  *
394  *      This call does not sleep therefore it can not
395  *      guarantee all CPU's that are in middle of receiving packets
396  *      will see the new packet type (until the next received packet).
397  */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401         struct list_head *head = ptype_head(pt);
402
403         spin_lock(&ptype_lock);
404         list_add_rcu(&pt->list, head);
405         spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410  *      __dev_remove_pack        - remove packet handler
411  *      @pt: packet type declaration
412  *
413  *      Remove a protocol handler that was previously added to the kernel
414  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *      from the kernel lists and can be freed or reused once this function
416  *      returns.
417  *
418  *      The packet type might still be in use by receivers
419  *      and must not be freed until after all the CPU's have gone
420  *      through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424         struct list_head *head = ptype_head(pt);
425         struct packet_type *pt1;
426
427         spin_lock(&ptype_lock);
428
429         list_for_each_entry(pt1, head, list) {
430                 if (pt == pt1) {
431                         list_del_rcu(&pt->list);
432                         goto out;
433                 }
434         }
435
436         pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438         spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443  *      dev_remove_pack  - remove packet handler
444  *      @pt: packet type declaration
445  *
446  *      Remove a protocol handler that was previously added to the kernel
447  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *      from the kernel lists and can be freed or reused once this function
449  *      returns.
450  *
451  *      This call sleeps to guarantee that no CPU is looking at the packet
452  *      type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456         __dev_remove_pack(pt);
457
458         synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464  *      dev_add_offload - register offload handlers
465  *      @po: protocol offload declaration
466  *
467  *      Add protocol offload handlers to the networking stack. The passed
468  *      &proto_offload is linked into kernel lists and may not be freed until
469  *      it has been removed from the kernel lists.
470  *
471  *      This call does not sleep therefore it can not
472  *      guarantee all CPU's that are in middle of receiving packets
473  *      will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477         struct packet_offload *elem;
478
479         spin_lock(&offload_lock);
480         list_for_each_entry(elem, &offload_base, list) {
481                 if (po->priority < elem->priority)
482                         break;
483         }
484         list_add_rcu(&po->list, elem->list.prev);
485         spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490  *      __dev_remove_offload     - remove offload handler
491  *      @po: packet offload declaration
492  *
493  *      Remove a protocol offload handler that was previously added to the
494  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *      is removed from the kernel lists and can be freed or reused once this
496  *      function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *      and must not be freed until after all the CPU's have gone
500  *      through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504         struct list_head *head = &offload_base;
505         struct packet_offload *po1;
506
507         spin_lock(&offload_lock);
508
509         list_for_each_entry(po1, head, list) {
510                 if (po == po1) {
511                         list_del_rcu(&po->list);
512                         goto out;
513                 }
514         }
515
516         pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518         spin_unlock(&offload_lock);
519 }
520
521 /**
522  *      dev_remove_offload       - remove packet offload handler
523  *      @po: packet offload declaration
524  *
525  *      Remove a packet offload handler that was previously added to the kernel
526  *      offload handlers by dev_add_offload(). The passed &offload_type is
527  *      removed from the kernel lists and can be freed or reused once this
528  *      function returns.
529  *
530  *      This call sleeps to guarantee that no CPU is looking at the packet
531  *      type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535         __dev_remove_offload(po);
536
537         synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543                       Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551  *      netdev_boot_setup_add   - add new setup entry
552  *      @name: name of the device
553  *      @map: configured settings for the device
554  *
555  *      Adds new setup entry to the dev_boot_setup list.  The function
556  *      returns 0 on error and 1 on success.  This is a generic routine to
557  *      all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561         struct netdev_boot_setup *s;
562         int i;
563
564         s = dev_boot_setup;
565         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567                         memset(s[i].name, 0, sizeof(s[i].name));
568                         strlcpy(s[i].name, name, IFNAMSIZ);
569                         memcpy(&s[i].map, map, sizeof(s[i].map));
570                         break;
571                 }
572         }
573
574         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578  *      netdev_boot_setup_check - check boot time settings
579  *      @dev: the netdevice
580  *
581  *      Check boot time settings for the device.
582  *      The found settings are set for the device to be used
583  *      later in the device probing.
584  *      Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588         struct netdev_boot_setup *s = dev_boot_setup;
589         int i;
590
591         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593                     !strcmp(dev->name, s[i].name)) {
594                         dev->irq        = s[i].map.irq;
595                         dev->base_addr  = s[i].map.base_addr;
596                         dev->mem_start  = s[i].map.mem_start;
597                         dev->mem_end    = s[i].map.mem_end;
598                         return 1;
599                 }
600         }
601         return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607  *      netdev_boot_base        - get address from boot time settings
608  *      @prefix: prefix for network device
609  *      @unit: id for network device
610  *
611  *      Check boot time settings for the base address of device.
612  *      The found settings are set for the device to be used
613  *      later in the device probing.
614  *      Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618         const struct netdev_boot_setup *s = dev_boot_setup;
619         char name[IFNAMSIZ];
620         int i;
621
622         sprintf(name, "%s%d", prefix, unit);
623
624         /*
625          * If device already registered then return base of 1
626          * to indicate not to probe for this interface
627          */
628         if (__dev_get_by_name(&init_net, name))
629                 return 1;
630
631         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632                 if (!strcmp(name, s[i].name))
633                         return s[i].map.base_addr;
634         return 0;
635 }
636
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642         int ints[5];
643         struct ifmap map;
644
645         str = get_options(str, ARRAY_SIZE(ints), ints);
646         if (!str || !*str)
647                 return 0;
648
649         /* Save settings */
650         memset(&map, 0, sizeof(map));
651         if (ints[0] > 0)
652                 map.irq = ints[1];
653         if (ints[0] > 1)
654                 map.base_addr = ints[2];
655         if (ints[0] > 2)
656                 map.mem_start = ints[3];
657         if (ints[0] > 3)
658                 map.mem_end = ints[4];
659
660         /* Add new entry to the list */
661         return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668                             Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673  *      dev_get_iflink  - get 'iflink' value of a interface
674  *      @dev: targeted interface
675  *
676  *      Indicates the ifindex the interface is linked to.
677  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683                 return dev->netdev_ops->ndo_get_iflink(dev);
684
685         return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *      @dev: targeted interface
692  *      @skb: The packet.
693  *
694  *      For better visibility of tunnel traffic OVS needs to retrieve
695  *      egress tunnel information for a packet. Following API allows
696  *      user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700         struct ip_tunnel_info *info;
701
702         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703                 return -EINVAL;
704
705         info = skb_tunnel_info_unclone(skb);
706         if (!info)
707                 return -ENOMEM;
708         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709                 return -EINVAL;
710
711         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716  *      __dev_get_by_name       - find a device by its name
717  *      @net: the applicable net namespace
718  *      @name: name to find
719  *
720  *      Find an interface by name. Must be called under RTNL semaphore
721  *      or @dev_base_lock. If the name is found a pointer to the device
722  *      is returned. If the name is not found then %NULL is returned. The
723  *      reference counters are not incremented so the caller must be
724  *      careful with locks.
725  */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729         struct net_device *dev;
730         struct hlist_head *head = dev_name_hash(net, name);
731
732         hlist_for_each_entry(dev, head, name_hlist)
733                 if (!strncmp(dev->name, name, IFNAMSIZ))
734                         return dev;
735
736         return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  *      dev_get_by_name_rcu     - find a device by its name
742  *      @net: the applicable net namespace
743  *      @name: name to find
744  *
745  *      Find an interface by name.
746  *      If the name is found a pointer to the device is returned.
747  *      If the name is not found then %NULL is returned.
748  *      The reference counters are not incremented so the caller must be
749  *      careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_name_hash(net, name);
756
757         hlist_for_each_entry_rcu(dev, head, name_hlist)
758                 if (!strncmp(dev->name, name, IFNAMSIZ))
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766  *      dev_get_by_name         - find a device by its name
767  *      @net: the applicable net namespace
768  *      @name: name to find
769  *
770  *      Find an interface by name. This can be called from any
771  *      context and does its own locking. The returned handle has
772  *      the usage count incremented and the caller must use dev_put() to
773  *      release it when it is no longer needed. %NULL is returned if no
774  *      matching device is found.
775  */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_name_rcu(net, name);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791  *      __dev_get_by_index - find a device by its ifindex
792  *      @net: the applicable net namespace
793  *      @ifindex: index of device
794  *
795  *      Search for an interface by index. Returns %NULL if the device
796  *      is not found or a pointer to the device. The device has not
797  *      had its reference counter increased so the caller must be careful
798  *      about locking. The caller must hold either the RTNL semaphore
799  *      or @dev_base_lock.
800  */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804         struct net_device *dev;
805         struct hlist_head *head = dev_index_hash(net, ifindex);
806
807         hlist_for_each_entry(dev, head, index_hlist)
808                 if (dev->ifindex == ifindex)
809                         return dev;
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816  *      dev_get_by_index_rcu - find a device by its ifindex
817  *      @net: the applicable net namespace
818  *      @ifindex: index of device
819  *
820  *      Search for an interface by index. Returns %NULL if the device
821  *      is not found or a pointer to the device. The device has not
822  *      had its reference counter increased so the caller must be careful
823  *      about locking. The caller must hold RCU lock.
824  */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828         struct net_device *dev;
829         struct hlist_head *head = dev_index_hash(net, ifindex);
830
831         hlist_for_each_entry_rcu(dev, head, index_hlist)
832                 if (dev->ifindex == ifindex)
833                         return dev;
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841  *      dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns NULL if the device
846  *      is not found or a pointer to the device. The device returned has
847  *      had a reference added and the pointer is safe until the user calls
848  *      dev_put to indicate they have finished with it.
849  */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853         struct net_device *dev;
854
855         rcu_read_lock();
856         dev = dev_get_by_index_rcu(net, ifindex);
857         if (dev)
858                 dev_hold(dev);
859         rcu_read_unlock();
860         return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865  *      netdev_get_name - get a netdevice name, knowing its ifindex.
866  *      @net: network namespace
867  *      @name: a pointer to the buffer where the name will be stored.
868  *      @ifindex: the ifindex of the interface to get the name from.
869  *
870  *      The use of raw_seqcount_begin() and cond_resched() before
871  *      retrying is required as we want to give the writers a chance
872  *      to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876         struct net_device *dev;
877         unsigned int seq;
878
879 retry:
880         seq = raw_seqcount_begin(&devnet_rename_seq);
881         rcu_read_lock();
882         dev = dev_get_by_index_rcu(net, ifindex);
883         if (!dev) {
884                 rcu_read_unlock();
885                 return -ENODEV;
886         }
887
888         strcpy(name, dev->name);
889         rcu_read_unlock();
890         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891                 cond_resched();
892                 goto retry;
893         }
894
895         return 0;
896 }
897
898 /**
899  *      dev_getbyhwaddr_rcu - find a device by its hardware address
900  *      @net: the applicable net namespace
901  *      @type: media type of device
902  *      @ha: hardware address
903  *
904  *      Search for an interface by MAC address. Returns NULL if the device
905  *      is not found or a pointer to the device.
906  *      The caller must hold RCU or RTNL.
907  *      The returned device has not had its ref count increased
908  *      and the caller must therefore be careful about locking
909  *
910  */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913                                        const char *ha)
914 {
915         struct net_device *dev;
916
917         for_each_netdev_rcu(net, dev)
918                 if (dev->type == type &&
919                     !memcmp(dev->dev_addr, ha, dev->addr_len))
920                         return dev;
921
922         return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928         struct net_device *dev;
929
930         ASSERT_RTNL();
931         for_each_netdev(net, dev)
932                 if (dev->type == type)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941         struct net_device *dev, *ret = NULL;
942
943         rcu_read_lock();
944         for_each_netdev_rcu(net, dev)
945                 if (dev->type == type) {
946                         dev_hold(dev);
947                         ret = dev;
948                         break;
949                 }
950         rcu_read_unlock();
951         return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956  *      __dev_get_by_flags - find any device with given flags
957  *      @net: the applicable net namespace
958  *      @if_flags: IFF_* values
959  *      @mask: bitmask of bits in if_flags to check
960  *
961  *      Search for any interface with the given flags. Returns NULL if a device
962  *      is not found or a pointer to the device. Must be called inside
963  *      rtnl_lock(), and result refcount is unchanged.
964  */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967                                       unsigned short mask)
968 {
969         struct net_device *dev, *ret;
970
971         ASSERT_RTNL();
972
973         ret = NULL;
974         for_each_netdev(net, dev) {
975                 if (((dev->flags ^ if_flags) & mask) == 0) {
976                         ret = dev;
977                         break;
978                 }
979         }
980         return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985  *      dev_valid_name - check if name is okay for network device
986  *      @name: name string
987  *
988  *      Network device names need to be valid file names to
989  *      to allow sysfs to work.  We also disallow any kind of
990  *      whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994         if (*name == '\0')
995                 return false;
996         if (strlen(name) >= IFNAMSIZ)
997                 return false;
998         if (!strcmp(name, ".") || !strcmp(name, ".."))
999                 return false;
1000
1001         while (*name) {
1002                 if (*name == '/' || *name == ':' || isspace(*name))
1003                         return false;
1004                 name++;
1005         }
1006         return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011  *      __dev_alloc_name - allocate a name for a device
1012  *      @net: network namespace to allocate the device name in
1013  *      @name: name format string
1014  *      @buf:  scratch buffer and result name string
1015  *
1016  *      Passed a format string - eg "lt%d" it will try and find a suitable
1017  *      id. It scans list of devices to build up a free map, then chooses
1018  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *      while allocating the name and adding the device in order to avoid
1020  *      duplicates.
1021  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *      Returns the number of the unit assigned or a negative errno code.
1023  */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027         int i = 0;
1028         const char *p;
1029         const int max_netdevices = 8*PAGE_SIZE;
1030         unsigned long *inuse;
1031         struct net_device *d;
1032
1033         p = strnchr(name, IFNAMSIZ-1, '%');
1034         if (p) {
1035                 /*
1036                  * Verify the string as this thing may have come from
1037                  * the user.  There must be either one "%d" and no other "%"
1038                  * characters.
1039                  */
1040                 if (p[1] != 'd' || strchr(p + 2, '%'))
1041                         return -EINVAL;
1042
1043                 /* Use one page as a bit array of possible slots */
1044                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045                 if (!inuse)
1046                         return -ENOMEM;
1047
1048                 for_each_netdev(net, d) {
1049                         if (!sscanf(d->name, name, &i))
1050                                 continue;
1051                         if (i < 0 || i >= max_netdevices)
1052                                 continue;
1053
1054                         /*  avoid cases where sscanf is not exact inverse of printf */
1055                         snprintf(buf, IFNAMSIZ, name, i);
1056                         if (!strncmp(buf, d->name, IFNAMSIZ))
1057                                 set_bit(i, inuse);
1058                 }
1059
1060                 i = find_first_zero_bit(inuse, max_netdevices);
1061                 free_page((unsigned long) inuse);
1062         }
1063
1064         if (buf != name)
1065                 snprintf(buf, IFNAMSIZ, name, i);
1066         if (!__dev_get_by_name(net, buf))
1067                 return i;
1068
1069         /* It is possible to run out of possible slots
1070          * when the name is long and there isn't enough space left
1071          * for the digits, or if all bits are used.
1072          */
1073         return -ENFILE;
1074 }
1075
1076 /**
1077  *      dev_alloc_name - allocate a name for a device
1078  *      @dev: device
1079  *      @name: name format string
1080  *
1081  *      Passed a format string - eg "lt%d" it will try and find a suitable
1082  *      id. It scans list of devices to build up a free map, then chooses
1083  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *      while allocating the name and adding the device in order to avoid
1085  *      duplicates.
1086  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *      Returns the number of the unit assigned or a negative errno code.
1088  */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         struct net *net;
1094         int ret;
1095
1096         BUG_ON(!dev_net(dev));
1097         net = dev_net(dev);
1098         ret = __dev_alloc_name(net, name, buf);
1099         if (ret >= 0)
1100                 strlcpy(dev->name, buf, IFNAMSIZ);
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106                              struct net_device *dev,
1107                              const char *name)
1108 {
1109         char buf[IFNAMSIZ];
1110         int ret;
1111
1112         ret = __dev_alloc_name(net, name, buf);
1113         if (ret >= 0)
1114                 strlcpy(dev->name, buf, IFNAMSIZ);
1115         return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119                               struct net_device *dev,
1120                               const char *name)
1121 {
1122         BUG_ON(!net);
1123
1124         if (!dev_valid_name(name))
1125                 return -EINVAL;
1126
1127         if (strchr(name, '%'))
1128                 return dev_alloc_name_ns(net, dev, name);
1129         else if (__dev_get_by_name(net, name))
1130                 return -EEXIST;
1131         else if (dev->name != name)
1132                 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134         return 0;
1135 }
1136
1137 /**
1138  *      dev_change_name - change name of a device
1139  *      @dev: device
1140  *      @newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *      Change name of a device, can pass format strings "eth%d".
1143  *      for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147         unsigned char old_assign_type;
1148         char oldname[IFNAMSIZ];
1149         int err = 0;
1150         int ret;
1151         struct net *net;
1152
1153         ASSERT_RTNL();
1154         BUG_ON(!dev_net(dev));
1155
1156         net = dev_net(dev);
1157         if (dev->flags & IFF_UP)
1158                 return -EBUSY;
1159
1160         write_seqcount_begin(&devnet_rename_seq);
1161
1162         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163                 write_seqcount_end(&devnet_rename_seq);
1164                 return 0;
1165         }
1166
1167         memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169         err = dev_get_valid_name(net, dev, newname);
1170         if (err < 0) {
1171                 write_seqcount_end(&devnet_rename_seq);
1172                 return err;
1173         }
1174
1175         if (oldname[0] && !strchr(oldname, '%'))
1176                 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178         old_assign_type = dev->name_assign_type;
1179         dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182         ret = device_rename(&dev->dev, dev->name);
1183         if (ret) {
1184                 memcpy(dev->name, oldname, IFNAMSIZ);
1185                 dev->name_assign_type = old_assign_type;
1186                 write_seqcount_end(&devnet_rename_seq);
1187                 return ret;
1188         }
1189
1190         write_seqcount_end(&devnet_rename_seq);
1191
1192         netdev_adjacent_rename_links(dev, oldname);
1193
1194         write_lock_bh(&dev_base_lock);
1195         hlist_del_rcu(&dev->name_hlist);
1196         write_unlock_bh(&dev_base_lock);
1197
1198         synchronize_rcu();
1199
1200         write_lock_bh(&dev_base_lock);
1201         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202         write_unlock_bh(&dev_base_lock);
1203
1204         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205         ret = notifier_to_errno(ret);
1206
1207         if (ret) {
1208                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209                 if (err >= 0) {
1210                         err = ret;
1211                         write_seqcount_begin(&devnet_rename_seq);
1212                         memcpy(dev->name, oldname, IFNAMSIZ);
1213                         memcpy(oldname, newname, IFNAMSIZ);
1214                         dev->name_assign_type = old_assign_type;
1215                         old_assign_type = NET_NAME_RENAMED;
1216                         goto rollback;
1217                 } else {
1218                         pr_err("%s: name change rollback failed: %d\n",
1219                                dev->name, ret);
1220                 }
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  *      dev_set_alias - change ifalias of a device
1228  *      @dev: device
1229  *      @alias: name up to IFALIASZ
1230  *      @len: limit of bytes to copy from info
1231  *
1232  *      Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236         char *new_ifalias;
1237
1238         ASSERT_RTNL();
1239
1240         if (len >= IFALIASZ)
1241                 return -EINVAL;
1242
1243         if (!len) {
1244                 kfree(dev->ifalias);
1245                 dev->ifalias = NULL;
1246                 return 0;
1247         }
1248
1249         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250         if (!new_ifalias)
1251                 return -ENOMEM;
1252         dev->ifalias = new_ifalias;
1253
1254         strlcpy(dev->ifalias, alias, len+1);
1255         return len;
1256 }
1257
1258
1259 /**
1260  *      netdev_features_change - device changes features
1261  *      @dev: device to cause notification
1262  *
1263  *      Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272  *      netdev_state_change - device changes state
1273  *      @dev: device to cause notification
1274  *
1275  *      Called to indicate a device has changed state. This function calls
1276  *      the notifier chains for netdev_chain and sends a NEWLINK message
1277  *      to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281         if (dev->flags & IFF_UP) {
1282                 struct netdev_notifier_change_info change_info;
1283
1284                 change_info.flags_changed = 0;
1285                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286                                               &change_info.info);
1287                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288         }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293  *      netdev_notify_peers - notify network peers about existence of @dev
1294  *      @dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304         rtnl_lock();
1305         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306         rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312         const struct net_device_ops *ops = dev->netdev_ops;
1313         int ret;
1314
1315         ASSERT_RTNL();
1316
1317         if (!netif_device_present(dev))
1318                 return -ENODEV;
1319
1320         /* Block netpoll from trying to do any rx path servicing.
1321          * If we don't do this there is a chance ndo_poll_controller
1322          * or ndo_poll may be running while we open the device
1323          */
1324         netpoll_poll_disable(dev);
1325
1326         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327         ret = notifier_to_errno(ret);
1328         if (ret)
1329                 return ret;
1330
1331         set_bit(__LINK_STATE_START, &dev->state);
1332
1333         if (ops->ndo_validate_addr)
1334                 ret = ops->ndo_validate_addr(dev);
1335
1336         if (!ret && ops->ndo_open)
1337                 ret = ops->ndo_open(dev);
1338
1339         netpoll_poll_enable(dev);
1340
1341         if (ret)
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343         else {
1344                 dev->flags |= IFF_UP;
1345                 dev_set_rx_mode(dev);
1346                 dev_activate(dev);
1347                 add_device_randomness(dev->dev_addr, dev->addr_len);
1348         }
1349
1350         return ret;
1351 }
1352
1353 /**
1354  *      dev_open        - prepare an interface for use.
1355  *      @dev:   device to open
1356  *
1357  *      Takes a device from down to up state. The device's private open
1358  *      function is invoked and then the multicast lists are loaded. Finally
1359  *      the device is moved into the up state and a %NETDEV_UP message is
1360  *      sent to the netdev notifier chain.
1361  *
1362  *      Calling this function on an active interface is a nop. On a failure
1363  *      a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367         int ret;
1368
1369         if (dev->flags & IFF_UP)
1370                 return 0;
1371
1372         ret = __dev_open(dev);
1373         if (ret < 0)
1374                 return ret;
1375
1376         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377         call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev;
1386
1387         ASSERT_RTNL();
1388         might_sleep();
1389
1390         list_for_each_entry(dev, head, close_list) {
1391                 /* Temporarily disable netpoll until the interface is down */
1392                 netpoll_poll_disable(dev);
1393
1394                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399                  * can be even on different cpu. So just clear netif_running().
1400                  *
1401                  * dev->stop() will invoke napi_disable() on all of it's
1402                  * napi_struct instances on this device.
1403                  */
1404                 smp_mb__after_atomic(); /* Commit netif_running(). */
1405         }
1406
1407         dev_deactivate_many(head);
1408
1409         list_for_each_entry(dev, head, close_list) {
1410                 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412                 /*
1413                  *      Call the device specific close. This cannot fail.
1414                  *      Only if device is UP
1415                  *
1416                  *      We allow it to be called even after a DETACH hot-plug
1417                  *      event.
1418                  */
1419                 if (ops->ndo_stop)
1420                         ops->ndo_stop(dev);
1421
1422                 dev->flags &= ~IFF_UP;
1423                 netpoll_poll_enable(dev);
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431         int retval;
1432         LIST_HEAD(single);
1433
1434         list_add(&dev->close_list, &single);
1435         retval = __dev_close_many(&single);
1436         list_del(&single);
1437
1438         return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443         struct net_device *dev, *tmp;
1444
1445         /* Remove the devices that don't need to be closed */
1446         list_for_each_entry_safe(dev, tmp, head, close_list)
1447                 if (!(dev->flags & IFF_UP))
1448                         list_del_init(&dev->close_list);
1449
1450         __dev_close_many(head);
1451
1452         list_for_each_entry_safe(dev, tmp, head, close_list) {
1453                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455                 if (unlink)
1456                         list_del_init(&dev->close_list);
1457         }
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464  *      dev_close - shutdown an interface.
1465  *      @dev: device to shutdown
1466  *
1467  *      This function moves an active device into down state. A
1468  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *      chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474         if (dev->flags & IFF_UP) {
1475                 LIST_HEAD(single);
1476
1477                 list_add(&dev->close_list, &single);
1478                 dev_close_many(&single, true);
1479                 list_del(&single);
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487  *      dev_disable_lro - disable Large Receive Offload on a device
1488  *      @dev: device
1489  *
1490  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *      called under RTNL.  This is needed if received packets may be
1492  *      forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496         struct net_device *lower_dev;
1497         struct list_head *iter;
1498
1499         dev->wanted_features &= ~NETIF_F_LRO;
1500         netdev_update_features(dev);
1501
1502         if (unlikely(dev->features & NETIF_F_LRO))
1503                 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505         netdev_for_each_lower_dev(dev, lower_dev, iter)
1506                 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511                                    struct net_device *dev)
1512 {
1513         struct netdev_notifier_info info;
1514
1515         netdev_notifier_info_init(&info, dev);
1516         return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522  *      register_netdevice_notifier - register a network notifier block
1523  *      @nb: notifier
1524  *
1525  *      Register a notifier to be called when network device events occur.
1526  *      The notifier passed is linked into the kernel structures and must
1527  *      not be reused until it has been unregistered. A negative errno code
1528  *      is returned on a failure.
1529  *
1530  *      When registered all registration and up events are replayed
1531  *      to the new notifier to allow device to have a race free
1532  *      view of the network device list.
1533  */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537         struct net_device *dev;
1538         struct net_device *last;
1539         struct net *net;
1540         int err;
1541
1542         rtnl_lock();
1543         err = raw_notifier_chain_register(&netdev_chain, nb);
1544         if (err)
1545                 goto unlock;
1546         if (dev_boot_phase)
1547                 goto unlock;
1548         for_each_net(net) {
1549                 for_each_netdev(net, dev) {
1550                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551                         err = notifier_to_errno(err);
1552                         if (err)
1553                                 goto rollback;
1554
1555                         if (!(dev->flags & IFF_UP))
1556                                 continue;
1557
1558                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1559                 }
1560         }
1561
1562 unlock:
1563         rtnl_unlock();
1564         return err;
1565
1566 rollback:
1567         last = dev;
1568         for_each_net(net) {
1569                 for_each_netdev(net, dev) {
1570                         if (dev == last)
1571                                 goto outroll;
1572
1573                         if (dev->flags & IFF_UP) {
1574                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575                                                         dev);
1576                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577                         }
1578                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579                 }
1580         }
1581
1582 outroll:
1583         raw_notifier_chain_unregister(&netdev_chain, nb);
1584         goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589  *      unregister_netdevice_notifier - unregister a network notifier block
1590  *      @nb: notifier
1591  *
1592  *      Unregister a notifier previously registered by
1593  *      register_netdevice_notifier(). The notifier is unlinked into the
1594  *      kernel structures and may then be reused. A negative errno code
1595  *      is returned on a failure.
