openvswitch: 802.1AD Flow handling, actions, vlan parsing, netlink attributes
[cascardo/linux.git] / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51
52 #include "flow_netlink.h"
53
54 struct ovs_len_tbl {
55         int len;
56         const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61
62 static void update_range(struct sw_flow_match *match,
63                          size_t offset, size_t size, bool is_mask)
64 {
65         struct sw_flow_key_range *range;
66         size_t start = rounddown(offset, sizeof(long));
67         size_t end = roundup(offset + size, sizeof(long));
68
69         if (!is_mask)
70                 range = &match->range;
71         else
72                 range = &match->mask->range;
73
74         if (range->start == range->end) {
75                 range->start = start;
76                 range->end = end;
77                 return;
78         }
79
80         if (range->start > start)
81                 range->start = start;
82
83         if (range->end < end)
84                 range->end = end;
85 }
86
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88         do { \
89                 update_range(match, offsetof(struct sw_flow_key, field),    \
90                              sizeof((match)->key->field), is_mask);         \
91                 if (is_mask)                                                \
92                         (match)->mask->key.field = value;                   \
93                 else                                                        \
94                         (match)->key->field = value;                        \
95         } while (0)
96
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
98         do {                                                                \
99                 update_range(match, offset, len, is_mask);                  \
100                 if (is_mask)                                                \
101                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102                                len);                                       \
103                 else                                                        \
104                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
105         } while (0)
106
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
108         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109                                   value_p, len, is_mask)
110
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
112         do {                                                                \
113                 update_range(match, offsetof(struct sw_flow_key, field),    \
114                              sizeof((match)->key->field), is_mask);         \
115                 if (is_mask)                                                \
116                         memset((u8 *)&(match)->mask->key.field, value,      \
117                                sizeof((match)->mask->key.field));           \
118                 else                                                        \
119                         memset((u8 *)&(match)->key->field, value,           \
120                                sizeof((match)->key->field));                \
121         } while (0)
122
123 static bool match_validate(const struct sw_flow_match *match,
124                            u64 key_attrs, u64 mask_attrs, bool log)
125 {
126         u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
128
129         /* The following mask attributes allowed only if they
130          * pass the validation tests. */
131         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132                         | (1 << OVS_KEY_ATTR_IPV6)
133                         | (1 << OVS_KEY_ATTR_TCP)
134                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
135                         | (1 << OVS_KEY_ATTR_UDP)
136                         | (1 << OVS_KEY_ATTR_SCTP)
137                         | (1 << OVS_KEY_ATTR_ICMP)
138                         | (1 << OVS_KEY_ATTR_ICMPV6)
139                         | (1 << OVS_KEY_ATTR_ARP)
140                         | (1 << OVS_KEY_ATTR_ND)
141                         | (1 << OVS_KEY_ATTR_MPLS));
142
143         /* Always allowed mask fields. */
144         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145                        | (1 << OVS_KEY_ATTR_IN_PORT)
146                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
147
148         /* Check key attributes. */
149         if (match->key->eth.type == htons(ETH_P_ARP)
150                         || match->key->eth.type == htons(ETH_P_RARP)) {
151                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
152                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154         }
155
156         if (eth_p_mpls(match->key->eth.type)) {
157                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160         }
161
162         if (match->key->eth.type == htons(ETH_P_IP)) {
163                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166
167                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168                         if (match->key->ip.proto == IPPROTO_UDP) {
169                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
170                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
171                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172                         }
173
174                         if (match->key->ip.proto == IPPROTO_SCTP) {
175                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
177                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178                         }
179
180                         if (match->key->ip.proto == IPPROTO_TCP) {
181                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
182                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186                                 }
187                         }
188
189                         if (match->key->ip.proto == IPPROTO_ICMP) {
190                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
192                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193                         }
194                 }
195         }
196
197         if (match->key->eth.type == htons(ETH_P_IPV6)) {
198                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201
202                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203                         if (match->key->ip.proto == IPPROTO_UDP) {
204                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
205                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
206                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207                         }
208
209                         if (match->key->ip.proto == IPPROTO_SCTP) {
210                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
212                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213                         }
214
215                         if (match->key->ip.proto == IPPROTO_TCP) {
216                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
217                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221                                 }
222                         }
223
224                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
225                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
227                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228
229                                 if (match->key->tp.src ==
230                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
233                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235                                 }
236                         }
237                 }
238         }
239
240         if ((key_attrs & key_expected) != key_expected) {
241                 /* Key attributes check failed. */
242                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243                           (unsigned long long)key_attrs,
244                           (unsigned long long)key_expected);
245                 return false;
246         }
247
248         if ((mask_attrs & mask_allowed) != mask_attrs) {
249                 /* Mask attributes check failed. */
250                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251                           (unsigned long long)mask_attrs,
252                           (unsigned long long)mask_allowed);
253                 return false;
254         }
255
256         return true;
257 }
258
259 size_t ovs_tun_key_attr_size(void)
260 {
261         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262          * updating this function.
263          */
264         return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
265                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
268                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
269                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
271                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
272                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275                  */
276                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278 }
279
280 size_t ovs_key_attr_size(void)
281 {
282         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
283          * updating this function.
284          */
285         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286
287         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
288                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
289                   + ovs_tun_key_attr_size()
290                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
291                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
292                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
293                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
294                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
295                 + nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
296                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
297                 + nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
298                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
299                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
300                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
301                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
302                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
303                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
304                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
305                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
306 }
307
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309         [OVS_VXLAN_EXT_GBP]         = { .len = sizeof(u32) },
310 };
311
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
314         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
315         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
316         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
317         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
318         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
320         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
321         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
322         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
323         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
324         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
325                                                 .next = ovs_vxlan_ext_key_lens },
326         [OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
327         [OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
328 };
329
330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
333         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
334         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
335         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
336         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
337         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
338         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
340         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
341         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
342         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
344         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
345         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
346         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
347         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
348         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
349         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
351         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
352                                      .next = ovs_tunnel_key_lens, },
353         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
354         [OVS_KEY_ATTR_CT_STATE]  = { .len = sizeof(u32) },
355         [OVS_KEY_ATTR_CT_ZONE]   = { .len = sizeof(u16) },
356         [OVS_KEY_ATTR_CT_MARK]   = { .len = sizeof(u32) },
357         [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
358 };
359
360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
361 {
362         return expected_len == attr_len ||
363                expected_len == OVS_ATTR_NESTED ||
364                expected_len == OVS_ATTR_VARIABLE;
365 }
366
367 static bool is_all_zero(const u8 *fp, size_t size)
368 {
369         int i;
370
371         if (!fp)
372                 return false;
373
374         for (i = 0; i < size; i++)
375                 if (fp[i])
376                         return false;
377
378         return true;
379 }
380
381 static int __parse_flow_nlattrs(const struct nlattr *attr,
382                                 const struct nlattr *a[],
383                                 u64 *attrsp, bool log, bool nz)
384 {
385         const struct nlattr *nla;
386         u64 attrs;
387         int rem;
388
389         attrs = *attrsp;
390         nla_for_each_nested(nla, attr, rem) {
391                 u16 type = nla_type(nla);
392                 int expected_len;
393
394                 if (type > OVS_KEY_ATTR_MAX) {
395                         OVS_NLERR(log, "Key type %d is out of range max %d",
396                                   type, OVS_KEY_ATTR_MAX);
397                         return -EINVAL;
398                 }
399
400                 if (attrs & (1 << type)) {
401                         OVS_NLERR(log, "Duplicate key (type %d).", type);
402                         return -EINVAL;
403                 }
404
405                 expected_len = ovs_key_lens[type].len;
406                 if (!check_attr_len(nla_len(nla), expected_len)) {
407                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408                                   type, nla_len(nla), expected_len);
409                         return -EINVAL;
410                 }
411
412                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413                         attrs |= 1 << type;
414                         a[type] = nla;
415                 }
416         }
417         if (rem) {
418                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419                 return -EINVAL;
420         }
421
422         *attrsp = attrs;
423         return 0;
424 }
425
426 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427                                    const struct nlattr *a[], u64 *attrsp,
428                                    bool log)
429 {
430         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
431 }
432
433 static int parse_flow_nlattrs(const struct nlattr *attr,
434                               const struct nlattr *a[], u64 *attrsp,
435                               bool log)
436 {
437         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
438 }
439
440 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441                                      struct sw_flow_match *match, bool is_mask,
442                                      bool log)
443 {
444         unsigned long opt_key_offset;
445
446         if (nla_len(a) > sizeof(match->key->tun_opts)) {
447                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448                           nla_len(a), sizeof(match->key->tun_opts));
449                 return -EINVAL;
450         }
451
452         if (nla_len(a) % 4 != 0) {
453                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454                           nla_len(a));
455                 return -EINVAL;
456         }
457
458         /* We need to record the length of the options passed
459          * down, otherwise packets with the same format but
460          * additional options will be silently matched.
