datapath: check for backported ip_is_fragment
[cascardo/ovs.git] / datapath / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/mpls.h>
46 #include <net/ndisc.h>
47
48 #include "datapath.h"
49 #include "flow.h"
50 #include "flow_netlink.h"
51
52 #include "vlan.h"
53
54 u64 ovs_flow_used_time(unsigned long flow_jiffies)
55 {
56         struct timespec cur_ts;
57         u64 cur_ms, idle_ms;
58
59         ktime_get_ts(&cur_ts);
60         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
61         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
62                  cur_ts.tv_nsec / NSEC_PER_MSEC;
63
64         return cur_ms - idle_ms;
65 }
66
67 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
68
69 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
70                            const struct sk_buff *skb)
71 {
72         struct flow_stats *stats;
73         int node = numa_node_id();
74         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
75
76         stats = rcu_dereference(flow->stats[node]);
77
78         /* Check if already have node-specific stats. */
79         if (likely(stats)) {
80                 spin_lock(&stats->lock);
81                 /* Mark if we write on the pre-allocated stats. */
82                 if (node == 0 && unlikely(flow->stats_last_writer != node))
83                         flow->stats_last_writer = node;
84         } else {
85                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
86                 spin_lock(&stats->lock);
87
88                 /* If the current NUMA-node is the only writer on the
89                  * pre-allocated stats keep using them.
90                  */
91                 if (unlikely(flow->stats_last_writer != node)) {
92                         /* A previous locker may have already allocated the
93                          * stats, so we need to check again.  If node-specific
94                          * stats were already allocated, we update the pre-
95                          * allocated stats as we have already locked them.
96                          */
97                         if (likely(flow->stats_last_writer != NUMA_NO_NODE)
98                             && likely(!rcu_access_pointer(flow->stats[node]))) {
99                                 /* Try to allocate node-specific stats. */
100                                 struct flow_stats *new_stats;
101
102                                 new_stats =
103                                         kmem_cache_alloc_node(flow_stats_cache,
104                                                               GFP_THISNODE |
105                                                               __GFP_NOMEMALLOC,
106                                                               node);
107                                 if (likely(new_stats)) {
108                                         new_stats->used = jiffies;
109                                         new_stats->packet_count = 1;
110                                         new_stats->byte_count = len;
111                                         new_stats->tcp_flags = tcp_flags;
112                                         spin_lock_init(&new_stats->lock);
113
114                                         rcu_assign_pointer(flow->stats[node],
115                                                            new_stats);
116                                         goto unlock;
117                                 }
118                         }
119                         flow->stats_last_writer = node;
120                 }
121         }
122
123         stats->used = jiffies;
124         stats->packet_count++;
125         stats->byte_count += len;
126         stats->tcp_flags |= tcp_flags;
127 unlock:
128         spin_unlock(&stats->lock);
129 }
130
131 /* Must be called with rcu_read_lock or ovs_mutex. */
132 void ovs_flow_stats_get(const struct sw_flow *flow,
133                         struct ovs_flow_stats *ovs_stats,
134                         unsigned long *used, __be16 *tcp_flags)
135 {
136         int node;
137
138         *used = 0;
139         *tcp_flags = 0;
140         memset(ovs_stats, 0, sizeof(*ovs_stats));
141
142         for_each_node(node) {
143                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
144
145                 if (stats) {
146                         /* Local CPU may write on non-local stats, so we must
147                          * block bottom-halves here.