1596  *
1597  *      After unregistering unregister and down device events are synthesized
1598  *      for all devices on the device list to the removed notifier to remove
1599  *      the need for special case cleanup code.
1600  */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604         struct net_device *dev;
1605         struct net *net;
1606         int err;
1607
1608         rtnl_lock();
1609         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610         if (err)
1611                 goto unlock;
1612
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         if (dev->flags & IFF_UP) {
1616                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617                                                         dev);
1618                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619                         }
1620                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621                 }
1622         }
1623 unlock:
1624         rtnl_unlock();
1625         return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630  *      call_netdevice_notifiers_info - call all network notifier blocks
1631  *      @val: value passed unmodified to notifier function
1632  *      @dev: net_device pointer passed unmodified to notifier function
1633  *      @info: notifier information data
1634  *
1635  *      Call all network notifier blocks.  Parameters and return value
1636  *      are as for raw_notifier_call_chain().
1637  */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640                                          struct net_device *dev,
1641                                          struct netdev_notifier_info *info)
1642 {
1643         ASSERT_RTNL();
1644         netdev_notifier_info_init(info, dev);
1645         return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649  *      call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *      Call all network notifier blocks.  Parameters and return value
1654  *      are as for raw_notifier_call_chain().
1655  */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659         struct netdev_notifier_info info;
1660
1661         return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670         static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676         static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686         static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692         static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711         if (deferred) {
1712                 while (--deferred)
1713                         static_key_slow_dec(&netstamp_needed);
1714                 return;
1715         }
1716 #endif
1717         static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724         if (in_interrupt()) {
1725                 atomic_inc(&netstamp_needed_deferred);
1726                 return;
1727         }
1728 #endif
1729         static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735         skb->tstamp.tv64 = 0;
1736         if (static_key_false(&netstamp_needed))
1737                 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB)                  \
1741         if (static_key_false(&netstamp_needed)) {               \
1742                 if ((COND) && !(SKB)->tstamp.tv64)      \
1743                         __net_timestamp(SKB);           \
1744         }                                               \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748         unsigned int len;
1749
1750         if (!(dev->flags & IFF_UP))
1751                 return false;
1752
1753         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754         if (skb->len <= len)
1755                 return true;
1756
1757         /* if TSO is enabled, we don't care about the length as the packet
1758          * could be forwarded without being segmented before
1759          */
1760         if (skb_is_gso(skb))
1761                 return true;
1762
1763         return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770             unlikely(!is_skb_forwardable(dev, skb))) {
1771                 atomic_long_inc(&dev->rx_dropped);
1772                 kfree_skb(skb);
1773                 return NET_RX_DROP;
1774         }
1775
1776         skb_scrub_packet(skb, true);
1777         skb->priority = 0;
1778         skb->protocol = eth_type_trans(skb, dev);
1779         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781         return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *      NET_RX_SUCCESS  (no congestion)
1793  *      NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810                               struct packet_type *pt_prev,
1811                               struct net_device *orig_dev)
1812 {
1813         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814                 return -ENOMEM;
1815         atomic_inc(&skb->users);
1816         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820                                           struct packet_type **pt,
1821                                           struct net_device *orig_dev,
1822                                           __be16 type,
1823                                           struct list_head *ptype_list)
1824 {
1825         struct packet_type *ptype, *pt_prev = *pt;
1826
1827         list_for_each_entry_rcu(ptype, ptype_list, list) {
1828                 if (ptype->type != type)
1829                         continue;
1830                 if (pt_prev)
1831                         deliver_skb(skb, pt_prev, orig_dev);
1832                 pt_prev = ptype;
1833         }
1834         *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839         if (!ptype->af_packet_priv || !skb->sk)
1840                 return false;
1841
1842         if (ptype->id_match)
1843                 return ptype->id_match(ptype, skb->sk);
1844         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845                 return true;
1846
1847         return false;
1848 }
1849
1850 /*
1851  *      Support routine. Sends outgoing frames to any network
1852  *      taps currently in use.
1853  */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857         struct packet_type *ptype;
1858         struct sk_buff *skb2 = NULL;
1859         struct packet_type *pt_prev = NULL;
1860         struct list_head *ptype_list = &ptype_all;
1861
1862         rcu_read_lock();
1863 again:
1864         list_for_each_entry_rcu(ptype, ptype_list, list) {
1865                 /* Never send packets back to the socket
1866                  * they originated from - MvS (miquels@drinkel.ow.org)
1867                  */
1868                 if (skb_loop_sk(ptype, skb))
1869                         continue;
1870
1871                 if (pt_prev) {
1872                         deliver_skb(skb2, pt_prev, skb->dev);
1873                         pt_prev = ptype;
1874                         continue;
1875                 }
1876
1877                 /* need to clone skb, done only once */
1878                 skb2 = skb_clone(skb, GFP_ATOMIC);
1879                 if (!skb2)
1880                         goto out_unlock;
1881
1882                 net_timestamp_set(skb2);
1883
1884                 /* skb->nh should be correctly
1885                  * set by sender, so that the second statement is
1886                  * just protection against buggy protocols.
1887                  */
1888                 skb_reset_mac_header(skb2);
1889
1890                 if (skb_network_header(skb2) < skb2->data ||
1891                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893                                              ntohs(skb2->protocol),
1894                                              dev->name);
1895                         skb_reset_network_header(skb2);
1896                 }
1897
1898                 skb2->transport_header = skb2->network_header;
1899                 skb2->pkt_type = PACKET_OUTGOING;
1900                 pt_prev = ptype;
1901         }
1902
1903         if (ptype_list == &ptype_all) {
1904                 ptype_list = &dev->ptype_all;
1905                 goto again;
1906         }
1907 out_unlock:
1908         if (pt_prev)
1909                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910         rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929         int i;
1930         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932         /* If TC0 is invalidated disable TC mapping */
1933         if (tc->offset + tc->count > txq) {
1934                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935                 dev->num_tc = 0;
1936                 return;
1937         }
1938
1939         /* Invalidated prio to tc mappings set to TC0 */
1940         for (i = 1; i < TC_BITMASK + 1; i++) {
1941                 int q = netdev_get_prio_tc_map(dev, i);
1942
1943                 tc = &dev->tc_to_txq[q];
1944                 if (tc->offset + tc->count > txq) {
1945                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946                                 i, q);
1947                         netdev_set_prio_tc_map(dev, i, 0);
1948                 }
1949         }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)             \
1955         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958                                         int cpu, u16 index)
1959 {
1960         struct xps_map *map = NULL;
1961         int pos;
1962
1963         if (dev_maps)
1964                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966         for (pos = 0; map && pos < map->len; pos++) {
1967                 if (map->queues[pos] == index) {
1968                         if (map->len > 1) {
1969                                 map->queues[pos] = map->queues[--map->len];
1970                         } else {
1971                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972                                 kfree_rcu(map, rcu);
1973                                 map = NULL;
1974                         }
1975                         break;
1976                 }
1977         }
1978
1979         return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984         struct xps_dev_maps *dev_maps;
1985         int cpu, i;
1986         bool active = false;
1987
1988         mutex_lock(&xps_map_mutex);
1989         dev_maps = xmap_dereference(dev->xps_maps);
1990
1991         if (!dev_maps)
1992                 goto out_no_maps;
1993
1994         for_each_possible_cpu(cpu) {
1995                 for (i = index; i < dev->num_tx_queues; i++) {
1996                         if (!remove_xps_queue(dev_maps, cpu, i))
1997                                 break;
1998                 }
1999                 if (i == dev->num_tx_queues)
2000                         active = true;
2001         }
2002
2003         if (!active) {
2004                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005                 kfree_rcu(dev_maps, rcu);
2006         }
2007
2008         for (i = index; i < dev->num_tx_queues; i++)
2009                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010                                              NUMA_NO_NODE);
2011
2012 out_no_maps:
2013         mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017                                       int cpu, u16 index)
2018 {
2019         struct xps_map *new_map;
2020         int alloc_len = XPS_MIN_MAP_ALLOC;
2021         int i, pos;
2022
2023         for (pos = 0; map && pos < map->len; pos++) {
2024                 if (map->queues[pos] != index)
2025                         continue;
2026                 return map;
2027         }
2028
2029         /* Need to add queue to this CPU's existing map */
2030         if (map) {
2031                 if (pos < map->alloc_len)
2032                         return map;
2033
2034                 alloc_len = map->alloc_len * 2;
2035         }
2036
2037         /* Need to allocate new map to store queue on this CPU's map */
2038         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039                                cpu_to_node(cpu));
2040         if (!new_map)
2041                 return NULL;
2042
2043         for (i = 0; i < pos; i++)
2044                 new_map->queues[i] = map->queues[i];
2045         new_map->alloc_len = alloc_len;
2046         new_map->len = pos;
2047
2048         return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052                         u16 index)
2053 {
2054         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055         struct xps_map *map, *new_map;
2056         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057         int cpu, numa_node_id = -2;
2058         bool active = false;
2059
2060         mutex_lock(&xps_map_mutex);
2061
2062         dev_maps = xmap_dereference(dev->xps_maps);
2063
2064         /* allocate memory for queue storage */
2065         for_each_online_cpu(cpu) {
2066                 if (!cpumask_test_cpu(cpu, mask))
2067                         continue;
2068
2069                 if (!new_dev_maps)
2070                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071                 if (!new_dev_maps) {
2072                         mutex_unlock(&xps_map_mutex);
2073                         return -ENOMEM;
2074                 }
2075
2076                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077                                  NULL;
2078
2079                 map = expand_xps_map(map, cpu, index);
2080                 if (!map)
2081                         goto error;
2082
2083                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084         }
2085
2086         if (!new_dev_maps)
2087                 goto out_no_new_maps;
2088
2089         for_each_possible_cpu(cpu) {
2090                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091                         /* add queue to CPU maps */
2092                         int pos = 0;
2093
2094                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095                         while ((pos < map->len) && (map->queues[pos] != index))
2096                                 pos++;
2097
2098                         if (pos == map->len)
2099                                 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101                         if (numa_node_id == -2)
2102                                 numa_node_id = cpu_to_node(cpu);
2103                         else if (numa_node_id != cpu_to_node(cpu))
2104                                 numa_node_id = -1;
2105 #endif
2106                 } else if (dev_maps) {
2107                         /* fill in the new device map from the old device map */
2108                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110                 }
2111
2112         }
2113
2114         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116         /* Cleanup old maps */
2117         if (dev_maps) {
2118                 for_each_possible_cpu(cpu) {
2119                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121                         if (map && map != new_map)
2122                                 kfree_rcu(map, rcu);
2123                 }
2124
2125                 kfree_rcu(dev_maps, rcu);
2126         }
2127
2128         dev_maps = new_dev_maps;
2129         active = true;
2130
2131 out_no_new_maps:
2132         /* update Tx queue numa node */
2133         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134                                      (numa_node_id >= 0) ? numa_node_id :
2135                                      NUMA_NO_NODE);
2136
2137         if (!dev_maps)
2138                 goto out_no_maps;
2139
2140         /* removes queue from unused CPUs */
2141         for_each_possible_cpu(cpu) {
2142                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143                         continue;
2144
2145                 if (remove_xps_queue(dev_maps, cpu, index))
2146                         active = true;
2147         }
2148
2149         /* free map if not active */
2150         if (!active) {
2151                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152                 kfree_rcu(dev_maps, rcu);
2153         }
2154
2155 out_no_maps:
2156         mutex_unlock(&xps_map_mutex);
2157
2158         return 0;
2159 error:
2160         /* remove any maps that we added */
2161         for_each_possible_cpu(cpu) {
2162                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164                                  NULL;
2165                 if (new_map && new_map != map)
2166                         kfree(new_map);
2167         }
2168
2169         mutex_unlock(&xps_map_mutex);
2170
2171         kfree(new_dev_maps);
2172         return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183         int rc;
2184
2185         if (txq < 1 || txq > dev->num_tx_queues)
2186                 return -EINVAL;
2187
2188         if (dev->reg_state == NETREG_REGISTERED ||
2189             dev->reg_state == NETREG_UNREGISTERING) {
2190                 ASSERT_RTNL();
2191
2192                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193                                                   txq);
2194                 if (rc)
2195                         return rc;
2196
2197                 if (dev->num_tc)
2198                         netif_setup_tc(dev, txq);
2199
2200                 if (txq < dev->real_num_tx_queues) {
2201                         qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203                         netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205                 }
2206         }
2207
2208         dev->real_num_tx_queues = txq;
2209         return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *      @dev: Network device
2217  *      @rxq: Actual number of RX queues
2218  *
2219  *      This must be called either with the rtnl_lock held or before
2220  *      registration of the net device.  Returns 0 on success, or a
2221  *      negative error code.  If called before registration, it always
2222  *      succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226         int rc;
2227
2228         if (rxq < 1 || rxq > dev->num_rx_queues)
2229                 return -EINVAL;
2230
2231         if (dev->reg_state == NETREG_REGISTERED) {
2232                 ASSERT_RTNL();
2233
2234                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235                                                   rxq);
2236                 if (rc)
2237                         return rc;
2238         }
2239
2240         dev->real_num_rx_queues = rxq;
2241         return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254         return is_kdump_kernel() ?
2255                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261         struct softnet_data *sd;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265         sd = this_cpu_ptr(&softnet_data);
2266         q->next_sched = NULL;
2267         *sd->output_queue_tailp = q;
2268         sd->output_queue_tailp = &q->next_sched;
2269         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270         local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276                 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281         enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286         return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291         rcu_read_lock();
2292         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295                 __netif_schedule(q);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313                 struct Qdisc *q;
2314
2315                 rcu_read_lock();
2316                 q = rcu_dereference(txq->qdisc);
2317                 __netif_schedule(q);
2318                 rcu_read_unlock();
2319         }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326                 struct Qdisc *q;
2327
2328                 rcu_read_lock();
2329                 q = rcu_dereference(dev_queue->qdisc);
2330                 __netif_schedule(q);
2331                 rcu_read_unlock();
2332         }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338         unsigned long flags;
2339
2340         if (likely(atomic_read(&skb->users) == 1)) {
2341                 smp_rmb();
2342                 atomic_set(&skb->users, 0);
2343         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344                 return;
2345         }
2346         get_kfree_skb_cb(skb)->reason = reason;
2347         local_irq_save(flags);
2348         skb->next = __this_cpu_read(softnet_data.completion_queue);
2349         __this_cpu_write(softnet_data.completion_queue, skb);
2350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351         local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357         if (in_irq() || irqs_disabled())
2358                 __dev_kfree_skb_irq(skb, reason);
2359         else
2360                 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374             netif_running(dev)) {
2375                 netif_tx_stop_all_queues(dev);
2376         }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389             netif_running(dev)) {
2390                 netif_tx_wake_all_queues(dev);
2391                 __netdev_watchdog_up(dev);
2392         }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401                   unsigned int num_tx_queues)
2402 {
2403         u32 hash;
2404         u16 qoffset = 0;
2405         u16 qcount = num_tx_queues;
2406
2407         if (skb_rx_queue_recorded(skb)) {
2408                 hash = skb_get_rx_queue(skb);
2409                 while (unlikely(hash >= num_tx_queues))
2410                         hash -= num_tx_queues;
2411                 return hash;
2412         }
2413
2414         if (dev->num_tc) {
2415                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416                 qoffset = dev->tc_to_txq[tc].offset;
2417                 qcount = dev->tc_to_txq[tc].count;
2418         }
2419
2420         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426         static const netdev_features_t null_features;
2427         struct net_device *dev = skb->dev;
2428         const char *name = "";
2429
2430         if (!net_ratelimit())
2431                 return;
2432
2433         if (dev) {
2434                 if (dev->dev.parent)
2435                         name = dev_driver_string(dev->dev.parent);
2436                 else
2437                         name = netdev_name(dev);
2438         }
2439         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440              "gso_type=%d ip_summed=%d\n",
2441              name, dev ? &dev->features : &null_features,
2442              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444              skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453         __wsum csum;
2454         int ret = 0, offset;
2455
2456         if (skb->ip_summed == CHECKSUM_COMPLETE)
2457                 goto out_set_summed;
2458
2459         if (unlikely(skb_shinfo(skb)->gso_size)) {
2460                 skb_warn_bad_offload(skb);
2461                 return -EINVAL;
2462         }
2463
2464         /* Before computing a checksum, we should make sure no frag could
2465          * be modified by an external entity : checksum could be wrong.
2466          */
2467         if (skb_has_shared_frag(skb)) {
2468                 ret = __skb_linearize(skb);
2469                 if (ret)
2470                         goto out;
2471         }
2472
2473         offset = skb_checksum_start_offset(skb);
2474         BUG_ON(offset >= skb_headlen(skb));
2475         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477         offset += skb->csum_offset;
2478         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480         if (skb_cloned(skb) &&
2481             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483                 if (ret)
2484                         goto out;
2485         }
2486
2487         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489         skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *            encpasulated. That is it is checksum for the transport header
2504  *            in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *            call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *         the device (a driver may still need to check for additional
2511  *         restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *         skb_checksum_help was called to resolve checksum for non-GSO
2514  *         packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517                             const struct skb_csum_offl_spec *spec,
2518                             bool *csum_encapped,
2519                             bool csum_help)
2520 {
2521         struct iphdr *iph;
2522         struct ipv6hdr *ipv6;
2523         void *nhdr;
2524         int protocol;
2525         u8 ip_proto;
2526
2527         if (skb->protocol == htons(ETH_P_8021Q) ||
2528             skb->protocol == htons(ETH_P_8021AD)) {
2529                 if (!spec->vlan_okay)
2530                         goto need_help;
2531         }
2532
2533         /* We check whether the checksum refers to a transport layer checksum in
2534          * the outermost header or an encapsulated transport layer checksum that
2535          * corresponds to the inner headers of the skb. If the checksum is for
2536          * something else in the packet we need help.
2537          */
2538         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539                 /* Non-encapsulated checksum */
2540                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541                 nhdr = skb_network_header(skb);
2542                 *csum_encapped = false;
2543                 if (spec->no_not_encapped)
2544                         goto need_help;
2545         } else if (skb->encapsulation && spec->encap_okay &&
2546                    skb_checksum_start_offset(skb) ==
2547                    skb_inner_transport_offset(skb)) {
2548                 /* Encapsulated checksum */
2549                 *csum_encapped = true;
2550                 switch (skb->inner_protocol_type) {
2551                 case ENCAP_TYPE_ETHER:
2552                         protocol = eproto_to_ipproto(skb->inner_protocol);
2553                         break;
2554                 case ENCAP_TYPE_IPPROTO:
2555                         protocol = skb->inner_protocol;
2556                         break;
2557                 }
2558                 nhdr = skb_inner_network_header(skb);
2559         } else {
2560                 goto need_help;
2561         }
2562
2563         switch (protocol) {
2564         case IPPROTO_IP:
2565                 if (!spec->ipv4_okay)
2566                         goto need_help;
2567                 iph = nhdr;
2568                 ip_proto = iph->protocol;
2569                 if (iph->ihl != 5 && !spec->ip_options_okay)
2570                         goto need_help;
2571                 break;
2572         case IPPROTO_IPV6:
2573                 if (!spec->ipv6_okay)
2574                         goto need_help;
2575                 if (spec->no_encapped_ipv6 && *csum_encapped)
2576                         goto need_help;
2577                 ipv6 = nhdr;
2578                 nhdr += sizeof(*ipv6);
2579                 ip_proto = ipv6->nexthdr;
2580                 break;
2581         default:
2582                 goto need_help;
2583         }
2584
2585 ip_proto_again:
2586         switch (ip_proto) {
2587         case IPPROTO_TCP:
2588                 if (!spec->tcp_okay ||
2589                     skb->csum_offset != offsetof(struct tcphdr, check))
2590                         goto need_help;
2591                 break;
2592         case IPPROTO_UDP:
2593                 if (!spec->udp_okay ||
2594                     skb->csum_offset != offsetof(struct udphdr, check))
2595                         goto need_help;
2596                 break;
2597         case IPPROTO_SCTP:
2598                 if (!spec->sctp_okay ||
2599                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2600                         goto cant_help;
2601                 break;
2602         case NEXTHDR_HOP:
2603         case NEXTHDR_ROUTING:
2604         case NEXTHDR_DEST: {
2605                 u8 *opthdr = nhdr;
2606
2607                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608                         goto need_help;
2609
2610                 ip_proto = opthdr[0];
2611                 nhdr += (opthdr[1] + 1) << 3;
2612
2613                 goto ip_proto_again;
2614         }
2615         default:
2616                 goto need_help;
2617         }
2618
2619         /* Passed the tests for offloading checksum */
2620         return true;
2621
2622 need_help:
2623         if (csum_help && !skb_shinfo(skb)->gso_size)
2624                 skb_checksum_help(skb);
2625 cant_help:
2626         return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632         __be16 type = skb->protocol;
2633
2634         /* Tunnel gso handlers can set protocol to ethernet. */
2635         if (type == htons(ETH_P_TEB)) {
2636                 struct ethhdr *eth;
2637
2638                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639                         return 0;
2640
2641                 eth = (struct ethhdr *)skb_mac_header(skb);
2642                 type = eth->h_proto;
2643         }
2644
2645         return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649  *      skb_mac_gso_segment - mac layer segmentation handler.
2650  *      @skb: buffer to segment
2651  *      @features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654                                     netdev_features_t features)
2655 {
2656         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657         struct packet_offload *ptype;
2658         int vlan_depth = skb->mac_len;
2659         __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661         if (unlikely(!type))
2662                 return ERR_PTR(-EINVAL);
2663
2664         __skb_pull(skb, vlan_depth);
2665
2666         rcu_read_lock();
2667         list_for_each_entry_rcu(ptype, &offload_base, list) {
2668                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669                         segs = ptype->callbacks.gso_segment(skb, features);
2670                         break;
2671                 }
2672         }
2673         rcu_read_unlock();
2674
2675         __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677         return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686         if (tx_path)
2687                 return skb->ip_summed != CHECKSUM_PARTIAL;
2688         else
2689                 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693  *      __skb_gso_segment - Perform segmentation on skb.
2694  *      @skb: buffer to segment
2695  *      @features: features for the output path (see dev->features)
2696  *      @tx_path: whether it is called in TX path
2697  *
2698  *      This function segments the given skb and returns a list of segments.
2699  *
2700  *      It may return NULL if the skb requires no segmentation.  This is
2701  *      only possible when GSO is used for verifying header integrity.
2702  *
2703  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706                                   netdev_features_t features, bool tx_path)
2707 {
2708         if (unlikely(skb_needs_check(skb, tx_path))) {
2709                 int err;
2710
2711                 skb_warn_bad_offload(skb);
2712
2713                 err = skb_cow_head(skb, 0);
2714                 if (err < 0)
2715                         return ERR_PTR(err);
2716         }
2717
2718         /* Only report GSO partial support if it will enable us to
2719          * support segmentation on this frame without needing additional
2720          * work.
2721          */
2722         if (features & NETIF_F_GSO_PARTIAL) {
2723                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724                 struct net_device *dev = skb->dev;
2725
2726                 partial_features |= dev->features & dev->gso_partial_features;
2727                 if (!skb_gso_ok(skb, features | partial_features))
2728                         features &= ~NETIF_F_GSO_PARTIAL;
2729         }
2730
2731         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735         SKB_GSO_CB(skb)->encap_level = 0;
2736
2737         skb_reset_mac_header(skb);
2738         skb_reset_mac_len(skb);
2739
2740         return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748         if (net_ratelimit()) {
2749                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750                 dump_stack();
2751         }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764         int i;
2765         if (!(dev->features & NETIF_F_HIGHDMA)) {
2766                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768                         if (PageHighMem(skb_frag_page(frag)))
2769                                 return 1;
2770                 }
2771         }
2772
2773         if (PCI_DMA_BUS_IS_PHYS) {
2774                 struct device *pdev = dev->dev.parent;
2775
2776                 if (!pdev)
2777                         return 0;
2778                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782                                 return 1;
2783                 }
2784         }
2785 #endif
2786         return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794                                            netdev_features_t features,
2795                                            __be16 type)
2796 {
2797         if (eth_p_mpls(type))
2798                 features &= skb->dev->mpls_features;
2799
2800         return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804                                            netdev_features_t features,
2805                                            __be16 type)
2806 {
2807         return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812         netdev_features_t features)
2813 {
2814         int tmp;
2815         __be16 type;
2816
2817         type = skb_network_protocol(skb, &tmp);
2818         features = net_mpls_features(skb, features, type);
2819
2820         if (skb->ip_summed != CHECKSUM_NONE &&
2821             !can_checksum_protocol(features, type)) {
2822                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823         } else if (illegal_highdma(skb->dev, skb)) {
2824                 features &= ~NETIF_F_SG;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831                                           struct net_device *dev,
2832                                           netdev_features_t features)
2833 {
2834         return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839                                              struct net_device *dev,
2840                                              netdev_features_t features)
2841 {
2842         return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846                                             struct net_device *dev,
2847                                             netdev_features_t features)
2848 {
2849         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851         if (gso_segs > dev->gso_max_segs)
2852                 return features & ~NETIF_F_GSO_MASK;
2853
2854         /* Support for GSO partial features requires software
2855          * intervention before we can actually process the packets
2856          * so we need to strip support for any partial features now
2857          * and we can pull them back in after we have partially
2858          * segmented the frame.
2859          */
2860         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861                 features &= ~dev->gso_partial_features;
2862
2863         /* Make sure to clear the IPv4 ID mangling feature if the
2864          * IPv4 header has the potential to be fragmented.
2865          */
2866         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867                 struct iphdr *iph = skb->encapsulation ?
