datapath: Add conntrack action
[cascardo/ovs.git] / datapath / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/geneve.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
47 #include <net/mpls.h>
48 #include <net/vxlan.h>
49
50 #include "datapath.h"
51 #include "conntrack.h"
52 #include "flow.h"
53 #include "flow_netlink.h"
54 #include "gso.h"
55
56 struct ovs_len_tbl {
57         int len;
58         const struct ovs_len_tbl *next;
59 };
60
61 #define OVS_ATTR_NESTED -1
62 #define OVS_ATTR_VARIABLE -2
63
64 static void update_range(struct sw_flow_match *match,
65                          size_t offset, size_t size, bool is_mask)
66 {
67         struct sw_flow_key_range *range;
68         size_t start = rounddown(offset, sizeof(long));
69         size_t end = roundup(offset + size, sizeof(long));
70
71         if (!is_mask)
72                 range = &match->range;
73         else
74                 range = &match->mask->range;
75
76         if (range->start == range->end) {
77                 range->start = start;
78                 range->end = end;
79                 return;
80         }
81
82         if (range->start > start)
83                 range->start = start;
84
85         if (range->end < end)
86                 range->end = end;
87 }
88
89 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
90         do { \
91                 update_range(match, offsetof(struct sw_flow_key, field),    \
92                              sizeof((match)->key->field), is_mask);         \
93                 if (is_mask)                                                \
94                         (match)->mask->key.field = value;                   \
95                 else                                                        \
96                         (match)->key->field = value;                        \
97         } while (0)
98
99 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
100         do {                                                                \
101                 update_range(match, offset, len, is_mask);                  \
102                 if (is_mask)                                                \
103                         memcpy((u8 *)&(match)->mask->key + offset, value_p, len);\
104                 else                                                        \
105                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
106         } while (0)
107
108 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
109         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
110                                   value_p, len, is_mask)
111
112 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
113         do {                                                                \
114                 update_range(match, offsetof(struct sw_flow_key, field),    \
115                              sizeof((match)->key->field), is_mask);         \
116                 if (is_mask)                                                \
117                         memset((u8 *)&(match)->mask->key.field, value,      \
118                                sizeof((match)->mask->key.field));           \
119                 else                                                        \
120                         memset((u8 *)&(match)->key->field, value,           \
121                                sizeof((match)->key->field));                \
122         } while (0)
123
124 static bool match_validate(const struct sw_flow_match *match,
125                            u64 key_attrs, u64 mask_attrs, bool log)
126 {
127         u64 key_expected = 1ULL << OVS_KEY_ATTR_ETHERNET;
128         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
129
130         /* The following mask attributes allowed only if they
131          * pass the validation tests.
132          */
133         mask_allowed &= ~((1ULL << OVS_KEY_ATTR_IPV4)
134                         | (1ULL << OVS_KEY_ATTR_IPV6)
135                         | (1ULL << OVS_KEY_ATTR_TCP)
136                         | (1ULL << OVS_KEY_ATTR_TCP_FLAGS)
137                         | (1ULL << OVS_KEY_ATTR_UDP)
138                         | (1ULL << OVS_KEY_ATTR_SCTP)
139                         | (1ULL << OVS_KEY_ATTR_ICMP)
140                         | (1ULL << OVS_KEY_ATTR_ICMPV6)
141                         | (1ULL << OVS_KEY_ATTR_ARP)
142                         | (1ULL << OVS_KEY_ATTR_ND)
143                         | (1ULL << OVS_KEY_ATTR_MPLS));
144
145         /* Always allowed mask fields. */
146         mask_allowed |= ((1ULL << OVS_KEY_ATTR_TUNNEL)
147                        | (1ULL << OVS_KEY_ATTR_IN_PORT)
148                        | (1ULL << OVS_KEY_ATTR_ETHERTYPE));
149
150         /* Check key attributes. */
151         if (match->key->eth.type == htons(ETH_P_ARP)
152                         || match->key->eth.type == htons(ETH_P_RARP)) {
153                 key_expected |= 1ULL << OVS_KEY_ATTR_ARP;
154                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
155                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ARP;
156         }
157
158         if (eth_p_mpls(match->key->eth.type)) {
159                 key_expected |= 1ULL << OVS_KEY_ATTR_MPLS;
160                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
161                         mask_allowed |= 1ULL << OVS_KEY_ATTR_MPLS;
162         }
163
164         if (match->key->eth.type == htons(ETH_P_IP)) {
165                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV4;
166                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
167                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV4;
168
169                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
170                         if (match->key->ip.proto == IPPROTO_UDP) {
171                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
172                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
173                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
174                         }
175
176                         if (match->key->ip.proto == IPPROTO_SCTP) {
177                                 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
178                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
179                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
180                         }
181
182                         if (match->key->ip.proto == IPPROTO_TCP) {
183                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
184                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
185                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
186                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
187                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
188                                 }
189                         }
190
191                         if (match->key->ip.proto == IPPROTO_ICMP) {
192                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMP;
193                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
194                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMP;
195                         }
196                 }
197         }
198
199         if (match->key->eth.type == htons(ETH_P_IPV6)) {
200                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV6;
201                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
202                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV6;
203
204                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
205                         if (match->key->ip.proto == IPPROTO_UDP) {
206                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
207                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
208                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
209                         }
210
211                         if (match->key->ip.proto == IPPROTO_SCTP) {
212                                 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
213                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
214                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
215                         }
216
217                         if (match->key->ip.proto == IPPROTO_TCP) {
218                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
219                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
220                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
221                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
222                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
223                                 }
224                         }
225
226                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
227                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMPV6;
228                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
229                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMPV6;
230
231                                 if (match->key->tp.src ==
232                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
233                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
234                                         key_expected |= 1ULL << OVS_KEY_ATTR_ND;
235                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
236                                                 mask_allowed |= 1ULL << OVS_KEY_ATTR_ND;
237                                 }
238                         }
239                 }
240         }
241
242         if ((key_attrs & key_expected) != key_expected) {
243                 /* Key attributes check failed. */
244                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
245                           (unsigned long long)key_attrs,
246                           (unsigned long long)key_expected);
247                 return false;
248         }
249
250         if ((mask_attrs & mask_allowed) != mask_attrs) {
251                 /* Mask attributes check failed. */
252                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
253                           (unsigned long long)mask_attrs,
254                           (unsigned long long)mask_allowed);
255                 return false;
256         }
257
258         return true;
259 }
260
261 size_t ovs_tun_key_attr_size(void)
262 {
263         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
264          * updating this function.