461          */
462         if (!is_mask) {
463                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464                                 false);
465         } else {
466                 /* This is somewhat unusual because it looks at
467                  * both the key and mask while parsing the
468                  * attributes (and by extension assumes the key
469                  * is parsed first). Normally, we would verify
470                  * that each is the correct length and that the
471                  * attributes line up in the validate function.
472                  * However, that is difficult because this is
473                  * variable length and we won't have the
474                  * information later.
475                  */
476                 if (match->key->tun_opts_len != nla_len(a)) {
477                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
478                                   match->key->tun_opts_len, nla_len(a));
479                         return -EINVAL;
480                 }
481
482                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
483         }
484
485         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487                                   nla_len(a), is_mask);
488         return 0;
489 }
490
491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492                                      struct sw_flow_match *match, bool is_mask,
493                                      bool log)
494 {
495         struct nlattr *a;
496         int rem;
497         unsigned long opt_key_offset;
498         struct vxlan_metadata opts;
499
500         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
501
502         memset(&opts, 0, sizeof(opts));
503         nla_for_each_nested(a, attr, rem) {
504                 int type = nla_type(a);
505
506                 if (type > OVS_VXLAN_EXT_MAX) {
507                         OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508                                   type, OVS_VXLAN_EXT_MAX);
509                         return -EINVAL;
510                 }
511
512                 if (!check_attr_len(nla_len(a),
513                                     ovs_vxlan_ext_key_lens[type].len)) {
514                         OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515                                   type, nla_len(a),
516                                   ovs_vxlan_ext_key_lens[type].len);
517                         return -EINVAL;
518                 }
519
520                 switch (type) {
521                 case OVS_VXLAN_EXT_GBP:
522                         opts.gbp = nla_get_u32(a);
523                         break;
524                 default:
525                         OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526                                   type);
527                         return -EINVAL;
528                 }
529         }
530         if (rem) {
531                 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532                           rem);
533                 return -EINVAL;
534         }
535
536         if (!is_mask)
537                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538         else
539                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
540
541         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543                                   is_mask);
544         return 0;
545 }
546
547 static int ip_tun_from_nlattr(const struct nlattr *attr,
548                               struct sw_flow_match *match, bool is_mask,
549                               bool log)
550 {
551         bool ttl = false, ipv4 = false, ipv6 = false;
552         __be16 tun_flags = 0;
553         int opts_type = 0;
554         struct nlattr *a;
555         int rem;
556
557         nla_for_each_nested(a, attr, rem) {
558                 int type = nla_type(a);
559                 int err;
560
561                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
564                         return -EINVAL;
565                 }
566
567                 if (!check_attr_len(nla_len(a),
568                                     ovs_tunnel_key_lens[type].len)) {
569                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
571                         return -EINVAL;
572                 }
573
574                 switch (type) {
575                 case OVS_TUNNEL_KEY_ATTR_ID:
576                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577                                         nla_get_be64(a), is_mask);
578                         tun_flags |= TUNNEL_KEY;
579                         break;
580                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582                                         nla_get_in_addr(a), is_mask);
583                         ipv4 = true;
584                         break;
585                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587                                         nla_get_in_addr(a), is_mask);
588                         ipv4 = true;
589                         break;
590                 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
592                                         nla_get_in6_addr(a), is_mask);
593                         ipv6 = true;
594                         break;
595                 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597                                         nla_get_in6_addr(a), is_mask);
598                         ipv6 = true;
599                         break;
600                 case OVS_TUNNEL_KEY_ATTR_TOS:
601                         SW_FLOW_KEY_PUT(match, tun_key.tos,
602                                         nla_get_u8(a), is_mask);
603                         break;
604                 case OVS_TUNNEL_KEY_ATTR_TTL:
605                         SW_FLOW_KEY_PUT(match, tun_key.ttl,
606                                         nla_get_u8(a), is_mask);
607                         ttl = true;
608                         break;
609                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610                         tun_flags |= TUNNEL_DONT_FRAGMENT;
611                         break;
612                 case OVS_TUNNEL_KEY_ATTR_CSUM:
613                         tun_flags |= TUNNEL_CSUM;
614                         break;
615                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617                                         nla_get_be16(a), is_mask);
618                         break;
619                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
620                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621                                         nla_get_be16(a), is_mask);
622                         break;
623                 case OVS_TUNNEL_KEY_ATTR_OAM:
624                         tun_flags |= TUNNEL_OAM;
625                         break;
626                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627                         if (opts_type) {
628                                 OVS_NLERR(log, "Multiple metadata blocks provided");
629                                 return -EINVAL;
630                         }
631
632                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633                         if (err)
634                                 return err;
635
636                         tun_flags |= TUNNEL_GENEVE_OPT;
637                         opts_type = type;
638                         break;
639                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640                         if (opts_type) {
641                                 OVS_NLERR(log, "Multiple metadata blocks provided");
642                                 return -EINVAL;
643                         }
644
645                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646                         if (err)
647                                 return err;
648
649                         tun_flags |= TUNNEL_VXLAN_OPT;
650                         opts_type = type;
651                         break;
652                 default:
653                         OVS_NLERR(log, "Unknown IP tunnel attribute %d",
654                                   type);
655                         return -EINVAL;
656                 }
657         }
658
659         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
660         if (is_mask)
661                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
662         else
663                 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
664                                 false);
665
666         if (rem > 0) {
667                 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
668                           rem);
669                 return -EINVAL;
670         }
671
672         if (ipv4 && ipv6) {
673                 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
674                 return -EINVAL;
675         }
676
677         if (!is_mask) {
678                 if (!ipv4 && !ipv6) {
679                         OVS_NLERR(log, "IP tunnel dst address not specified");
680                         return -EINVAL;
681                 }
682                 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
683                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
684                         return -EINVAL;
685                 }
686                 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
687                         OVS_NLERR(log, "IPv6 tunnel dst address is zero");
688                         return -EINVAL;
689                 }
690
691                 if (!ttl) {
692                         OVS_NLERR(log, "IP tunnel TTL not specified.");
693                         return -EINVAL;
694                 }
695         }
696
697         return opts_type;
698 }
699
700 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
701                                const void *tun_opts, int swkey_tun_opts_len)
702 {
703         const struct vxlan_metadata *opts = tun_opts;
704         struct nlattr *nla;
705
706         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
707         if (!nla)
708                 return -EMSGSIZE;
709
710         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
711                 return -EMSGSIZE;
712
713         nla_nest_end(skb, nla);
714         return 0;
715 }
716
717 static int __ip_tun_to_nlattr(struct sk_buff *skb,
718                               const struct ip_tunnel_key *output,
719                               const void *tun_opts, int swkey_tun_opts_len,
720                               unsigned short tun_proto)
721 {
722         if (output->tun_flags & TUNNEL_KEY &&
723             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
724                          OVS_TUNNEL_KEY_ATTR_PAD))
725                 return -EMSGSIZE;
726         switch (tun_proto) {
727         case AF_INET:
728                 if (output->u.ipv4.src &&
729                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
730                                     output->u.ipv4.src))
731                         return -EMSGSIZE;
732                 if (output->u.ipv4.dst &&
733                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
734                                     output->u.ipv4.dst))
735                         return -EMSGSIZE;
736                 break;
737         case AF_INET6:
738                 if (!ipv6_addr_any(&output->u.ipv6.src) &&
739                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
740                                      &output->u.ipv6.src))
741                         return -EMSGSIZE;
742                 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
743                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
744                                      &output->u.ipv6.dst))
745                         return -EMSGSIZE;
746                 break;
747         }
748         if (output->tos &&
749             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
750                 return -EMSGSIZE;
751         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
752                 return -EMSGSIZE;
753         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
754             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
755                 return -EMSGSIZE;
756         if ((output->tun_flags & TUNNEL_CSUM) &&
757             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
758                 return -EMSGSIZE;
759         if (output->tp_src &&
760             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
761                 return -EMSGSIZE;
762         if (output->tp_dst &&
763             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
764                 return -EMSGSIZE;
765         if ((output->tun_flags & TUNNEL_OAM) &&
766             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
767                 return -EMSGSIZE;
768         if (swkey_tun_opts_len) {
769                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
770                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
771                             swkey_tun_opts_len, tun_opts))