148                          */
149                         spin_lock_bh(&stats->lock);
150                         if (!*used || time_after(stats->used, *used))
151                                 *used = stats->used;
152                         *tcp_flags |= stats->tcp_flags;
153                         ovs_stats->n_packets += stats->packet_count;
154                         ovs_stats->n_bytes += stats->byte_count;
155                         spin_unlock_bh(&stats->lock);
156                 }
157         }
158 }
159
160 /* Called with ovs_mutex. */
161 void ovs_flow_stats_clear(struct sw_flow *flow)
162 {
163         int node;
164
165         for_each_node(node) {
166                 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
167
168                 if (stats) {
169                         spin_lock_bh(&stats->lock);
170                         stats->used = 0;
171                         stats->packet_count = 0;
172                         stats->byte_count = 0;
173                         stats->tcp_flags = 0;
174                         spin_unlock_bh(&stats->lock);
175                 }
176         }
177 }
178
179 static int check_header(struct sk_buff *skb, int len)
180 {
181         if (unlikely(skb->len < len))
182                 return -EINVAL;
183         if (unlikely(!pskb_may_pull(skb, len)))
184                 return -ENOMEM;
185         return 0;
186 }
187
188 static bool arphdr_ok(struct sk_buff *skb)
189 {
190         return pskb_may_pull(skb, skb_network_offset(skb) +
191                                   sizeof(struct arp_eth_header));
192 }
193
194 static int check_iphdr(struct sk_buff *skb)
195 {
196         unsigned int nh_ofs = skb_network_offset(skb);
197         unsigned int ip_len;
198         int err;
199
200         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
201         if (unlikely(err))
202                 return err;
203
204         ip_len = ip_hdrlen(skb);
205         if (unlikely(ip_len < sizeof(struct iphdr) ||
206                      skb->len < nh_ofs + ip_len))
207                 return -EINVAL;
208
209         skb_set_transport_header(skb, nh_ofs + ip_len);
210         return 0;
211 }
212
213 static bool tcphdr_ok(struct sk_buff *skb)
214 {
215         int th_ofs = skb_transport_offset(skb);
216         int tcp_len;
217
218         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
219                 return false;
220
221         tcp_len = tcp_hdrlen(skb);
222         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
223                      skb->len < th_ofs + tcp_len))
224                 return false;
225
226         return true;
227 }
228
229 static bool udphdr_ok(struct sk_buff *skb)
230 {
231         return pskb_may_pull(skb, skb_transport_offset(skb) +
232                                   sizeof(struct udphdr));
233 }
234
235 static bool sctphdr_ok(struct sk_buff *skb)
236 {
237         return pskb_may_pull(skb, skb_transport_offset(skb) +
238                                   sizeof(struct sctphdr));
239 }
240
241 static bool icmphdr_ok(struct sk_buff *skb)
242 {
243         return pskb_may_pull(skb, skb_transport_offset(skb) +
244                                   sizeof(struct icmphdr));
245 }
246
247 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
248 {
249         unsigned int nh_ofs = skb_network_offset(skb);
250         unsigned int nh_len;
251         int payload_ofs;
252         struct ipv6hdr *nh;
253         uint8_t nexthdr;
254         __be16 frag_off;
255         int err;
256
257         err = check_header(skb, nh_ofs + sizeof(*nh));
258         if (unlikely(err))
259                 return err;
260
261         nh = ipv6_hdr(skb);
262         nexthdr = nh->nexthdr;
263         payload_ofs = (u8 *)(nh + 1) - skb->data;
264
265         key->ip.proto = NEXTHDR_NONE;
266         key->ip.tos = ipv6_get_dsfield(nh);
267         key->ip.ttl = nh->hop_limit;
268         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
269         key->ipv6.addr.src = nh->saddr;
270         key->ipv6.addr.dst = nh->daddr;
271
272         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
273         if (unlikely(payload_ofs < 0))
274                 return -EINVAL;
275
276         if (frag_off) {
277                 if (frag_off & htons(~0x7))
278                         key->ip.frag = OVS_FRAG_TYPE_LATER;
279                 else
280                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
281         } else {
282                 key->ip.frag = OVS_FRAG_TYPE_NONE;
283         }
284
285         nh_len = payload_ofs - nh_ofs;
286         skb_set_transport_header(skb, nh_ofs + nh_len);
287         key->ip.proto = nexthdr;
288         return nh_len;
289 }
290
291 static bool icmp6hdr_ok(struct sk_buff *skb)
292 {
293         return pskb_may_pull(skb, skb_transport_offset(skb) +
294                                   sizeof(struct icmp6hdr));
295 }
296
297 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
298 {
299         struct qtag_prefix {
300                 __be16 eth_type; /* ETH_P_8021Q */
301                 __be16 tci;
302         };
303         struct qtag_prefix *qp;
304
305         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
306                 return 0;
307
308         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
309                                          sizeof(__be16))))
310                 return -ENOMEM;
311
312         qp = (struct qtag_prefix *) skb->data;
313         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
314         __skb_pull(skb, sizeof(struct qtag_prefix));
315
316         return 0;
317 }
318
319 static __be16 parse_ethertype(struct sk_buff *skb)
320 {
321         struct llc_snap_hdr {
322                 u8  dsap;  /* Always 0xAA */
323                 u8  ssap;  /* Always 0xAA */
324                 u8  ctrl;
325                 u8  oui[3];
326                 __be16 ethertype;
327         };
328         struct llc_snap_hdr *llc;
329         __be16 proto;
330
331         proto = *(__be16 *) skb->data;
332         __skb_pull(skb, sizeof(__be16));
333
334         if (eth_proto_is_802_3(proto))
335                 return proto;
336
337         if (skb->len < sizeof(struct llc_snap_hdr))
338                 return htons(ETH_P_802_2);
339
340         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
341                 return htons(0);
342
343         llc = (struct llc_snap_hdr *) skb->data;
344         if (llc->dsap != LLC_SAP_SNAP ||
345             llc->ssap != LLC_SAP_SNAP ||
346             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
347                 return htons(ETH_P_802_2);
348
349         __skb_pull(skb, sizeof(struct llc_snap_hdr));
350
351         if (eth_proto_is_802_3(llc->ethertype))
352                 return llc->ethertype;
353
354         return htons(ETH_P_802_2);
355 }
356
357 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
358                         int nh_len)
359 {
360         struct icmp6hdr *icmp = icmp6_hdr(skb);
361
362         /* The ICMPv6 type and code fields use the 16-bit transport port
363          * fields, so we need to store them in 16-bit network byte order.