265          */
266         return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
267                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
268                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
269                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
270                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
271                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
272                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
273                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
274                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
275                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
276                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
277                  */
278                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
279                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
280 }
281
282 size_t ovs_key_attr_size(void)
283 {
284         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
285          * updating this function.
286          */
287         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
288
289         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
290                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
291                   + ovs_tun_key_attr_size()
292                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
293                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
294                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
295                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
296                 + nla_total_size(1)   /* OVS_KEY_ATTR_CT_STATE */
297                 + nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
298                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
299                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
300                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
301                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
302                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
303                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
304                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
305                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
306 }
307
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309         [OVS_VXLAN_EXT_GBP]         = { .len = sizeof(u32) },
310 };
311
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
314         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
315         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
316         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
317         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
318         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
320         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
321         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
322         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
323         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
324         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
325                                                 .next = ovs_vxlan_ext_key_lens },
326 };
327
328 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
329 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
330         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
331         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
332         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
333         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
334         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
335         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
336         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
337         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
338         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
339         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
340         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
341         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
342         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
343         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
344         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
345         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
346         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
347         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
348         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
349         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
350                                      .next = ovs_tunnel_key_lens, },
351         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
352         [OVS_KEY_ATTR_CT_STATE]  = { .len = sizeof(u8) },
353         [OVS_KEY_ATTR_CT_ZONE]   = { .len = sizeof(u16) },
354 };
355
356 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
357 {
358         return expected_len == attr_len ||
359                expected_len == OVS_ATTR_NESTED ||
360                expected_len == OVS_ATTR_VARIABLE;
361 }
362
363 static bool is_all_zero(const u8 *fp, size_t size)
364 {
365         int i;
366
367         if (!fp)
368                 return false;
369
370         for (i = 0; i < size; i++)
371                 if (fp[i])
372                         return false;
373
374         return true;
375 }
376
377 static int __parse_flow_nlattrs(const struct nlattr *attr,
378                                 const struct nlattr *a[],
379                                 u64 *attrsp, bool log, bool nz)
380 {
381         const struct nlattr *nla;
382         u64 attrs;
383         int rem;
384
385         attrs = *attrsp;
386         nla_for_each_nested(nla, attr, rem) {
387                 u16 type = nla_type(nla);
388                 int expected_len;
389
390                 if (type > OVS_KEY_ATTR_MAX) {
391                         OVS_NLERR(log, "Key type %d is out of range max %d",
392                                   type, OVS_KEY_ATTR_MAX);
393                         return -EINVAL;
394                 }
395
396                 if (attrs & (1ULL << type)) {
397                         OVS_NLERR(log, "Duplicate key (type %d).", type);
398                         return -EINVAL;
399                 }
400
401                 expected_len = ovs_key_lens[type].len;
402                 if (!check_attr_len(nla_len(nla), expected_len)) {
403                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
404                                   type, nla_len(nla), expected_len);
405                         return -EINVAL;
406                 }
407
408                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
409                         attrs |= 1ULL << type;
410                         a[type] = nla;
411                 }
412         }
413         if (rem) {
414                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
415                 return -EINVAL;
416         }
417
418         *attrsp = attrs;
419         return 0;
420 }
421
422 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
423                                    const struct nlattr *a[], u64 *attrsp,
424                                    bool log)
425 {
426         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
427 }
428
429 static int parse_flow_nlattrs(const struct nlattr *attr,
430                               const struct nlattr *a[], u64 *attrsp,
431                               bool log)
432 {
433         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
434 }
435
436 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
437                                      struct sw_flow_match *match, bool is_mask,
438                                      bool log)
439 {
440         unsigned long opt_key_offset;
441
442         if (nla_len(a) > sizeof(match->key->tun_opts)) {
443                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
444                           nla_len(a), sizeof(match->key->tun_opts));
445                 return -EINVAL;
446         }
447
448         if (nla_len(a) % 4 != 0) {
449                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
450                           nla_len(a));
451                 return -EINVAL;
452         }
453
454         /* We need to record the length of the options passed
455          * down, otherwise packets with the same format but
456          * additional options will be silently matched.
457          */
458         if (!is_mask) {
459                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
460                                 false);
461         } else {
462                 /* This is somewhat unusual because it looks at
463                  * both the key and mask while parsing the
464                  * attributes (and by extension assumes the key
465                  * is parsed first). Normally, we would verify
466                  * that each is the correct length and that the
467                  * attributes line up in the validate function.
468                  * However, that is difficult because this is
469                  * variable length and we won't have the
470                  * information later.
471                  */
472                 if (match->key->tun_opts_len != nla_len(a)) {
473                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
474                                   match->key->tun_opts_len, nla_len(a));
475                         return -EINVAL;
476                 }
477
478                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
479         }
480
481         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
482         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
483                                   nla_len(a), is_mask);
484         return 0;
485 }
486
487 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
488                                      struct sw_flow_match *match, bool is_mask,
489                                      bool log)
490 {
491         struct nlattr *a;
492         int rem;
493         unsigned long opt_key_offset;
494         struct vxlan_metadata opts;
495
496         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
497
498         memset(&opts, 0, sizeof(opts));
499         nla_for_each_nested(a, attr, rem) {
500                 int type = nla_type(a);
501
502                 if (type > OVS_VXLAN_EXT_MAX) {
503                         OVS_NLERR(log, "VXLAN extension %d out of range max %d",
504                                   type, OVS_VXLAN_EXT_MAX);
505                         return -EINVAL;
506                 }
507
508                 if (!check_attr_len(nla_len(a),
509                                     ovs_vxlan_ext_key_lens[type].len)) {
510                         OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
511                                   type, nla_len(a),
512                                   ovs_vxlan_ext_key_lens[type].len);