772                         return -EMSGSIZE;
773                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
774                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
775                         return -EMSGSIZE;
776         }
777
778         return 0;
779 }
780
781 static int ip_tun_to_nlattr(struct sk_buff *skb,
782                             const struct ip_tunnel_key *output,
783                             const void *tun_opts, int swkey_tun_opts_len,
784                             unsigned short tun_proto)
785 {
786         struct nlattr *nla;
787         int err;
788
789         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
790         if (!nla)
791                 return -EMSGSIZE;
792
793         err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
794                                  tun_proto);
795         if (err)
796                 return err;
797
798         nla_nest_end(skb, nla);
799         return 0;
800 }
801
802 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
803                             struct ip_tunnel_info *tun_info)
804 {
805         return __ip_tun_to_nlattr(skb, &tun_info->key,
806                                   ip_tunnel_info_opts(tun_info),
807                                   tun_info->options_len,
808                                   ip_tunnel_info_af(tun_info));
809 }
810
811 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
812                                     const struct nlattr *a[],
813                                     bool is_mask, bool inner)
814 {
815         __be16 tci = 0;
816         __be16 tpid = 0;
817
818         if (a[OVS_KEY_ATTR_VLAN])
819                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
820
821         if (a[OVS_KEY_ATTR_ETHERTYPE])
822                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
823
824         if (likely(!inner)) {
825                 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
826                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
827         } else {
828                 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
829                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
830         }
831         return 0;
832 }
833
834 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
835                                       u64 key_attrs, bool inner,
836                                       const struct nlattr **a, bool log)
837 {
838         __be16 tci = 0;
839
840         if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
841               (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
842                eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
843                 /* Not a VLAN. */
844                 return 0;
845         }
846
847         if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
848               (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
849                 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
850                 return -EINVAL;
851         }
852
853         if (a[OVS_KEY_ATTR_VLAN])
854                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
855
856         if (!(tci & htons(VLAN_TAG_PRESENT))) {
857                 if (tci) {
858                         OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
859                                   (inner) ? "C-VLAN" : "VLAN");
860                         return -EINVAL;
861                 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
862                         /* Corner case for truncated VLAN header. */
863                         OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
864                                   (inner) ? "C-VLAN" : "VLAN");
865                         return -EINVAL;
866                 }
867         }
868
869         return 1;
870 }
871
872 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
873                                            u64 key_attrs, bool inner,
874                                            const struct nlattr **a, bool log)
875 {
876         __be16 tci = 0;
877         __be16 tpid = 0;
878         bool encap_valid = !!(match->key->eth.vlan.tci &
879                               htons(VLAN_TAG_PRESENT));
880         bool i_encap_valid = !!(match->key->eth.cvlan.tci &
881                                 htons(VLAN_TAG_PRESENT));
882
883         if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
884                 /* Not a VLAN. */
885                 return 0;
886         }
887
888         if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
889                 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
890                           (inner) ? "C-VLAN" : "VLAN");
891                 return -EINVAL;
892         }
893
894         if (a[OVS_KEY_ATTR_VLAN])
895                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
896
897         if (a[OVS_KEY_ATTR_ETHERTYPE])
898                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
899
900         if (tpid != htons(0xffff)) {
901                 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
902                           (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
903                 return -EINVAL;
904         }
905         if (!(tci & htons(VLAN_TAG_PRESENT))) {
906                 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
907                           (inner) ? "C-VLAN" : "VLAN");
908                 return -EINVAL;
909         }
910
911         return 1;
912 }
913
914 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
915                                      u64 *key_attrs, bool inner,
916                                      const struct nlattr **a, bool is_mask,
917                                      bool log)
918 {
919         int err;
920         const struct nlattr *encap;
921
922         if (!is_mask)
923                 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
924                                                  a, log);
925         else
926                 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
927                                                       a, log);
928         if (err <= 0)
929                 return err;
930
931         err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
932         if (err)
933                 return err;
934
935         *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
936         *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
937         *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
938
939         encap = a[OVS_KEY_ATTR_ENCAP];
940
941         if (!is_mask)
942                 err = parse_flow_nlattrs(encap, a, key_attrs, log);
943         else
944                 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
945
946         return err;
947 }
948
949 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
950                                    u64 *key_attrs, const struct nlattr **a,
951                                    bool is_mask, bool log)
952 {
953         int err;
954         bool encap_valid = false;
955
956         err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
957                                         is_mask, log);
958         if (err)
959                 return err;
960
961         encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
962         if (encap_valid) {
963                 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
964                                                 is_mask, log);
965                 if (err)
966                         return err;
967         }
968
969         return 0;
970 }
971
972 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
973                                  u64 *attrs, const struct nlattr **a,
974                                  bool is_mask, bool log)
975 {
976         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
977                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
978
979                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
980                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
981         }
982
983         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
984                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
985
986                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
987                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
988         }
989
990         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
991                 SW_FLOW_KEY_PUT(match, phy.priority,
992                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
993                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
994         }
995
996         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
997                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
998
999                 if (is_mask) {
1000                         in_port = 0xffffffff; /* Always exact match in_port. */
1001                 } else if (in_port >= DP_MAX_PORTS) {
1002                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
1003                                   in_port, DP_MAX_PORTS);
1004                         return -EINVAL;
1005                 }
1006
1007                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1008                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1009         } else if (!is_mask) {
1010                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1011         }
1012
1013         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1014                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1015
1016                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1017                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1018         }
1019         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1020                 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1021                                        is_mask, log) < 0)
1022                         return -EINVAL;
1023                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1024         }
1025
1026         if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1027             ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1028                 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1029
1030                 if (ct_state & ~CT_SUPPORTED_MASK) {
1031                         OVS_NLERR(log, "ct_state flags %08x unsupported",
1032                                   ct_state);
1033                         return -EINVAL;
1034                 }
1035
1036                 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1037                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1038         }
1039         if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1040             ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1041                 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1042
1043                 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1044                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1045         }
1046         if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1047             ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1048                 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1049
1050                 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1051                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1052         }
1053         if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1054             ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1055                 const struct ovs_key_ct_labels *cl;
1056
1057                 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1058                 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1059                                    sizeof(*cl), is_mask);
1060                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1061         }
1062         return 0;
1063 }
1064
1065 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1066                                 u64 attrs, const struct nlattr **a,
1067                                 bool is_mask, bool log)
1068 {
1069         int err;
1070
1071         err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1072         if (err)
1073                 return err;
1074
1075         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1076                 const struct ovs_key_ethernet *eth_key;
1077
1078                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1079                 SW_FLOW_KEY_MEMCPY(match, eth.src,
1080                                 eth_key->eth_src, ETH_ALEN, is_mask);
1081                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1082                                 eth_key->eth_dst, ETH_ALEN, is_mask);
1083                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1084         }
1085
1086         if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1087                 /* VLAN attribute is always parsed before getting here since it
1088                  * may occur multiple times.