2868                                     inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870                 if (!(iph->frag_off & htons(IP_DF)))
2871                         features &= ~NETIF_F_TSO_MANGLEID;
2872         }
2873
2874         return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879         struct net_device *dev = skb->dev;
2880         netdev_features_t features = dev->features;
2881
2882         if (skb_is_gso(skb))
2883                 features = gso_features_check(skb, dev, features);
2884
2885         /* If encapsulation offload request, verify we are testing
2886          * hardware encapsulation features instead of standard
2887          * features for the netdev
2888          */
2889         if (skb->encapsulation)
2890                 features &= dev->hw_enc_features;
2891
2892         if (skb_vlan_tagged(skb))
2893                 features = netdev_intersect_features(features,
2894                                                      dev->vlan_features |
2895                                                      NETIF_F_HW_VLAN_CTAG_TX |
2896                                                      NETIF_F_HW_VLAN_STAG_TX);
2897
2898         if (dev->netdev_ops->ndo_features_check)
2899                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900                                                                 features);
2901         else
2902                 features &= dflt_features_check(skb, dev, features);
2903
2904         return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909                     struct netdev_queue *txq, bool more)
2910 {
2911         unsigned int len;
2912         int rc;
2913
2914         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915                 dev_queue_xmit_nit(skb, dev);
2916
2917         len = skb->len;
2918         trace_net_dev_start_xmit(skb, dev);
2919         rc = netdev_start_xmit(skb, dev, txq, more);
2920         trace_net_dev_xmit(skb, rc, dev, len);
2921
2922         return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926                                     struct netdev_queue *txq, int *ret)
2927 {
2928         struct sk_buff *skb = first;
2929         int rc = NETDEV_TX_OK;
2930
2931         while (skb) {
2932                 struct sk_buff *next = skb->next;
2933
2934                 skb->next = NULL;
2935                 rc = xmit_one(skb, dev, txq, next != NULL);
2936                 if (unlikely(!dev_xmit_complete(rc))) {
2937                         skb->next = next;
2938                         goto out;
2939                 }
2940
2941                 skb = next;
2942                 if (netif_xmit_stopped(txq) && skb) {
2943                         rc = NETDEV_TX_BUSY;
2944                         break;
2945                 }
2946         }
2947
2948 out:
2949         *ret = rc;
2950         return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954                                           netdev_features_t features)
2955 {
2956         if (skb_vlan_tag_present(skb) &&
2957             !vlan_hw_offload_capable(features, skb->vlan_proto))
2958                 skb = __vlan_hwaccel_push_inside(skb);
2959         return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964         netdev_features_t features;
2965
2966         features = netif_skb_features(skb);
2967         skb = validate_xmit_vlan(skb, features);
2968         if (unlikely(!skb))
2969                 goto out_null;
2970
2971         if (netif_needs_gso(skb, features)) {
2972                 struct sk_buff *segs;
2973
2974                 segs = skb_gso_segment(skb, features);
2975                 if (IS_ERR(segs)) {
2976                         goto out_kfree_skb;
2977                 } else if (segs) {
2978                         consume_skb(skb);
2979                         skb = segs;
2980                 }
2981         } else {
2982                 if (skb_needs_linearize(skb, features) &&
2983                     __skb_linearize(skb))
2984                         goto out_kfree_skb;
2985
2986                 /* If packet is not checksummed and device does not
2987                  * support checksumming for this protocol, complete
2988                  * checksumming here.
2989                  */
2990                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991                         if (skb->encapsulation)
2992                                 skb_set_inner_transport_header(skb,
2993                                                                skb_checksum_start_offset(skb));
2994                         else
2995                                 skb_set_transport_header(skb,
2996                                                          skb_checksum_start_offset(skb));
2997                         if (!(features & NETIF_F_CSUM_MASK) &&
2998                             skb_checksum_help(skb))
2999                                 goto out_kfree_skb;
3000                 }
3001         }
3002
3003         return skb;
3004
3005 out_kfree_skb:
3006         kfree_skb(skb);
3007 out_null:
3008         atomic_long_inc(&dev->tx_dropped);
3009         return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014         struct sk_buff *next, *head = NULL, *tail;
3015
3016         for (; skb != NULL; skb = next) {
3017                 next = skb->next;
3018                 skb->next = NULL;
3019
3020                 /* in case skb wont be segmented, point to itself */
3021                 skb->prev = skb;
3022
3023                 skb = validate_xmit_skb(skb, dev);
3024                 if (!skb)
3025                         continue;
3026
3027                 if (!head)
3028                         head = skb;
3029                 else
3030                         tail->next = skb;
3031                 /* If skb was segmented, skb->prev points to
3032                  * the last segment. If not, it still contains skb.
3033                  */
3034                 tail = skb->prev;
3035         }
3036         return head;
3037 }
3038 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3039
3040 static void qdisc_pkt_len_init(struct sk_buff *skb)
3041 {
3042         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3043
3044         qdisc_skb_cb(skb)->pkt_len = skb->len;
3045
3046         /* To get more precise estimation of bytes sent on wire,
3047          * we add to pkt_len the headers size of all segments
3048          */
3049         if (shinfo->gso_size)  {
3050                 unsigned int hdr_len;
3051                 u16 gso_segs = shinfo->gso_segs;
3052
3053                 /* mac layer + network layer */
3054                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3055
3056                 /* + transport layer */
3057                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3058                         hdr_len += tcp_hdrlen(skb);
3059                 else
3060                         hdr_len += sizeof(struct udphdr);
3061
3062                 if (shinfo->gso_type & SKB_GSO_DODGY)
3063                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3064                                                 shinfo->gso_size);
3065
3066                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3067         }
3068 }
3069
3070 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3071                                  struct net_device *dev,
3072                                  struct netdev_queue *txq)
3073 {
3074         spinlock_t *root_lock = qdisc_lock(q);
3075         struct sk_buff *to_free = NULL;
3076         bool contended;
3077         int rc;
3078
3079         qdisc_calculate_pkt_len(skb, q);
3080         /*
3081          * Heuristic to force contended enqueues to serialize on a
3082          * separate lock before trying to get qdisc main lock.
3083          * This permits qdisc->running owner to get the lock more
3084          * often and dequeue packets faster.
3085          */
3086         contended = qdisc_is_running(q);
3087         if (unlikely(contended))
3088                 spin_lock(&q->busylock);
3089
3090         spin_lock(root_lock);
3091         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3092                 __qdisc_drop(skb, &to_free);
3093                 rc = NET_XMIT_DROP;
3094         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3095                    qdisc_run_begin(q)) {
3096                 /*
3097                  * This is a work-conserving queue; there are no old skbs
3098                  * waiting to be sent out; and the qdisc is not running -
3099                  * xmit the skb directly.
3100                  */
3101
3102                 qdisc_bstats_update(q, skb);
3103
3104                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3105                         if (unlikely(contended)) {
3106                                 spin_unlock(&q->busylock);
3107                                 contended = false;
3108                         }
3109                         __qdisc_run(q);
3110                 } else
3111                         qdisc_run_end(q);
3112
3113                 rc = NET_XMIT_SUCCESS;
3114         } else {
3115                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3116                 if (qdisc_run_begin(q)) {
3117                         if (unlikely(contended)) {
3118                                 spin_unlock(&q->busylock);
3119                                 contended = false;
3120                         }
3121                         __qdisc_run(q);
3122                 }
3123         }
3124         spin_unlock(root_lock);
3125         if (unlikely(to_free))
3126                 kfree_skb_list(to_free);
3127         if (unlikely(contended))
3128                 spin_unlock(&q->busylock);
3129         return rc;
3130 }
3131
3132 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3133 static void skb_update_prio(struct sk_buff *skb)
3134 {
3135         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3136
3137         if (!skb->priority && skb->sk && map) {
3138                 unsigned int prioidx =
3139                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3140
3141                 if (prioidx < map->priomap_len)
3142                         skb->priority = map->priomap[prioidx];
3143         }
3144 }
3145 #else
3146 #define skb_update_prio(skb)
3147 #endif
3148
3149 DEFINE_PER_CPU(int, xmit_recursion);
3150 EXPORT_SYMBOL(xmit_recursion);
3151
3152 /**
3153  *      dev_loopback_xmit - loop back @skb
3154  *      @net: network namespace this loopback is happening in
3155  *      @sk:  sk needed to be a netfilter okfn
3156  *      @skb: buffer to transmit
3157  */
3158 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3159 {
3160         skb_reset_mac_header(skb);
3161         __skb_pull(skb, skb_network_offset(skb));
3162         skb->pkt_type = PACKET_LOOPBACK;
3163         skb->ip_summed = CHECKSUM_UNNECESSARY;
3164         WARN_ON(!skb_dst(skb));
3165         skb_dst_force(skb);
3166         netif_rx_ni(skb);
3167         return 0;
3168 }
3169 EXPORT_SYMBOL(dev_loopback_xmit);
3170
3171 #ifdef CONFIG_NET_EGRESS
3172 static struct sk_buff *
3173 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3174 {
3175         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3176         struct tcf_result cl_res;
3177
3178         if (!cl)
3179                 return skb;
3180
3181         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3182          * earlier by the caller.
3183          */
3184         qdisc_bstats_cpu_update(cl->q, skb);
3185
3186         switch (tc_classify(skb, cl, &cl_res, false)) {
3187         case TC_ACT_OK:
3188         case TC_ACT_RECLASSIFY:
3189                 skb->tc_index = TC_H_MIN(cl_res.classid);
3190                 break;
3191         case TC_ACT_SHOT:
3192                 qdisc_qstats_cpu_drop(cl->q);
3193                 *ret = NET_XMIT_DROP;
3194                 kfree_skb(skb);
3195                 return NULL;
3196         case TC_ACT_STOLEN:
3197         case TC_ACT_QUEUED:
3198                 *ret = NET_XMIT_SUCCESS;
3199                 consume_skb(skb);
3200                 return NULL;
3201         case TC_ACT_REDIRECT:
3202                 /* No need to push/pop skb's mac_header here on egress! */
3203                 skb_do_redirect(skb);
3204                 *ret = NET_XMIT_SUCCESS;
3205                 return NULL;
3206         default:
3207                 break;
3208         }
3209
3210         return skb;
3211 }
3212 #endif /* CONFIG_NET_EGRESS */
3213
3214 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3215 {
3216 #ifdef CONFIG_XPS
3217         struct xps_dev_maps *dev_maps;
3218         struct xps_map *map;
3219         int queue_index = -1;
3220
3221         rcu_read_lock();
3222         dev_maps = rcu_dereference(dev->xps_maps);
3223         if (dev_maps) {
3224                 map = rcu_dereference(
3225                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3226                 if (map) {
3227                         if (map->len == 1)
3228                                 queue_index = map->queues[0];
3229                         else
3230                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3231                                                                            map->len)];
3232                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3233                                 queue_index = -1;
3234                 }
3235         }
3236         rcu_read_unlock();
3237
3238         return queue_index;
3239 #else
3240         return -1;
3241 #endif
3242 }
3243
3244 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3245 {
3246         struct sock *sk = skb->sk;
3247         int queue_index = sk_tx_queue_get(sk);
3248
3249         if (queue_index < 0 || skb->ooo_okay ||
3250             queue_index >= dev->real_num_tx_queues) {
3251                 int new_index = get_xps_queue(dev, skb);
3252                 if (new_index < 0)
3253                         new_index = skb_tx_hash(dev, skb);
3254
3255                 if (queue_index != new_index && sk &&
3256                     sk_fullsock(sk) &&
3257                     rcu_access_pointer(sk->sk_dst_cache))
3258                         sk_tx_queue_set(sk, new_index);
3259
3260                 queue_index = new_index;
3261         }
3262
3263         return queue_index;
3264 }
3265
3266 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3267                                     struct sk_buff *skb,
3268                                     void *accel_priv)
3269 {
3270         int queue_index = 0;
3271
3272 #ifdef CONFIG_XPS
3273         u32 sender_cpu = skb->sender_cpu - 1;
3274
3275         if (sender_cpu >= (u32)NR_CPUS)
3276                 skb->sender_cpu = raw_smp_processor_id() + 1;
3277 #endif
3278
3279         if (dev->real_num_tx_queues != 1) {
3280                 const struct net_device_ops *ops = dev->netdev_ops;
3281                 if (ops->ndo_select_queue)
3282                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3283                                                             __netdev_pick_tx);
3284                 else
3285                         queue_index = __netdev_pick_tx(dev, skb);
3286
3287                 if (!accel_priv)
3288                         queue_index = netdev_cap_txqueue(dev, queue_index);
3289         }
3290
3291         skb_set_queue_mapping(skb, queue_index);
3292         return netdev_get_tx_queue(dev, queue_index);
3293 }
3294
3295 /**
3296  *      __dev_queue_xmit - transmit a buffer
3297  *      @skb: buffer to transmit
3298  *      @accel_priv: private data used for L2 forwarding offload
3299  *
3300  *      Queue a buffer for transmission to a network device. The caller must
3301  *      have set the device and priority and built the buffer before calling
3302  *      this function. The function can be called from an interrupt.
3303  *
3304  *      A negative errno code is returned on a failure. A success does not
3305  *      guarantee the frame will be transmitted as it may be dropped due
3306  *      to congestion or traffic shaping.
3307  *
3308  * -----------------------------------------------------------------------------------
3309  *      I notice this method can also return errors from the queue disciplines,
3310  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3311  *      be positive.
3312  *
3313  *      Regardless of the return value, the skb is consumed, so it is currently
3314  *      difficult to retry a send to this method.  (You can bump the ref count
3315  *      before sending to hold a reference for retry if you are careful.)
3316  *
3317  *      When calling this method, interrupts MUST be enabled.  This is because
3318  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3319  *          --BLG
3320  */
3321 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3322 {
3323         struct net_device *dev = skb->dev;
3324         struct netdev_queue *txq;
3325         struct Qdisc *q;
3326         int rc = -ENOMEM;
3327
3328         skb_reset_mac_header(skb);
3329
3330         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3331                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3332
3333         /* Disable soft irqs for various locks below. Also
3334          * stops preemption for RCU.
3335          */
3336         rcu_read_lock_bh();
3337
3338         skb_update_prio(skb);
3339
3340         qdisc_pkt_len_init(skb);
3341 #ifdef CONFIG_NET_CLS_ACT
3342         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3343 # ifdef CONFIG_NET_EGRESS
3344         if (static_key_false(&egress_needed)) {
3345                 skb = sch_handle_egress(skb, &rc, dev);
3346                 if (!skb)
3347                         goto out;
3348         }
3349 # endif
3350 #endif
3351         /* If device/qdisc don't need skb->dst, release it right now while
3352          * its hot in this cpu cache.
3353          */
3354         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3355                 skb_dst_drop(skb);
3356         else
3357                 skb_dst_force(skb);
3358
3359         txq = netdev_pick_tx(dev, skb, accel_priv);
3360         q = rcu_dereference_bh(txq->qdisc);
3361
3362         trace_net_dev_queue(skb);
3363         if (q->enqueue) {
3364                 rc = __dev_xmit_skb(skb, q, dev, txq);
3365                 goto out;
3366         }
3367
3368         /* The device has no queue. Common case for software devices:
3369            loopback, all the sorts of tunnels...
3370
3371            Really, it is unlikely that netif_tx_lock protection is necessary
3372            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3373            counters.)
3374            However, it is possible, that they rely on protection
3375            made by us here.
3376
3377            Check this and shot the lock. It is not prone from deadlocks.
3378            Either shot noqueue qdisc, it is even simpler 8)
3379          */
3380         if (dev->flags & IFF_UP) {
3381                 int cpu = smp_processor_id(); /* ok because BHs are off */
3382
3383                 if (txq->xmit_lock_owner != cpu) {
3384                         if (unlikely(__this_cpu_read(xmit_recursion) >
3385                                      XMIT_RECURSION_LIMIT))
3386                                 goto recursion_alert;
3387
3388                         skb = validate_xmit_skb(skb, dev);
3389                         if (!skb)
3390                                 goto out;
3391
3392                         HARD_TX_LOCK(dev, txq, cpu);
3393
3394                         if (!netif_xmit_stopped(txq)) {
3395                                 __this_cpu_inc(xmit_recursion);
3396                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3397                                 __this_cpu_dec(xmit_recursion);
3398                                 if (dev_xmit_complete(rc)) {
3399                                         HARD_TX_UNLOCK(dev, txq);
3400                                         goto out;
3401                                 }
3402                         }
3403                         HARD_TX_UNLOCK(dev, txq);
3404                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3405                                              dev->name);
3406                 } else {
3407                         /* Recursion is detected! It is possible,
3408                          * unfortunately
3409                          */
3410 recursion_alert:
3411                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3412                                              dev->name);
3413                 }
3414         }
3415
3416         rc = -ENETDOWN;
3417         rcu_read_unlock_bh();
3418
3419         atomic_long_inc(&dev->tx_dropped);
3420         kfree_skb_list(skb);
3421         return rc;
3422 out:
3423         rcu_read_unlock_bh();
3424         return rc;
3425 }
3426
3427 int dev_queue_xmit(struct sk_buff *skb)
3428 {
3429         return __dev_queue_xmit(skb, NULL);
3430 }
3431 EXPORT_SYMBOL(dev_queue_xmit);
3432
3433 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3434 {
3435         return __dev_queue_xmit(skb, accel_priv);
3436 }
3437 EXPORT_SYMBOL(dev_queue_xmit_accel);
3438
3439
3440 /*=======================================================================
3441                         Receiver routines
3442   =======================================================================*/
3443
3444 int netdev_max_backlog __read_mostly = 1000;
3445 EXPORT_SYMBOL(netdev_max_backlog);
3446
3447 int netdev_tstamp_prequeue __read_mostly = 1;
3448 int netdev_budget __read_mostly = 300;
3449 int weight_p __read_mostly = 64;            /* old backlog weight */
3450
3451 /* Called with irq disabled */
3452 static inline void ____napi_schedule(struct softnet_data *sd,
3453                                      struct napi_struct *napi)
3454 {
3455         list_add_tail(&napi->poll_list, &sd->poll_list);
3456         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3457 }
3458
3459 #ifdef CONFIG_RPS
3460
3461 /* One global table that all flow-based protocols share. */
3462 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3463 EXPORT_SYMBOL(rps_sock_flow_table);
3464 u32 rps_cpu_mask __read_mostly;
3465 EXPORT_SYMBOL(rps_cpu_mask);
3466
3467 struct static_key rps_needed __read_mostly;
3468 EXPORT_SYMBOL(rps_needed);
3469
3470 static struct rps_dev_flow *
3471 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472             struct rps_dev_flow *rflow, u16 next_cpu)
3473 {
3474         if (next_cpu < nr_cpu_ids) {
3475 #ifdef CONFIG_RFS_ACCEL
3476                 struct netdev_rx_queue *rxqueue;
3477                 struct rps_dev_flow_table *flow_table;
3478                 struct rps_dev_flow *old_rflow;
3479                 u32 flow_id;
3480                 u16 rxq_index;
3481                 int rc;
3482
3483                 /* Should we steer this flow to a different hardware queue? */
3484                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485                     !(dev->features & NETIF_F_NTUPLE))
3486                         goto out;
3487                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488                 if (rxq_index == skb_get_rx_queue(skb))
3489                         goto out;
3490
3491                 rxqueue = dev->_rx + rxq_index;
3492                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493                 if (!flow_table)
3494                         goto out;
3495                 flow_id = skb_get_hash(skb) & flow_table->mask;
3496                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497                                                         rxq_index, flow_id);
3498                 if (rc < 0)
3499                         goto out;
3500                 old_rflow = rflow;
3501                 rflow = &flow_table->flows[flow_id];
3502                 rflow->filter = rc;
3503                 if (old_rflow->filter == rflow->filter)
3504                         old_rflow->filter = RPS_NO_FILTER;
3505         out:
3506 #endif
3507                 rflow->last_qtail =
3508                         per_cpu(softnet_data, next_cpu).input_queue_head;
3509         }
3510
3511         rflow->cpu = next_cpu;
3512         return rflow;
3513 }
3514
3515 /*
3516  * get_rps_cpu is called from netif_receive_skb and returns the target
3517  * CPU from the RPS map of the receiving queue for a given skb.
3518  * rcu_read_lock must be held on entry.
3519  */
3520 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521                        struct rps_dev_flow **rflowp)
3522 {
3523         const struct rps_sock_flow_table *sock_flow_table;
3524         struct netdev_rx_queue *rxqueue = dev->_rx;
3525         struct rps_dev_flow_table *flow_table;
3526         struct rps_map *map;
3527         int cpu = -1;
3528         u32 tcpu;
3529         u32 hash;
3530
3531         if (skb_rx_queue_recorded(skb)) {
3532                 u16 index = skb_get_rx_queue(skb);
3533
3534                 if (unlikely(index >= dev->real_num_rx_queues)) {
3535                         WARN_ONCE(dev->real_num_rx_queues > 1,
3536                                   "%s received packet on queue %u, but number "
3537                                   "of RX queues is %u\n",
3538                                   dev->name, index, dev->real_num_rx_queues);
3539                         goto done;
3540                 }
3541                 rxqueue += index;
3542         }
3543
3544         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545
3546         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3547         map = rcu_dereference(rxqueue->rps_map);
3548         if (!flow_table && !map)
3549                 goto done;
3550
3551         skb_reset_network_header(skb);
3552         hash = skb_get_hash(skb);
3553         if (!hash)
3554                 goto done;
3555
3556         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557         if (flow_table && sock_flow_table) {
3558                 struct rps_dev_flow *rflow;
3559                 u32 next_cpu;
3560                 u32 ident;
3561
3562                 /* First check into global flow table if there is a match */
3563                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564                 if ((ident ^ hash) & ~rps_cpu_mask)
3565                         goto try_rps;
3566
3567                 next_cpu = ident & rps_cpu_mask;
3568
3569                 /* OK, now we know there is a match,
3570                  * we can look at the local (per receive queue) flow table
3571                  */
3572                 rflow = &flow_table->flows[hash & flow_table->mask];
3573                 tcpu = rflow->cpu;
3574
3575                 /*
3576                  * If the desired CPU (where last recvmsg was done) is
3577                  * different from current CPU (one in the rx-queue flow
3578                  * table entry), switch if one of the following holds:
3579                  *   - Current CPU is unset (>= nr_cpu_ids).
3580                  *   - Current CPU is offline.
3581                  *   - The current CPU's queue tail has advanced beyond the
3582                  *     last packet that was enqueued using this table entry.
3583                  *     This guarantees that all previous packets for the flow
3584                  *     have been dequeued, thus preserving in order delivery.
3585                  */
3586                 if (unlikely(tcpu != next_cpu) &&
3587                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3588                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3589                       rflow->last_qtail)) >= 0)) {
3590                         tcpu = next_cpu;
3591                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3592                 }
3593
3594                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3595                         *rflowp = rflow;
3596                         cpu = tcpu;
3597                         goto done;
3598                 }
3599         }
3600
3601 try_rps:
3602
3603         if (map) {
3604                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3605                 if (cpu_online(tcpu)) {
3606                         cpu = tcpu;
3607                         goto done;
3608                 }
3609         }
3610
3611 done:
3612         return cpu;
3613 }
3614
3615 #ifdef CONFIG_RFS_ACCEL
3616
3617 /**
3618  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619  * @dev: Device on which the filter was set
3620  * @rxq_index: RX queue index
3621  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623  *
3624  * Drivers that implement ndo_rx_flow_steer() should periodically call
3625  * this function for each installed filter and remove the filters for
3626  * which it returns %true.
3627  */
3628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629                          u32 flow_id, u16 filter_id)
3630 {
3631         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632         struct rps_dev_flow_table *flow_table;
3633         struct rps_dev_flow *rflow;
3634         bool expire = true;
3635         unsigned int cpu;
3636
3637         rcu_read_lock();
3638         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639         if (flow_table && flow_id <= flow_table->mask) {
3640                 rflow = &flow_table->flows[flow_id];
3641                 cpu = ACCESS_ONCE(rflow->cpu);
3642                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3643                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644                            rflow->last_qtail) <
3645                      (int)(10 * flow_table->mask)))
3646                         expire = false;
3647         }
3648         rcu_read_unlock();
3649         return expire;
3650 }
3651 EXPORT_SYMBOL(rps_may_expire_flow);
3652
3653 #endif /* CONFIG_RFS_ACCEL */
3654
3655 /* Called from hardirq (IPI) context */
3656 static void rps_trigger_softirq(void *data)
3657 {
3658         struct softnet_data *sd = data;
3659
3660         ____napi_schedule(sd, &sd->backlog);
3661         sd->received_rps++;
3662 }
3663
3664 #endif /* CONFIG_RPS */
3665
3666 /*
3667  * Check if this softnet_data structure is another cpu one
3668  * If yes, queue it to our IPI list and return 1
3669  * If no, return 0
3670  */
3671 static int rps_ipi_queued(struct softnet_data *sd)
3672 {
3673 #ifdef CONFIG_RPS
3674         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3675
3676         if (sd != mysd) {
3677                 sd->rps_ipi_next = mysd->rps_ipi_list;
3678                 mysd->rps_ipi_list = sd;
3679
3680                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681                 return 1;
3682         }
3683 #endif /* CONFIG_RPS */
3684         return 0;
3685 }
3686
3687 #ifdef CONFIG_NET_FLOW_LIMIT
3688 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689 #endif
3690
3691 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692 {
3693 #ifdef CONFIG_NET_FLOW_LIMIT
3694         struct sd_flow_limit *fl;
3695         struct softnet_data *sd;
3696         unsigned int old_flow, new_flow;
3697
3698         if (qlen < (netdev_max_backlog >> 1))
3699                 return false;
3700
3701         sd = this_cpu_ptr(&softnet_data);
3702
3703         rcu_read_lock();
3704         fl = rcu_dereference(sd->flow_limit);
3705         if (fl) {
3706                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3707                 old_flow = fl->history[fl->history_head];
3708                 fl->history[fl->history_head] = new_flow;
3709
3710                 fl->history_head++;
3711                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712
3713                 if (likely(fl->buckets[old_flow]))
3714                         fl->buckets[old_flow]--;
3715
3716                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717                         fl->count++;
3718                         rcu_read_unlock();
3719                         return true;
3720                 }
3721         }
3722         rcu_read_unlock();
3723 #endif
3724         return false;
3725 }
3726
3727 /*
3728  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729  * queue (may be a remote CPU queue).
3730  */
3731 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732                               unsigned int *qtail)
3733 {
3734         struct softnet_data *sd;
3735         unsigned long flags;
3736         unsigned int qlen;
3737
3738         sd = &per_cpu(softnet_data, cpu);
3739
3740         local_irq_save(flags);
3741
3742         rps_lock(sd);
3743         if (!netif_running(skb->dev))
3744                 goto drop;
3745         qlen = skb_queue_len(&sd->input_pkt_queue);
3746         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3747                 if (qlen) {
3748 enqueue:
3749                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3750                         input_queue_tail_incr_save(sd, qtail);
3751                         rps_unlock(sd);
3752                         local_irq_restore(flags);
3753                         return NET_RX_SUCCESS;
3754                 }
3755
3756                 /* Schedule NAPI for backlog device
3757                  * We can use non atomic operation since we own the queue lock
3758                  */
3759                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3760                         if (!rps_ipi_queued(sd))
3761                                 ____napi_schedule(sd, &sd->backlog);
3762                 }
3763                 goto enqueue;
3764         }
3765
3766 drop:
3767         sd->dropped++;
3768         rps_unlock(sd);
3769
3770         local_irq_restore(flags);
3771
3772         atomic_long_inc(&skb->dev->rx_dropped);
3773         kfree_skb(skb);
3774         return NET_RX_DROP;
3775 }
3776
3777 static int netif_rx_internal(struct sk_buff *skb)
3778 {
3779         int ret;
3780
3781         net_timestamp_check(netdev_tstamp_prequeue, skb);
3782
3783         trace_netif_rx(skb);
3784 #ifdef CONFIG_RPS
3785         if (static_key_false(&rps_needed)) {
3786                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3787                 int cpu;
3788
3789                 preempt_disable();
3790                 rcu_read_lock();
3791
3792                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3793                 if (cpu < 0)
3794                         cpu = smp_processor_id();
3795
3796                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797
3798                 rcu_read_unlock();
3799                 preempt_enable();
3800         } else
3801 #endif
3802         {
3803                 unsigned int qtail;
3804                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3805                 put_cpu();
3806         }
3807         return ret;
3808 }
3809
3810 /**
3811  *      netif_rx        -       post buffer to the network code
3812  *      @skb: buffer to post
3813  *
3814  *      This function receives a packet from a device driver and queues it for
3815  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3816  *      may be dropped during processing for congestion control or by the
3817  *      protocol layers.