513                         return -EINVAL;
514                 }
515
516                 switch (type) {
517                 case OVS_VXLAN_EXT_GBP:
518                         opts.gbp = nla_get_u32(a);
519                         break;
520                 default:
521                         OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
522                                   type);
523                         return -EINVAL;
524                 }
525         }
526         if (rem) {
527                 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
528                           rem);
529                 return -EINVAL;
530         }
531
532         if (!is_mask)
533                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
534         else
535                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
536
537         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
538         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
539                                   is_mask);
540         return 0;
541 }
542
543 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
544                                 struct sw_flow_match *match, bool is_mask,
545                                 bool log)
546 {
547         struct nlattr *a;
548         int rem;
549         bool ttl = false;
550         __be16 tun_flags = 0;
551         int opts_type = 0;
552
553         nla_for_each_nested(a, attr, rem) {
554                 int type = nla_type(a);
555                 int err;
556
557                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
558                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
559                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
560                         return -EINVAL;
561                 }
562
563                 if (!check_attr_len(nla_len(a),
564                                     ovs_tunnel_key_lens[type].len)) {
565                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
566                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
567                         return -EINVAL;
568                 }
569
570                 switch (type) {
571                 case OVS_TUNNEL_KEY_ATTR_ID:
572                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
573                                         nla_get_be64(a), is_mask);
574                         tun_flags |= TUNNEL_KEY;
575                         break;
576                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
577                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
578                                         nla_get_in_addr(a), is_mask);
579                         break;
580                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
581                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
582                                         nla_get_in_addr(a), is_mask);
583                         break;
584                 case OVS_TUNNEL_KEY_ATTR_TOS:
585                         SW_FLOW_KEY_PUT(match, tun_key.tos,
586                                         nla_get_u8(a), is_mask);
587                         break;
588                 case OVS_TUNNEL_KEY_ATTR_TTL:
589                         SW_FLOW_KEY_PUT(match, tun_key.ttl,
590                                         nla_get_u8(a), is_mask);
591                         ttl = true;
592                         break;
593                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
594                         tun_flags |= TUNNEL_DONT_FRAGMENT;
595                         break;
596                 case OVS_TUNNEL_KEY_ATTR_CSUM:
597                         tun_flags |= TUNNEL_CSUM;
598                         break;
599                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
600                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
601                                         nla_get_be16(a), is_mask);
602                         break;
603                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
604                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
605                                         nla_get_be16(a), is_mask);
606                         break;
607                 case OVS_TUNNEL_KEY_ATTR_OAM:
608                         tun_flags |= TUNNEL_OAM;
609                         break;
610                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
611                         if (opts_type) {
612                                 OVS_NLERR(log, "Multiple metadata blocks provided");
613                                 return -EINVAL;
614                         }
615
616                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
617                         if (err)
618                                 return err;
619
620                         tun_flags |= TUNNEL_GENEVE_OPT;
621                         opts_type = type;
622                         break;
623                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
624                         if (opts_type) {
625                                 OVS_NLERR(log, "Multiple metadata blocks provided");
626                                 return -EINVAL;
627                         }
628
629                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
630                         if (err)
631                                 return err;
632
633                         tun_flags |= TUNNEL_VXLAN_OPT;
634                         opts_type = type;
635                         break;
636                 default:
637                         OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
638                                   type);
639                         return -EINVAL;
640                 }
641         }
642
643         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
644
645         if (rem > 0) {
646                 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
647                           rem);
648                 return -EINVAL;
649         }
650
651         if (!is_mask) {
652                 if (!match->key->tun_key.u.ipv4.dst) {
653                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
654                         return -EINVAL;
655                 }
656
657                 if (!ttl) {
658                         OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
659                         return -EINVAL;
660                 }
661         }
662
663         return opts_type;
664 }
665
666 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
667                                const void *tun_opts, int swkey_tun_opts_len)
668 {
669         const struct vxlan_metadata *opts = tun_opts;
670         struct nlattr *nla;
671
672         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
673         if (!nla)
674                 return -EMSGSIZE;
675
676         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
677                 return -EMSGSIZE;
678
679         nla_nest_end(skb, nla);
680         return 0;
681 }
682
683 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
684                                 const struct ip_tunnel_key *output,
685                                 const void *tun_opts, int swkey_tun_opts_len)
686 {
687         if (output->tun_flags & TUNNEL_KEY &&
688             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
689                 return -EMSGSIZE;
690         if (output->u.ipv4.src &&
691             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
692                             output->u.ipv4.src))
693                 return -EMSGSIZE;
694         if (output->u.ipv4.dst &&
695             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
696                             output->u.ipv4.dst))
697                 return -EMSGSIZE;
698         if (output->tos &&
699             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
700                 return -EMSGSIZE;
701         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
702                 return -EMSGSIZE;
703         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
704             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
705                 return -EMSGSIZE;
706         if ((output->tun_flags & TUNNEL_CSUM) &&
707             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
708                 return -EMSGSIZE;
709         if (output->tp_src &&
710             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
711                 return -EMSGSIZE;
712         if (output->tp_dst &&
713             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
714                 return -EMSGSIZE;
715         if ((output->tun_flags & TUNNEL_OAM) &&
716             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
717                 return -EMSGSIZE;
718         if (tun_opts) {
719                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
720                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
721                             swkey_tun_opts_len, tun_opts))
722                         return -EMSGSIZE;
723                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
724                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
725                         return -EMSGSIZE;
726         }
727
728         return 0;
729 }
730
731 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
732                               const struct ip_tunnel_key *output,
733                               const void *tun_opts, int swkey_tun_opts_len)
734 {
735         struct nlattr *nla;
736         int err;
737
738         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
739         if (!nla)
740                 return -EMSGSIZE;
741
742         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
743         if (err)
744                 return err;
745
746         nla_nest_end(skb, nla);
747         return 0;
748 }
749
750 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
751                                   const struct ip_tunnel_info *egress_tun_info,
752                                   const void *egress_tun_opts)
753 {
754         return __ipv4_tun_to_nlattr(skb, &egress_tun_info->key,
755                                     egress_tun_opts,
756                                     egress_tun_info->options_len);
757 }
758
759 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
760                                  const struct nlattr **a, bool is_mask,
761                                  bool log)
762 {
763         if (*attrs & (1ULL << OVS_KEY_ATTR_DP_HASH)) {
764                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
765
766                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
767                 *attrs &= ~(1ULL << OVS_KEY_ATTR_DP_HASH);
768         }
769
770         if (*attrs & (1ULL << OVS_KEY_ATTR_RECIRC_ID)) {
771                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
772
773                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
774                 *attrs &= ~(1ULL << OVS_KEY_ATTR_RECIRC_ID);
775         }
776
777         if (*attrs & (1ULL << OVS_KEY_ATTR_PRIORITY)) {