1089                  */
1090                 OVS_NLERR(log, "VLAN attribute unexpected.");
1091                 return -EINVAL;
1092         }
1093
1094         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1095                 __be16 eth_type;
1096
1097                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1098                 if (is_mask) {
1099                         /* Always exact match EtherType. */
1100                         eth_type = htons(0xffff);
1101                 } else if (!eth_proto_is_802_3(eth_type)) {
1102                         OVS_NLERR(log, "EtherType %x is less than min %x",
1103                                   ntohs(eth_type), ETH_P_802_3_MIN);
1104                         return -EINVAL;
1105                 }
1106
1107                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1108                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1109         } else if (!is_mask) {
1110                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1111         }
1112
1113         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1114                 const struct ovs_key_ipv4 *ipv4_key;
1115
1116                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1117                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1118                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1119                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1120                         return -EINVAL;
1121                 }
1122                 SW_FLOW_KEY_PUT(match, ip.proto,
1123                                 ipv4_key->ipv4_proto, is_mask);
1124                 SW_FLOW_KEY_PUT(match, ip.tos,
1125                                 ipv4_key->ipv4_tos, is_mask);
1126                 SW_FLOW_KEY_PUT(match, ip.ttl,
1127                                 ipv4_key->ipv4_ttl, is_mask);
1128                 SW_FLOW_KEY_PUT(match, ip.frag,
1129                                 ipv4_key->ipv4_frag, is_mask);
1130                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1131                                 ipv4_key->ipv4_src, is_mask);
1132                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1133                                 ipv4_key->ipv4_dst, is_mask);
1134                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1135         }
1136
1137         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1138                 const struct ovs_key_ipv6 *ipv6_key;
1139
1140                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1141                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1142                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1143                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1144                         return -EINVAL;
1145                 }
1146
1147                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1148                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1149                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1150                         return -EINVAL;
1151                 }
1152
1153                 SW_FLOW_KEY_PUT(match, ipv6.label,
1154                                 ipv6_key->ipv6_label, is_mask);
1155                 SW_FLOW_KEY_PUT(match, ip.proto,
1156                                 ipv6_key->ipv6_proto, is_mask);
1157                 SW_FLOW_KEY_PUT(match, ip.tos,
1158                                 ipv6_key->ipv6_tclass, is_mask);
1159                 SW_FLOW_KEY_PUT(match, ip.ttl,
1160                                 ipv6_key->ipv6_hlimit, is_mask);
1161                 SW_FLOW_KEY_PUT(match, ip.frag,
1162                                 ipv6_key->ipv6_frag, is_mask);
1163                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1164                                 ipv6_key->ipv6_src,
1165                                 sizeof(match->key->ipv6.addr.src),
1166                                 is_mask);
1167                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1168                                 ipv6_key->ipv6_dst,
1169                                 sizeof(match->key->ipv6.addr.dst),
1170                                 is_mask);
1171
1172                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1173         }
1174
1175         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1176                 const struct ovs_key_arp *arp_key;
1177
1178                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1179                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1180                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1181                                   arp_key->arp_op);
1182                         return -EINVAL;
1183                 }
1184
1185                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1186                                 arp_key->arp_sip, is_mask);
1187                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1188                         arp_key->arp_tip, is_mask);
1189                 SW_FLOW_KEY_PUT(match, ip.proto,
1190                                 ntohs(arp_key->arp_op), is_mask);
1191                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1192                                 arp_key->arp_sha, ETH_ALEN, is_mask);
1193                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1194                                 arp_key->arp_tha, ETH_ALEN, is_mask);
1195
1196                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1197         }
1198
1199         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1200                 const struct ovs_key_mpls *mpls_key;
1201
1202                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1203                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1204                                 mpls_key->mpls_lse, is_mask);
1205
1206                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1207          }
1208
1209         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1210                 const struct ovs_key_tcp *tcp_key;
1211
1212                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1213                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1214                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1215                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1216         }
1217
1218         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1219                 SW_FLOW_KEY_PUT(match, tp.flags,
1220                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1221                                 is_mask);
1222                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1223         }
1224
1225         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1226                 const struct ovs_key_udp *udp_key;
1227
1228                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1229                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1230                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1231                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1232         }
1233
1234         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1235                 const struct ovs_key_sctp *sctp_key;
1236
1237                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1238                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1239                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1240                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1241         }
1242
1243         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1244                 const struct ovs_key_icmp *icmp_key;
1245
1246                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1247                 SW_FLOW_KEY_PUT(match, tp.src,
1248                                 htons(icmp_key->icmp_type), is_mask);
1249                 SW_FLOW_KEY_PUT(match, tp.dst,
1250                                 htons(icmp_key->icmp_code), is_mask);
1251                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1252         }
1253
1254         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1255                 const struct ovs_key_icmpv6 *icmpv6_key;
1256
1257                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1258                 SW_FLOW_KEY_PUT(match, tp.src,
1259                                 htons(icmpv6_key->icmpv6_type), is_mask);
1260                 SW_FLOW_KEY_PUT(match, tp.dst,
1261                                 htons(icmpv6_key->icmpv6_code), is_mask);
1262                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1263         }
1264
1265         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1266                 const struct ovs_key_nd *nd_key;
1267
1268                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1269                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1270                         nd_key->nd_target,
1271                         sizeof(match->key->ipv6.nd.target),
1272                         is_mask);
1273                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1274                         nd_key->nd_sll, ETH_ALEN, is_mask);
1275                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1276                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1277                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1278         }
1279
1280         if (attrs != 0) {
1281                 OVS_NLERR(log, "Unknown key attributes %llx",
1282                           (unsigned long long)attrs);
1283                 return -EINVAL;
1284         }
1285
1286         return 0;
1287 }
1288
1289 static void nlattr_set(struct nlattr *attr, u8 val,
1290                        const struct ovs_len_tbl *tbl)
1291 {
1292         struct nlattr *nla;
1293         int rem;
1294
1295         /* The nlattr stream should already have been validated */
1296         nla_for_each_nested(nla, attr, rem) {
1297                 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1298                         if (tbl[nla_type(nla)].next)
1299                                 tbl = tbl[nla_type(nla)].next;
1300                         nlattr_set(nla, val, tbl);
1301                 } else {
1302                         memset(nla_data(nla), val, nla_len(nla));
1303                 }
1304
1305                 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1306                         *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1307         }
1308 }
1309
1310 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1311 {
1312         nlattr_set(attr, val, ovs_key_lens);
1313 }
1314
1315 /**
1316  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1317  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1318  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1319  * does not include any don't care bit.
1320  * @net: Used to determine per-namespace field support.
1321  * @match: receives the extracted flow match information.
1322  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1323  * sequence. The fields should of the packet that triggered the creation
1324  * of this flow.
1325  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1326  * attribute specifies the mask field of the wildcarded flow.
1327  * @log: Boolean to allow kernel error logging.  Normally true, but when
1328  * probing for feature compatibility this should be passed in as false to
1329  * suppress unnecessary error logging.
1330  */
1331 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1332                       const struct nlattr *nla_key,
1333                       const struct nlattr *nla_mask,
1334                       bool log)
1335 {
1336         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1337         struct nlattr *newmask = NULL;
1338         u64 key_attrs = 0;
1339         u64 mask_attrs = 0;
1340         int err;
1341
1342         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1343         if (err)
1344                 return err;
1345
1346         err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1347         if (err)
1348                 return err;
1349
1350         err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1351         if (err)
1352                 return err;
1353
1354         if (match->mask) {
1355                 if (!nla_mask) {
1356                         /* Create an exact match mask. We need to set to 0xff
1357                          * all the 'match->mask' fields that have been touched
1358                          * in 'match->key'. We cannot simply memset
1359                          * 'match->mask', because padding bytes and fields not
1360                          * specified in 'match->key' should be left to 0.
1361                          * Instead, we use a stream of netlink attributes,
1362                          * copied from 'key' and set to 0xff.
1363                          * ovs_key_from_nlattrs() will take care of filling
1364                          * 'match->mask' appropriately.
1365                          */
1366                         newmask = kmemdup(nla_key,
1367                                           nla_total_size(nla_len(nla_key)),
1368                                           GFP_KERNEL);
1369                         if (!newmask)
1370                                 return -ENOMEM;
1371
1372                         mask_set_nlattr(newmask, 0xff);
1373
1374                         /* The userspace does not send tunnel attributes that
1375                          * are 0, but we should not wildcard them nonetheless.
1376                          */
1377                         if (match->key->tun_proto)
1378                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1379                                                          0xff, true);
1380
1381                         nla_mask = newmask;
1382                 }
1383
1384                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1385                 if (err)
1386                         goto free_newmask;
1387
1388                 /* Always match on tci. */
1389                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1390                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1391
1392                 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1393                 if (err)
1394                         goto free_newmask;
1395
1396                 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1397                                            log);
1398                 if (err)
1399                         goto free_newmask;
1400         }
1401
1402         if (!match_validate(match, key_attrs, mask_attrs, log))
1403                 err = -EINVAL;
1404
1405 free_newmask:
1406         kfree(newmask);
1407         return err;
1408 }
1409
1410 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1411 {
1412         size_t len;
1413
1414         if (!attr)
1415                 return 0;
1416
1417         len = nla_len(attr);
1418         if (len < 1 || len > MAX_UFID_LENGTH) {
1419                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1420                           nla_len(attr), MAX_UFID_LENGTH);
1421                 return 0;
1422         }
1423
1424         return len;
1425 }
1426
1427 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1428  * or false otherwise.
1429  */
1430 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1431                       bool log)
1432 {
1433         sfid->ufid_len = get_ufid_len(attr, log);
1434         if (sfid->ufid_len)
1435                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1436
1437         return sfid->ufid_len;
1438 }
1439
1440 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1441                            const struct sw_flow_key *key, bool log)
1442 {
1443         struct sw_flow_key *new_key;
1444
1445         if (ovs_nla_get_ufid(sfid, ufid, log))
1446                 return 0;
1447
1448         /* If UFID was not provided, use unmasked key. */
1449         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1450         if (!new_key)
1451                 return -ENOMEM;
1452         memcpy(new_key, key, sizeof(*key));
1453         sfid->unmasked_key = new_key;
1454
1455         return 0;
1456 }
1457
1458 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1459 {
1460         return attr ? nla_get_u32(attr) : 0;
1461 }
1462
1463 /**
1464  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1465  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1466  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1467  * sequence.