3818  *
3819  *      return values:
3820  *      NET_RX_SUCCESS  (no congestion)
3821  *      NET_RX_DROP     (packet was dropped)
3822  *
3823  */
3824
3825 int netif_rx(struct sk_buff *skb)
3826 {
3827         trace_netif_rx_entry(skb);
3828
3829         return netif_rx_internal(skb);
3830 }
3831 EXPORT_SYMBOL(netif_rx);
3832
3833 int netif_rx_ni(struct sk_buff *skb)
3834 {
3835         int err;
3836
3837         trace_netif_rx_ni_entry(skb);
3838
3839         preempt_disable();
3840         err = netif_rx_internal(skb);
3841         if (local_softirq_pending())
3842                 do_softirq();
3843         preempt_enable();
3844
3845         return err;
3846 }
3847 EXPORT_SYMBOL(netif_rx_ni);
3848
3849 static __latent_entropy void net_tx_action(struct softirq_action *h)
3850 {
3851         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3852
3853         if (sd->completion_queue) {
3854                 struct sk_buff *clist;
3855
3856                 local_irq_disable();
3857                 clist = sd->completion_queue;
3858                 sd->completion_queue = NULL;
3859                 local_irq_enable();
3860
3861                 while (clist) {
3862                         struct sk_buff *skb = clist;
3863                         clist = clist->next;
3864
3865                         WARN_ON(atomic_read(&skb->users));
3866                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3867                                 trace_consume_skb(skb);
3868                         else
3869                                 trace_kfree_skb(skb, net_tx_action);
3870
3871                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3872                                 __kfree_skb(skb);
3873                         else
3874                                 __kfree_skb_defer(skb);
3875                 }
3876
3877                 __kfree_skb_flush();
3878         }
3879
3880         if (sd->output_queue) {
3881                 struct Qdisc *head;
3882
3883                 local_irq_disable();
3884                 head = sd->output_queue;
3885                 sd->output_queue = NULL;
3886                 sd->output_queue_tailp = &sd->output_queue;
3887                 local_irq_enable();
3888
3889                 while (head) {
3890                         struct Qdisc *q = head;
3891                         spinlock_t *root_lock;
3892
3893                         head = head->next_sched;
3894
3895                         root_lock = qdisc_lock(q);
3896                         spin_lock(root_lock);
3897                         /* We need to make sure head->next_sched is read
3898                          * before clearing __QDISC_STATE_SCHED
3899                          */
3900                         smp_mb__before_atomic();
3901                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3902                         qdisc_run(q);
3903                         spin_unlock(root_lock);
3904                 }
3905         }
3906 }
3907
3908 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3909 /* This hook is defined here for ATM LANE */
3910 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3911                              unsigned char *addr) __read_mostly;
3912 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3913 #endif
3914
3915 static inline struct sk_buff *
3916 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3917                    struct net_device *orig_dev)
3918 {
3919 #ifdef CONFIG_NET_CLS_ACT
3920         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3921         struct tcf_result cl_res;
3922
3923         /* If there's at least one ingress present somewhere (so
3924          * we get here via enabled static key), remaining devices
3925          * that are not configured with an ingress qdisc will bail
3926          * out here.
3927          */
3928         if (!cl)
3929                 return skb;
3930         if (*pt_prev) {
3931                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3932                 *pt_prev = NULL;
3933         }
3934
3935         qdisc_skb_cb(skb)->pkt_len = skb->len;
3936         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3937         qdisc_bstats_cpu_update(cl->q, skb);
3938
3939         switch (tc_classify(skb, cl, &cl_res, false)) {
3940         case TC_ACT_OK:
3941         case TC_ACT_RECLASSIFY:
3942                 skb->tc_index = TC_H_MIN(cl_res.classid);
3943                 break;
3944         case TC_ACT_SHOT:
3945                 qdisc_qstats_cpu_drop(cl->q);
3946                 kfree_skb(skb);
3947                 return NULL;
3948         case TC_ACT_STOLEN:
3949         case TC_ACT_QUEUED:
3950                 consume_skb(skb);
3951                 return NULL;
3952         case TC_ACT_REDIRECT:
3953                 /* skb_mac_header check was done by cls/act_bpf, so
3954                  * we can safely push the L2 header back before
3955                  * redirecting to another netdev
3956                  */
3957                 __skb_push(skb, skb->mac_len);
3958                 skb_do_redirect(skb);
3959                 return NULL;
3960         default:
3961                 break;
3962         }
3963 #endif /* CONFIG_NET_CLS_ACT */
3964         return skb;
3965 }
3966
3967 /**
3968  *      netdev_is_rx_handler_busy - check if receive handler is registered
3969  *      @dev: device to check
3970  *
3971  *      Check if a receive handler is already registered for a given device.
3972  *      Return true if there one.
3973  *
3974  *      The caller must hold the rtnl_mutex.
3975  */
3976 bool netdev_is_rx_handler_busy(struct net_device *dev)
3977 {
3978         ASSERT_RTNL();
3979         return dev && rtnl_dereference(dev->rx_handler);
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3982
3983 /**
3984  *      netdev_rx_handler_register - register receive handler
3985  *      @dev: device to register a handler for
3986  *      @rx_handler: receive handler to register
3987  *      @rx_handler_data: data pointer that is used by rx handler
3988  *
3989  *      Register a receive handler for a device. This handler will then be
3990  *      called from __netif_receive_skb. A negative errno code is returned
3991  *      on a failure.
3992  *
3993  *      The caller must hold the rtnl_mutex.
3994  *
3995  *      For a general description of rx_handler, see enum rx_handler_result.
3996  */
3997 int netdev_rx_handler_register(struct net_device *dev,
3998                                rx_handler_func_t *rx_handler,
3999                                void *rx_handler_data)
4000 {
4001         ASSERT_RTNL();
4002
4003         if (dev->rx_handler)
4004                 return -EBUSY;
4005
4006         /* Note: rx_handler_data must be set before rx_handler */
4007         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4008         rcu_assign_pointer(dev->rx_handler, rx_handler);
4009
4010         return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013
4014 /**
4015  *      netdev_rx_handler_unregister - unregister receive handler
4016  *      @dev: device to unregister a handler from
4017  *
4018  *      Unregister a receive handler from a device.
4019  *
4020  *      The caller must hold the rtnl_mutex.
4021  */
4022 void netdev_rx_handler_unregister(struct net_device *dev)
4023 {
4024
4025         ASSERT_RTNL();
4026         RCU_INIT_POINTER(dev->rx_handler, NULL);
4027         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028          * section has a guarantee to see a non NULL rx_handler_data
4029          * as well.
4030          */
4031         synchronize_net();
4032         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4033 }
4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035
4036 /*
4037  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038  * the special handling of PFMEMALLOC skbs.
4039  */
4040 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041 {
4042         switch (skb->protocol) {
4043         case htons(ETH_P_ARP):
4044         case htons(ETH_P_IP):
4045         case htons(ETH_P_IPV6):
4046         case htons(ETH_P_8021Q):
4047         case htons(ETH_P_8021AD):
4048                 return true;
4049         default:
4050                 return false;
4051         }
4052 }
4053
4054 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055                              int *ret, struct net_device *orig_dev)
4056 {
4057 #ifdef CONFIG_NETFILTER_INGRESS
4058         if (nf_hook_ingress_active(skb)) {
4059                 int ingress_retval;
4060
4061                 if (*pt_prev) {
4062                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4063                         *pt_prev = NULL;
4064                 }
4065
4066                 rcu_read_lock();
4067                 ingress_retval = nf_hook_ingress(skb);
4068                 rcu_read_unlock();
4069                 return ingress_retval;
4070         }
4071 #endif /* CONFIG_NETFILTER_INGRESS */
4072         return 0;
4073 }
4074
4075 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4076 {
4077         struct packet_type *ptype, *pt_prev;
4078         rx_handler_func_t *rx_handler;
4079         struct net_device *orig_dev;
4080         bool deliver_exact = false;
4081         int ret = NET_RX_DROP;
4082         __be16 type;
4083
4084         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4085
4086         trace_netif_receive_skb(skb);
4087
4088         orig_dev = skb->dev;
4089
4090         skb_reset_network_header(skb);
4091         if (!skb_transport_header_was_set(skb))
4092                 skb_reset_transport_header(skb);
4093         skb_reset_mac_len(skb);
4094
4095         pt_prev = NULL;
4096
4097 another_round:
4098         skb->skb_iif = skb->dev->ifindex;
4099
4100         __this_cpu_inc(softnet_data.processed);
4101
4102         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4104                 skb = skb_vlan_untag(skb);
4105                 if (unlikely(!skb))
4106                         goto out;
4107         }
4108
4109 #ifdef CONFIG_NET_CLS_ACT
4110         if (skb->tc_verd & TC_NCLS) {
4111                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4112                 goto ncls;
4113         }
4114 #endif
4115
4116         if (pfmemalloc)
4117                 goto skip_taps;
4118
4119         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4120                 if (pt_prev)
4121                         ret = deliver_skb(skb, pt_prev, orig_dev);
4122                 pt_prev = ptype;
4123         }
4124
4125         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4126                 if (pt_prev)
4127                         ret = deliver_skb(skb, pt_prev, orig_dev);
4128                 pt_prev = ptype;
4129         }
4130
4131 skip_taps:
4132 #ifdef CONFIG_NET_INGRESS
4133         if (static_key_false(&ingress_needed)) {
4134                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4135                 if (!skb)
4136                         goto out;
4137
4138                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4139                         goto out;
4140         }
4141 #endif
4142 #ifdef CONFIG_NET_CLS_ACT
4143         skb->tc_verd = 0;
4144 ncls:
4145 #endif
4146         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4147                 goto drop;
4148
4149         if (skb_vlan_tag_present(skb)) {
4150                 if (pt_prev) {
4151                         ret = deliver_skb(skb, pt_prev, orig_dev);
4152                         pt_prev = NULL;
4153                 }
4154                 if (vlan_do_receive(&skb))
4155                         goto another_round;
4156                 else if (unlikely(!skb))
4157                         goto out;
4158         }
4159
4160         rx_handler = rcu_dereference(skb->dev->rx_handler);
4161         if (rx_handler) {
4162                 if (pt_prev) {
4163                         ret = deliver_skb(skb, pt_prev, orig_dev);
4164                         pt_prev = NULL;
4165                 }
4166                 switch (rx_handler(&skb)) {
4167                 case RX_HANDLER_CONSUMED:
4168                         ret = NET_RX_SUCCESS;
4169                         goto out;
4170                 case RX_HANDLER_ANOTHER:
4171                         goto another_round;
4172                 case RX_HANDLER_EXACT:
4173                         deliver_exact = true;
4174                 case RX_HANDLER_PASS:
4175                         break;
4176                 default:
4177                         BUG();
4178                 }
4179         }
4180
4181         if (unlikely(skb_vlan_tag_present(skb))) {
4182                 if (skb_vlan_tag_get_id(skb))
4183                         skb->pkt_type = PACKET_OTHERHOST;
4184                 /* Note: we might in the future use prio bits
4185                  * and set skb->priority like in vlan_do_receive()
4186                  * For the time being, just ignore Priority Code Point
4187                  */
4188                 skb->vlan_tci = 0;
4189         }
4190
4191         type = skb->protocol;
4192
4193         /* deliver only exact match when indicated */
4194         if (likely(!deliver_exact)) {
4195                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196                                        &ptype_base[ntohs(type) &
4197                                                    PTYPE_HASH_MASK]);
4198         }
4199
4200         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201                                &orig_dev->ptype_specific);
4202
4203         if (unlikely(skb->dev != orig_dev)) {
4204                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205                                        &skb->dev->ptype_specific);
4206         }
4207
4208         if (pt_prev) {
4209                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4210                         goto drop;
4211                 else
4212                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4213         } else {
4214 drop:
4215                 if (!deliver_exact)
4216                         atomic_long_inc(&skb->dev->rx_dropped);
4217                 else
4218                         atomic_long_inc(&skb->dev->rx_nohandler);
4219                 kfree_skb(skb);
4220                 /* Jamal, now you will not able to escape explaining
4221                  * me how you were going to use this. :-)
4222                  */
4223                 ret = NET_RX_DROP;
4224         }
4225
4226 out:
4227         return ret;
4228 }
4229
4230 static int __netif_receive_skb(struct sk_buff *skb)
4231 {
4232         int ret;
4233
4234         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4235                 unsigned long pflags = current->flags;
4236
4237                 /*
4238                  * PFMEMALLOC skbs are special, they should
4239                  * - be delivered to SOCK_MEMALLOC sockets only
4240                  * - stay away from userspace
4241                  * - have bounded memory usage
4242                  *
4243                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4244                  * context down to all allocation sites.
4245                  */
4246                 current->flags |= PF_MEMALLOC;
4247                 ret = __netif_receive_skb_core(skb, true);
4248                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4249         } else
4250                 ret = __netif_receive_skb_core(skb, false);
4251
4252         return ret;
4253 }
4254
4255 static int netif_receive_skb_internal(struct sk_buff *skb)
4256 {
4257         int ret;
4258
4259         net_timestamp_check(netdev_tstamp_prequeue, skb);
4260
4261         if (skb_defer_rx_timestamp(skb))
4262                 return NET_RX_SUCCESS;
4263
4264         rcu_read_lock();
4265
4266 #ifdef CONFIG_RPS
4267         if (static_key_false(&rps_needed)) {
4268                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4269                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4270
4271                 if (cpu >= 0) {
4272                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4273                         rcu_read_unlock();
4274                         return ret;
4275                 }
4276         }
4277 #endif
4278         ret = __netif_receive_skb(skb);
4279         rcu_read_unlock();
4280         return ret;
4281 }
4282
4283 /**
4284  *      netif_receive_skb - process receive buffer from network
4285  *      @skb: buffer to process
4286  *
4287  *      netif_receive_skb() is the main receive data processing function.
4288  *      It always succeeds. The buffer may be dropped during processing
4289  *      for congestion control or by the protocol layers.
4290  *
4291  *      This function may only be called from softirq context and interrupts
4292  *      should be enabled.
4293  *
4294  *      Return values (usually ignored):
4295  *      NET_RX_SUCCESS: no congestion
4296  *      NET_RX_DROP: packet was dropped
4297  */
4298 int netif_receive_skb(struct sk_buff *skb)
4299 {
4300         trace_netif_receive_skb_entry(skb);
4301
4302         return netif_receive_skb_internal(skb);
4303 }
4304 EXPORT_SYMBOL(netif_receive_skb);
4305
4306 DEFINE_PER_CPU(struct work_struct, flush_works);
4307
4308 /* Network device is going away, flush any packets still pending */
4309 static void flush_backlog(struct work_struct *work)
4310 {
4311         struct sk_buff *skb, *tmp;
4312         struct softnet_data *sd;
4313
4314         local_bh_disable();
4315         sd = this_cpu_ptr(&softnet_data);
4316
4317         local_irq_disable();
4318         rps_lock(sd);
4319         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4320                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4321                         __skb_unlink(skb, &sd->input_pkt_queue);
4322                         kfree_skb(skb);
4323                         input_queue_head_incr(sd);
4324                 }
4325         }
4326         rps_unlock(sd);
4327         local_irq_enable();
4328
4329         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4330                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4331                         __skb_unlink(skb, &sd->process_queue);
4332                         kfree_skb(skb);
4333                         input_queue_head_incr(sd);
4334                 }
4335         }
4336         local_bh_enable();
4337 }
4338
4339 static void flush_all_backlogs(void)
4340 {
4341         unsigned int cpu;
4342
4343         get_online_cpus();
4344
4345         for_each_online_cpu(cpu)
4346                 queue_work_on(cpu, system_highpri_wq,
4347                               per_cpu_ptr(&flush_works, cpu));
4348
4349         for_each_online_cpu(cpu)
4350                 flush_work(per_cpu_ptr(&flush_works, cpu));
4351
4352         put_online_cpus();
4353 }
4354
4355 static int napi_gro_complete(struct sk_buff *skb)
4356 {
4357         struct packet_offload *ptype;
4358         __be16 type = skb->protocol;
4359         struct list_head *head = &offload_base;
4360         int err = -ENOENT;
4361
4362         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4363
4364         if (NAPI_GRO_CB(skb)->count == 1) {
4365                 skb_shinfo(skb)->gso_size = 0;
4366                 goto out;
4367         }
4368
4369         rcu_read_lock();
4370         list_for_each_entry_rcu(ptype, head, list) {
4371                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4372                         continue;
4373
4374                 err = ptype->callbacks.gro_complete(skb, 0);
4375                 break;
4376         }
4377         rcu_read_unlock();
4378
4379         if (err) {
4380                 WARN_ON(&ptype->list == head);
4381                 kfree_skb(skb);
4382                 return NET_RX_SUCCESS;
4383         }
4384
4385 out:
4386         return netif_receive_skb_internal(skb);
4387 }
4388
4389 /* napi->gro_list contains packets ordered by age.
4390  * youngest packets at the head of it.
4391  * Complete skbs in reverse order to reduce latencies.
4392  */
4393 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4394 {
4395         struct sk_buff *skb, *prev = NULL;
4396
4397         /* scan list and build reverse chain */
4398         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4399                 skb->prev = prev;
4400                 prev = skb;
4401         }
4402
4403         for (skb = prev; skb; skb = prev) {
4404                 skb->next = NULL;
4405
4406                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4407                         return;
4408
4409                 prev = skb->prev;
4410                 napi_gro_complete(skb);
4411                 napi->gro_count--;
4412         }
4413
4414         napi->gro_list = NULL;
4415 }
4416 EXPORT_SYMBOL(napi_gro_flush);
4417
4418 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4419 {
4420         struct sk_buff *p;
4421         unsigned int maclen = skb->dev->hard_header_len;
4422         u32 hash = skb_get_hash_raw(skb);
4423
4424         for (p = napi->gro_list; p; p = p->next) {
4425                 unsigned long diffs;
4426
4427                 NAPI_GRO_CB(p)->flush = 0;
4428
4429                 if (hash != skb_get_hash_raw(p)) {
4430                         NAPI_GRO_CB(p)->same_flow = 0;
4431                         continue;
4432                 }
4433
4434                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4435                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4436                 diffs |= skb_metadata_dst_cmp(p, skb);
4437                 if (maclen == ETH_HLEN)
4438                         diffs |= compare_ether_header(skb_mac_header(p),
4439                                                       skb_mac_header(skb));
4440                 else if (!diffs)
4441                         diffs = memcmp(skb_mac_header(p),
4442                                        skb_mac_header(skb),
4443                                        maclen);
4444                 NAPI_GRO_CB(p)->same_flow = !diffs;
4445         }
4446 }
4447
4448 static void skb_gro_reset_offset(struct sk_buff *skb)
4449 {
4450         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4451         const skb_frag_t *frag0 = &pinfo->frags[0];
4452
4453         NAPI_GRO_CB(skb)->data_offset = 0;
4454         NAPI_GRO_CB(skb)->frag0 = NULL;
4455         NAPI_GRO_CB(skb)->frag0_len = 0;
4456
4457         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4458             pinfo->nr_frags &&
4459             !PageHighMem(skb_frag_page(frag0))) {
4460                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4461                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4462         }
4463 }
4464
4465 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4466 {
4467         struct skb_shared_info *pinfo = skb_shinfo(skb);
4468
4469         BUG_ON(skb->end - skb->tail < grow);
4470
4471         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4472
4473         skb->data_len -= grow;
4474         skb->tail += grow;
4475
4476         pinfo->frags[0].page_offset += grow;
4477         skb_frag_size_sub(&pinfo->frags[0], grow);
4478
4479         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4480                 skb_frag_unref(skb, 0);
4481                 memmove(pinfo->frags, pinfo->frags + 1,
4482                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4483         }
4484 }
4485
4486 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4487 {
4488         struct sk_buff **pp = NULL;
4489         struct packet_offload *ptype;
4490         __be16 type = skb->protocol;
4491         struct list_head *head = &offload_base;
4492         int same_flow;
4493         enum gro_result ret;
4494         int grow;
4495
4496         if (!(skb->dev->features & NETIF_F_GRO))
4497                 goto normal;
4498
4499         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4500                 goto normal;
4501
4502         gro_list_prepare(napi, skb);
4503
4504         rcu_read_lock();
4505         list_for_each_entry_rcu(ptype, head, list) {
4506                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4507                         continue;
4508
4509                 skb_set_network_header(skb, skb_gro_offset(skb));
4510                 skb_reset_mac_len(skb);
4511                 NAPI_GRO_CB(skb)->same_flow = 0;
4512                 NAPI_GRO_CB(skb)->flush = 0;
4513                 NAPI_GRO_CB(skb)->free = 0;
4514                 NAPI_GRO_CB(skb)->encap_mark = 0;
4515                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4516                 NAPI_GRO_CB(skb)->is_fou = 0;
4517                 NAPI_GRO_CB(skb)->is_atomic = 1;
4518                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4519
4520                 /* Setup for GRO checksum validation */
4521                 switch (skb->ip_summed) {
4522                 case CHECKSUM_COMPLETE:
4523                         NAPI_GRO_CB(skb)->csum = skb->csum;
4524                         NAPI_GRO_CB(skb)->csum_valid = 1;
4525                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4526                         break;
4527                 case CHECKSUM_UNNECESSARY:
4528                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4529                         NAPI_GRO_CB(skb)->csum_valid = 0;
4530                         break;
4531                 default:
4532                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4533                         NAPI_GRO_CB(skb)->csum_valid = 0;
4534                 }
4535
4536                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4537                 break;
4538         }
4539         rcu_read_unlock();
4540
4541         if (&ptype->list == head)
4542                 goto normal;
4543
4544         same_flow = NAPI_GRO_CB(skb)->same_flow;
4545         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4546
4547         if (pp) {
4548                 struct sk_buff *nskb = *pp;
4549
4550                 *pp = nskb->next;
4551                 nskb->next = NULL;
4552                 napi_gro_complete(nskb);
4553                 napi->gro_count--;
4554         }
4555
4556         if (same_flow)
4557                 goto ok;
4558
4559         if (NAPI_GRO_CB(skb)->flush)
4560                 goto normal;
4561
4562         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4563                 struct sk_buff *nskb = napi->gro_list;
4564
4565                 /* locate the end of the list to select the 'oldest' flow */
4566                 while (nskb->next) {
4567                         pp = &nskb->next;
4568                         nskb = *pp;
4569                 }
4570                 *pp = NULL;
4571                 nskb->next = NULL;
4572                 napi_gro_complete(nskb);
4573         } else {
4574                 napi->gro_count++;
4575         }
4576         NAPI_GRO_CB(skb)->count = 1;
4577         NAPI_GRO_CB(skb)->age = jiffies;
4578         NAPI_GRO_CB(skb)->last = skb;
4579         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4580         skb->next = napi->gro_list;
4581         napi->gro_list = skb;
4582         ret = GRO_HELD;
4583
4584 pull:
4585         grow = skb_gro_offset(skb) - skb_headlen(skb);
4586         if (grow > 0)
4587                 gro_pull_from_frag0(skb, grow);
4588 ok:
4589         return ret;
4590
4591 normal:
4592         ret = GRO_NORMAL;
4593         goto pull;
4594 }
4595
4596 struct packet_offload *gro_find_receive_by_type(__be16 type)
4597 {
4598         struct list_head *offload_head = &offload_base;
4599         struct packet_offload *ptype;
4600
4601         list_for_each_entry_rcu(ptype, offload_head, list) {
4602                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4603                         continue;
4604                 return ptype;
4605         }
4606         return NULL;
4607 }
4608 EXPORT_SYMBOL(gro_find_receive_by_type);
4609
4610 struct packet_offload *gro_find_complete_by_type(__be16 type)
4611 {
4612         struct list_head *offload_head = &offload_base;
4613         struct packet_offload *ptype;
4614
4615         list_for_each_entry_rcu(ptype, offload_head, list) {
4616                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4617                         continue;
4618                 return ptype;
4619         }
4620         return NULL;
4621 }
4622 EXPORT_SYMBOL(gro_find_complete_by_type);
4623
4624 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4625 {
4626         switch (ret) {
4627         case GRO_NORMAL:
4628                 if (netif_receive_skb_internal(skb))
4629                         ret = GRO_DROP;
4630                 break;
4631
4632         case GRO_DROP:
4633                 kfree_skb(skb);
4634                 break;
4635
4636         case GRO_MERGED_FREE:
4637                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4638                         skb_dst_drop(skb);
4639                         kmem_cache_free(skbuff_head_cache, skb);
4640                 } else {
4641                         __kfree_skb(skb);
4642                 }
4643                 break;
4644
4645         case GRO_HELD:
4646         case GRO_MERGED:
4647                 break;
4648         }
4649
4650         return ret;
4651 }
4652
4653 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4654 {
4655         skb_mark_napi_id(skb, napi);
4656         trace_napi_gro_receive_entry(skb);
4657
4658         skb_gro_reset_offset(skb);
4659
4660         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4661 }
4662 EXPORT_SYMBOL(napi_gro_receive);
4663
4664 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4665 {
4666         if (unlikely(skb->pfmemalloc)) {
4667                 consume_skb(skb);
4668                 return;
4669         }
4670         __skb_pull(skb, skb_headlen(skb));
4671         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4672         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4673         skb->vlan_tci = 0;
4674         skb->dev = napi->dev;
4675         skb->skb_iif = 0;
4676         skb->encapsulation = 0;
4677         skb_shinfo(skb)->gso_type = 0;
4678         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4679
4680         napi->skb = skb;
4681 }
4682
4683 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4684 {
4685         struct sk_buff *skb = napi->skb;
4686
4687         if (!skb) {
4688                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4689                 if (skb) {
4690                         napi->skb = skb;
4691                         skb_mark_napi_id(skb, napi);
4692                 }
4693         }
4694         return skb;
4695 }
4696 EXPORT_SYMBOL(napi_get_frags);
4697
4698 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4699                                       struct sk_buff *skb,
4700                                       gro_result_t ret)
4701 {
4702         switch (ret) {
4703         case GRO_NORMAL:
4704         case GRO_HELD:
4705                 __skb_push(skb, ETH_HLEN);
4706                 skb->protocol = eth_type_trans(skb, skb->dev);
4707                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4708                         ret = GRO_DROP;
4709                 break;
4710
4711         case GRO_DROP:
4712         case GRO_MERGED_FREE:
4713                 napi_reuse_skb(napi, skb);
4714                 break;
4715
4716         case GRO_MERGED:
4717                 break;
4718         }
4719
4720         return ret;
4721 }
4722
4723 /* Upper GRO stack assumes network header starts at gro_offset=0
4724  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4725  * We copy ethernet header into skb->data to have a common layout.