778                 SW_FLOW_KEY_PUT(match, phy.priority,
779                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
780                 *attrs &= ~(1ULL << OVS_KEY_ATTR_PRIORITY);
781         }
782
783         if (*attrs & (1ULL << OVS_KEY_ATTR_IN_PORT)) {
784                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
785
786                 if (is_mask) {
787                         in_port = 0xffffffff; /* Always exact match in_port. */
788                 } else if (in_port >= DP_MAX_PORTS) {
789                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
790                                   in_port, DP_MAX_PORTS);
791                         return -EINVAL;
792                 }
793
794                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
795                 *attrs &= ~(1ULL << OVS_KEY_ATTR_IN_PORT);
796         } else if (!is_mask) {
797                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
798         }
799
800         if (*attrs & (1ULL << OVS_KEY_ATTR_SKB_MARK)) {
801                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
802
803                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
804                 *attrs &= ~(1ULL << OVS_KEY_ATTR_SKB_MARK);
805         }
806         if (*attrs & (1ULL << OVS_KEY_ATTR_TUNNEL)) {
807                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
808                                          is_mask, log) < 0)
809                         return -EINVAL;
810                 *attrs &= ~(1ULL << OVS_KEY_ATTR_TUNNEL);
811         }
812
813         if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
814             ovs_ct_verify(OVS_KEY_ATTR_CT_STATE)) {
815                 u8 ct_state = nla_get_u8(a[OVS_KEY_ATTR_CT_STATE]);
816
817                 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
818                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
819         }
820         if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
821             ovs_ct_verify(OVS_KEY_ATTR_CT_ZONE)) {
822                 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
823
824                 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
825                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
826         }
827         return 0;
828 }
829
830 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
831                                 const struct nlattr **a, bool is_mask,
832                                 bool log)
833 {
834         int err;
835
836         err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
837         if (err)
838                 return err;
839
840         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) {
841                 const struct ovs_key_ethernet *eth_key;
842
843                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
844                 SW_FLOW_KEY_MEMCPY(match, eth.src,
845                                 eth_key->eth_src, ETH_ALEN, is_mask);
846                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
847                                 eth_key->eth_dst, ETH_ALEN, is_mask);
848                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERNET);
849         }
850
851         if (attrs & (1ULL << OVS_KEY_ATTR_VLAN)) {
852                 __be16 tci;
853
854                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
855                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
856                         if (is_mask)
857                                 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
858                         else
859                                 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
860
861                         return -EINVAL;
862                 }
863
864                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
865                 attrs &= ~(1ULL << OVS_KEY_ATTR_VLAN);
866         }
867
868         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) {
869                 __be16 eth_type;
870
871                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
872                 if (is_mask) {
873                         /* Always exact match EtherType. */
874                         eth_type = htons(0xffff);
875                 } else if (!eth_proto_is_802_3(eth_type)) {
876                         OVS_NLERR(log, "EtherType %x is less than min %x",
877                                   ntohs(eth_type), ETH_P_802_3_MIN);
878                         return -EINVAL;
879                 }
880
881                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
882                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
883         } else if (!is_mask) {
884                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
885         }
886
887         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
888                 const struct ovs_key_ipv4 *ipv4_key;
889
890                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
891                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
892                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
893                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
894                         return -EINVAL;
895                 }
896                 SW_FLOW_KEY_PUT(match, ip.proto,
897                                 ipv4_key->ipv4_proto, is_mask);
898                 SW_FLOW_KEY_PUT(match, ip.tos,
899                                 ipv4_key->ipv4_tos, is_mask);
900                 SW_FLOW_KEY_PUT(match, ip.ttl,
901                                 ipv4_key->ipv4_ttl, is_mask);
902                 SW_FLOW_KEY_PUT(match, ip.frag,
903                                 ipv4_key->ipv4_frag, is_mask);
904                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
905                                 ipv4_key->ipv4_src, is_mask);
906                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
907                                 ipv4_key->ipv4_dst, is_mask);
908                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
909         }
910
911         if (attrs & (1ULL << OVS_KEY_ATTR_IPV6)) {
912                 const struct ovs_key_ipv6 *ipv6_key;
913
914                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
915                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
916                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
917                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
918                         return -EINVAL;
919                 }
920
921                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
922                         OVS_NLERR(log,
923                                   "Invalid IPv6 flow label value (value=%x, max=%x).",
924                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
925                         return -EINVAL;
926                 }
927
928                 SW_FLOW_KEY_PUT(match, ipv6.label,
929                                 ipv6_key->ipv6_label, is_mask);
930                 SW_FLOW_KEY_PUT(match, ip.proto,
931                                 ipv6_key->ipv6_proto, is_mask);
932                 SW_FLOW_KEY_PUT(match, ip.tos,
933                                 ipv6_key->ipv6_tclass, is_mask);
934                 SW_FLOW_KEY_PUT(match, ip.ttl,
935                                 ipv6_key->ipv6_hlimit, is_mask);
936                 SW_FLOW_KEY_PUT(match, ip.frag,
937                                 ipv6_key->ipv6_frag, is_mask);
938                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
939                                 ipv6_key->ipv6_src,
940                                 sizeof(match->key->ipv6.addr.src),
941                                 is_mask);
942                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
943                                 ipv6_key->ipv6_dst,
944                                 sizeof(match->key->ipv6.addr.dst),
945                                 is_mask);
946
947                 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6);
948         }
949
950         if (attrs & (1ULL << OVS_KEY_ATTR_ARP)) {
951                 const struct ovs_key_arp *arp_key;
952
953                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
954                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
955                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
956                                   arp_key->arp_op);
957                         return -EINVAL;
958                 }
959
960                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
961                                 arp_key->arp_sip, is_mask);
962                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
963                         arp_key->arp_tip, is_mask);
964                 SW_FLOW_KEY_PUT(match, ip.proto,
965                                 ntohs(arp_key->arp_op), is_mask);
966                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
967                                 arp_key->arp_sha, ETH_ALEN, is_mask);
968                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
969                                 arp_key->arp_tha, ETH_ALEN, is_mask);
970
971                 attrs &= ~(1ULL << OVS_KEY_ATTR_ARP);
972         }
973
974         if (attrs & (1ULL << OVS_KEY_ATTR_MPLS)) {
975                 const struct ovs_key_mpls *mpls_key;
976
977                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
978                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
979                                 mpls_key->mpls_lse, is_mask);
980
981                 attrs &= ~(1ULL << OVS_KEY_ATTR_MPLS);
982         }
983
984         if (attrs & (1ULL << OVS_KEY_ATTR_TCP)) {
985                 const struct ovs_key_tcp *tcp_key;
986
987                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
988                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
989                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
990                 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP);
991         }
992
993         if (attrs & (1ULL << OVS_KEY_ATTR_TCP_FLAGS)) {
994                 SW_FLOW_KEY_PUT(match, tp.flags,
995                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
996                                 is_mask);
997                 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP_FLAGS);
998         }
999
1000         if (attrs & (1ULL << OVS_KEY_ATTR_UDP)) {
1001                 const struct ovs_key_udp *udp_key;
1002
1003                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1004                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1005                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1006                 attrs &= ~(1ULL << OVS_KEY_ATTR_UDP);
1007         }
1008
1009         if (attrs & (1ULL << OVS_KEY_ATTR_SCTP)) {
1010                 const struct ovs_key_sctp *sctp_key;
1011