364          */
365         key->tp.src = htons(icmp->icmp6_type);
366         key->tp.dst = htons(icmp->icmp6_code);
367         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
368
369         if (icmp->icmp6_code == 0 &&
370             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
371              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
372                 int icmp_len = skb->len - skb_transport_offset(skb);
373                 struct nd_msg *nd;
374                 int offset;
375
376                 /* In order to process neighbor discovery options, we need the
377                  * entire packet.
378                  */
379                 if (unlikely(icmp_len < sizeof(*nd)))
380                         return 0;
381
382                 if (unlikely(skb_linearize(skb)))
383                         return -ENOMEM;
384
385                 nd = (struct nd_msg *)skb_transport_header(skb);
386                 key->ipv6.nd.target = nd->target;
387
388                 icmp_len -= sizeof(*nd);
389                 offset = 0;
390                 while (icmp_len >= 8) {
391                         struct nd_opt_hdr *nd_opt =
392                                  (struct nd_opt_hdr *)(nd->opt + offset);
393                         int opt_len = nd_opt->nd_opt_len * 8;
394
395                         if (unlikely(!opt_len || opt_len > icmp_len))
396                                 return 0;
397
398                         /* Store the link layer address if the appropriate
399                          * option is provided.  It is considered an error if
400                          * the same link layer option is specified twice.
401                          */
402                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
403                             && opt_len == 8) {
404                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
405                                         goto invalid;
406                                 ether_addr_copy(key->ipv6.nd.sll,
407                                                 &nd->opt[offset+sizeof(*nd_opt)]);
408                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
409                                    && opt_len == 8) {
410                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
411                                         goto invalid;
412                                 ether_addr_copy(key->ipv6.nd.tll,
413                                                 &nd->opt[offset+sizeof(*nd_opt)]);
414                         }
415
416                         icmp_len -= opt_len;
417                         offset += opt_len;
418                 }
419         }
420
421         return 0;
422
423 invalid:
424         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
425         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
426         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
427
428         return 0;
429 }
430
431 /**
432  * key_extract - extracts a flow key from an Ethernet frame.
433  * @skb: sk_buff that contains the frame, with skb->data pointing to the
434  * Ethernet header
435  * @key: output flow key
436  *
437  * The caller must ensure that skb->len >= ETH_HLEN.
438  *
439  * Returns 0 if successful, otherwise a negative errno value.
440  *
441  * Initializes @skb header pointers as follows:
442  *
443  *    - skb->mac_header: the Ethernet header.
444  *
445  *    - skb->network_header: just past the Ethernet header, or just past the
446  *      VLAN header, to the first byte of the Ethernet payload.
447  *
448  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
449  *      on output, then just past the IP header, if one is present and
450  *      of a correct length, otherwise the same as skb->network_header.
451  *      For other key->eth.type values it is left untouched.
452  */
453 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
454 {
455         int error;
456         struct ethhdr *eth;
457
458         /* Flags are always used as part of stats */
459         key->tp.flags = 0;
460
461         skb_reset_mac_header(skb);
462
463         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
464          * header in the linear data area.
465          */
466         eth = eth_hdr(skb);
467         ether_addr_copy(key->eth.src, eth->h_source);
468         ether_addr_copy(key->eth.dst, eth->h_dest);
469
470         __skb_pull(skb, 2 * ETH_ALEN);
471         /* We are going to push all headers that we pull, so no need to
472          * update skb->csum here.