4726  */
4727 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4728 {
4729         struct sk_buff *skb = napi->skb;
4730         const struct ethhdr *eth;
4731         unsigned int hlen = sizeof(*eth);
4732
4733         napi->skb = NULL;
4734
4735         skb_reset_mac_header(skb);
4736         skb_gro_reset_offset(skb);
4737
4738         eth = skb_gro_header_fast(skb, 0);
4739         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4740                 eth = skb_gro_header_slow(skb, hlen, 0);
4741                 if (unlikely(!eth)) {
4742                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4743                                              __func__, napi->dev->name);
4744                         napi_reuse_skb(napi, skb);
4745                         return NULL;
4746                 }
4747         } else {
4748                 gro_pull_from_frag0(skb, hlen);
4749                 NAPI_GRO_CB(skb)->frag0 += hlen;
4750                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4751         }
4752         __skb_pull(skb, hlen);
4753
4754         /*
4755          * This works because the only protocols we care about don't require
4756          * special handling.
4757          * We'll fix it up properly in napi_frags_finish()
4758          */
4759         skb->protocol = eth->h_proto;
4760
4761         return skb;
4762 }
4763
4764 gro_result_t napi_gro_frags(struct napi_struct *napi)
4765 {
4766         struct sk_buff *skb = napi_frags_skb(napi);
4767
4768         if (!skb)
4769                 return GRO_DROP;
4770
4771         trace_napi_gro_frags_entry(skb);
4772
4773         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4774 }
4775 EXPORT_SYMBOL(napi_gro_frags);
4776
4777 /* Compute the checksum from gro_offset and return the folded value
4778  * after adding in any pseudo checksum.
4779  */
4780 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4781 {
4782         __wsum wsum;
4783         __sum16 sum;
4784
4785         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4786
4787         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4788         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4789         if (likely(!sum)) {
4790                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4791                     !skb->csum_complete_sw)
4792                         netdev_rx_csum_fault(skb->dev);
4793         }
4794
4795         NAPI_GRO_CB(skb)->csum = wsum;
4796         NAPI_GRO_CB(skb)->csum_valid = 1;
4797
4798         return sum;
4799 }
4800 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4801
4802 /*
4803  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4804  * Note: called with local irq disabled, but exits with local irq enabled.
4805  */
4806 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4807 {
4808 #ifdef CONFIG_RPS
4809         struct softnet_data *remsd = sd->rps_ipi_list;
4810
4811         if (remsd) {
4812                 sd->rps_ipi_list = NULL;
4813
4814                 local_irq_enable();
4815
4816                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4817                 while (remsd) {
4818                         struct softnet_data *next = remsd->rps_ipi_next;
4819
4820                         if (cpu_online(remsd->cpu))
4821                                 smp_call_function_single_async(remsd->cpu,
4822                                                            &remsd->csd);
4823                         remsd = next;
4824                 }
4825         } else
4826 #endif
4827                 local_irq_enable();
4828 }
4829
4830 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4831 {
4832 #ifdef CONFIG_RPS
4833         return sd->rps_ipi_list != NULL;
4834 #else
4835         return false;
4836 #endif
4837 }
4838
4839 static int process_backlog(struct napi_struct *napi, int quota)
4840 {
4841         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4842         bool again = true;
4843         int work = 0;
4844
4845         /* Check if we have pending ipi, its better to send them now,
4846          * not waiting net_rx_action() end.
4847          */
4848         if (sd_has_rps_ipi_waiting(sd)) {
4849                 local_irq_disable();
4850                 net_rps_action_and_irq_enable(sd);
4851         }
4852
4853         napi->weight = weight_p;
4854         while (again) {
4855                 struct sk_buff *skb;
4856
4857                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4858                         rcu_read_lock();
4859                         __netif_receive_skb(skb);
4860                         rcu_read_unlock();
4861                         input_queue_head_incr(sd);
4862                         if (++work >= quota)
4863                                 return work;
4864
4865                 }
4866
4867                 local_irq_disable();
4868                 rps_lock(sd);
4869                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4870                         /*
4871                          * Inline a custom version of __napi_complete().
4872                          * only current cpu owns and manipulates this napi,
4873                          * and NAPI_STATE_SCHED is the only possible flag set
4874                          * on backlog.
4875                          * We can use a plain write instead of clear_bit(),
4876                          * and we dont need an smp_mb() memory barrier.
4877                          */
4878                         napi->state = 0;
4879                         again = false;
4880                 } else {
4881                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4882                                                    &sd->process_queue);
4883                 }
4884                 rps_unlock(sd);
4885                 local_irq_enable();
4886         }
4887
4888         return work;
4889 }
4890
4891 /**
4892  * __napi_schedule - schedule for receive
4893  * @n: entry to schedule
4894  *
4895  * The entry's receive function will be scheduled to run.
4896  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4897  */
4898 void __napi_schedule(struct napi_struct *n)
4899 {
4900         unsigned long flags;
4901
4902         local_irq_save(flags);
4903         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4904         local_irq_restore(flags);
4905 }
4906 EXPORT_SYMBOL(__napi_schedule);
4907
4908 /**
4909  * __napi_schedule_irqoff - schedule for receive
4910  * @n: entry to schedule
4911  *
4912  * Variant of __napi_schedule() assuming hard irqs are masked
4913  */
4914 void __napi_schedule_irqoff(struct napi_struct *n)
4915 {
4916         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4917 }
4918 EXPORT_SYMBOL(__napi_schedule_irqoff);
4919
4920 void __napi_complete(struct napi_struct *n)
4921 {
4922         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4923
4924         list_del_init(&n->poll_list);
4925         smp_mb__before_atomic();
4926         clear_bit(NAPI_STATE_SCHED, &n->state);
4927 }
4928 EXPORT_SYMBOL(__napi_complete);
4929
4930 void napi_complete_done(struct napi_struct *n, int work_done)
4931 {
4932         unsigned long flags;
4933
4934         /*
4935          * don't let napi dequeue from the cpu poll list
4936          * just in case its running on a different cpu
4937          */
4938         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4939                 return;
4940
4941         if (n->gro_list) {
4942                 unsigned long timeout = 0;
4943
4944                 if (work_done)
4945                         timeout = n->dev->gro_flush_timeout;
4946
4947                 if (timeout)
4948                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4949                                       HRTIMER_MODE_REL_PINNED);
4950                 else
4951                         napi_gro_flush(n, false);
4952         }
4953         if (likely(list_empty(&n->poll_list))) {
4954                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4955         } else {
4956                 /* If n->poll_list is not empty, we need to mask irqs */
4957                 local_irq_save(flags);
4958                 __napi_complete(n);
4959                 local_irq_restore(flags);
4960         }
4961 }
4962 EXPORT_SYMBOL(napi_complete_done);
4963
4964 /* must be called under rcu_read_lock(), as we dont take a reference */
4965 static struct napi_struct *napi_by_id(unsigned int napi_id)
4966 {
4967         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4968         struct napi_struct *napi;
4969
4970         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4971                 if (napi->napi_id == napi_id)
4972                         return napi;
4973
4974         return NULL;
4975 }
4976
4977 #if defined(CONFIG_NET_RX_BUSY_POLL)
4978 #define BUSY_POLL_BUDGET 8
4979 bool sk_busy_loop(struct sock *sk, int nonblock)
4980 {
4981         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4982         int (*busy_poll)(struct napi_struct *dev);
4983         struct napi_struct *napi;
4984         int rc = false;
4985
4986         rcu_read_lock();
4987
4988         napi = napi_by_id(sk->sk_napi_id);
4989         if (!napi)
4990                 goto out;
4991
4992         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4993         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4994
4995         do {
4996                 rc = 0;
4997                 local_bh_disable();
4998                 if (busy_poll) {
4999                         rc = busy_poll(napi);
5000                 } else if (napi_schedule_prep(napi)) {
5001                         void *have = netpoll_poll_lock(napi);
5002
5003                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5004                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5005                                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5006                                 if (rc == BUSY_POLL_BUDGET) {
5007                                         napi_complete_done(napi, rc);
5008                                         napi_schedule(napi);
5009                                 }
5010                         }
5011                         netpoll_poll_unlock(have);
5012                 }
5013                 if (rc > 0)
5014                         __NET_ADD_STATS(sock_net(sk),
5015                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5016                 local_bh_enable();
5017
5018                 if (rc == LL_FLUSH_FAILED)
5019                         break; /* permanent failure */
5020
5021                 cpu_relax();
5022         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5023                  !need_resched() && !busy_loop_timeout(end_time));
5024
5025         rc = !skb_queue_empty(&sk->sk_receive_queue);
5026 out:
5027         rcu_read_unlock();
5028         return rc;
5029 }
5030 EXPORT_SYMBOL(sk_busy_loop);
5031
5032 #endif /* CONFIG_NET_RX_BUSY_POLL */
5033
5034 void napi_hash_add(struct napi_struct *napi)
5035 {
5036         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5037             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5038                 return;
5039
5040         spin_lock(&napi_hash_lock);
5041
5042         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5043         do {
5044                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5045                         napi_gen_id = NR_CPUS + 1;
5046         } while (napi_by_id(napi_gen_id));
5047         napi->napi_id = napi_gen_id;
5048
5049         hlist_add_head_rcu(&napi->napi_hash_node,
5050                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5051
5052         spin_unlock(&napi_hash_lock);
5053 }
5054 EXPORT_SYMBOL_GPL(napi_hash_add);
5055
5056 /* Warning : caller is responsible to make sure rcu grace period
5057  * is respected before freeing memory containing @napi
5058  */
5059 bool napi_hash_del(struct napi_struct *napi)
5060 {
5061         bool rcu_sync_needed = false;
5062
5063         spin_lock(&napi_hash_lock);
5064
5065         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5066                 rcu_sync_needed = true;
5067                 hlist_del_rcu(&napi->napi_hash_node);
5068         }
5069         spin_unlock(&napi_hash_lock);
5070         return rcu_sync_needed;
5071 }
5072 EXPORT_SYMBOL_GPL(napi_hash_del);
5073
5074 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5075 {
5076         struct napi_struct *napi;
5077
5078         napi = container_of(timer, struct napi_struct, timer);
5079         if (napi->gro_list)
5080                 napi_schedule(napi);
5081
5082         return HRTIMER_NORESTART;
5083 }
5084
5085 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5086                     int (*poll)(struct napi_struct *, int), int weight)
5087 {
5088         INIT_LIST_HEAD(&napi->poll_list);
5089         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5090         napi->timer.function = napi_watchdog;
5091         napi->gro_count = 0;
5092         napi->gro_list = NULL;
5093         napi->skb = NULL;
5094         napi->poll = poll;
5095         if (weight > NAPI_POLL_WEIGHT)
5096                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5097                             weight, dev->name);
5098         napi->weight = weight;
5099         list_add(&napi->dev_list, &dev->napi_list);
5100         napi->dev = dev;
5101 #ifdef CONFIG_NETPOLL
5102         spin_lock_init(&napi->poll_lock);
5103         napi->poll_owner = -1;
5104 #endif
5105         set_bit(NAPI_STATE_SCHED, &napi->state);
5106         napi_hash_add(napi);
5107 }
5108 EXPORT_SYMBOL(netif_napi_add);
5109
5110 void napi_disable(struct napi_struct *n)
5111 {
5112         might_sleep();
5113         set_bit(NAPI_STATE_DISABLE, &n->state);
5114
5115         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5116                 msleep(1);
5117         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5118                 msleep(1);
5119
5120         hrtimer_cancel(&n->timer);
5121
5122         clear_bit(NAPI_STATE_DISABLE, &n->state);
5123 }
5124 EXPORT_SYMBOL(napi_disable);
5125
5126 /* Must be called in process context */
5127 void netif_napi_del(struct napi_struct *napi)
5128 {
5129         might_sleep();
5130         if (napi_hash_del(napi))
5131                 synchronize_net();
5132         list_del_init(&napi->dev_list);
5133         napi_free_frags(napi);
5134
5135         kfree_skb_list(napi->gro_list);
5136         napi->gro_list = NULL;
5137         napi->gro_count = 0;
5138 }
5139 EXPORT_SYMBOL(netif_napi_del);
5140
5141 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5142 {
5143         void *have;
5144         int work, weight;
5145
5146         list_del_init(&n->poll_list);
5147
5148         have = netpoll_poll_lock(n);
5149
5150         weight = n->weight;
5151
5152         /* This NAPI_STATE_SCHED test is for avoiding a race
5153          * with netpoll's poll_napi().  Only the entity which
5154          * obtains the lock and sees NAPI_STATE_SCHED set will
5155          * actually make the ->poll() call.  Therefore we avoid
5156          * accidentally calling ->poll() when NAPI is not scheduled.
5157          */
5158         work = 0;
5159         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5160                 work = n->poll(n, weight);
5161                 trace_napi_poll(n, work, weight);
5162         }
5163
5164         WARN_ON_ONCE(work > weight);
5165
5166         if (likely(work < weight))
5167                 goto out_unlock;
5168
5169         /* Drivers must not modify the NAPI state if they
5170          * consume the entire weight.  In such cases this code
5171          * still "owns" the NAPI instance and therefore can
5172          * move the instance around on the list at-will.
5173          */
5174         if (unlikely(napi_disable_pending(n))) {
5175                 napi_complete(n);
5176                 goto out_unlock;
5177         }
5178
5179         if (n->gro_list) {
5180                 /* flush too old packets
5181                  * If HZ < 1000, flush all packets.
5182                  */
5183                 napi_gro_flush(n, HZ >= 1000);
5184         }
5185
5186         /* Some drivers may have called napi_schedule
5187          * prior to exhausting their budget.
5188          */
5189         if (unlikely(!list_empty(&n->poll_list))) {
5190                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5191                              n->dev ? n->dev->name : "backlog");
5192                 goto out_unlock;
5193         }
5194
5195         list_add_tail(&n->poll_list, repoll);
5196
5197 out_unlock:
5198         netpoll_poll_unlock(have);
5199
5200         return work;
5201 }
5202
5203 static __latent_entropy void net_rx_action(struct softirq_action *h)
5204 {
5205         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5206         unsigned long time_limit = jiffies + 2;
5207         int budget = netdev_budget;
5208         LIST_HEAD(list);
5209         LIST_HEAD(repoll);
5210
5211         local_irq_disable();
5212         list_splice_init(&sd->poll_list, &list);
5213         local_irq_enable();
5214
5215         for (;;) {
5216                 struct napi_struct *n;
5217
5218                 if (list_empty(&list)) {
5219                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5220                                 return;
5221                         break;
5222                 }
5223
5224                 n = list_first_entry(&list, struct napi_struct, poll_list);
5225                 budget -= napi_poll(n, &repoll);
5226
5227                 /* If softirq window is exhausted then punt.
5228                  * Allow this to run for 2 jiffies since which will allow
5229                  * an average latency of 1.5/HZ.
5230                  */
5231                 if (unlikely(budget <= 0 ||
5232                              time_after_eq(jiffies, time_limit))) {
5233                         sd->time_squeeze++;
5234                         break;
5235                 }
5236         }
5237
5238         __kfree_skb_flush();
5239         local_irq_disable();
5240
5241         list_splice_tail_init(&sd->poll_list, &list);
5242         list_splice_tail(&repoll, &list);
5243         list_splice(&list, &sd->poll_list);
5244         if (!list_empty(&sd->poll_list))
5245                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5246
5247         net_rps_action_and_irq_enable(sd);
5248 }
5249
5250 struct netdev_adjacent {
5251         struct net_device *dev;
5252
5253         /* upper master flag, there can only be one master device per list */
5254         bool master;
5255
5256         /* counter for the number of times this device was added to us */
5257         u16 ref_nr;
5258
5259         /* private field for the users */
5260         void *private;
5261
5262         struct list_head list;
5263         struct rcu_head rcu;
5264 };
5265
5266 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5267                                                  struct list_head *adj_list)
5268 {
5269         struct netdev_adjacent *adj;
5270
5271         list_for_each_entry(adj, adj_list, list) {
5272                 if (adj->dev == adj_dev)
5273                         return adj;
5274         }
5275         return NULL;
5276 }
5277
5278 /**
5279  * netdev_has_upper_dev - Check if device is linked to an upper device
5280  * @dev: device
5281  * @upper_dev: upper device to check
5282  *
5283  * Find out if a device is linked to specified upper device and return true
5284  * in case it is. Note that this checks only immediate upper device,
5285  * not through a complete stack of devices. The caller must hold the RTNL lock.
5286  */
5287 bool netdev_has_upper_dev(struct net_device *dev,
5288                           struct net_device *upper_dev)
5289 {
5290         ASSERT_RTNL();
5291
5292         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5293 }
5294 EXPORT_SYMBOL(netdev_has_upper_dev);
5295
5296 /**
5297  * netdev_has_any_upper_dev - Check if device is linked to some device
5298  * @dev: device
5299  *
5300  * Find out if a device is linked to an upper device and return true in case
5301  * it is. The caller must hold the RTNL lock.
5302  */
5303 static bool netdev_has_any_upper_dev(struct net_device *dev)
5304 {
5305         ASSERT_RTNL();
5306
5307         return !list_empty(&dev->all_adj_list.upper);
5308 }
5309
5310 /**
5311  * netdev_master_upper_dev_get - Get master upper device
5312  * @dev: device
5313  *
5314  * Find a master upper device and return pointer to it or NULL in case
5315  * it's not there. The caller must hold the RTNL lock.
5316  */
5317 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5318 {
5319         struct netdev_adjacent *upper;
5320
5321         ASSERT_RTNL();
5322
5323         if (list_empty(&dev->adj_list.upper))
5324                 return NULL;
5325
5326         upper = list_first_entry(&dev->adj_list.upper,
5327                                  struct netdev_adjacent, list);
5328         if (likely(upper->master))
5329                 return upper->dev;
5330         return NULL;
5331 }
5332 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5333
5334 void *netdev_adjacent_get_private(struct list_head *adj_list)
5335 {
5336         struct netdev_adjacent *adj;
5337
5338         adj = list_entry(adj_list, struct netdev_adjacent, list);
5339
5340         return adj->private;
5341 }
5342 EXPORT_SYMBOL(netdev_adjacent_get_private);
5343
5344 /**
5345  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5346  * @dev: device
5347  * @iter: list_head ** of the current position
5348  *
5349  * Gets the next device from the dev's upper list, starting from iter
5350  * position. The caller must hold RCU read lock.
5351  */
5352 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5353                                                  struct list_head **iter)
5354 {
5355         struct netdev_adjacent *upper;
5356
5357         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5358
5359         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360
5361         if (&upper->list == &dev->adj_list.upper)
5362                 return NULL;
5363
5364         *iter = &upper->list;
5365
5366         return upper->dev;
5367 }
5368 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5369
5370 /**
5371  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5372  * @dev: device
5373  * @iter: list_head ** of the current position
5374  *
5375  * Gets the next device from the dev's upper list, starting from iter
5376  * position. The caller must hold RCU read lock.
5377  */
5378 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5379                                                      struct list_head **iter)
5380 {
5381         struct netdev_adjacent *upper;
5382
5383         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5384
5385         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5386
5387         if (&upper->list == &dev->all_adj_list.upper)
5388                 return NULL;
5389
5390         *iter = &upper->list;
5391
5392         return upper->dev;
5393 }
5394 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5395
5396 /**
5397  * netdev_lower_get_next_private - Get the next ->private from the
5398  *                                 lower neighbour list
5399  * @dev: device
5400  * @iter: list_head ** of the current position
5401  *
5402  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5403  * list, starting from iter position. The caller must hold either hold the
5404  * RTNL lock or its own locking that guarantees that the neighbour lower
5405  * list will remain unchanged.
5406  */
5407 void *netdev_lower_get_next_private(struct net_device *dev,
5408                                     struct list_head **iter)
5409 {
5410         struct netdev_adjacent *lower;
5411
5412         lower = list_entry(*iter, struct netdev_adjacent, list);
5413
5414         if (&lower->list == &dev->adj_list.lower)
5415                 return NULL;
5416
5417         *iter = lower->list.next;
5418
5419         return lower->private;
5420 }
5421 EXPORT_SYMBOL(netdev_lower_get_next_private);
5422
5423 /**
5424  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5425  *                                     lower neighbour list, RCU
5426  *                                     variant
5427  * @dev: device
5428  * @iter: list_head ** of the current position
5429  *
5430  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5431  * list, starting from iter position. The caller must hold RCU read lock.
5432  */
5433 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5434                                         struct list_head **iter)
5435 {
5436         struct netdev_adjacent *lower;
5437
5438         WARN_ON_ONCE(!rcu_read_lock_held());
5439
5440         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5441
5442         if (&lower->list == &dev->adj_list.lower)
5443                 return NULL;
5444
5445         *iter = &lower->list;
5446
5447         return lower->private;
5448 }
5449 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5450
5451 /**
5452  * netdev_lower_get_next - Get the next device from the lower neighbour
5453  *                         list
5454  * @dev: device
5455  * @iter: list_head ** of the current position
5456  *
5457  * Gets the next netdev_adjacent from the dev's lower neighbour
5458  * list, starting from iter position. The caller must hold RTNL lock or
5459  * its own locking that guarantees that the neighbour lower
5460  * list will remain unchanged.
5461  */
5462 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5463 {
5464         struct netdev_adjacent *lower;
5465
5466         lower = list_entry(*iter, struct netdev_adjacent, list);
5467
5468         if (&lower->list == &dev->adj_list.lower)
5469                 return NULL;
5470
5471         *iter = lower->list.next;
5472
5473         return lower->dev;
5474 }
5475 EXPORT_SYMBOL(netdev_lower_get_next);
5476
5477 /**
5478  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5479  * @dev: device
5480  * @iter: list_head ** of the current position
5481  *
5482  * Gets the next netdev_adjacent from the dev's all lower neighbour
5483  * list, starting from iter position. The caller must hold RTNL lock or
5484  * its own locking that guarantees that the neighbour all lower
5485  * list will remain unchanged.
5486  */
5487 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5488 {
5489         struct netdev_adjacent *lower;
5490
5491         lower = list_entry(*iter, struct netdev_adjacent, list);
5492
5493         if (&lower->list == &dev->all_adj_list.lower)
5494                 return NULL;
5495
5496         *iter = lower->list.next;
5497
5498         return lower->dev;
5499 }
5500 EXPORT_SYMBOL(netdev_all_lower_get_next);
5501
5502 /**
5503  * netdev_all_lower_get_next_rcu - Get the next device from all
5504  *                                 lower neighbour list, RCU variant
5505  * @dev: device
5506  * @iter: list_head ** of the current position
5507  *
5508  * Gets the next netdev_adjacent from the dev's all lower neighbour
5509  * list, starting from iter position. The caller must hold RCU read lock.
5510  */
5511 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5512                                                  struct list_head **iter)
5513 {
5514         struct netdev_adjacent *lower;
5515
5516         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5517
5518         if (&lower->list == &dev->all_adj_list.lower)
5519                 return NULL;
5520
5521         *iter = &lower->list;
5522
5523         return lower->dev;
5524 }
5525 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5526
5527 /**
5528  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5529  *                                     lower neighbour list, RCU
5530  *                                     variant
5531  * @dev: device
5532  *
5533  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5534  * list. The caller must hold RCU read lock.
5535  */
5536 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5537 {
5538         struct netdev_adjacent *lower;
5539
5540         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5541                         struct netdev_adjacent, list);
5542         if (lower)
5543                 return lower->private;
5544         return NULL;
5545 }
5546 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5547
5548 /**
5549  * netdev_master_upper_dev_get_rcu - Get master upper device
5550  * @dev: device
5551  *
5552  * Find a master upper device and return pointer to it or NULL in case
5553  * it's not there. The caller must hold the RCU read lock.