1012                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1013                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1014                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1015                 attrs &= ~(1ULL << OVS_KEY_ATTR_SCTP);
1016         }
1017
1018         if (attrs & (1ULL << OVS_KEY_ATTR_ICMP)) {
1019                 const struct ovs_key_icmp *icmp_key;
1020
1021                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1022                 SW_FLOW_KEY_PUT(match, tp.src,
1023                                 htons(icmp_key->icmp_type), is_mask);
1024                 SW_FLOW_KEY_PUT(match, tp.dst,
1025                                 htons(icmp_key->icmp_code), is_mask);
1026                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMP);
1027         }
1028
1029         if (attrs & (1ULL << OVS_KEY_ATTR_ICMPV6)) {
1030                 const struct ovs_key_icmpv6 *icmpv6_key;
1031
1032                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1033                 SW_FLOW_KEY_PUT(match, tp.src,
1034                                 htons(icmpv6_key->icmpv6_type), is_mask);
1035                 SW_FLOW_KEY_PUT(match, tp.dst,
1036                                 htons(icmpv6_key->icmpv6_code), is_mask);
1037                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMPV6);
1038         }
1039
1040         if (attrs & (1ULL << OVS_KEY_ATTR_ND)) {
1041                 const struct ovs_key_nd *nd_key;
1042
1043                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1044                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1045                         nd_key->nd_target,
1046                         sizeof(match->key->ipv6.nd.target),
1047                         is_mask);
1048                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1049                         nd_key->nd_sll, ETH_ALEN, is_mask);
1050                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1051                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1052                 attrs &= ~(1ULL << OVS_KEY_ATTR_ND);
1053         }
1054
1055         if (attrs != 0) {
1056                 OVS_NLERR(log, "Unknown key attributes %llx",
1057                           (unsigned long long)attrs);
1058                 return -EINVAL;
1059         }
1060
1061         return 0;
1062 }
1063
1064 static void nlattr_set(struct nlattr *attr, u8 val,
1065                        const struct ovs_len_tbl *tbl)
1066 {
1067         struct nlattr *nla;
1068         int rem;
1069
1070         /* The nlattr stream should already have been validated */
1071         nla_for_each_nested(nla, attr, rem) {
1072                 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1073                         if (tbl[nla_type(nla)].next)
1074                                 tbl = tbl[nla_type(nla)].next;
1075                         nlattr_set(nla, val, tbl);
1076                 } else {
1077                         memset(nla_data(nla), val, nla_len(nla));
1078                 }
1079         }
1080 }
1081
1082 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1083 {
1084         nlattr_set(attr, val, ovs_key_lens);
1085 }
1086
1087 /**
1088  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1089  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1090  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1091  * does not include any don't care bit.
1092  * @match: receives the extracted flow match information.
1093  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1094  * sequence. The fields should of the packet that triggered the creation
1095  * of this flow.
1096  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1097  * attribute specifies the mask field of the wildcarded flow.
1098  * @log: Boolean to allow kernel error logging.  Normally true, but when
1099  * probing for feature compatibility this should be passed in as false to
1100  * suppress unnecessary error logging.
1101  */
1102 int ovs_nla_get_match(struct sw_flow_match *match,
1103                       const struct nlattr *nla_key,
1104                       const struct nlattr *nla_mask,
1105                       bool log)
1106 {
1107         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1108         const struct nlattr *encap;
1109         struct nlattr *newmask = NULL;
1110         u64 key_attrs = 0;
1111         u64 mask_attrs = 0;
1112         bool encap_valid = false;
1113         int err;
1114
1115         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1116         if (err)
1117                 return err;
1118
1119         if ((key_attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1120             (key_attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) &&
1121             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1122                 __be16 tci;
1123
1124                 if (!((key_attrs & (1ULL << OVS_KEY_ATTR_VLAN)) &&
1125                       (key_attrs & (1ULL << OVS_KEY_ATTR_ENCAP)))) {
1126                         OVS_NLERR(log, "Invalid Vlan frame.");
1127                         return -EINVAL;
1128                 }
1129
1130                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1131                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1132                 encap = a[OVS_KEY_ATTR_ENCAP];
1133                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1134                 encap_valid = true;
1135
1136                 if (tci & htons(VLAN_TAG_PRESENT)) {
1137                         err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1138                         if (err)
1139                                 return err;
1140                 } else if (!tci) {
1141                         /* Corner case for truncated 802.1Q header. */
1142                         if (nla_len(encap)) {
1143                                 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1144                                 return -EINVAL;
1145                         }
1146                 } else {
1147                         OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1148                         return  -EINVAL;
1149                 }
1150         }
1151
1152         err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1153         if (err)
1154                 return err;
1155
1156         if (match->mask) {
1157                 if (!nla_mask) {
1158                         /* Create an exact match mask. We need to set to 0xff
1159                          * all the 'match->mask' fields that have been touched
1160                          * in 'match->key'. We cannot simply memset
1161                          * 'match->mask', because padding bytes and fields not
1162                          * specified in 'match->key' should be left to 0.
1163                          * Instead, we use a stream of netlink attributes,
1164                          * copied from 'key' and set to 0xff.
1165                          * ovs_key_from_nlattrs() will take care of filling
1166                          * 'match->mask' appropriately.
1167                          */
1168                         newmask = kmemdup(nla_key,
1169                                           nla_total_size(nla_len(nla_key)),
1170                                           GFP_KERNEL);
1171                         if (!newmask)
1172                                 return -ENOMEM;
1173
1174                         mask_set_nlattr(newmask, 0xff);
1175
1176                         /* The userspace does not send tunnel attributes that
1177                          * are 0, but we should not wildcard them nonetheless.
1178                          */
1179                         if (match->key->tun_key.u.ipv4.dst)
1180                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1181                                                          0xff, true);
1182
1183                         nla_mask = newmask;
1184                 }
1185
1186                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1187                 if (err)
1188                         goto free_newmask;
1189
1190                 /* Always match on tci. */
1191                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1192
1193                 if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
1194                         __be16 eth_type = 0;
1195                         __be16 tci = 0;
1196
1197                         if (!encap_valid) {
1198                                 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1199                                 err = -EINVAL;
1200                                 goto free_newmask;
1201                         }
1202
1203                         mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1204                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1205                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1206
1207                         if (eth_type == htons(0xffff)) {
1208                                 mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1209                                 encap = a[OVS_KEY_ATTR_ENCAP];
1210                                 err = parse_flow_mask_nlattrs(encap, a,
1211                                                               &mask_attrs, log);
1212                                 if (err)
1213                                         goto free_newmask;
1214                         } else {
1215                                 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1216                                           ntohs(eth_type));
1217                                 err = -EINVAL;
1218                                 goto free_newmask;
1219                         }
1220
1221                         if (a[OVS_KEY_ATTR_VLAN])
1222                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1223
1224                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
1225                                 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1226                                           ntohs(tci));
1227                                 err = -EINVAL;
1228                                 goto free_newmask;
1229                         }
1230                 }
1231
1232                 err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1233                 if (err)
1234                         goto free_newmask;
1235         }
1236
1237         if (!match_validate(match, key_attrs, mask_attrs, log))
1238                 err = -EINVAL;
1239
1240 free_newmask:
1241         kfree(newmask);
1242         return err;
1243 }
1244
1245 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1246 {
1247         size_t len;
1248
1249         if (!attr)
1250                 return 0;
1251
1252         len = nla_len(attr);
1253         if (len < 1 || len > MAX_UFID_LENGTH) {
1254                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1255                           nla_len(attr), MAX_UFID_LENGTH);
1256                 return 0;
1257         }
1258
1259         return len;
1260 }
1261
1262 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1263  * or false otherwise.