473          */
474
475         key->eth.tci = 0;
476         if (skb_vlan_tag_present(skb))
477                 key->eth.tci = htons(vlan_get_tci(skb));
478         else if (eth->h_proto == htons(ETH_P_8021Q))
479                 if (unlikely(parse_vlan(skb, key)))
480                         return -ENOMEM;
481
482         key->eth.type = parse_ethertype(skb);
483         if (unlikely(key->eth.type == htons(0)))
484                 return -ENOMEM;
485
486         skb_reset_network_header(skb);
487         skb_reset_mac_len(skb);
488         __skb_push(skb, skb->data - skb_mac_header(skb));
489
490         /* Network layer. */
491         if (key->eth.type == htons(ETH_P_IP)) {
492                 struct iphdr *nh;
493                 __be16 offset;
494
495                 error = check_iphdr(skb);
496                 if (unlikely(error)) {
497                         memset(&key->ip, 0, sizeof(key->ip));
498                         memset(&key->ipv4, 0, sizeof(key->ipv4));
499                         if (error == -EINVAL) {
500                                 skb->transport_header = skb->network_header;
501                                 error = 0;
502                         }
503                         return error;
504                 }
505
506                 nh = ip_hdr(skb);
507                 key->ipv4.addr.src = nh->saddr;
508                 key->ipv4.addr.dst = nh->daddr;
509
510                 key->ip.proto = nh->protocol;
511                 key->ip.tos = nh->tos;
512                 key->ip.ttl = nh->ttl;
513
514                 offset = nh->frag_off & htons(IP_OFFSET);
515                 if (offset) {
516                         key->ip.frag = OVS_FRAG_TYPE_LATER;
517                         return 0;
518                 }
519                 if (nh->frag_off & htons(IP_MF) ||
520                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
521                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
522                 else
523                         key->ip.frag = OVS_FRAG_TYPE_NONE;
524
525                 /* Transport layer. */
526                 if (key->ip.proto == IPPROTO_TCP) {
527                         if (tcphdr_ok(skb)) {
528                                 struct tcphdr *tcp = tcp_hdr(skb);
529                                 key->tp.src = tcp->source;
530                                 key->tp.dst = tcp->dest;
531                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
532                         } else {
533                                 memset(&key->tp, 0, sizeof(key->tp));
534                         }
535
536                 } else if (key->ip.proto == IPPROTO_UDP) {
537                         if (udphdr_ok(skb)) {
538                                 struct udphdr *udp = udp_hdr(skb);
539                                 key->tp.src = udp->source;
540                                 key->tp.dst = udp->dest;
541                         } else {
542                                 memset(&key->tp, 0, sizeof(key->tp));
543                         }
544                 } else if (key->ip.proto == IPPROTO_SCTP) {
545                         if (sctphdr_ok(skb)) {
546                                 struct sctphdr *sctp = sctp_hdr(skb);
547                                 key->tp.src = sctp->source;
548                                 key->tp.dst = sctp->dest;
549                         } else {
550                                 memset(&key->tp, 0, sizeof(key->tp));
551                         }
552                 } else if (key->ip.proto == IPPROTO_ICMP) {
553                         if (icmphdr_ok(skb)) {
554                                 struct icmphdr *icmp = icmp_hdr(skb);
555                                 /* The ICMP type and code fields use the 16-bit
556                                  * transport port fields, so we need to store
557                                  * them in 16-bit network byte order.
558                                  */
559                                 key->tp.src = htons(icmp->type);
560                                 key->tp.dst = htons(icmp->code);
561                         } else {
562                                 memset(&key->tp, 0, sizeof(key->tp));
563                         }
564                 }
565
566         } else if (key->eth.type == htons(ETH_P_ARP) ||
567                    key->eth.type == htons(ETH_P_RARP)) {
568                 struct arp_eth_header *arp;
569                 bool arp_available = arphdr_ok(skb);
570
571                 arp = (struct arp_eth_header *)skb_network_header(skb);
572
573                 if (arp_available &&
574                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
575                     arp->ar_pro == htons(ETH_P_IP) &&
576                     arp->ar_hln == ETH_ALEN &&
577                     arp->ar_pln == 4) {
578
579                         /* We only match on the lower 8 bits of the opcode. */
580                         if (ntohs(arp->ar_op) <= 0xff)
581                                 key->ip.proto = ntohs(arp->ar_op);
582                         else
583                                 key->ip.proto = 0;
584
585                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
586                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
587                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
588                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
589                 } else {
590                         memset(&key->ip, 0, sizeof(key->ip));
591                         memset(&key->ipv4, 0, sizeof(key->ipv4));
592                 }
593         } else if (eth_p_mpls(key->eth.type)) {
594                 size_t stack_len = MPLS_HLEN;
595
596                 /* In the presence of an MPLS label stack the end of the L2
597                  * header and the beginning of the L3 header differ.