1468  * @log: Boolean to allow kernel error logging.  Normally true, but when
1469  * probing for feature compatibility this should be passed in as false to
1470  * suppress unnecessary error logging.
1471  *
1472  * This parses a series of Netlink attributes that form a flow key, which must
1473  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1474  * get the metadata, that is, the parts of the flow key that cannot be
1475  * extracted from the packet itself.
1476  */
1477
1478 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1479                               struct sw_flow_key *key,
1480                               bool log)
1481 {
1482         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1483         struct sw_flow_match match;
1484         u64 attrs = 0;
1485         int err;
1486
1487         err = parse_flow_nlattrs(attr, a, &attrs, log);
1488         if (err)
1489                 return -EINVAL;
1490
1491         memset(&match, 0, sizeof(match));
1492         match.key = key;
1493
1494         memset(&key->ct, 0, sizeof(key->ct));
1495         key->phy.in_port = DP_MAX_PORTS;
1496
1497         return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1498 }
1499
1500 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1501                             bool is_mask)
1502 {
1503         __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1504
1505         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1506             nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1507                 return -EMSGSIZE;
1508         return 0;
1509 }
1510
1511 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1512                              const struct sw_flow_key *output, bool is_mask,
1513                              struct sk_buff *skb)
1514 {
1515         struct ovs_key_ethernet *eth_key;
1516         struct nlattr *nla;
1517         struct nlattr *encap = NULL;
1518         struct nlattr *in_encap = NULL;
1519
1520         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1521                 goto nla_put_failure;
1522
1523         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1524                 goto nla_put_failure;
1525
1526         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1527                 goto nla_put_failure;
1528
1529         if ((swkey->tun_proto || is_mask)) {
1530                 const void *opts = NULL;
1531
1532                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1533                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1534
1535                 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1536                                      swkey->tun_opts_len, swkey->tun_proto))
1537                         goto nla_put_failure;
1538         }
1539
1540         if (swkey->phy.in_port == DP_MAX_PORTS) {
1541                 if (is_mask && (output->phy.in_port == 0xffff))
1542                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1543                                 goto nla_put_failure;
1544         } else {
1545                 u16 upper_u16;
1546                 upper_u16 = !is_mask ? 0 : 0xffff;
1547
1548                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1549                                 (upper_u16 << 16) | output->phy.in_port))
1550                         goto nla_put_failure;
1551         }
1552
1553         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1554                 goto nla_put_failure;
1555
1556         if (ovs_ct_put_key(output, skb))
1557                 goto nla_put_failure;
1558
1559         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1560         if (!nla)
1561                 goto nla_put_failure;
1562
1563         eth_key = nla_data(nla);
1564         ether_addr_copy(eth_key->eth_src, output->eth.src);
1565         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1566
1567         if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1568                 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1569                         goto nla_put_failure;
1570                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1571                 if (!swkey->eth.vlan.tci)
1572                         goto unencap;
1573
1574                 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1575                         if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1576                                 goto nla_put_failure;
1577                         in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1578                         if (!swkey->eth.cvlan.tci)
1579                                 goto unencap;
1580                 }
1581         }
1582
1583         if (swkey->eth.type == htons(ETH_P_802_2)) {
1584                 /*
1585                  * Ethertype 802.2 is represented in the netlink with omitted
1586                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1587                  * 0xffff in the mask attribute.  Ethertype can also
1588                  * be wildcarded.
1589                  */
1590                 if (is_mask && output->eth.type)
1591                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1592                                                 output->eth.type))
1593                                 goto nla_put_failure;
1594                 goto unencap;
1595         }
1596
1597         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1598                 goto nla_put_failure;
1599
1600         if (eth_type_vlan(swkey->eth.type)) {
1601                 /* There are 3 VLAN tags, we don't know anything about the rest
1602                  * of the packet, so truncate here.
1603                  */
1604                 WARN_ON_ONCE(!(encap && in_encap));
1605                 goto unencap;
1606         }
1607
1608         if (swkey->eth.type == htons(ETH_P_IP)) {
1609                 struct ovs_key_ipv4 *ipv4_key;
1610
1611                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1612                 if (!nla)
1613                         goto nla_put_failure;
1614                 ipv4_key = nla_data(nla);
1615                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1616                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1617                 ipv4_key->ipv4_proto = output->ip.proto;
1618                 ipv4_key->ipv4_tos = output->ip.tos;
1619                 ipv4_key->ipv4_ttl = output->ip.ttl;
1620                 ipv4_key->ipv4_frag = output->ip.frag;
1621         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1622                 struct ovs_key_ipv6 *ipv6_key;
1623
1624                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1625                 if (!nla)
1626                         goto nla_put_failure;
1627                 ipv6_key = nla_data(nla);
1628                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1629                                 sizeof(ipv6_key->ipv6_src));
1630                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1631                                 sizeof(ipv6_key->ipv6_dst));
1632                 ipv6_key->ipv6_label = output->ipv6.label;
1633                 ipv6_key->ipv6_proto = output->ip.proto;
1634                 ipv6_key->ipv6_tclass = output->ip.tos;
1635                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1636                 ipv6_key->ipv6_frag = output->ip.frag;
1637         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1638                    swkey->eth.type == htons(ETH_P_RARP)) {
1639                 struct ovs_key_arp *arp_key;
1640
1641                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1642                 if (!nla)
1643                         goto nla_put_failure;
1644                 arp_key = nla_data(nla);
1645                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1646                 arp_key->arp_sip = output->ipv4.addr.src;
1647                 arp_key->arp_tip = output->ipv4.addr.dst;
1648                 arp_key->arp_op = htons(output->ip.proto);
1649                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1650                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1651         } else if (eth_p_mpls(swkey->eth.type)) {
1652                 struct ovs_key_mpls *mpls_key;
1653
1654                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1655                 if (!nla)
1656                         goto nla_put_failure;
1657                 mpls_key = nla_data(nla);
1658                 mpls_key->mpls_lse = output->mpls.top_lse;
1659         }
1660
1661         if ((swkey->eth.type == htons(ETH_P_IP) ||
1662              swkey->eth.type == htons(ETH_P_IPV6)) &&
1663              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1664
1665                 if (swkey->ip.proto == IPPROTO_TCP) {
1666                         struct ovs_key_tcp *tcp_key;
1667
1668                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1669                         if (!nla)
1670                                 goto nla_put_failure;
1671                         tcp_key = nla_data(nla);
1672                         tcp_key->tcp_src = output->tp.src;
1673                         tcp_key->tcp_dst = output->tp.dst;
1674                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1675                                          output->tp.flags))
1676                                 goto nla_put_failure;
1677                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1678                         struct ovs_key_udp *udp_key;
1679
1680                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1681                         if (!nla)
1682                                 goto nla_put_failure;
1683                         udp_key = nla_data(nla);
1684                         udp_key->udp_src = output->tp.src;
1685                         udp_key->udp_dst = output->tp.dst;
1686                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1687                         struct ovs_key_sctp *sctp_key;
1688
1689                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1690                         if (!nla)
1691                                 goto nla_put_failure;
1692                         sctp_key = nla_data(nla);
1693                         sctp_key->sctp_src = output->tp.src;
1694                         sctp_key->sctp_dst = output->tp.dst;
1695                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1696                            swkey->ip.proto == IPPROTO_ICMP) {
1697                         struct ovs_key_icmp *icmp_key;
1698
1699                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1700                         if (!nla)
1701                                 goto nla_put_failure;
1702                         icmp_key = nla_data(nla);
1703                         icmp_key->icmp_type = ntohs(output->tp.src);
1704                         icmp_key->icmp_code = ntohs(output->tp.dst);
1705                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1706                            swkey->ip.proto == IPPROTO_ICMPV6) {
1707                         struct ovs_key_icmpv6 *icmpv6_key;
1708
1709                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1710                                                 sizeof(*icmpv6_key));
1711                         if (!nla)
1712                                 goto nla_put_failure;
1713                         icmpv6_key = nla_data(nla);
1714                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1715                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1716
1717                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1718                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1719                                 struct ovs_key_nd *nd_key;
1720
1721                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1722                                 if (!nla)
1723                                         goto nla_put_failure;
1724                                 nd_key = nla_data(nla);
1725                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1726                                                         sizeof(nd_key->nd_target));
1727                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1728                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1729                         }
1730                 }
1731         }
1732
1733 unencap:
1734         if (in_encap)
1735                 nla_nest_end(skb, in_encap);
1736         if (encap)
1737                 nla_nest_end(skb, encap);
1738
1739         return 0;
1740
1741 nla_put_failure:
1742         return -EMSGSIZE;
1743 }
1744
1745 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1746                     const struct sw_flow_key *output, int attr, bool is_mask,
1747                     struct sk_buff *skb)
1748 {
1749         int err;
1750         struct nlattr *nla;
1751
1752         nla = nla_nest_start(skb, attr);
1753         if (!nla)
1754                 return -EMSGSIZE;
1755         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1756         if (err)
1757                 return err;
1758         nla_nest_end(skb, nla);
1759
1760         return 0;
1761 }
1762
1763 /* Called with ovs_mutex or RCU read lock. */
1764 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1765 {
1766         if (ovs_identifier_is_ufid(&flow->id))
1767                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1768                                flow->id.ufid);
1769
1770         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1771                                OVS_FLOW_ATTR_KEY, false, skb);
1772 }
1773
1774 /* Called with ovs_mutex or RCU read lock. */
1775 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1776 {
1777         return ovs_nla_put_key(&flow->key, &flow->key,
1778                                 OVS_FLOW_ATTR_KEY, false, skb);
1779 }
1780
1781 /* Called with ovs_mutex or RCU read lock. */
1782 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1783 {
1784         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1785                                 OVS_FLOW_ATTR_MASK, true, skb);
1786 }
1787
1788 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1789
1790 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1791 {
1792         struct sw_flow_actions *sfa;
1793
1794         if (size > MAX_ACTIONS_BUFSIZE) {
1795                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1796                 return ERR_PTR(-EINVAL);
1797         }
1798
1799         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1800         if (!sfa)
1801                 return ERR_PTR(-ENOMEM);
1802
1803         sfa->actions_len = 0;
1804         return sfa;
1805 }
1806
1807 static void ovs_nla_free_set_action(const struct nlattr *a)
1808 {
1809         const struct nlattr *ovs_key = nla_data(a);
1810         struct ovs_tunnel_info *ovs_tun;
1811
1812         switch (nla_type(ovs_key)) {
1813         case OVS_KEY_ATTR_TUNNEL_INFO:
1814                 ovs_tun = nla_data(ovs_key);
1815                 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1816                 break;
1817         }
1818 }
1819
1820 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1821 {
1822         const struct nlattr *a;
1823         int rem;
1824
1825         if (!sf_acts)
1826                 return;
1827
1828         nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1829                 switch (nla_type(a)) {
1830                 case OVS_ACTION_ATTR_SET:
1831                         ovs_nla_free_set_action(a);
1832                         break;
1833                 case OVS_ACTION_ATTR_CT:
1834                         ovs_ct_free_action(a);
1835                         break;
1836                 }
1837         }
1838
1839         kfree(sf_acts);
1840 }
1841
1842 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1843 {
1844         ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1845 }
1846
1847 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1848  * The caller must hold rcu_read_lock for this to be sensible. */
1849 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1850 {
1851         call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1852 }
1853
1854 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1855                                        int attr_len, bool log)
1856 {
1857
1858         struct sw_flow_actions *acts;
1859         int new_acts_size;
1860         int req_size = NLA_ALIGN(attr_len);
1861         int next_offset = offsetof(struct sw_flow_actions, actions) +
1862                                         (*sfa)->actions_len;
1863
1864         if (req_size <= (ksize(*sfa) - next_offset))
1865                 goto out;
1866
1867         new_acts_size = ksize(*sfa) * 2;
1868
1869         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1870                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1871                         return ERR_PTR(-EMSGSIZE);
1872                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1873         }
1874
1875         acts = nla_alloc_flow_actions(new_acts_size, log);
1876         if (IS_ERR(acts))
1877                 return (void *)acts;
1878
1879         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1880         acts->actions_len = (*sfa)->actions_len;
1881         acts->orig_len = (*sfa)->orig_len;
1882         kfree(*sfa);
1883         *sfa = acts;
1884
1885 out:
1886         (*sfa)->actions_len += req_size;
1887         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1888 }
1889
1890 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1891                                    int attrtype, void *data, int len, bool log)
1892 {
1893         struct nlattr *a;
1894
1895         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1896         if (IS_ERR(a))
1897                 return a;
1898
1899         a->nla_type = attrtype;
1900         a->nla_len = nla_attr_size(len);
1901
1902         if (data)
1903                 memcpy(nla_data(a), data, len);
1904         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1905
1906         return a;
1907 }
1908
1909 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1910                        int len, bool log)
1911 {
1912         struct nlattr *a;
1913
1914         a = __add_action(sfa, attrtype, data, len, log);
1915
1916         return PTR_ERR_OR_ZERO(a);
1917 }
1918
1919 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1920                                           int attrtype, bool log)
1921 {
1922         int used = (*sfa)->actions_len;
1923         int err;
1924
1925         err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1926         if (err)
1927                 return err;
1928
1929         return used;
1930 }
1931
1932 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1933                                          int st_offset)
1934 {
1935         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1936                                                                st_offset);
1937
1938         a->nla_len = sfa->actions_len - st_offset;
1939 }
1940
1941 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1942                                   const struct sw_flow_key *key,
1943                                   int depth, struct sw_flow_actions **sfa,
1944                                   __be16 eth_type, __be16 vlan_tci, bool log);
1945
1946 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1947                                     const struct sw_flow_key *key, int depth,
1948                                     struct sw_flow_actions **sfa,
1949                                     __be16 eth_type, __be16 vlan_tci, bool log)
1950 {
1951         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1952         const struct nlattr *probability, *actions;
1953         const struct nlattr *a;
1954         int rem, start, err, st_acts;
1955
1956         memset(attrs, 0, sizeof(attrs));
1957         nla_for_each_nested(a, attr, rem) {
1958                 int type = nla_type(a);
1959                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1960                         return -EINVAL;
1961                 attrs[type] = a;
1962         }
1963         if (rem)
1964                 return -EINVAL;
1965
1966         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1967         if (!probability || nla_len(probability) != sizeof(u32))
1968                 return -EINVAL;
1969
1970         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1971         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1972                 return -EINVAL;
1973
1974         /* validation done, copy sample action. */
1975         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1976         if (start < 0)
1977                 return start;
1978         err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1979                                  nla_data(probability), sizeof(u32), log);
1980         if (err)
1981                 return err;
1982         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1983         if (st_acts < 0)
1984                 return st_acts;
1985
1986         err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1987                                      eth_type, vlan_tci, log);
1988         if (err)
1989                 return err;
1990
1991         add_nested_action_end(*sfa, st_acts);
1992         add_nested_action_end(*sfa, start);
1993
1994         return 0;
1995 }
1996
1997 void ovs_match_init(struct sw_flow_match *match,
1998                     struct sw_flow_key *key,
1999                     struct sw_flow_mask *mask)
2000 {
2001         memset(match, 0, sizeof(*match));
2002         match->key = key;
2003         match->mask = mask;
2004
2005         memset(key, 0, sizeof(*key));
2006
2007         if (mask) {
2008                 memset(&mask->key, 0, sizeof(mask->key));
2009                 mask->range.start = mask->range.end = 0;
2010         }
2011 }
2012
2013 static int validate_geneve_opts(struct sw_flow_key *key)
2014 {
2015         struct geneve_opt *option;
2016         int opts_len = key->tun_opts_len;
2017         bool crit_opt = false;
2018
2019         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2020         while (opts_len > 0) {
2021                 int len;
2022
2023                 if (opts_len < sizeof(*option))
2024                         return -EINVAL;
2025
2026                 len = sizeof(*option) + option->length * 4;
2027                 if (len > opts_len)
2028                         return -EINVAL;
2029
2030                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2031
2032                 option = (struct geneve_opt *)((u8 *)option + len);
2033                 opts_len -= len;
2034         };
2035
2036         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2037
2038         return 0;
2039 }
2040
2041 static int validate_and_copy_set_tun(const struct nlattr *attr,
2042                                      struct sw_flow_actions **sfa, bool log)
2043 {
2044         struct sw_flow_match match;
2045         struct sw_flow_key key;
2046         struct metadata_dst *tun_dst;
2047         struct ip_tunnel_info *tun_info;
2048         struct ovs_tunnel_info *ovs_tun;
2049         struct nlattr *a;
2050         int err = 0, start, opts_type;
2051
2052         ovs_match_init(&match, &key, NULL);
2053         opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2054         if (opts_type < 0)
2055                 return opts_type;
2056
2057         if (key.tun_opts_len) {
2058                 switch (opts_type) {
2059                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2060                         err = validate_geneve_opts(&key);
2061                         if (err < 0)
2062                                 return err;
2063                         break;
2064                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2065                         break;
2066                 }
2067         };
2068
2069         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2070         if (start < 0)
2071                 return start;
2072
2073         tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2074         if (!tun_dst)
2075                 return -ENOMEM;
2076
2077         err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2078         if (err) {
2079                 dst_release((struct dst_entry *)tun_dst);
2080                 return err;
2081         }
2082
2083         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2084                          sizeof(*ovs_tun), log);
2085         if (IS_ERR(a)) {
2086                 dst_release((struct dst_entry *)tun_dst);
2087                 return PTR_ERR(a);
2088         }
2089
2090         ovs_tun = nla_data(a);
2091         ovs_tun->tun_dst = tun_dst;
2092
2093         tun_info = &tun_dst->u.tun_info;
2094         tun_info->mode = IP_TUNNEL_INFO_TX;
2095         if (key.tun_proto == AF_INET6)
2096                 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2097         tun_info->key = key.tun_key;
2098
2099         /* We need to store the options in the action itself since
2100          * everything else will go away after flow setup. We can append
2101          * it to tun_info and then point there.