1264  */
1265 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1266                       bool log)
1267 {
1268         sfid->ufid_len = get_ufid_len(attr, log);
1269         if (sfid->ufid_len)
1270                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1271
1272         return sfid->ufid_len;
1273 }
1274
1275 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1276                            const struct sw_flow_key *key, bool log)
1277 {
1278         struct sw_flow_key *new_key;
1279
1280         if (ovs_nla_get_ufid(sfid, ufid, log))
1281                 return 0;
1282
1283         /* If UFID was not provided, use unmasked key. */
1284         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1285         if (!new_key)
1286                 return -ENOMEM;
1287         memcpy(new_key, key, sizeof(*key));
1288         sfid->unmasked_key = new_key;
1289
1290         return 0;
1291 }
1292
1293 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1294 {
1295         return attr ? nla_get_u32(attr) : 0;
1296 }
1297
1298 /**
1299  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1300  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1301  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1302  * sequence.
1303  * @log: Boolean to allow kernel error logging.  Normally true, but when
1304  * probing for feature compatibility this should be passed in as false to
1305  * suppress unnecessary error logging.
1306  *
1307  * This parses a series of Netlink attributes that form a flow key, which must
1308  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1309  * get the metadata, that is, the parts of the flow key that cannot be
1310  * extracted from the packet itself.
1311  */
1312
1313 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1314                               struct sw_flow_key *key,
1315                               bool log)
1316 {
1317         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1318         struct sw_flow_match match;
1319         u64 attrs = 0;
1320         int err;
1321
1322         err = parse_flow_nlattrs(attr, a, &attrs, log);
1323         if (err)
1324                 return -EINVAL;
1325
1326         memset(&match, 0, sizeof(match));
1327         match.key = key;
1328
1329         memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
1330         memset(&key->ct, 0, sizeof(key->ct));
1331         key->phy.in_port = DP_MAX_PORTS;
1332
1333         return metadata_from_nlattrs(&match, &attrs, a, false, log);
1334 }
1335
1336 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1337                              const struct sw_flow_key *output, bool is_mask,
1338                              struct sk_buff *skb)
1339 {
1340         struct ovs_key_ethernet *eth_key;
1341         struct nlattr *nla, *encap;
1342
1343         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1344                 goto nla_put_failure;
1345
1346         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1347                 goto nla_put_failure;
1348
1349         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1350                 goto nla_put_failure;
1351
1352         if ((swkey->tun_key.u.ipv4.dst || is_mask)) {
1353                 const void *opts = NULL;
1354
1355                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1356                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1357
1358                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1359                                        swkey->tun_opts_len))
1360                         goto nla_put_failure;
1361         }
1362
1363         if (swkey->phy.in_port == DP_MAX_PORTS) {
1364                 if (is_mask && (output->phy.in_port == 0xffff))
1365                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1366                                 goto nla_put_failure;
1367         } else {
1368                 u16 upper_u16;
1369                 upper_u16 = !is_mask ? 0 : 0xffff;
1370
1371                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1372                                 (upper_u16 << 16) | output->phy.in_port))
1373                         goto nla_put_failure;
1374         }
1375
1376         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1377                 goto nla_put_failure;
1378
1379         if (ovs_ct_put_key(output, skb))
1380                 goto nla_put_failure;
1381
1382         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1383         if (!nla)
1384                 goto nla_put_failure;
1385
1386         eth_key = nla_data(nla);
1387         ether_addr_copy(eth_key->eth_src, output->eth.src);
1388         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1389
1390         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1391                 __be16 eth_type;
1392                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1393                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1394                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1395                         goto nla_put_failure;
1396                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1397                 if (!swkey->eth.tci)
1398                         goto unencap;
1399         } else
1400                 encap = NULL;
1401
1402         if (swkey->eth.type == htons(ETH_P_802_2)) {
1403                 /*
1404                  * Ethertype 802.2 is represented in the netlink with omitted
1405                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1406                  * 0xffff in the mask attribute.  Ethertype can also
1407                  * be wildcarded.