598                  *
599                  * Advance network_header to the beginning of the L3
600                  * header. mac_len corresponds to the end of the L2 header.
601                  */
602                 while (1) {
603                         __be32 lse;
604
605                         error = check_header(skb, skb->mac_len + stack_len);
606                         if (unlikely(error))
607                                 return 0;
608
609                         memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
610
611                         if (stack_len == MPLS_HLEN)
612                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
613
614                         skb_set_network_header(skb, skb->mac_len + stack_len);
615                         if (lse & htonl(MPLS_LS_S_MASK))
616                                 break;
617
618                         stack_len += MPLS_HLEN;
619                 }
620         } else if (key->eth.type == htons(ETH_P_IPV6)) {
621                 int nh_len;             /* IPv6 Header + Extensions */
622
623                 nh_len = parse_ipv6hdr(skb, key);
624                 if (unlikely(nh_len < 0)) {
625                         memset(&key->ip, 0, sizeof(key->ip));
626                         memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
627                         if (nh_len == -EINVAL) {
628                                 skb->transport_header = skb->network_header;
629                                 error = 0;
630                         } else {
631                                 error = nh_len;
632                         }
633                         return error;
634                 }
635
636                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
637                         return 0;
638                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
639                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
640
641                 /* Transport layer. */
642                 if (key->ip.proto == NEXTHDR_TCP) {
643                         if (tcphdr_ok(skb)) {
644                                 struct tcphdr *tcp = tcp_hdr(skb);
645                                 key->tp.src = tcp->source;
646                                 key->tp.dst = tcp->dest;
647                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
648                         } else {
649                                 memset(&key->tp, 0, sizeof(key->tp));
650                         }
651                 } else if (key->ip.proto == NEXTHDR_UDP) {
652                         if (udphdr_ok(skb)) {
653                                 struct udphdr *udp = udp_hdr(skb);
654                                 key->tp.src = udp->source;
655                                 key->tp.dst = udp->dest;
656                         } else {
657                                 memset(&key->tp, 0, sizeof(key->tp));
658                         }
659                 } else if (key->ip.proto == NEXTHDR_SCTP) {
660                         if (sctphdr_ok(skb)) {
661                                 struct sctphdr *sctp = sctp_hdr(skb);
662                                 key->tp.src = sctp->source;
663                                 key->tp.dst = sctp->dest;
664                         } else {
665                                 memset(&key->tp, 0, sizeof(key->tp));
666                         }
667                 } else if (key->ip.proto == NEXTHDR_ICMP) {
668                         if (icmp6hdr_ok(skb)) {
669                                 error = parse_icmpv6(skb, key, nh_len);
670                                 if (error)
671                                         return error;
672                         } else {
673                                 memset(&key->tp, 0, sizeof(key->tp));
674                         }
675                 }
676         }
677         return 0;
678 }
679
680 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
681 {
682         return key_extract(skb, key);
683 }
684
685 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info,
686                          struct sk_buff *skb, struct sw_flow_key *key)
687 {
688         /* Extract metadata from packet. */
689         if (tun_info) {
690                 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
691
692                 BUILD_BUG_ON(((1 << (sizeof(tun_info->options_len) * 8)) - 1) >
693                              sizeof(key->tun_opts));
694
695                 if (tun_info->options) {
696                         memcpy(TUN_METADATA_OPTS(key, tun_info->options_len),
697                                tun_info->options, tun_info->options_len);
698                         key->tun_opts_len = tun_info->options_len;
699                 } else {
700                         key->tun_opts_len = 0;
701                 }
702         } else {
703                 key->tun_opts_len = 0;
704                 memset(&key->tun_key, 0, sizeof(key->tun_key));
705         }
706
707         key->phy.priority = skb->priority;
708         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
709         key->phy.skb_mark = skb->mark;
710         key->ovs_flow_hash = 0;
711         key->recirc_id = 0;
712
713         return key_extract(skb, key);
714 }
715
716 int ovs_flow_key_extract_userspace(const struct nlattr *attr,
717                                    struct sk_buff *skb,
718                                    struct sw_flow_key *key, bool log)
719 {
720         int err;
721
722         /* Extract metadata from netlink attributes. */
723         err = ovs_nla_get_flow_metadata(attr, key, log);
724         if (err)
725                 return err;
726
727         return key_extract(skb, key);
728 }