5554  */
5555 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5556 {
5557         struct netdev_adjacent *upper;
5558
5559         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5560                                        struct netdev_adjacent, list);
5561         if (upper && likely(upper->master))
5562                 return upper->dev;
5563         return NULL;
5564 }
5565 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5566
5567 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5568                               struct net_device *adj_dev,
5569                               struct list_head *dev_list)
5570 {
5571         char linkname[IFNAMSIZ+7];
5572         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5573                 "upper_%s" : "lower_%s", adj_dev->name);
5574         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5575                                  linkname);
5576 }
5577 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5578                                char *name,
5579                                struct list_head *dev_list)
5580 {
5581         char linkname[IFNAMSIZ+7];
5582         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5583                 "upper_%s" : "lower_%s", name);
5584         sysfs_remove_link(&(dev->dev.kobj), linkname);
5585 }
5586
5587 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5588                                                  struct net_device *adj_dev,
5589                                                  struct list_head *dev_list)
5590 {
5591         return (dev_list == &dev->adj_list.upper ||
5592                 dev_list == &dev->adj_list.lower) &&
5593                 net_eq(dev_net(dev), dev_net(adj_dev));
5594 }
5595
5596 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5597                                         struct net_device *adj_dev,
5598                                         u16 ref_nr,
5599                                         struct list_head *dev_list,
5600                                         void *private, bool master)
5601 {
5602         struct netdev_adjacent *adj;
5603         int ret;
5604
5605         adj = __netdev_find_adj(adj_dev, dev_list);
5606
5607         if (adj) {
5608                 adj->ref_nr += ref_nr;
5609                 return 0;
5610         }
5611
5612         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5613         if (!adj)
5614                 return -ENOMEM;
5615
5616         adj->dev = adj_dev;
5617         adj->master = master;
5618         adj->ref_nr = ref_nr;
5619         adj->private = private;
5620         dev_hold(adj_dev);
5621
5622         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5623                  adj_dev->name, dev->name, adj_dev->name);
5624
5625         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5626                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5627                 if (ret)
5628                         goto free_adj;
5629         }
5630
5631         /* Ensure that master link is always the first item in list. */
5632         if (master) {
5633                 ret = sysfs_create_link(&(dev->dev.kobj),
5634                                         &(adj_dev->dev.kobj), "master");
5635                 if (ret)
5636                         goto remove_symlinks;
5637
5638                 list_add_rcu(&adj->list, dev_list);
5639         } else {
5640                 list_add_tail_rcu(&adj->list, dev_list);
5641         }
5642
5643         return 0;
5644
5645 remove_symlinks:
5646         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5647                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5648 free_adj:
5649         kfree(adj);
5650         dev_put(adj_dev);
5651
5652         return ret;
5653 }
5654
5655 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5656                                          struct net_device *adj_dev,
5657                                          u16 ref_nr,
5658                                          struct list_head *dev_list)
5659 {
5660         struct netdev_adjacent *adj;
5661
5662         adj = __netdev_find_adj(adj_dev, dev_list);
5663
5664         if (!adj) {
5665                 pr_err("tried to remove device %s from %s\n",
5666                        dev->name, adj_dev->name);
5667                 BUG();
5668         }
5669
5670         if (adj->ref_nr > ref_nr) {
5671                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5672                          ref_nr, adj->ref_nr-ref_nr);
5673                 adj->ref_nr -= ref_nr;
5674                 return;
5675         }
5676
5677         if (adj->master)
5678                 sysfs_remove_link(&(dev->dev.kobj), "master");
5679
5680         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5681                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5682
5683         list_del_rcu(&adj->list);
5684         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5685                  adj_dev->name, dev->name, adj_dev->name);
5686         dev_put(adj_dev);
5687         kfree_rcu(adj, rcu);
5688 }
5689
5690 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5691                                             struct net_device *upper_dev,
5692                                             u16 ref_nr,
5693                                             struct list_head *up_list,
5694                                             struct list_head *down_list,
5695                                             void *private, bool master)
5696 {
5697         int ret;
5698
5699         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5700                                            private, master);
5701         if (ret)
5702                 return ret;
5703
5704         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5705                                            private, false);
5706         if (ret) {
5707                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5708                 return ret;
5709         }
5710
5711         return 0;
5712 }
5713
5714 static int __netdev_adjacent_dev_link(struct net_device *dev,
5715                                       struct net_device *upper_dev,
5716                                       u16 ref_nr)
5717 {
5718         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5719                                                 &dev->all_adj_list.upper,
5720                                                 &upper_dev->all_adj_list.lower,
5721                                                 NULL, false);
5722 }
5723
5724 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5725                                                struct net_device *upper_dev,
5726                                                u16 ref_nr,
5727                                                struct list_head *up_list,
5728                                                struct list_head *down_list)
5729 {
5730         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5731         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5732 }
5733
5734 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5735                                          struct net_device *upper_dev,
5736                                          u16 ref_nr)
5737 {
5738         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5739                                            &dev->all_adj_list.upper,
5740                                            &upper_dev->all_adj_list.lower);
5741 }
5742
5743 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5744                                                 struct net_device *upper_dev,
5745                                                 void *private, bool master)
5746 {
5747         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5748
5749         if (ret)
5750                 return ret;
5751
5752         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5753                                                &dev->adj_list.upper,
5754                                                &upper_dev->adj_list.lower,
5755                                                private, master);
5756         if (ret) {
5757                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5758                 return ret;
5759         }
5760
5761         return 0;
5762 }
5763
5764 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5765                                                    struct net_device *upper_dev)
5766 {
5767         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5768         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5769                                            &dev->adj_list.upper,
5770                                            &upper_dev->adj_list.lower);
5771 }
5772
5773 static int __netdev_upper_dev_link(struct net_device *dev,
5774                                    struct net_device *upper_dev, bool master,
5775                                    void *upper_priv, void *upper_info)
5776 {
5777         struct netdev_notifier_changeupper_info changeupper_info;
5778         struct netdev_adjacent *i, *j, *to_i, *to_j;
5779         int ret = 0;
5780
5781         ASSERT_RTNL();
5782
5783         if (dev == upper_dev)
5784                 return -EBUSY;
5785
5786         /* To prevent loops, check if dev is not upper device to upper_dev. */
5787         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5788                 return -EBUSY;
5789
5790         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5791                 return -EEXIST;
5792
5793         if (master && netdev_master_upper_dev_get(dev))
5794                 return -EBUSY;
5795
5796         changeupper_info.upper_dev = upper_dev;
5797         changeupper_info.master = master;
5798         changeupper_info.linking = true;
5799         changeupper_info.upper_info = upper_info;
5800
5801         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5802                                             &changeupper_info.info);
5803         ret = notifier_to_errno(ret);
5804         if (ret)
5805                 return ret;
5806
5807         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5808                                                    master);
5809         if (ret)
5810                 return ret;
5811
5812         /* Now that we linked these devs, make all the upper_dev's
5813          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5814          * versa, and don't forget the devices itself. All of these
5815          * links are non-neighbours.
5816          */
5817         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5818                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5819                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5820                                  i->dev->name, j->dev->name);
5821                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5822                         if (ret)
5823                                 goto rollback_mesh;
5824                 }
5825         }
5826
5827         /* add dev to every upper_dev's upper device */
5828         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5829                 pr_debug("linking %s's upper device %s with %s\n",
5830                          upper_dev->name, i->dev->name, dev->name);
5831                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5832                 if (ret)
5833                         goto rollback_upper_mesh;
5834         }
5835
5836         /* add upper_dev to every dev's lower device */
5837         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5839                          i->dev->name, upper_dev->name);
5840                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5841                 if (ret)
5842                         goto rollback_lower_mesh;
5843         }
5844
5845         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5846                                             &changeupper_info.info);
5847         ret = notifier_to_errno(ret);
5848         if (ret)
5849                 goto rollback_lower_mesh;
5850
5851         return 0;
5852
5853 rollback_lower_mesh:
5854         to_i = i;
5855         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5856                 if (i == to_i)
5857                         break;
5858                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5859         }
5860
5861         i = NULL;
5862
5863 rollback_upper_mesh:
5864         to_i = i;
5865         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5866                 if (i == to_i)
5867                         break;
5868                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5869         }
5870
5871         i = j = NULL;
5872
5873 rollback_mesh:
5874         to_i = i;
5875         to_j = j;
5876         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5877                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5878                         if (i == to_i && j == to_j)
5879                                 break;
5880                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5881                 }
5882                 if (i == to_i)
5883                         break;
5884         }
5885
5886         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5887
5888         return ret;
5889 }
5890
5891 /**
5892  * netdev_upper_dev_link - Add a link to the upper device
5893  * @dev: device
5894  * @upper_dev: new upper device
5895  *
5896  * Adds a link to device which is upper to this one. The caller must hold
5897  * the RTNL lock. On a failure a negative errno code is returned.
5898  * On success the reference counts are adjusted and the function
5899  * returns zero.
5900  */
5901 int netdev_upper_dev_link(struct net_device *dev,
5902                           struct net_device *upper_dev)
5903 {
5904         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5905 }
5906 EXPORT_SYMBOL(netdev_upper_dev_link);
5907
5908 /**
5909  * netdev_master_upper_dev_link - Add a master link to the upper device
5910  * @dev: device
5911  * @upper_dev: new upper device
5912  * @upper_priv: upper device private
5913  * @upper_info: upper info to be passed down via notifier
5914  *
5915  * Adds a link to device which is upper to this one. In this case, only
5916  * one master upper device can be linked, although other non-master devices
5917  * might be linked as well. The caller must hold the RTNL lock.
5918  * On a failure a negative errno code is returned. On success the reference
5919  * counts are adjusted and the function returns zero.
5920  */
5921 int netdev_master_upper_dev_link(struct net_device *dev,
5922                                  struct net_device *upper_dev,
5923                                  void *upper_priv, void *upper_info)
5924 {
5925         return __netdev_upper_dev_link(dev, upper_dev, true,
5926                                        upper_priv, upper_info);
5927 }
5928 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5929
5930 /**
5931  * netdev_upper_dev_unlink - Removes a link to upper device
5932  * @dev: device
5933  * @upper_dev: new upper device
5934  *
5935  * Removes a link to device which is upper to this one. The caller must hold
5936  * the RTNL lock.
5937  */
5938 void netdev_upper_dev_unlink(struct net_device *dev,
5939                              struct net_device *upper_dev)
5940 {
5941         struct netdev_notifier_changeupper_info changeupper_info;
5942         struct netdev_adjacent *i, *j;
5943         ASSERT_RTNL();
5944
5945         changeupper_info.upper_dev = upper_dev;
5946         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5947         changeupper_info.linking = false;
5948
5949         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5950                                       &changeupper_info.info);
5951
5952         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5953
5954         /* Here is the tricky part. We must remove all dev's lower
5955          * devices from all upper_dev's upper devices and vice
5956          * versa, to maintain the graph relationship.
5957          */
5958         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5959                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5960                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5961
5962         /* remove also the devices itself from lower/upper device
5963          * list
5964          */
5965         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5966                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5967
5968         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5969                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5970
5971         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5972                                       &changeupper_info.info);
5973 }
5974 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5975
5976 /**
5977  * netdev_bonding_info_change - Dispatch event about slave change
5978  * @dev: device
5979  * @bonding_info: info to dispatch
5980  *
5981  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5982  * The caller must hold the RTNL lock.
5983  */
5984 void netdev_bonding_info_change(struct net_device *dev,
5985                                 struct netdev_bonding_info *bonding_info)
5986 {
5987         struct netdev_notifier_bonding_info     info;
5988
5989         memcpy(&info.bonding_info, bonding_info,
5990                sizeof(struct netdev_bonding_info));
5991         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5992                                       &info.info);
5993 }
5994 EXPORT_SYMBOL(netdev_bonding_info_change);
5995
5996 static void netdev_adjacent_add_links(struct net_device *dev)
5997 {
5998         struct netdev_adjacent *iter;
5999
6000         struct net *net = dev_net(dev);
6001
6002         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6003                 if (!net_eq(net, dev_net(iter->dev)))
6004                         continue;
6005                 netdev_adjacent_sysfs_add(iter->dev, dev,
6006                                           &iter->dev->adj_list.lower);
6007                 netdev_adjacent_sysfs_add(dev, iter->dev,
6008                                           &dev->adj_list.upper);
6009         }
6010
6011         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6012                 if (!net_eq(net, dev_net(iter->dev)))
6013                         continue;
6014                 netdev_adjacent_sysfs_add(iter->dev, dev,
6015                                           &iter->dev->adj_list.upper);
6016                 netdev_adjacent_sysfs_add(dev, iter->dev,
6017                                           &dev->adj_list.lower);
6018         }
6019 }
6020
6021 static void netdev_adjacent_del_links(struct net_device *dev)
6022 {
6023         struct netdev_adjacent *iter;
6024
6025         struct net *net = dev_net(dev);
6026
6027         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6028                 if (!net_eq(net, dev_net(iter->dev)))
6029                         continue;
6030                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6031                                           &iter->dev->adj_list.lower);
6032                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6033                                           &dev->adj_list.upper);
6034         }
6035
6036         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6037                 if (!net_eq(net, dev_net(iter->dev)))
6038                         continue;
6039                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6040                                           &iter->dev->adj_list.upper);
6041                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6042                                           &dev->adj_list.lower);
6043         }
6044 }
6045
6046 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6047 {
6048         struct netdev_adjacent *iter;
6049
6050         struct net *net = dev_net(dev);
6051
6052         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6053                 if (!net_eq(net, dev_net(iter->dev)))
6054                         continue;
6055                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6056                                           &iter->dev->adj_list.lower);
6057                 netdev_adjacent_sysfs_add(iter->dev, dev,
6058                                           &iter->dev->adj_list.lower);
6059         }
6060
6061         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6062                 if (!net_eq(net, dev_net(iter->dev)))
6063                         continue;
6064                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6065                                           &iter->dev->adj_list.upper);
6066                 netdev_adjacent_sysfs_add(iter->dev, dev,
6067                                           &iter->dev->adj_list.upper);
6068         }
6069 }
6070
6071 void *netdev_lower_dev_get_private(struct net_device *dev,
6072                                    struct net_device *lower_dev)
6073 {
6074         struct netdev_adjacent *lower;
6075
6076         if (!lower_dev)
6077                 return NULL;
6078         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6079         if (!lower)
6080                 return NULL;
6081
6082         return lower->private;
6083 }
6084 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6085
6086
6087 int dev_get_nest_level(struct net_device *dev)
6088 {
6089         struct net_device *lower = NULL;
6090         struct list_head *iter;
6091         int max_nest = -1;
6092         int nest;
6093
6094         ASSERT_RTNL();
6095
6096         netdev_for_each_lower_dev(dev, lower, iter) {
6097                 nest = dev_get_nest_level(lower);
6098                 if (max_nest < nest)
6099                         max_nest = nest;
6100         }
6101
6102         return max_nest + 1;
6103 }
6104 EXPORT_SYMBOL(dev_get_nest_level);
6105
6106 /**
6107  * netdev_lower_change - Dispatch event about lower device state change
6108  * @lower_dev: device
6109  * @lower_state_info: state to dispatch
6110  *
6111  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6112  * The caller must hold the RTNL lock.
6113  */
6114 void netdev_lower_state_changed(struct net_device *lower_dev,
6115                                 void *lower_state_info)
6116 {
6117         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6118
6119         ASSERT_RTNL();
6120         changelowerstate_info.lower_state_info = lower_state_info;
6121         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6122                                       &changelowerstate_info.info);
6123 }
6124 EXPORT_SYMBOL(netdev_lower_state_changed);
6125
6126 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6127                                            struct neighbour *n)
6128 {
6129         struct net_device *lower_dev, *stop_dev;
6130         struct list_head *iter;
6131         int err;
6132
6133         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6134                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6135                         continue;
6136                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6137                 if (err) {
6138                         stop_dev = lower_dev;
6139                         goto rollback;
6140                 }
6141         }
6142         return 0;
6143
6144 rollback:
6145         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6146                 if (lower_dev == stop_dev)
6147                         break;
6148                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6149                         continue;
6150                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6151         }
6152         return err;
6153 }
6154 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6155
6156 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6157                                           struct neighbour *n)
6158 {
6159         struct net_device *lower_dev;
6160         struct list_head *iter;
6161
6162         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6164                         continue;
6165                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6166         }
6167 }
6168 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6169
6170 static void dev_change_rx_flags(struct net_device *dev, int flags)
6171 {
6172         const struct net_device_ops *ops = dev->netdev_ops;
6173
6174         if (ops->ndo_change_rx_flags)
6175                 ops->ndo_change_rx_flags(dev, flags);
6176 }
6177
6178 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6179 {
6180         unsigned int old_flags = dev->flags;
6181         kuid_t uid;
6182         kgid_t gid;
6183
6184         ASSERT_RTNL();
6185
6186         dev->flags |= IFF_PROMISC;
6187         dev->promiscuity += inc;
6188         if (dev->promiscuity == 0) {
6189                 /*
6190                  * Avoid overflow.
6191                  * If inc causes overflow, untouch promisc and return error.
6192                  */
6193                 if (inc < 0)
6194                         dev->flags &= ~IFF_PROMISC;
6195                 else {
6196                         dev->promiscuity -= inc;
6197                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6198                                 dev->name);
6199                         return -EOVERFLOW;
6200                 }
6201         }
6202         if (dev->flags != old_flags) {
6203                 pr_info("device %s %s promiscuous mode\n",
6204                         dev->name,
6205                         dev->flags & IFF_PROMISC ? "entered" : "left");
6206                 if (audit_enabled) {
6207                         current_uid_gid(&uid, &gid);
6208                         audit_log(current->audit_context, GFP_ATOMIC,
6209                                 AUDIT_ANOM_PROMISCUOUS,
6210                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6211                                 dev->name, (dev->flags & IFF_PROMISC),
6212                                 (old_flags & IFF_PROMISC),
6213                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6214                                 from_kuid(&init_user_ns, uid),
6215                                 from_kgid(&init_user_ns, gid),
6216                                 audit_get_sessionid(current));
6217                 }
6218
6219                 dev_change_rx_flags(dev, IFF_PROMISC);
6220         }
6221         if (notify)
6222                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6223         return 0;
6224 }
6225
6226 /**
6227  *      dev_set_promiscuity     - update promiscuity count on a device
6228  *      @dev: device
6229  *      @inc: modifier
6230  *
6231  *      Add or remove promiscuity from a device. While the count in the device
6232  *      remains above zero the interface remains promiscuous. Once it hits zero
6233  *      the device reverts back to normal filtering operation. A negative inc
6234  *      value is used to drop promiscuity on the device.
6235  *      Return 0 if successful or a negative errno code on error.
6236  */
6237 int dev_set_promiscuity(struct net_device *dev, int inc)
6238 {
6239         unsigned int old_flags = dev->flags;
6240         int err;
6241
6242         err = __dev_set_promiscuity(dev, inc, true);
6243         if (err < 0)
6244                 return err;
6245         if (dev->flags != old_flags)
6246                 dev_set_rx_mode(dev);
6247         return err;
6248 }
6249 EXPORT_SYMBOL(dev_set_promiscuity);
6250
6251 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6252 {
6253         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6254
6255         ASSERT_RTNL();
6256
6257         dev->flags |= IFF_ALLMULTI;
6258         dev->allmulti += inc;
6259         if (dev->allmulti == 0) {
6260                 /*
6261                  * Avoid overflow.
6262                  * If inc causes overflow, untouch allmulti and return error.
6263                  */
6264                 if (inc < 0)
6265                         dev->flags &= ~IFF_ALLMULTI;
6266                 else {
6267                         dev->allmulti -= inc;
6268                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6269                                 dev->name);
6270                         return -EOVERFLOW;
6271                 }
6272         }
6273         if (dev->flags ^ old_flags) {
6274                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6275                 dev_set_rx_mode(dev);
6276                 if (notify)
6277                         __dev_notify_flags(dev, old_flags,
6278                                            dev->gflags ^ old_gflags);
6279         }
6280         return 0;
6281 }
6282
6283 /**
6284  *      dev_set_allmulti        - update allmulti count on a device
6285  *      @dev: device
6286  *      @inc: modifier
6287  *
6288  *      Add or remove reception of all multicast frames to a device. While the
6289  *      count in the device remains above zero the interface remains listening
6290  *      to all interfaces. Once it hits zero the device reverts back to normal
6291  *      filtering operation. A negative @inc value is used to drop the counter
6292  *      when releasing a resource needing all multicasts.
6293  *      Return 0 if successful or a negative errno code on error.
6294  */
6295
6296 int dev_set_allmulti(struct net_device *dev, int inc)
6297 {
6298         return __dev_set_allmulti(dev, inc, true);
6299 }
6300 EXPORT_SYMBOL(dev_set_allmulti);
6301
6302 /*
6303  *      Upload unicast and multicast address lists to device and
6304  *      configure RX filtering. When the device doesn't support unicast
6305  *      filtering it is put in promiscuous mode while unicast addresses
6306  *      are present.
6307  */
6308 void __dev_set_rx_mode(struct net_device *dev)
6309 {
6310         const struct net_device_ops *ops = dev->netdev_ops;
6311
6312         /* dev_open will call this function so the list will stay sane. */
6313         if (!(dev->flags&IFF_UP))
6314                 return;
6315
6316         if (!netif_device_present(dev))
6317                 return;
6318
6319         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6320                 /* Unicast addresses changes may only happen under the rtnl,
6321                  * therefore calling __dev_set_promiscuity here is safe.
6322                  */
6323                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6324                         __dev_set_promiscuity(dev, 1, false);
6325                         dev->uc_promisc = true;
6326                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6327                         __dev_set_promiscuity(dev, -1, false);
6328                         dev->uc_promisc = false;
6329                 }
6330         }
6331
6332         if (ops->ndo_set_rx_mode)
6333                 ops->ndo_set_rx_mode(dev);
6334 }
6335
6336 void dev_set_rx_mode(struct net_device *dev)
6337 {
6338         netif_addr_lock_bh(dev);
6339         __dev_set_rx_mode(dev);
6340         netif_addr_unlock_bh(dev);
6341 }
6342
6343 /**
6344  *      dev_get_flags - get flags reported to userspace
6345  *      @dev: device
6346  *
6347  *      Get the combination of flag bits exported through APIs to userspace.
6348  */
6349 unsigned int dev_get_flags(const struct net_device *dev)
6350 {
6351         unsigned int flags;
6352
6353         flags = (dev->flags & ~(IFF_PROMISC |
6354                                 IFF_ALLMULTI |
6355                                 IFF_RUNNING |
6356                                 IFF_LOWER_UP |
6357                                 IFF_DORMANT)) |
6358                 (dev->gflags & (IFF_PROMISC |
6359                                 IFF_ALLMULTI));
6360
6361         if (netif_running(dev)) {
6362                 if (netif_oper_up(dev))
6363                         flags |= IFF_RUNNING;
6364                 if (netif_carrier_ok(dev))
6365                         flags |= IFF_LOWER_UP;
6366                 if (netif_dormant(dev))
6367                         flags |= IFF_DORMANT;
6368         }
6369
6370         return flags;
6371 }
6372 EXPORT_SYMBOL(dev_get_flags);
6373
6374 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6375 {
6376         unsigned int old_flags = dev->flags;
6377         int ret;
6378
6379         ASSERT_RTNL();
6380
6381         /*
6382          *      Set the flags on our device.
6383          */
6384
6385         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6386                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6387                                IFF_AUTOMEDIA)) |
6388                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6389                                     IFF_ALLMULTI));
6390
6391         /*
6392          *      Load in the correct multicast list now the flags have changed.
6393          */
6394
6395         if ((old_flags ^ flags) & IFF_MULTICAST)
6396                 dev_change_rx_flags(dev, IFF_MULTICAST);
6397
6398         dev_set_rx_mode(dev);
6399
6400         /*
6401          *      Have we downed the interface. We handle IFF_UP ourselves
6402          *      according to user attempts to set it, rather than blindly
6403          *      setting it.
6404          */
6405
6406         ret = 0;
6407         if ((old_flags ^ flags) & IFF_UP)
6408                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6409
6410         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6411                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6412                 unsigned int old_flags = dev->flags;
6413
6414                 dev->gflags ^= IFF_PROMISC;
6415
6416                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6417                         if (dev->flags != old_flags)
6418                                 dev_set_rx_mode(dev);
6419         }
6420
6421         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6422            is important. Some (broken) drivers set IFF_PROMISC, when
6423            IFF_ALLMULTI is requested not asking us and not reporting.
6424          */
6425         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6426                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6427
6428                 dev->gflags ^= IFF_ALLMULTI;
6429                 __dev_set_allmulti(dev, inc, false);
6430         }
6431
6432         return ret;
6433 }
6434
6435 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6436                         unsigned int gchanges)
6437 {
6438         unsigned int changes = dev->flags ^ old_flags;
6439
6440         if (gchanges)
6441                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6442
6443         if (changes & IFF_UP) {
6444                 if (dev->flags & IFF_UP)
6445                         call_netdevice_notifiers(NETDEV_UP, dev);
6446                 else
6447                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6448         }
6449
6450         if (dev->flags & IFF_UP &&
6451             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6452                 struct netdev_notifier_change_info change_info;
6453
6454                 change_info.flags_changed = changes;
6455                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6456                                               &change_info.info);
6457         }
6458 }
6459
6460 /**
6461  *      dev_change_flags - change device settings
6462  *      @dev: device
6463  *      @flags: device state flags
6464  *
6465  *      Change settings on device based state flags. The flags are
6466  *      in the userspace exported format.
6467  */
6468 int dev_change_flags(struct net_device *dev, unsigned int flags)
6469 {
6470         int ret;
6471         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6472
6473         ret = __dev_change_flags(dev, flags);
6474         if (ret < 0)
6475                 return ret;
6476
6477         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6478         __dev_notify_flags(dev, old_flags, changes);
6479         return ret;
6480 }
6481 EXPORT_SYMBOL(dev_change_flags);
6482
6483 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6484 {
6485         const struct net_device_ops *ops = dev->netdev_ops;
6486
6487         if (ops->ndo_change_mtu)
6488                 return ops->ndo_change_mtu(dev, new_mtu);
6489
6490         dev->mtu = new_mtu;
6491         return 0;
6492 }
6493
6494 /**
6495  *      dev_set_mtu - Change maximum transfer unit
6496  *      @dev: device
6497  *      @new_mtu: new transfer unit
6498  *
6499  *      Change the maximum transfer size of the network device.
6500  */
6501 int dev_set_mtu(struct net_device *dev, int new_mtu)
6502 {
6503         int err, orig_mtu;
6504
6505         if (new_mtu == dev->mtu)
6506                 return 0;
6507
6508         /*      MTU must be positive.    */
6509         if (new_mtu < 0)
6510                 return -EINVAL;
6511
6512         if (!netif_device_present(dev))
6513                 return -ENODEV;
6514
6515         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6516         err = notifier_to_errno(err);
6517         if (err)
6518                 return err;
6519
6520         orig_mtu = dev->mtu;
6521         err = __dev_set_mtu(dev, new_mtu);
6522
6523         if (!err) {
6524                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6525                 err = notifier_to_errno(err);
6526                 if (err) {
6527                         /* setting mtu back and notifying everyone again,
6528                          * so that they have a chance to revert changes.
6529                          */
6530                         __dev_set_mtu(dev, orig_mtu);
6531                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6532                 }
6533         }
6534         return err;
6535 }
6536 EXPORT_SYMBOL(dev_set_mtu);
6537
6538 /**
6539  *      dev_set_group - Change group this device belongs to
6540  *      @dev: device
6541  *      @new_group: group this device should belong to
6542  */
6543 void dev_set_group(struct net_device *dev, int new_group)
6544 {
6545         dev->group = new_group;
6546 }
6547 EXPORT_SYMBOL(dev_set_group);
6548
6549 /**
6550  *      dev_set_mac_address - Change Media Access Control Address
6551  *      @dev: device
6552  *      @sa: new address
6553  *
6554  *      Change the hardware (MAC) address of the device
6555  */
6556 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6557 {
6558         const struct net_device_ops *ops = dev->netdev_ops;
6559         int err;
6560
6561         if (!ops->ndo_set_mac_address)
6562                 return -EOPNOTSUPP;
6563         if (sa->sa_family != dev->type)
6564                 return -EINVAL;
6565         if (!netif_device_present(dev))
6566                 return -ENODEV;
6567         err = ops->ndo_set_mac_address(dev, sa);
6568         if (err)
6569                 return err;
6570         dev->addr_assign_type = NET_ADDR_SET;
6571         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6572         add_device_randomness(dev->dev_addr, dev->addr_len);
6573         return 0;
6574 }
6575 EXPORT_SYMBOL(dev_set_mac_address);
6576
6577 /**
6578  *      dev_change_carrier - Change device carrier
6579  *      @dev: device
6580  *      @new_carrier: new value
6581  *
6582  *      Change device carrier
6583  */
6584 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6585 {
6586         const struct net_device_ops *ops = dev->netdev_ops;
6587
6588         if (!ops->ndo_change_carrier)
6589                 return -EOPNOTSUPP;
6590         if (!netif_device_present(dev))
6591                 return -ENODEV;
6592         return ops->ndo_change_carrier(dev, new_carrier);
6593 }
6594 EXPORT_SYMBOL(dev_change_carrier);
6595
6596 /**
6597  *      dev_get_phys_port_id - Get device physical port ID
6598  *      @dev: device
6599  *      @ppid: port ID
6600  *
6601  *      Get device physical port ID
6602  */
6603 int dev_get_phys_port_id(struct net_device *dev,
6604                          struct netdev_phys_item_id *ppid)
6605 {
6606         const struct net_device_ops *ops = dev->netdev_ops;
6607
6608         if (!ops->ndo_get_phys_port_id)
6609                 return -EOPNOTSUPP;
6610         return ops->ndo_get_phys_port_id(dev, ppid);
6611 }
6612 EXPORT_SYMBOL(dev_get_phys_port_id);
6613
6614 /**
6615  *      dev_get_phys_port_name - Get device physical port name
6616  *      @dev: device
6617  *      @name: port name
6618  *      @len: limit of bytes to copy to name
6619  *
6620  *      Get device physical port name
6621  */
6622 int dev_get_phys_port_name(struct net_device *dev,
6623                            char *name, size_t len)
6624 {
6625         const struct net_device_ops *ops = dev->netdev_ops;
6626
6627         if (!ops->ndo_get_phys_port_name)
6628                 return -EOPNOTSUPP;
6629         return ops->ndo_get_phys_port_name(dev, name, len);
6630 }
6631 EXPORT_SYMBOL(dev_get_phys_port_name);
6632
6633 /**
6634  *      dev_change_proto_down - update protocol port state information
6635  *      @dev: device
6636  *      @proto_down: new value
6637  *
6638  *      This info can be used by switch drivers to set the phys state of the
6639  *      port.