1408                  */
1409                 if (is_mask && output->eth.type)
1410                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1411                                                 output->eth.type))
1412                                 goto nla_put_failure;
1413                 goto unencap;
1414         }
1415
1416         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1417                 goto nla_put_failure;
1418
1419         if (swkey->eth.type == htons(ETH_P_IP)) {
1420                 struct ovs_key_ipv4 *ipv4_key;
1421
1422                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1423                 if (!nla)
1424                         goto nla_put_failure;
1425                 ipv4_key = nla_data(nla);
1426                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1427                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1428                 ipv4_key->ipv4_proto = output->ip.proto;
1429                 ipv4_key->ipv4_tos = output->ip.tos;
1430                 ipv4_key->ipv4_ttl = output->ip.ttl;
1431                 ipv4_key->ipv4_frag = output->ip.frag;
1432         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1433                 struct ovs_key_ipv6 *ipv6_key;
1434
1435                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1436                 if (!nla)
1437                         goto nla_put_failure;
1438                 ipv6_key = nla_data(nla);
1439                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1440                                 sizeof(ipv6_key->ipv6_src));
1441                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1442                                 sizeof(ipv6_key->ipv6_dst));
1443                 ipv6_key->ipv6_label = output->ipv6.label;
1444                 ipv6_key->ipv6_proto = output->ip.proto;
1445                 ipv6_key->ipv6_tclass = output->ip.tos;
1446                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1447                 ipv6_key->ipv6_frag = output->ip.frag;
1448         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1449                    swkey->eth.type == htons(ETH_P_RARP)) {
1450                 struct ovs_key_arp *arp_key;
1451
1452                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1453                 if (!nla)
1454                         goto nla_put_failure;
1455                 arp_key = nla_data(nla);
1456                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1457                 arp_key->arp_sip = output->ipv4.addr.src;
1458                 arp_key->arp_tip = output->ipv4.addr.dst;
1459                 arp_key->arp_op = htons(output->ip.proto);
1460                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1461                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1462         } else if (eth_p_mpls(swkey->eth.type)) {
1463                 struct ovs_key_mpls *mpls_key;
1464
1465                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1466                 if (!nla)
1467                         goto nla_put_failure;
1468                 mpls_key = nla_data(nla);
1469                 mpls_key->mpls_lse = output->mpls.top_lse;
1470         }
1471
1472         if ((swkey->eth.type == htons(ETH_P_IP) ||
1473              swkey->eth.type == htons(ETH_P_IPV6)) &&
1474              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1475
1476                 if (swkey->ip.proto == IPPROTO_TCP) {
1477                         struct ovs_key_tcp *tcp_key;
1478
1479                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1480                         if (!nla)
1481                                 goto nla_put_failure;
1482                         tcp_key = nla_data(nla);
1483                         tcp_key->tcp_src = output->tp.src;
1484                         tcp_key->tcp_dst = output->tp.dst;
1485                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1486                                          output->tp.flags))
1487                                 goto nla_put_failure;
1488                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1489                         struct ovs_key_udp *udp_key;
1490
1491                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1492                         if (!nla)
1493                                 goto nla_put_failure;
1494                         udp_key = nla_data(nla);
1495                         udp_key->udp_src = output->tp.src;
1496                         udp_key->udp_dst = output->tp.dst;
1497                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1498                         struct ovs_key_sctp *sctp_key;
1499
1500                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1501                         if (!nla)
1502                                 goto nla_put_failure;
1503                         sctp_key = nla_data(nla);
1504                         sctp_key->sctp_src = output->tp.src;
1505                         sctp_key->sctp_dst = output->tp.dst;
1506                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1507                            swkey->ip.proto == IPPROTO_ICMP) {
1508                         struct ovs_key_icmp *icmp_key;
1509
1510                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1511                         if (!nla)
1512                                 goto nla_put_failure;
1513                         icmp_key = nla_data(nla);
1514                         icmp_key->icmp_type = ntohs(output->tp.src);
1515                         icmp_key->icmp_code = ntohs(output->tp.dst);
1516                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1517                            swkey->ip.proto == IPPROTO_ICMPV6) {
1518                         struct ovs_key_icmpv6 *icmpv6_key;
1519
1520                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1521                                                 sizeof(*icmpv6_key));
1522                         if (!nla)
1523                                 goto nla_put_failure;
1524                         icmpv6_key = nla_data(nla);
1525                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1526                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1527
1528                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1529                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1530                                 struct ovs_key_nd *nd_key;
1531
1532                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1533                                 if (!nla)
1534                                         goto nla_put_failure;
1535                                 nd_key = nla_data(nla);
1536                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1537                                                         sizeof(nd_key->nd_target));
1538                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1539                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1540                         }
1541                 }
1542         }
1543
1544 unencap:
1545         if (encap)
1546                 nla_nest_end(skb, encap);
1547
1548         return 0;
1549
1550 nla_put_failure:
1551         return -EMSGSIZE;
1552 }
1553
1554 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1555                     const struct sw_flow_key *output, int attr, bool is_mask,
1556                     struct sk_buff *skb)
1557 {
1558         int err;
1559         struct nlattr *nla;
1560
1561         nla = nla_nest_start(skb, attr);
1562         if (!nla)
1563                 return -EMSGSIZE;
1564         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1565         if (err)
1566                 return err;
1567         nla_nest_end(skb, nla);
1568
1569         return 0;
1570 }
1571
1572 /* Called with ovs_mutex or RCU read lock. */
1573 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1574 {
1575         if (ovs_identifier_is_ufid(&flow->id))
1576                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1577                                flow->id.ufid);
1578
1579         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1580                                OVS_FLOW_ATTR_KEY, false, skb);
1581 }
1582
1583 /* Called with ovs_mutex or RCU read lock. */
1584 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1585 {
1586         return ovs_nla_put_key(&flow->key, &flow->key,
1587                                 OVS_FLOW_ATTR_KEY, false, skb);
1588 }
1589
1590 /* Called with ovs_mutex or RCU read lock. */
1591 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1592 {
1593         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1594                                 OVS_FLOW_ATTR_MASK, true, skb);
1595 }
1596
1597 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1598
1599 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1600 {
1601         struct sw_flow_actions *sfa;
1602
1603         if (size > MAX_ACTIONS_BUFSIZE) {
1604                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1605                 return ERR_PTR(-EINVAL);
1606         }
1607
1608         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1609         if (!sfa)
1610                 return ERR_PTR(-ENOMEM);
1611
1612         sfa->actions_len = 0;
1613         return sfa;
1614 }
1615
1616 static void ovs_nla_free_set_action(const struct nlattr *a)
1617 {
1618         const struct nlattr *ovs_key = nla_data(a);
1619         struct ovs_tunnel_info *ovs_tun;
1620
1621         switch (nla_type(ovs_key)) {
1622         case OVS_KEY_ATTR_TUNNEL_INFO:
1623                 ovs_tun = nla_data(ovs_key);
1624                 ovs_dst_release((struct dst_entry *)ovs_tun->tun_dst);
1625                 break;
1626         }
1627 }
1628
1629 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1630 {
1631         const struct nlattr *a;
1632         int rem;
1633
1634         if (!sf_acts)
1635                 return;
1636
1637         nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1638                 switch (nla_type(a)) {
1639                 case OVS_ACTION_ATTR_SET:
1640                         ovs_nla_free_set_action(a);
1641                         break;
1642                 case OVS_ACTION_ATTR_CT:
1643                         ovs_ct_free_action(a);
1644                         break;
1645                 }
1646         }
1647
1648         kfree(sf_acts);
1649 }
1650
1651 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1652 {
1653         ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1654 }
1655
1656 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1657  * The caller must hold rcu_read_lock for this to be sensible.