2102          */
2103         ip_tunnel_info_opts_set(tun_info,
2104                                 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2105                                 key.tun_opts_len);
2106         add_nested_action_end(*sfa, start);
2107
2108         return err;
2109 }
2110
2111 /* Return false if there are any non-masked bits set.
2112  * Mask follows data immediately, before any netlink padding.
2113  */
2114 static bool validate_masked(u8 *data, int len)
2115 {
2116         u8 *mask = data + len;
2117
2118         while (len--)
2119                 if (*data++ & ~*mask++)
2120                         return false;
2121
2122         return true;
2123 }
2124
2125 static int validate_set(const struct nlattr *a,
2126                         const struct sw_flow_key *flow_key,
2127                         struct sw_flow_actions **sfa,
2128                         bool *skip_copy, __be16 eth_type, bool masked, bool log)
2129 {
2130         const struct nlattr *ovs_key = nla_data(a);
2131         int key_type = nla_type(ovs_key);
2132         size_t key_len;
2133
2134         /* There can be only one key in a action */
2135         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2136                 return -EINVAL;
2137
2138         key_len = nla_len(ovs_key);
2139         if (masked)
2140                 key_len /= 2;
2141
2142         if (key_type > OVS_KEY_ATTR_MAX ||
2143             !check_attr_len(key_len, ovs_key_lens[key_type].len))
2144                 return -EINVAL;
2145
2146         if (masked && !validate_masked(nla_data(ovs_key), key_len))
2147                 return -EINVAL;
2148
2149         switch (key_type) {
2150         const struct ovs_key_ipv4 *ipv4_key;
2151         const struct ovs_key_ipv6 *ipv6_key;
2152         int err;
2153
2154         case OVS_KEY_ATTR_PRIORITY:
2155         case OVS_KEY_ATTR_SKB_MARK:
2156         case OVS_KEY_ATTR_CT_MARK:
2157         case OVS_KEY_ATTR_CT_LABELS:
2158         case OVS_KEY_ATTR_ETHERNET:
2159                 break;
2160
2161         case OVS_KEY_ATTR_TUNNEL:
2162                 if (masked)
2163                         return -EINVAL; /* Masked tunnel set not supported. */
2164
2165                 *skip_copy = true;
2166                 err = validate_and_copy_set_tun(a, sfa, log);
2167                 if (err)
2168                         return err;
2169                 break;
2170
2171         case OVS_KEY_ATTR_IPV4:
2172                 if (eth_type != htons(ETH_P_IP))
2173                         return -EINVAL;
2174
2175                 ipv4_key = nla_data(ovs_key);
2176
2177                 if (masked) {
2178                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2179
2180                         /* Non-writeable fields. */
2181                         if (mask->ipv4_proto || mask->ipv4_frag)
2182                                 return -EINVAL;
2183                 } else {
2184                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2185                                 return -EINVAL;
2186
2187                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2188                                 return -EINVAL;
2189                 }
2190                 break;
2191
2192         case OVS_KEY_ATTR_IPV6:
2193                 if (eth_type != htons(ETH_P_IPV6))
2194                         return -EINVAL;
2195
2196                 ipv6_key = nla_data(ovs_key);
2197
2198                 if (masked) {
2199                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2200
2201                         /* Non-writeable fields. */
2202                         if (mask->ipv6_proto || mask->ipv6_frag)
2203                                 return -EINVAL;
2204
2205                         /* Invalid bits in the flow label mask? */
2206                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
2207                                 return -EINVAL;
2208                 } else {
2209                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2210                                 return -EINVAL;
2211
2212                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2213                                 return -EINVAL;
2214                 }
2215                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2216                         return -EINVAL;
2217
2218                 break;
2219
2220         case OVS_KEY_ATTR_TCP:
2221                 if ((eth_type != htons(ETH_P_IP) &&
2222                      eth_type != htons(ETH_P_IPV6)) ||
2223                     flow_key->ip.proto != IPPROTO_TCP)
2224                         return -EINVAL;
2225
2226                 break;
2227
2228         case OVS_KEY_ATTR_UDP:
2229                 if ((eth_type != htons(ETH_P_IP) &&
2230                      eth_type != htons(ETH_P_IPV6)) ||
2231                     flow_key->ip.proto != IPPROTO_UDP)
2232                         return -EINVAL;
2233
2234                 break;
2235
2236         case OVS_KEY_ATTR_MPLS:
2237                 if (!eth_p_mpls(eth_type))
2238                         return -EINVAL;
2239                 break;
2240
2241         case OVS_KEY_ATTR_SCTP:
2242                 if ((eth_type != htons(ETH_P_IP) &&
2243                      eth_type != htons(ETH_P_IPV6)) ||
2244                     flow_key->ip.proto != IPPROTO_SCTP)
2245                         return -EINVAL;
2246
2247                 break;
2248
2249         default:
2250                 return -EINVAL;
2251         }
2252
2253         /* Convert non-masked non-tunnel set actions to masked set actions. */
2254         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2255                 int start, len = key_len * 2;
2256                 struct nlattr *at;
2257
2258                 *skip_copy = true;
2259
2260                 start = add_nested_action_start(sfa,
2261                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2262                                                 log);
2263                 if (start < 0)
2264                         return start;
2265
2266                 at = __add_action(sfa, key_type, NULL, len, log);
2267                 if (IS_ERR(at))
2268                         return PTR_ERR(at);
2269
2270                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2271                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2272                 /* Clear non-writeable bits from otherwise writeable fields. */
2273                 if (key_type == OVS_KEY_ATTR_IPV6) {
2274                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2275
2276                         mask->ipv6_label &= htonl(0x000FFFFF);
2277                 }
2278                 add_nested_action_end(*sfa, start);
2279         }
2280
2281         return 0;
2282 }
2283
2284 static int validate_userspace(const struct nlattr *attr)
2285 {
2286         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2287                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2288                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2289                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2290         };
2291         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2292         int error;
2293
2294         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2295                                  attr, userspace_policy);
2296         if (error)
2297                 return error;
2298
2299         if (!a[OVS_USERSPACE_ATTR_PID] ||
2300             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2301                 return -EINVAL;
2302
2303         return 0;
2304 }
2305
2306 static int copy_action(const struct nlattr *from,
2307                        struct sw_flow_actions **sfa, bool log)
2308 {
2309         int totlen = NLA_ALIGN(from->nla_len);
2310         struct nlattr *to;
2311
2312         to = reserve_sfa_size(sfa, from->nla_len, log);
2313         if (IS_ERR(to))
2314                 return PTR_ERR(to);
2315
2316         memcpy(to, from, totlen);
2317         return 0;
2318 }
2319
2320 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2321                                   const struct sw_flow_key *key,
2322                                   int depth, struct sw_flow_actions **sfa,
2323                                   __be16 eth_type, __be16 vlan_tci, bool log)
2324 {
2325         const struct nlattr *a;
2326         int rem, err;
2327
2328         if (depth >= SAMPLE_ACTION_DEPTH)
2329                 return -EOVERFLOW;
2330
2331         nla_for_each_nested(a, attr, rem) {
2332                 /* Expected argument lengths, (u32)-1 for variable length. */
2333                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2334                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2335                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2336                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2337                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2338                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2339                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2340                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2341                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2342                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2343                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2344                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2345                         [OVS_ACTION_ATTR_CT] = (u32)-1,
2346                         [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2347                 };
2348                 const struct ovs_action_push_vlan *vlan;
2349                 int type = nla_type(a);
2350                 bool skip_copy;
2351
2352                 if (type > OVS_ACTION_ATTR_MAX ||
2353                     (action_lens[type] != nla_len(a) &&
2354                      action_lens[type] != (u32)-1))
2355                         return -EINVAL;
2356
2357                 skip_copy = false;
2358                 switch (type) {
2359                 case OVS_ACTION_ATTR_UNSPEC:
2360                         return -EINVAL;
2361
2362                 case OVS_ACTION_ATTR_USERSPACE:
2363                         err = validate_userspace(a);
2364                         if (err)
2365                                 return err;
2366                         break;
2367
2368                 case OVS_ACTION_ATTR_OUTPUT:
2369                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2370                                 return -EINVAL;
2371                         break;
2372
2373                 case OVS_ACTION_ATTR_TRUNC: {
2374                         const struct ovs_action_trunc *trunc = nla_data(a);
2375
2376                         if (trunc->max_len < ETH_HLEN)
2377                                 return -EINVAL;
2378                         break;
2379                 }
2380
2381                 case OVS_ACTION_ATTR_HASH: {
2382                         const struct ovs_action_hash *act_hash = nla_data(a);
2383
2384                         switch (act_hash->hash_alg) {
2385                         case OVS_HASH_ALG_L4:
2386                                 break;
2387                         default:
2388                                 return  -EINVAL;
2389                         }
2390
2391                         break;
2392                 }
2393
2394                 case OVS_ACTION_ATTR_POP_VLAN:
2395                         vlan_tci = htons(0);
2396                         break;
2397
2398                 case OVS_ACTION_ATTR_PUSH_VLAN:
2399                         vlan = nla_data(a);
2400                         if (!eth_type_vlan(vlan->vlan_tpid))
2401                                 return -EINVAL;
2402                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2403                                 return -EINVAL;
2404                         vlan_tci = vlan->vlan_tci;
2405                         break;
2406
2407                 case OVS_ACTION_ATTR_RECIRC:
2408                         break;
2409
2410                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2411                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2412
2413                         if (!eth_p_mpls(mpls->mpls_ethertype))
2414                                 return -EINVAL;
2415                         /* Prohibit push MPLS other than to a white list
2416                          * for packets that have a known tag order.