6640  */
6641 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6642 {
6643         const struct net_device_ops *ops = dev->netdev_ops;
6644
6645         if (!ops->ndo_change_proto_down)
6646                 return -EOPNOTSUPP;
6647         if (!netif_device_present(dev))
6648                 return -ENODEV;
6649         return ops->ndo_change_proto_down(dev, proto_down);
6650 }
6651 EXPORT_SYMBOL(dev_change_proto_down);
6652
6653 /**
6654  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6655  *      @dev: device
6656  *      @fd: new program fd or negative value to clear
6657  *
6658  *      Set or clear a bpf program for a device
6659  */
6660 int dev_change_xdp_fd(struct net_device *dev, int fd)
6661 {
6662         const struct net_device_ops *ops = dev->netdev_ops;
6663         struct bpf_prog *prog = NULL;
6664         struct netdev_xdp xdp = {};
6665         int err;
6666
6667         if (!ops->ndo_xdp)
6668                 return -EOPNOTSUPP;
6669         if (fd >= 0) {
6670                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6671                 if (IS_ERR(prog))
6672                         return PTR_ERR(prog);
6673         }
6674
6675         xdp.command = XDP_SETUP_PROG;
6676         xdp.prog = prog;
6677         err = ops->ndo_xdp(dev, &xdp);
6678         if (err < 0 && prog)
6679                 bpf_prog_put(prog);
6680
6681         return err;
6682 }
6683 EXPORT_SYMBOL(dev_change_xdp_fd);
6684
6685 /**
6686  *      dev_new_index   -       allocate an ifindex
6687  *      @net: the applicable net namespace
6688  *
6689  *      Returns a suitable unique value for a new device interface
6690  *      number.  The caller must hold the rtnl semaphore or the
6691  *      dev_base_lock to be sure it remains unique.
6692  */
6693 static int dev_new_index(struct net *net)
6694 {
6695         int ifindex = net->ifindex;
6696         for (;;) {
6697                 if (++ifindex <= 0)
6698                         ifindex = 1;
6699                 if (!__dev_get_by_index(net, ifindex))
6700                         return net->ifindex = ifindex;
6701         }
6702 }
6703
6704 /* Delayed registration/unregisteration */
6705 static LIST_HEAD(net_todo_list);
6706 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6707
6708 static void net_set_todo(struct net_device *dev)
6709 {
6710         list_add_tail(&dev->todo_list, &net_todo_list);
6711         dev_net(dev)->dev_unreg_count++;
6712 }
6713
6714 static void rollback_registered_many(struct list_head *head)
6715 {
6716         struct net_device *dev, *tmp;
6717         LIST_HEAD(close_head);
6718
6719         BUG_ON(dev_boot_phase);
6720         ASSERT_RTNL();
6721
6722         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6723                 /* Some devices call without registering
6724                  * for initialization unwind. Remove those
6725                  * devices and proceed with the remaining.
6726                  */
6727                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6728                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6729                                  dev->name, dev);
6730
6731                         WARN_ON(1);
6732                         list_del(&dev->unreg_list);
6733                         continue;
6734                 }
6735                 dev->dismantle = true;
6736                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6737         }
6738
6739         /* If device is running, close it first. */
6740         list_for_each_entry(dev, head, unreg_list)
6741                 list_add_tail(&dev->close_list, &close_head);
6742         dev_close_many(&close_head, true);
6743
6744         list_for_each_entry(dev, head, unreg_list) {
6745                 /* And unlink it from device chain. */
6746                 unlist_netdevice(dev);
6747
6748                 dev->reg_state = NETREG_UNREGISTERING;
6749         }
6750         flush_all_backlogs();
6751
6752         synchronize_net();
6753
6754         list_for_each_entry(dev, head, unreg_list) {
6755                 struct sk_buff *skb = NULL;
6756
6757                 /* Shutdown queueing discipline. */
6758                 dev_shutdown(dev);
6759
6760
6761                 /* Notify protocols, that we are about to destroy
6762                    this device. They should clean all the things.
6763                 */
6764                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6765
6766                 if (!dev->rtnl_link_ops ||
6767                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6768                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6769                                                      GFP_KERNEL);
6770
6771                 /*
6772                  *      Flush the unicast and multicast chains
6773                  */
6774                 dev_uc_flush(dev);
6775                 dev_mc_flush(dev);
6776
6777                 if (dev->netdev_ops->ndo_uninit)
6778                         dev->netdev_ops->ndo_uninit(dev);
6779
6780                 if (skb)
6781                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6782
6783                 /* Notifier chain MUST detach us all upper devices. */
6784                 WARN_ON(netdev_has_any_upper_dev(dev));
6785
6786                 /* Remove entries from kobject tree */
6787                 netdev_unregister_kobject(dev);
6788 #ifdef CONFIG_XPS
6789                 /* Remove XPS queueing entries */
6790                 netif_reset_xps_queues_gt(dev, 0);
6791 #endif
6792         }
6793
6794         synchronize_net();
6795
6796         list_for_each_entry(dev, head, unreg_list)
6797                 dev_put(dev);
6798 }
6799
6800 static void rollback_registered(struct net_device *dev)
6801 {
6802         LIST_HEAD(single);
6803
6804         list_add(&dev->unreg_list, &single);
6805         rollback_registered_many(&single);
6806         list_del(&single);
6807 }
6808
6809 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6810         struct net_device *upper, netdev_features_t features)
6811 {
6812         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6813         netdev_features_t feature;
6814         int feature_bit;
6815
6816         for_each_netdev_feature(&upper_disables, feature_bit) {
6817                 feature = __NETIF_F_BIT(feature_bit);
6818                 if (!(upper->wanted_features & feature)
6819                     && (features & feature)) {
6820                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6821                                    &feature, upper->name);
6822                         features &= ~feature;
6823                 }
6824         }
6825
6826         return features;
6827 }
6828
6829 static void netdev_sync_lower_features(struct net_device *upper,
6830         struct net_device *lower, netdev_features_t features)
6831 {
6832         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6833         netdev_features_t feature;
6834         int feature_bit;
6835
6836         for_each_netdev_feature(&upper_disables, feature_bit) {
6837                 feature = __NETIF_F_BIT(feature_bit);
6838                 if (!(features & feature) && (lower->features & feature)) {
6839                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6840                                    &feature, lower->name);
6841                         lower->wanted_features &= ~feature;
6842                         netdev_update_features(lower);
6843
6844                         if (unlikely(lower->features & feature))
6845                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6846                                             &feature, lower->name);
6847                 }
6848         }
6849 }
6850
6851 static netdev_features_t netdev_fix_features(struct net_device *dev,
6852         netdev_features_t features)
6853 {
6854         /* Fix illegal checksum combinations */
6855         if ((features & NETIF_F_HW_CSUM) &&
6856             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6857                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6858                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6859         }
6860
6861         /* TSO requires that SG is present as well. */
6862         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6863                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6864                 features &= ~NETIF_F_ALL_TSO;
6865         }
6866
6867         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6868                                         !(features & NETIF_F_IP_CSUM)) {
6869                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6870                 features &= ~NETIF_F_TSO;
6871                 features &= ~NETIF_F_TSO_ECN;
6872         }
6873
6874         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6875                                          !(features & NETIF_F_IPV6_CSUM)) {
6876                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6877                 features &= ~NETIF_F_TSO6;
6878         }
6879
6880         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6881         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6882                 features &= ~NETIF_F_TSO_MANGLEID;
6883
6884         /* TSO ECN requires that TSO is present as well. */
6885         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6886                 features &= ~NETIF_F_TSO_ECN;
6887
6888         /* Software GSO depends on SG. */
6889         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6890                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6891                 features &= ~NETIF_F_GSO;
6892         }
6893
6894         /* UFO needs SG and checksumming */
6895         if (features & NETIF_F_UFO) {
6896                 /* maybe split UFO into V4 and V6? */
6897                 if (!(features & NETIF_F_HW_CSUM) &&
6898                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6899                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6900                         netdev_dbg(dev,
6901                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6902                         features &= ~NETIF_F_UFO;
6903                 }
6904
6905                 if (!(features & NETIF_F_SG)) {
6906                         netdev_dbg(dev,
6907                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6908                         features &= ~NETIF_F_UFO;
6909                 }
6910         }
6911
6912         /* GSO partial features require GSO partial be set */
6913         if ((features & dev->gso_partial_features) &&
6914             !(features & NETIF_F_GSO_PARTIAL)) {
6915                 netdev_dbg(dev,
6916                            "Dropping partially supported GSO features since no GSO partial.\n");
6917                 features &= ~dev->gso_partial_features;
6918         }
6919
6920 #ifdef CONFIG_NET_RX_BUSY_POLL
6921         if (dev->netdev_ops->ndo_busy_poll)
6922                 features |= NETIF_F_BUSY_POLL;
6923         else
6924 #endif
6925                 features &= ~NETIF_F_BUSY_POLL;
6926
6927         return features;
6928 }
6929
6930 int __netdev_update_features(struct net_device *dev)
6931 {
6932         struct net_device *upper, *lower;
6933         netdev_features_t features;
6934         struct list_head *iter;
6935         int err = -1;
6936
6937         ASSERT_RTNL();
6938
6939         features = netdev_get_wanted_features(dev);
6940
6941         if (dev->netdev_ops->ndo_fix_features)
6942                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6943
6944         /* driver might be less strict about feature dependencies */
6945         features = netdev_fix_features(dev, features);
6946
6947         /* some features can't be enabled if they're off an an upper device */
6948         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6949                 features = netdev_sync_upper_features(dev, upper, features);
6950
6951         if (dev->features == features)
6952                 goto sync_lower;
6953
6954         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6955                 &dev->features, &features);
6956
6957         if (dev->netdev_ops->ndo_set_features)
6958                 err = dev->netdev_ops->ndo_set_features(dev, features);
6959         else
6960                 err = 0;
6961
6962         if (unlikely(err < 0)) {
6963                 netdev_err(dev,
6964                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6965                         err, &features, &dev->features);
6966                 /* return non-0 since some features might have changed and
6967                  * it's better to fire a spurious notification than miss it
6968                  */
6969                 return -1;
6970         }
6971
6972 sync_lower:
6973         /* some features must be disabled on lower devices when disabled
6974          * on an upper device (think: bonding master or bridge)
6975          */
6976         netdev_for_each_lower_dev(dev, lower, iter)
6977                 netdev_sync_lower_features(dev, lower, features);
6978
6979         if (!err)
6980                 dev->features = features;
6981
6982         return err < 0 ? 0 : 1;
6983 }
6984
6985 /**
6986  *      netdev_update_features - recalculate device features
6987  *      @dev: the device to check
6988  *
6989  *      Recalculate dev->features set and send notifications if it
6990  *      has changed. Should be called after driver or hardware dependent
6991  *      conditions might have changed that influence the features.
6992  */
6993 void netdev_update_features(struct net_device *dev)
6994 {
6995         if (__netdev_update_features(dev))
6996                 netdev_features_change(dev);
6997 }
6998 EXPORT_SYMBOL(netdev_update_features);
6999
7000 /**
7001  *      netdev_change_features - recalculate device features
7002  *      @dev: the device to check
7003  *
7004  *      Recalculate dev->features set and send notifications even
7005  *      if they have not changed. Should be called instead of
7006  *      netdev_update_features() if also dev->vlan_features might
7007  *      have changed to allow the changes to be propagated to stacked
7008  *      VLAN devices.
7009  */
7010 void netdev_change_features(struct net_device *dev)
7011 {
7012         __netdev_update_features(dev);
7013         netdev_features_change(dev);
7014 }
7015 EXPORT_SYMBOL(netdev_change_features);
7016
7017 /**
7018  *      netif_stacked_transfer_operstate -      transfer operstate
7019  *      @rootdev: the root or lower level device to transfer state from
7020  *      @dev: the device to transfer operstate to
7021  *
7022  *      Transfer operational state from root to device. This is normally
7023  *      called when a stacking relationship exists between the root
7024  *      device and the device(a leaf device).
7025  */
7026 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7027                                         struct net_device *dev)
7028 {
7029         if (rootdev->operstate == IF_OPER_DORMANT)
7030                 netif_dormant_on(dev);
7031         else
7032                 netif_dormant_off(dev);
7033
7034         if (netif_carrier_ok(rootdev)) {
7035                 if (!netif_carrier_ok(dev))
7036                         netif_carrier_on(dev);
7037         } else {
7038                 if (netif_carrier_ok(dev))
7039                         netif_carrier_off(dev);
7040         }
7041 }
7042 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7043
7044 #ifdef CONFIG_SYSFS
7045 static int netif_alloc_rx_queues(struct net_device *dev)
7046 {
7047         unsigned int i, count = dev->num_rx_queues;
7048         struct netdev_rx_queue *rx;
7049         size_t sz = count * sizeof(*rx);
7050
7051         BUG_ON(count < 1);
7052
7053         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7054         if (!rx) {
7055                 rx = vzalloc(sz);
7056                 if (!rx)
7057                         return -ENOMEM;
7058         }
7059         dev->_rx = rx;
7060
7061         for (i = 0; i < count; i++)
7062                 rx[i].dev = dev;
7063         return 0;
7064 }
7065 #endif
7066
7067 static void netdev_init_one_queue(struct net_device *dev,
7068                                   struct netdev_queue *queue, void *_unused)
7069 {
7070         /* Initialize queue lock */
7071         spin_lock_init(&queue->_xmit_lock);
7072         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7073         queue->xmit_lock_owner = -1;
7074         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7075         queue->dev = dev;
7076 #ifdef CONFIG_BQL
7077         dql_init(&queue->dql, HZ);
7078 #endif
7079 }
7080
7081 static void netif_free_tx_queues(struct net_device *dev)
7082 {
7083         kvfree(dev->_tx);
7084 }
7085
7086 static int netif_alloc_netdev_queues(struct net_device *dev)
7087 {
7088         unsigned int count = dev->num_tx_queues;
7089         struct netdev_queue *tx;
7090         size_t sz = count * sizeof(*tx);
7091
7092         if (count < 1 || count > 0xffff)
7093                 return -EINVAL;
7094
7095         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7096         if (!tx) {
7097                 tx = vzalloc(sz);
7098                 if (!tx)
7099                         return -ENOMEM;
7100         }
7101         dev->_tx = tx;
7102
7103         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7104         spin_lock_init(&dev->tx_global_lock);
7105
7106         return 0;
7107 }
7108
7109 void netif_tx_stop_all_queues(struct net_device *dev)
7110 {
7111         unsigned int i;
7112
7113         for (i = 0; i < dev->num_tx_queues; i++) {
7114                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7115                 netif_tx_stop_queue(txq);
7116         }
7117 }
7118 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7119
7120 /**
7121  *      register_netdevice      - register a network device
7122  *      @dev: device to register
7123  *
7124  *      Take a completed network device structure and add it to the kernel
7125  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7126  *      chain. 0 is returned on success. A negative errno code is returned
7127  *      on a failure to set up the device, or if the name is a duplicate.
7128  *
7129  *      Callers must hold the rtnl semaphore. You may want
7130  *      register_netdev() instead of this.
7131  *
7132  *      BUGS:
7133  *      The locking appears insufficient to guarantee two parallel registers
7134  *      will not get the same name.
7135  */
7136
7137 int register_netdevice(struct net_device *dev)
7138 {
7139         int ret;
7140         struct net *net = dev_net(dev);
7141
7142         BUG_ON(dev_boot_phase);
7143         ASSERT_RTNL();
7144
7145         might_sleep();
7146
7147         /* When net_device's are persistent, this will be fatal. */
7148         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7149         BUG_ON(!net);
7150
7151         spin_lock_init(&dev->addr_list_lock);
7152         netdev_set_addr_lockdep_class(dev);
7153
7154         ret = dev_get_valid_name(net, dev, dev->name);
7155         if (ret < 0)
7156                 goto out;
7157
7158         /* Init, if this function is available */
7159         if (dev->netdev_ops->ndo_init) {
7160                 ret = dev->netdev_ops->ndo_init(dev);
7161                 if (ret) {
7162                         if (ret > 0)
7163                                 ret = -EIO;
7164                         goto out;
7165                 }
7166         }
7167
7168         if (((dev->hw_features | dev->features) &
7169              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7170             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7171              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7172                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7173                 ret = -EINVAL;
7174                 goto err_uninit;
7175         }
7176
7177         ret = -EBUSY;
7178         if (!dev->ifindex)
7179                 dev->ifindex = dev_new_index(net);
7180         else if (__dev_get_by_index(net, dev->ifindex))
7181                 goto err_uninit;
7182
7183         /* Transfer changeable features to wanted_features and enable
7184          * software offloads (GSO and GRO).
7185          */
7186         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7187         dev->features |= NETIF_F_SOFT_FEATURES;
7188         dev->wanted_features = dev->features & dev->hw_features;
7189
7190         if (!(dev->flags & IFF_LOOPBACK))
7191                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7192
7193         /* If IPv4 TCP segmentation offload is supported we should also
7194          * allow the device to enable segmenting the frame with the option
7195          * of ignoring a static IP ID value.  This doesn't enable the
7196          * feature itself but allows the user to enable it later.
7197          */
7198         if (dev->hw_features & NETIF_F_TSO)
7199                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7200         if (dev->vlan_features & NETIF_F_TSO)
7201                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7202         if (dev->mpls_features & NETIF_F_TSO)
7203                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7204         if (dev->hw_enc_features & NETIF_F_TSO)
7205                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7206
7207         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7208          */
7209         dev->vlan_features |= NETIF_F_HIGHDMA;
7210
7211         /* Make NETIF_F_SG inheritable to tunnel devices.
7212          */
7213         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7214
7215         /* Make NETIF_F_SG inheritable to MPLS.
7216          */
7217         dev->mpls_features |= NETIF_F_SG;
7218
7219         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7220         ret = notifier_to_errno(ret);
7221         if (ret)
7222                 goto err_uninit;
7223
7224         ret = netdev_register_kobject(dev);
7225         if (ret)
7226                 goto err_uninit;
7227         dev->reg_state = NETREG_REGISTERED;
7228
7229         __netdev_update_features(dev);
7230
7231         /*
7232          *      Default initial state at registry is that the
7233          *      device is present.
7234          */
7235
7236         set_bit(__LINK_STATE_PRESENT, &dev->state);
7237
7238         linkwatch_init_dev(dev);
7239
7240         dev_init_scheduler(dev);
7241         dev_hold(dev);
7242         list_netdevice(dev);
7243         add_device_randomness(dev->dev_addr, dev->addr_len);
7244
7245         /* If the device has permanent device address, driver should
7246          * set dev_addr and also addr_assign_type should be set to
7247          * NET_ADDR_PERM (default value).
7248          */
7249         if (dev->addr_assign_type == NET_ADDR_PERM)
7250                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7251
7252         /* Notify protocols, that a new device appeared. */
7253         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7254         ret = notifier_to_errno(ret);
7255         if (ret) {
7256                 rollback_registered(dev);
7257                 dev->reg_state = NETREG_UNREGISTERED;
7258         }
7259         /*
7260          *      Prevent userspace races by waiting until the network
7261          *      device is fully setup before sending notifications.
7262          */
7263         if (!dev->rtnl_link_ops ||
7264             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7265                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7266
7267 out:
7268         return ret;
7269
7270 err_uninit:
7271         if (dev->netdev_ops->ndo_uninit)
7272                 dev->netdev_ops->ndo_uninit(dev);
7273         goto out;
7274 }
7275 EXPORT_SYMBOL(register_netdevice);
7276
7277 /**
7278  *      init_dummy_netdev       - init a dummy network device for NAPI
7279  *      @dev: device to init
7280  *
7281  *      This takes a network device structure and initialize the minimum
7282  *      amount of fields so it can be used to schedule NAPI polls without
7283  *      registering a full blown interface. This is to be used by drivers
7284  *      that need to tie several hardware interfaces to a single NAPI
7285  *      poll scheduler due to HW limitations.
7286  */
7287 int init_dummy_netdev(struct net_device *dev)
7288 {
7289         /* Clear everything. Note we don't initialize spinlocks
7290          * are they aren't supposed to be taken by any of the
7291          * NAPI code and this dummy netdev is supposed to be
7292          * only ever used for NAPI polls
7293          */
7294         memset(dev, 0, sizeof(struct net_device));
7295
7296         /* make sure we BUG if trying to hit standard
7297          * register/unregister code path
7298          */
7299         dev->reg_state = NETREG_DUMMY;
7300
7301         /* NAPI wants this */
7302         INIT_LIST_HEAD(&dev->napi_list);
7303
7304         /* a dummy interface is started by default */
7305         set_bit(__LINK_STATE_PRESENT, &dev->state);
7306         set_bit(__LINK_STATE_START, &dev->state);
7307
7308         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7309          * because users of this 'device' dont need to change
7310          * its refcount.
7311          */
7312
7313         return 0;
7314 }
7315 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7316
7317
7318 /**
7319  *      register_netdev - register a network device
7320  *      @dev: device to register
7321  *
7322  *      Take a completed network device structure and add it to the kernel
7323  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7324  *      chain. 0 is returned on success. A negative errno code is returned
7325  *      on a failure to set up the device, or if the name is a duplicate.
7326  *
7327  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7328  *      and expands the device name if you passed a format string to
7329  *      alloc_netdev.
7330  */
7331 int register_netdev(struct net_device *dev)
7332 {
7333         int err;
7334
7335         rtnl_lock();
7336         err = register_netdevice(dev);
7337         rtnl_unlock();
7338         return err;
7339 }
7340 EXPORT_SYMBOL(register_netdev);
7341
7342 int netdev_refcnt_read(const struct net_device *dev)
7343 {
7344         int i, refcnt = 0;
7345
7346         for_each_possible_cpu(i)
7347                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7348         return refcnt;
7349 }
7350 EXPORT_SYMBOL(netdev_refcnt_read);
7351
7352 /**
7353  * netdev_wait_allrefs - wait until all references are gone.
7354  * @dev: target net_device
7355  *
7356  * This is called when unregistering network devices.
7357  *
7358  * Any protocol or device that holds a reference should register
7359  * for netdevice notification, and cleanup and put back the
7360  * reference if they receive an UNREGISTER event.
7361  * We can get stuck here if buggy protocols don't correctly
7362  * call dev_put.
7363  */
7364 static void netdev_wait_allrefs(struct net_device *dev)
7365 {
7366         unsigned long rebroadcast_time, warning_time;
7367         int refcnt;
7368
7369         linkwatch_forget_dev(dev);
7370
7371         rebroadcast_time = warning_time = jiffies;
7372         refcnt = netdev_refcnt_read(dev);
7373
7374         while (refcnt != 0) {
7375                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7376                         rtnl_lock();
7377
7378                         /* Rebroadcast unregister notification */
7379                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7380
7381                         __rtnl_unlock();
7382                         rcu_barrier();
7383                         rtnl_lock();
7384
7385                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7386                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7387                                      &dev->state)) {
7388                                 /* We must not have linkwatch events
7389                                  * pending on unregister. If this
7390                                  * happens, we simply run the queue
7391                                  * unscheduled, resulting in a noop
7392                                  * for this device.
7393                                  */
7394                                 linkwatch_run_queue();
7395                         }
7396
7397                         __rtnl_unlock();
7398
7399                         rebroadcast_time = jiffies;
7400                 }
7401
7402                 msleep(250);
7403
7404                 refcnt = netdev_refcnt_read(dev);
7405
7406                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7407                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7408                                  dev->name, refcnt);
7409                         warning_time = jiffies;
7410                 }
7411         }
7412 }
7413
7414 /* The sequence is:
7415  *
7416  *      rtnl_lock();
7417  *      ...
7418  *      register_netdevice(x1);
7419  *      register_netdevice(x2);
7420  *      ...
7421  *      unregister_netdevice(y1);
7422  *      unregister_netdevice(y2);
7423  *      ...
7424  *      rtnl_unlock();
7425  *      free_netdev(y1);
7426  *      free_netdev(y2);
7427  *
7428  * We are invoked by rtnl_unlock().
7429  * This allows us to deal with problems:
7430  * 1) We can delete sysfs objects which invoke hotplug
7431  *    without deadlocking with linkwatch via keventd.
7432  * 2) Since we run with the RTNL semaphore not held, we can sleep
7433  *    safely in order to wait for the netdev refcnt to drop to zero.
7434  *
7435  * We must not return until all unregister events added during
7436  * the interval the lock was held have been completed.
7437  */
7438 void netdev_run_todo(void)
7439 {
7440         struct list_head list;
7441
7442         /* Snapshot list, allow later requests */
7443         list_replace_init(&net_todo_list, &list);
7444
7445         __rtnl_unlock();
7446
7447
7448         /* Wait for rcu callbacks to finish before next phase */
7449         if (!list_empty(&list))
7450                 rcu_barrier();
7451
7452         while (!list_empty(&list)) {
7453                 struct net_device *dev
7454                         = list_first_entry(&list, struct net_device, todo_list);
7455                 list_del(&dev->todo_list);
7456
7457                 rtnl_lock();
7458                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7459                 __rtnl_unlock();
7460
7461                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7462                         pr_err("network todo '%s' but state %d\n",
7463                                dev->name, dev->reg_state);
7464                         dump_stack();
7465                         continue;
7466                 }
7467
7468                 dev->reg_state = NETREG_UNREGISTERED;
7469
7470                 netdev_wait_allrefs(dev);
7471
7472                 /* paranoia */
7473                 BUG_ON(netdev_refcnt_read(dev));
7474                 BUG_ON(!list_empty(&dev->ptype_all));
7475                 BUG_ON(!list_empty(&dev->ptype_specific));
7476                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7477                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7478                 WARN_ON(dev->dn_ptr);
7479
7480                 if (dev->destructor)
7481                         dev->destructor(dev);
7482
7483                 /* Report a network device has been unregistered */
7484                 rtnl_lock();
7485                 dev_net(dev)->dev_unreg_count--;
7486                 __rtnl_unlock();
7487                 wake_up(&netdev_unregistering_wq);
7488
7489                 /* Free network device */
7490                 kobject_put(&dev->dev.kobj);
7491         }
7492 }
7493
7494 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7495  * all the same fields in the same order as net_device_stats, with only
7496  * the type differing, but rtnl_link_stats64 may have additional fields
7497  * at the end for newer counters.