2417                          */
2418                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2419                             (eth_type != htons(ETH_P_IP) &&
2420                              eth_type != htons(ETH_P_IPV6) &&
2421                              eth_type != htons(ETH_P_ARP) &&
2422                              eth_type != htons(ETH_P_RARP) &&
2423                              !eth_p_mpls(eth_type)))
2424                                 return -EINVAL;
2425                         eth_type = mpls->mpls_ethertype;
2426                         break;
2427                 }
2428
2429                 case OVS_ACTION_ATTR_POP_MPLS:
2430                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2431                             !eth_p_mpls(eth_type))
2432                                 return -EINVAL;
2433
2434                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2435                          * as there is no check here to ensure that the new
2436                          * eth_type is valid and thus set actions could
2437                          * write off the end of the packet or otherwise
2438                          * corrupt it.
2439                          *
2440                          * Support for these actions is planned using packet
2441                          * recirculation.
2442                          */
2443                         eth_type = htons(0);
2444                         break;
2445
2446                 case OVS_ACTION_ATTR_SET:
2447                         err = validate_set(a, key, sfa,
2448                                            &skip_copy, eth_type, false, log);
2449                         if (err)
2450                                 return err;
2451                         break;
2452
2453                 case OVS_ACTION_ATTR_SET_MASKED:
2454                         err = validate_set(a, key, sfa,
2455                                            &skip_copy, eth_type, true, log);
2456                         if (err)
2457                                 return err;
2458                         break;
2459
2460                 case OVS_ACTION_ATTR_SAMPLE:
2461                         err = validate_and_copy_sample(net, a, key, depth, sfa,
2462                                                        eth_type, vlan_tci, log);
2463                         if (err)
2464                                 return err;
2465                         skip_copy = true;
2466                         break;
2467
2468                 case OVS_ACTION_ATTR_CT:
2469                         err = ovs_ct_copy_action(net, a, key, sfa, log);
2470                         if (err)
2471                                 return err;
2472                         skip_copy = true;
2473                         break;
2474
2475                 default:
2476                         OVS_NLERR(log, "Unknown Action type %d", type);
2477                         return -EINVAL;
2478                 }
2479                 if (!skip_copy) {
2480                         err = copy_action(a, sfa, log);
2481                         if (err)
2482                                 return err;
2483                 }
2484         }
2485
2486         if (rem > 0)
2487                 return -EINVAL;
2488
2489         return 0;
2490 }
2491
2492 /* 'key' must be the masked key. */
2493 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2494                          const struct sw_flow_key *key,
2495                          struct sw_flow_actions **sfa, bool log)
2496 {
2497         int err;
2498
2499         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2500         if (IS_ERR(*sfa))
2501                 return PTR_ERR(*sfa);
2502
2503         (*sfa)->orig_len = nla_len(attr);
2504         err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2505                                      key->eth.vlan.tci, log);
2506         if (err)
2507                 ovs_nla_free_flow_actions(*sfa);
2508
2509         return err;
2510 }
2511
2512 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2513 {
2514         const struct nlattr *a;
2515         struct nlattr *start;
2516         int err = 0, rem;
2517
2518         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2519         if (!start)
2520                 return -EMSGSIZE;
2521
2522         nla_for_each_nested(a, attr, rem) {
2523                 int type = nla_type(a);
2524                 struct nlattr *st_sample;
2525
2526                 switch (type) {
2527                 case OVS_SAMPLE_ATTR_PROBABILITY:
2528                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2529                                     sizeof(u32), nla_data(a)))
2530                                 return -EMSGSIZE;
2531                         break;
2532                 case OVS_SAMPLE_ATTR_ACTIONS:
2533                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2534                         if (!st_sample)
2535                                 return -EMSGSIZE;
2536                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2537                         if (err)
2538                                 return err;
2539                         nla_nest_end(skb, st_sample);
2540                         break;
2541                 }
2542         }
2543
2544         nla_nest_end(skb, start);
2545         return err;
2546 }
2547
2548 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2549 {
2550         const struct nlattr *ovs_key = nla_data(a);
2551         int key_type = nla_type(ovs_key);
2552         struct nlattr *start;
2553         int err;
2554
2555         switch (key_type) {
2556         case OVS_KEY_ATTR_TUNNEL_INFO: {
2557                 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2558                 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2559
2560                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2561                 if (!start)
2562                         return -EMSGSIZE;
2563
2564                 err =  ip_tun_to_nlattr(skb, &tun_info->key,
2565                                         ip_tunnel_info_opts(tun_info),
2566                                         tun_info->options_len,
2567                                         ip_tunnel_info_af(tun_info));
2568                 if (err)
2569                         return err;
2570                 nla_nest_end(skb, start);
2571                 break;
2572         }
2573         default:
2574                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2575                         return -EMSGSIZE;
2576                 break;
2577         }
2578
2579         return 0;
2580 }
2581
2582 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2583                                                 struct sk_buff *skb)
2584 {
2585         const struct nlattr *ovs_key = nla_data(a);
2586         struct nlattr *nla;
2587         size_t key_len = nla_len(ovs_key) / 2;
2588
2589         /* Revert the conversion we did from a non-masked set action to
2590          * masked set action.
2591          */
2592         nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2593         if (!nla)
2594                 return -EMSGSIZE;
2595
2596         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2597                 return -EMSGSIZE;
2598
2599         nla_nest_end(skb, nla);
2600         return 0;
2601 }
2602
2603 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2604 {
2605         const struct nlattr *a;
2606         int rem, err;
2607
2608         nla_for_each_attr(a, attr, len, rem) {
2609                 int type = nla_type(a);
2610
2611                 switch (type) {
2612                 case OVS_ACTION_ATTR_SET:
2613                         err = set_action_to_attr(a, skb);
2614                         if (err)
2615                                 return err;
2616                         break;
2617
2618                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2619                         err = masked_set_action_to_set_action_attr(a, skb);
2620                         if (err)
2621                                 return err;
2622                         break;
2623
2624                 case OVS_ACTION_ATTR_SAMPLE:
2625                         err = sample_action_to_attr(a, skb);
2626                         if (err)
2627                                 return err;
2628                         break;
2629
2630                 case OVS_ACTION_ATTR_CT:
2631                         err = ovs_ct_action_to_attr(nla_data(a), skb);
2632                         if (err)
2633                                 return err;
2634                         break;
2635
2636                 default:
2637                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2638                                 return -EMSGSIZE;
2639                         break;
2640                 }
2641         }
2642
2643         return 0;
2644 }