7498  */
7499 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7500                              const struct net_device_stats *netdev_stats)
7501 {
7502 #if BITS_PER_LONG == 64
7503         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7504         memcpy(stats64, netdev_stats, sizeof(*stats64));
7505         /* zero out counters that only exist in rtnl_link_stats64 */
7506         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7507                sizeof(*stats64) - sizeof(*netdev_stats));
7508 #else
7509         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7510         const unsigned long *src = (const unsigned long *)netdev_stats;
7511         u64 *dst = (u64 *)stats64;
7512
7513         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7514         for (i = 0; i < n; i++)
7515                 dst[i] = src[i];
7516         /* zero out counters that only exist in rtnl_link_stats64 */
7517         memset((char *)stats64 + n * sizeof(u64), 0,
7518                sizeof(*stats64) - n * sizeof(u64));
7519 #endif
7520 }
7521 EXPORT_SYMBOL(netdev_stats_to_stats64);
7522
7523 /**
7524  *      dev_get_stats   - get network device statistics
7525  *      @dev: device to get statistics from
7526  *      @storage: place to store stats
7527  *
7528  *      Get network statistics from device. Return @storage.
7529  *      The device driver may provide its own method by setting
7530  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7531  *      otherwise the internal statistics structure is used.
7532  */
7533 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7534                                         struct rtnl_link_stats64 *storage)
7535 {
7536         const struct net_device_ops *ops = dev->netdev_ops;
7537
7538         if (ops->ndo_get_stats64) {
7539                 memset(storage, 0, sizeof(*storage));
7540                 ops->ndo_get_stats64(dev, storage);
7541         } else if (ops->ndo_get_stats) {
7542                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7543         } else {
7544                 netdev_stats_to_stats64(storage, &dev->stats);
7545         }
7546         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7547         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7548         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7549         return storage;
7550 }
7551 EXPORT_SYMBOL(dev_get_stats);
7552
7553 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7554 {
7555         struct netdev_queue *queue = dev_ingress_queue(dev);
7556
7557 #ifdef CONFIG_NET_CLS_ACT
7558         if (queue)
7559                 return queue;
7560         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7561         if (!queue)
7562                 return NULL;
7563         netdev_init_one_queue(dev, queue, NULL);
7564         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7565         queue->qdisc_sleeping = &noop_qdisc;
7566         rcu_assign_pointer(dev->ingress_queue, queue);
7567 #endif
7568         return queue;
7569 }
7570
7571 static const struct ethtool_ops default_ethtool_ops;
7572
7573 void netdev_set_default_ethtool_ops(struct net_device *dev,
7574                                     const struct ethtool_ops *ops)
7575 {
7576         if (dev->ethtool_ops == &default_ethtool_ops)
7577                 dev->ethtool_ops = ops;
7578 }
7579 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7580
7581 void netdev_freemem(struct net_device *dev)
7582 {
7583         char *addr = (char *)dev - dev->padded;
7584
7585         kvfree(addr);
7586 }
7587
7588 /**
7589  *      alloc_netdev_mqs - allocate network device
7590  *      @sizeof_priv:           size of private data to allocate space for
7591  *      @name:                  device name format string
7592  *      @name_assign_type:      origin of device name
7593  *      @setup:                 callback to initialize device
7594  *      @txqs:                  the number of TX subqueues to allocate
7595  *      @rxqs:                  the number of RX subqueues to allocate
7596  *
7597  *      Allocates a struct net_device with private data area for driver use
7598  *      and performs basic initialization.  Also allocates subqueue structs
7599  *      for each queue on the device.
7600  */
7601 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7602                 unsigned char name_assign_type,
7603                 void (*setup)(struct net_device *),
7604                 unsigned int txqs, unsigned int rxqs)
7605 {
7606         struct net_device *dev;
7607         size_t alloc_size;
7608         struct net_device *p;
7609
7610         BUG_ON(strlen(name) >= sizeof(dev->name));
7611
7612         if (txqs < 1) {
7613                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7614                 return NULL;
7615         }
7616
7617 #ifdef CONFIG_SYSFS
7618         if (rxqs < 1) {
7619                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7620                 return NULL;
7621         }
7622 #endif
7623
7624         alloc_size = sizeof(struct net_device);
7625         if (sizeof_priv) {
7626                 /* ensure 32-byte alignment of private area */
7627                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7628                 alloc_size += sizeof_priv;
7629         }
7630         /* ensure 32-byte alignment of whole construct */
7631         alloc_size += NETDEV_ALIGN - 1;
7632
7633         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7634         if (!p)
7635                 p = vzalloc(alloc_size);
7636         if (!p)
7637                 return NULL;
7638
7639         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7640         dev->padded = (char *)dev - (char *)p;
7641
7642         dev->pcpu_refcnt = alloc_percpu(int);
7643         if (!dev->pcpu_refcnt)
7644                 goto free_dev;
7645
7646         if (dev_addr_init(dev))
7647                 goto free_pcpu;
7648
7649         dev_mc_init(dev);
7650         dev_uc_init(dev);
7651
7652         dev_net_set(dev, &init_net);
7653
7654         dev->gso_max_size = GSO_MAX_SIZE;
7655         dev->gso_max_segs = GSO_MAX_SEGS;
7656
7657         INIT_LIST_HEAD(&dev->napi_list);
7658         INIT_LIST_HEAD(&dev->unreg_list);
7659         INIT_LIST_HEAD(&dev->close_list);
7660         INIT_LIST_HEAD(&dev->link_watch_list);
7661         INIT_LIST_HEAD(&dev->adj_list.upper);
7662         INIT_LIST_HEAD(&dev->adj_list.lower);
7663         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7664         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7665         INIT_LIST_HEAD(&dev->ptype_all);
7666         INIT_LIST_HEAD(&dev->ptype_specific);
7667 #ifdef CONFIG_NET_SCHED
7668         hash_init(dev->qdisc_hash);
7669 #endif
7670         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7671         setup(dev);
7672
7673         if (!dev->tx_queue_len) {
7674                 dev->priv_flags |= IFF_NO_QUEUE;
7675                 dev->tx_queue_len = 1;
7676         }
7677
7678         dev->num_tx_queues = txqs;
7679         dev->real_num_tx_queues = txqs;
7680         if (netif_alloc_netdev_queues(dev))
7681                 goto free_all;
7682
7683 #ifdef CONFIG_SYSFS
7684         dev->num_rx_queues = rxqs;
7685         dev->real_num_rx_queues = rxqs;
7686         if (netif_alloc_rx_queues(dev))
7687                 goto free_all;
7688 #endif
7689
7690         strcpy(dev->name, name);
7691         dev->name_assign_type = name_assign_type;
7692         dev->group = INIT_NETDEV_GROUP;
7693         if (!dev->ethtool_ops)
7694                 dev->ethtool_ops = &default_ethtool_ops;
7695
7696         nf_hook_ingress_init(dev);
7697
7698         return dev;
7699
7700 free_all:
7701         free_netdev(dev);
7702         return NULL;
7703
7704 free_pcpu:
7705         free_percpu(dev->pcpu_refcnt);
7706 free_dev:
7707         netdev_freemem(dev);
7708         return NULL;
7709 }
7710 EXPORT_SYMBOL(alloc_netdev_mqs);
7711
7712 /**
7713  *      free_netdev - free network device
7714  *      @dev: device
7715  *
7716  *      This function does the last stage of destroying an allocated device
7717  *      interface. The reference to the device object is released.
7718  *      If this is the last reference then it will be freed.
7719  *      Must be called in process context.
7720  */
7721 void free_netdev(struct net_device *dev)
7722 {
7723         struct napi_struct *p, *n;
7724
7725         might_sleep();
7726         netif_free_tx_queues(dev);
7727 #ifdef CONFIG_SYSFS
7728         kvfree(dev->_rx);
7729 #endif
7730
7731         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7732
7733         /* Flush device addresses */
7734         dev_addr_flush(dev);
7735
7736         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7737                 netif_napi_del(p);
7738
7739         free_percpu(dev->pcpu_refcnt);
7740         dev->pcpu_refcnt = NULL;
7741
7742         /*  Compatibility with error handling in drivers */
7743         if (dev->reg_state == NETREG_UNINITIALIZED) {
7744                 netdev_freemem(dev);
7745                 return;
7746         }
7747
7748         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7749         dev->reg_state = NETREG_RELEASED;
7750
7751         /* will free via device release */
7752         put_device(&dev->dev);
7753 }
7754 EXPORT_SYMBOL(free_netdev);
7755
7756 /**
7757  *      synchronize_net -  Synchronize with packet receive processing
7758  *
7759  *      Wait for packets currently being received to be done.
7760  *      Does not block later packets from starting.
7761  */
7762 void synchronize_net(void)
7763 {
7764         might_sleep();
7765         if (rtnl_is_locked())
7766                 synchronize_rcu_expedited();
7767         else
7768                 synchronize_rcu();
7769 }
7770 EXPORT_SYMBOL(synchronize_net);
7771
7772 /**
7773  *      unregister_netdevice_queue - remove device from the kernel
7774  *      @dev: device
7775  *      @head: list
7776  *
7777  *      This function shuts down a device interface and removes it
7778  *      from the kernel tables.
7779  *      If head not NULL, device is queued to be unregistered later.
7780  *
7781  *      Callers must hold the rtnl semaphore.  You may want
7782  *      unregister_netdev() instead of this.
7783  */
7784
7785 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7786 {
7787         ASSERT_RTNL();
7788
7789         if (head) {
7790                 list_move_tail(&dev->unreg_list, head);
7791         } else {
7792                 rollback_registered(dev);
7793                 /* Finish processing unregister after unlock */
7794                 net_set_todo(dev);
7795         }
7796 }
7797 EXPORT_SYMBOL(unregister_netdevice_queue);
7798
7799 /**
7800  *      unregister_netdevice_many - unregister many devices
7801  *      @head: list of devices
7802  *
7803  *  Note: As most callers use a stack allocated list_head,
7804  *  we force a list_del() to make sure stack wont be corrupted later.
7805  */
7806 void unregister_netdevice_many(struct list_head *head)
7807 {
7808         struct net_device *dev;
7809
7810         if (!list_empty(head)) {
7811                 rollback_registered_many(head);
7812                 list_for_each_entry(dev, head, unreg_list)
7813                         net_set_todo(dev);
7814                 list_del(head);
7815         }
7816 }
7817 EXPORT_SYMBOL(unregister_netdevice_many);
7818
7819 /**
7820  *      unregister_netdev - remove device from the kernel
7821  *      @dev: device
7822  *
7823  *      This function shuts down a device interface and removes it
7824  *      from the kernel tables.
7825  *
7826  *      This is just a wrapper for unregister_netdevice that takes
7827  *      the rtnl semaphore.  In general you want to use this and not
7828  *      unregister_netdevice.
7829  */
7830 void unregister_netdev(struct net_device *dev)
7831 {
7832         rtnl_lock();
7833         unregister_netdevice(dev);
7834         rtnl_unlock();
7835 }
7836 EXPORT_SYMBOL(unregister_netdev);
7837
7838 /**
7839  *      dev_change_net_namespace - move device to different nethost namespace
7840  *      @dev: device
7841  *      @net: network namespace
7842  *      @pat: If not NULL name pattern to try if the current device name
7843  *            is already taken in the destination network namespace.
7844  *
7845  *      This function shuts down a device interface and moves it
7846  *      to a new network namespace. On success 0 is returned, on
7847  *      a failure a netagive errno code is returned.
7848  *
7849  *      Callers must hold the rtnl semaphore.
7850  */
7851
7852 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7853 {
7854         int err;
7855
7856         ASSERT_RTNL();
7857
7858         /* Don't allow namespace local devices to be moved. */
7859         err = -EINVAL;
7860         if (dev->features & NETIF_F_NETNS_LOCAL)
7861                 goto out;
7862
7863         /* Ensure the device has been registrered */
7864         if (dev->reg_state != NETREG_REGISTERED)
7865                 goto out;
7866
7867         /* Get out if there is nothing todo */
7868         err = 0;
7869         if (net_eq(dev_net(dev), net))
7870                 goto out;
7871
7872         /* Pick the destination device name, and ensure
7873          * we can use it in the destination network namespace.
7874          */
7875         err = -EEXIST;
7876         if (__dev_get_by_name(net, dev->name)) {
7877                 /* We get here if we can't use the current device name */
7878                 if (!pat)
7879                         goto out;
7880                 if (dev_get_valid_name(net, dev, pat) < 0)
7881                         goto out;
7882         }
7883
7884         /*
7885          * And now a mini version of register_netdevice unregister_netdevice.
7886          */
7887
7888         /* If device is running close it first. */
7889         dev_close(dev);
7890
7891         /* And unlink it from device chain */
7892         err = -ENODEV;
7893         unlist_netdevice(dev);
7894
7895         synchronize_net();
7896
7897         /* Shutdown queueing discipline. */
7898         dev_shutdown(dev);
7899
7900         /* Notify protocols, that we are about to destroy
7901            this device. They should clean all the things.
7902
7903            Note that dev->reg_state stays at NETREG_REGISTERED.
7904            This is wanted because this way 8021q and macvlan know
7905            the device is just moving and can keep their slaves up.
7906         */
7907         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7908         rcu_barrier();
7909         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7910         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7911
7912         /*
7913          *      Flush the unicast and multicast chains
7914          */
7915         dev_uc_flush(dev);
7916         dev_mc_flush(dev);
7917
7918         /* Send a netdev-removed uevent to the old namespace */
7919         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7920         netdev_adjacent_del_links(dev);
7921
7922         /* Actually switch the network namespace */
7923         dev_net_set(dev, net);
7924
7925         /* If there is an ifindex conflict assign a new one */
7926         if (__dev_get_by_index(net, dev->ifindex))
7927                 dev->ifindex = dev_new_index(net);
7928
7929         /* Send a netdev-add uevent to the new namespace */
7930         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7931         netdev_adjacent_add_links(dev);
7932
7933         /* Fixup kobjects */
7934         err = device_rename(&dev->dev, dev->name);
7935         WARN_ON(err);
7936
7937         /* Add the device back in the hashes */
7938         list_netdevice(dev);
7939
7940         /* Notify protocols, that a new device appeared. */
7941         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7942
7943         /*
7944          *      Prevent userspace races by waiting until the network
7945          *      device is fully setup before sending notifications.
7946          */
7947         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7948
7949         synchronize_net();
7950         err = 0;
7951 out:
7952         return err;
7953 }
7954 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7955
7956 static int dev_cpu_callback(struct notifier_block *nfb,
7957                             unsigned long action,
7958                             void *ocpu)
7959 {
7960         struct sk_buff **list_skb;
7961         struct sk_buff *skb;
7962         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7963         struct softnet_data *sd, *oldsd;
7964
7965         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7966                 return NOTIFY_OK;
7967
7968         local_irq_disable();
7969         cpu = smp_processor_id();
7970         sd = &per_cpu(softnet_data, cpu);
7971         oldsd = &per_cpu(softnet_data, oldcpu);
7972
7973         /* Find end of our completion_queue. */
7974         list_skb = &sd->completion_queue;
7975         while (*list_skb)
7976                 list_skb = &(*list_skb)->next;
7977         /* Append completion queue from offline CPU. */
7978         *list_skb = oldsd->completion_queue;
7979         oldsd->completion_queue = NULL;
7980
7981         /* Append output queue from offline CPU. */
7982         if (oldsd->output_queue) {
7983                 *sd->output_queue_tailp = oldsd->output_queue;
7984                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7985                 oldsd->output_queue = NULL;
7986                 oldsd->output_queue_tailp = &oldsd->output_queue;
7987         }
7988         /* Append NAPI poll list from offline CPU, with one exception :
7989          * process_backlog() must be called by cpu owning percpu backlog.
7990          * We properly handle process_queue & input_pkt_queue later.
7991          */
7992         while (!list_empty(&oldsd->poll_list)) {
7993                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7994                                                             struct napi_struct,
7995                                                             poll_list);
7996
7997                 list_del_init(&napi->poll_list);
7998                 if (napi->poll == process_backlog)
7999                         napi->state = 0;
8000                 else
8001                         ____napi_schedule(sd, napi);
8002         }
8003
8004         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8005         local_irq_enable();
8006
8007         /* Process offline CPU's input_pkt_queue */
8008         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8009                 netif_rx_ni(skb);
8010                 input_queue_head_incr(oldsd);
8011         }
8012         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8013                 netif_rx_ni(skb);
8014                 input_queue_head_incr(oldsd);
8015         }
8016
8017         return NOTIFY_OK;
8018 }
8019
8020
8021 /**
8022  *      netdev_increment_features - increment feature set by one
8023  *      @all: current feature set
8024  *      @one: new feature set
8025  *      @mask: mask feature set
8026  *
8027  *      Computes a new feature set after adding a device with feature set
8028  *      @one to the master device with current feature set @all.  Will not
8029  *      enable anything that is off in @mask. Returns the new feature set.
8030  */
8031 netdev_features_t netdev_increment_features(netdev_features_t all,
8032         netdev_features_t one, netdev_features_t mask)
8033 {
8034         if (mask & NETIF_F_HW_CSUM)
8035                 mask |= NETIF_F_CSUM_MASK;
8036         mask |= NETIF_F_VLAN_CHALLENGED;
8037
8038         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8039         all &= one | ~NETIF_F_ALL_FOR_ALL;
8040
8041         /* If one device supports hw checksumming, set for all. */
8042         if (all & NETIF_F_HW_CSUM)
8043                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8044
8045         return all;
8046 }
8047 EXPORT_SYMBOL(netdev_increment_features);
8048
8049 static struct hlist_head * __net_init netdev_create_hash(void)
8050 {
8051         int i;
8052         struct hlist_head *hash;
8053
8054         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8055         if (hash != NULL)
8056                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8057                         INIT_HLIST_HEAD(&hash[i]);
8058
8059         return hash;
8060 }
8061
8062 /* Initialize per network namespace state */
8063 static int __net_init netdev_init(struct net *net)
8064 {
8065         if (net != &init_net)
8066                 INIT_LIST_HEAD(&net->dev_base_head);
8067
8068         net->dev_name_head = netdev_create_hash();
8069         if (net->dev_name_head == NULL)
8070                 goto err_name;
8071
8072         net->dev_index_head = netdev_create_hash();
8073         if (net->dev_index_head == NULL)
8074                 goto err_idx;
8075
8076         return 0;
8077
8078 err_idx:
8079         kfree(net->dev_name_head);
8080 err_name:
8081         return -ENOMEM;
8082 }
8083
8084 /**
8085  *      netdev_drivername - network driver for the device
8086  *      @dev: network device
8087  *
8088  *      Determine network driver for device.
8089  */
8090 const char *netdev_drivername(const struct net_device *dev)
8091 {
8092         const struct device_driver *driver;
8093         const struct device *parent;
8094         const char *empty = "";
8095
8096         parent = dev->dev.parent;
8097         if (!parent)
8098                 return empty;
8099
8100         driver = parent->driver;
8101         if (driver && driver->name)
8102                 return driver->name;
8103         return empty;
8104 }
8105
8106 static void __netdev_printk(const char *level, const struct net_device *dev,
8107                             struct va_format *vaf)
8108 {
8109         if (dev && dev->dev.parent) {
8110                 dev_printk_emit(level[1] - '0',
8111                                 dev->dev.parent,
8112                                 "%s %s %s%s: %pV",
8113                                 dev_driver_string(dev->dev.parent),
8114                                 dev_name(dev->dev.parent),
8115                                 netdev_name(dev), netdev_reg_state(dev),
8116                                 vaf);
8117         } else if (dev) {
8118                 printk("%s%s%s: %pV",
8119                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8120         } else {
8121                 printk("%s(NULL net_device): %pV", level, vaf);
8122         }
8123 }
8124
8125 void netdev_printk(const char *level, const struct net_device *dev,
8126                    const char *format, ...)
8127 {
8128         struct va_format vaf;
8129         va_list args;
8130
8131         va_start(args, format);
8132
8133         vaf.fmt = format;
8134         vaf.va = &args;
8135
8136         __netdev_printk(level, dev, &vaf);
8137
8138         va_end(args);
8139 }
8140 EXPORT_SYMBOL(netdev_printk);
8141
8142 #define define_netdev_printk_level(func, level)                 \
8143 void func(const struct net_device *dev, const char *fmt, ...)   \
8144 {                                                               \
8145         struct va_format vaf;                                   \
8146         va_list args;                                           \
8147                                                                 \
8148         va_start(args, fmt);                                    \
8149                                                                 \
8150         vaf.fmt = fmt;                                          \
8151         vaf.va = &args;                                         \
8152                                                                 \
8153         __netdev_printk(level, dev, &vaf);                      \
8154                                                                 \
8155         va_end(args);                                           \
8156 }                                                               \
8157 EXPORT_SYMBOL(func);
8158
8159 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8160 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8161 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8162 define_netdev_printk_level(netdev_err, KERN_ERR);
8163 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8164 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8165 define_netdev_printk_level(netdev_info, KERN_INFO);
8166
8167 static void __net_exit netdev_exit(struct net *net)
8168 {
8169         kfree(net->dev_name_head);
8170         kfree(net->dev_index_head);
8171 }
8172
8173 static struct pernet_operations __net_initdata netdev_net_ops = {
8174         .init = netdev_init,
8175         .exit = netdev_exit,
8176 };
8177
8178 static void __net_exit default_device_exit(struct net *net)
8179 {
8180         struct net_device *dev, *aux;
8181         /*
8182          * Push all migratable network devices back to the
8183          * initial network namespace
8184          */
8185         rtnl_lock();
8186         for_each_netdev_safe(net, dev, aux) {
8187                 int err;
8188                 char fb_name[IFNAMSIZ];
8189
8190                 /* Ignore unmoveable devices (i.e. loopback) */
8191                 if (dev->features & NETIF_F_NETNS_LOCAL)
8192                         continue;
8193
8194                 /* Leave virtual devices for the generic cleanup */
8195                 if (dev->rtnl_link_ops)
8196                         continue;
8197
8198                 /* Push remaining network devices to init_net */
8199                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8200                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8201                 if (err) {
8202                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8203                                  __func__, dev->name, err);
8204                         BUG();
8205                 }
8206         }
8207         rtnl_unlock();
8208 }
8209
8210 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8211 {
8212         /* Return with the rtnl_lock held when there are no network
8213          * devices unregistering in any network namespace in net_list.
8214          */
8215         struct net *net;
8216         bool unregistering;
8217         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8218
8219         add_wait_queue(&netdev_unregistering_wq, &wait);
8220         for (;;) {
8221                 unregistering = false;
8222                 rtnl_lock();
8223                 list_for_each_entry(net, net_list, exit_list) {
8224                         if (net->dev_unreg_count > 0) {
8225                                 unregistering = true;
8226                                 break;
8227                         }
8228                 }
8229                 if (!unregistering)
8230                         break;
8231                 __rtnl_unlock();
8232
8233                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8234         }
8235         remove_wait_queue(&netdev_unregistering_wq, &wait);
8236 }
8237
8238 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8239 {
8240         /* At exit all network devices most be removed from a network
8241          * namespace.  Do this in the reverse order of registration.
8242          * Do this across as many network namespaces as possible to
8243          * improve batching efficiency.
8244          */
8245         struct net_device *dev;
8246         struct net *net;
8247         LIST_HEAD(dev_kill_list);
8248
8249         /* To prevent network device cleanup code from dereferencing
8250          * loopback devices or network devices that have been freed
8251          * wait here for all pending unregistrations to complete,
8252          * before unregistring the loopback device and allowing the
8253          * network namespace be freed.
8254          *
8255          * The netdev todo list containing all network devices
8256          * unregistrations that happen in default_device_exit_batch
8257          * will run in the rtnl_unlock() at the end of
8258          * default_device_exit_batch.
8259          */
8260         rtnl_lock_unregistering(net_list);
8261         list_for_each_entry(net, net_list, exit_list) {
8262                 for_each_netdev_reverse(net, dev) {
8263                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8264                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8265                         else
8266                                 unregister_netdevice_queue(dev, &dev_kill_list);
8267                 }
8268         }
8269         unregister_netdevice_many(&dev_kill_list);
8270         rtnl_unlock();
8271 }
8272
8273 static struct pernet_operations __net_initdata default_device_ops = {
8274         .exit = default_device_exit,
8275         .exit_batch = default_device_exit_batch,
8276 };
8277
8278 /*
8279  *      Initialize the DEV module. At boot time this walks the device list and
8280  *      unhooks any devices that fail to initialise (normally hardware not
8281  *      present) and leaves us with a valid list of present and active devices.
8282  *
8283  */
8284
8285 /*
8286  *       This is called single threaded during boot, so no need
8287  *       to take the rtnl semaphore.
8288  */
8289 static int __init net_dev_init(void)
8290 {
8291         int i, rc = -ENOMEM;
8292
8293         BUG_ON(!dev_boot_phase);
8294
8295         if (dev_proc_init())
8296                 goto out;
8297
8298         if (netdev_kobject_init())
8299                 goto out;
8300
8301         INIT_LIST_HEAD(&ptype_all);
8302         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8303                 INIT_LIST_HEAD(&ptype_base[i]);
8304
8305         INIT_LIST_HEAD(&offload_base);
8306
8307         if (register_pernet_subsys(&netdev_net_ops))
8308                 goto out;
8309
8310         /*
8311          *      Initialise the packet receive queues.
8312          */
8313
8314         for_each_possible_cpu(i) {
8315                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8316                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8317
8318                 INIT_WORK(flush, flush_backlog);
8319
8320                 skb_queue_head_init(&sd->input_pkt_queue);
8321                 skb_queue_head_init(&sd->process_queue);
8322                 INIT_LIST_HEAD(&sd->poll_list);
8323                 sd->output_queue_tailp = &sd->output_queue;
8324 #ifdef CONFIG_RPS
8325                 sd->csd.func = rps_trigger_softirq;
8326                 sd->csd.info = sd;
8327                 sd->cpu = i;
8328 #endif
8329
8330                 sd->backlog.poll = process_backlog;
8331                 sd->backlog.weight = weight_p;
8332         }
8333
8334         dev_boot_phase = 0;
8335
8336         /* The loopback device is special if any other network devices
8337          * is present in a network namespace the loopback device must
8338          * be present. Since we now dynamically allocate and free the
8339          * loopback device ensure this invariant is maintained by
8340          * keeping the loopback device as the first device on the
8341          * list of network devices.  Ensuring the loopback devices
8342          * is the first device that appears and the last network device
8343          * that disappears.
8344          */
8345         if (register_pernet_device(&loopback_net_ops))
8346                 goto out;
8347
8348         if (register_pernet_device(&default_device_ops))
8349                 goto out;
8350
8351         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8352         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8353
8354         hotcpu_notifier(dev_cpu_callback, 0);
8355         dst_subsys_init();
8356         rc = 0;
8357 out:
8358         return rc;
8359 }
8360
8361 subsys_initcall(net_dev_init);