1658  */
1659 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1660 {
1661         call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1662 }
1663
1664 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1665                                        int attr_len, bool log)
1666 {
1667
1668         struct sw_flow_actions *acts;
1669         int new_acts_size;
1670         int req_size = NLA_ALIGN(attr_len);
1671         int next_offset = offsetof(struct sw_flow_actions, actions) +
1672                                         (*sfa)->actions_len;
1673
1674         if (req_size <= (ksize(*sfa) - next_offset))
1675                 goto out;
1676
1677         new_acts_size = ksize(*sfa) * 2;
1678
1679         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1680                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1681                         return ERR_PTR(-EMSGSIZE);
1682                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1683         }
1684
1685         acts = nla_alloc_flow_actions(new_acts_size, log);
1686         if (IS_ERR(acts))
1687                 return (void *)acts;
1688
1689         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1690         acts->actions_len = (*sfa)->actions_len;
1691         acts->orig_len = (*sfa)->orig_len;
1692         kfree(*sfa);
1693         *sfa = acts;
1694
1695 out:
1696         (*sfa)->actions_len += req_size;
1697         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1698 }
1699
1700 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1701                                    int attrtype, void *data, int len, bool log)
1702 {
1703         struct nlattr *a;
1704
1705         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1706         if (IS_ERR(a))
1707                 return a;
1708
1709         a->nla_type = attrtype;
1710         a->nla_len = nla_attr_size(len);
1711
1712         if (data)
1713                 memcpy(nla_data(a), data, len);
1714         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1715
1716         return a;
1717 }
1718
1719 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1720                        int len, bool log)
1721 {
1722         struct nlattr *a;
1723
1724         a = __add_action(sfa, attrtype, data, len, log);
1725         if (IS_ERR(a))
1726                 return PTR_ERR(a);
1727
1728         return 0;
1729 }
1730
1731 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1732                                           int attrtype, bool log)
1733 {
1734         int used = (*sfa)->actions_len;
1735         int err;
1736
1737         err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1738         if (err)
1739                 return err;
1740
1741         return used;
1742 }
1743
1744 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1745                                          int st_offset)
1746 {
1747         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1748                                                                st_offset);
1749
1750         a->nla_len = sfa->actions_len - st_offset;
1751 }
1752
1753 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1754                                   const struct sw_flow_key *key,
1755                                   int depth, struct sw_flow_actions **sfa,
1756                                   __be16 eth_type, __be16 vlan_tci, bool log);
1757
1758 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1759                                     const struct sw_flow_key *key, int depth,
1760                                     struct sw_flow_actions **sfa,
1761                                     __be16 eth_type, __be16 vlan_tci, bool log)
1762 {
1763         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1764         const struct nlattr *probability, *actions;
1765         const struct nlattr *a;
1766         int rem, start, err, st_acts;
1767
1768         memset(attrs, 0, sizeof(attrs));
1769         nla_for_each_nested(a, attr, rem) {
1770                 int type = nla_type(a);
1771                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1772                         return -EINVAL;
1773                 attrs[type] = a;
1774         }
1775         if (rem)
1776                 return -EINVAL;
1777
1778         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1779         if (!probability || nla_len(probability) != sizeof(u32))
1780                 return -EINVAL;
1781
1782         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1783         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1784                 return -EINVAL;
1785
1786         /* validation done, copy sample action. */
1787         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1788         if (start < 0)
1789                 return start;
1790         err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1791                                  nla_data(probability), sizeof(u32), log);
1792         if (err)
1793                 return err;
1794         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1795         if (st_acts < 0)
1796                 return st_acts;
1797
1798         err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1799                                      eth_type, vlan_tci, log);
1800         if (err)
1801                 return err;
1802
1803         add_nested_action_end(*sfa, st_acts);
1804         add_nested_action_end(*sfa, start);
1805
1806         return 0;
1807 }
1808
1809 void ovs_match_init(struct sw_flow_match *match,
1810                     struct sw_flow_key *key,
1811                     struct sw_flow_mask *mask)
1812 {
1813         memset(match, 0, sizeof(*match));
1814         match->key = key;
1815         match->mask = mask;
1816
1817         memset(key, 0, sizeof(*key));
1818
1819         if (mask) {
1820                 memset(&mask->key, 0, sizeof(mask->key));
1821                 mask->range.start = mask->range.end = 0;
1822         }
1823 }
1824
1825 static int validate_geneve_opts(struct sw_flow_key *key)
1826 {
1827         struct geneve_opt *option;
1828         int opts_len = key->tun_opts_len;
1829         bool crit_opt = false;
1830
1831         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1832         while (opts_len > 0) {
1833                 int len;
1834
1835                 if (opts_len < sizeof(*option))
1836                         return -EINVAL;
1837
1838                 len = sizeof(*option) + option->length * 4;
1839                 if (len > opts_len)
1840                         return -EINVAL;
1841
1842                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1843
1844                 option = (struct geneve_opt *)((u8 *)option + len);
1845                 opts_len -= len;
1846         };
1847
1848         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1849
1850         return 0;
1851 }
1852
1853 static int validate_and_copy_set_tun(const struct nlattr *attr,
1854                                      struct sw_flow_actions **sfa, bool log)
1855 {
1856         struct sw_flow_match match;
1857         struct sw_flow_key key;
1858         struct metadata_dst *tun_dst;
1859         struct ip_tunnel_info *tun_info;
1860         struct ovs_tunnel_info *ovs_tun;
1861         struct nlattr *a;
1862         int err = 0, start, opts_type;
1863
1864         ovs_match_init(&match, &key, NULL);
1865         opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1866         if (opts_type < 0)
1867                 return opts_type;
1868
1869         if (key.tun_opts_len) {
1870                 switch (opts_type) {
1871                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1872                         err = validate_geneve_opts(&key);
1873                         if (err < 0)
1874                                 return err;
1875                         break;
1876                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1877                         break;
1878                 }
1879         };
1880
1881         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1882         if (start < 0)
1883                 return start;
1884
1885         tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1886         if (!tun_dst)
1887                 return -ENOMEM;
1888
1889         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1890                          sizeof(*ovs_tun), log);
1891         if (IS_ERR(a)) {
1892                 ovs_dst_release((struct dst_entry *)tun_dst);
1893                 return PTR_ERR(a);
1894         }
1895
1896         ovs_tun = nla_data(a);
1897         ovs_tun->tun_dst = tun_dst;
1898
1899         tun_info = &tun_dst->u.tun_info;
1900         tun_info->mode = IP_TUNNEL_INFO_TX;
1901         tun_info->key = key.tun_key;
1902
1903         /* We need to store the options in the action itself since
1904          * everything else will go away after flow setup. We can append
1905          * it to tun_info and then point there.
1906          */
1907         ip_tunnel_info_opts_set(tun_info,
1908                                 TUN_METADATA_OPTS(&key, key.tun_opts_len),
1909                                 key.tun_opts_len);
1910         add_nested_action_end(*sfa, start);
1911
1912         return err;
1913 }
1914
1915 /* Return false if there are any non-masked bits set.
1916  * Mask follows data immediately, before any netlink padding.
1917  */
1918 static bool validate_masked(u8 *data, int len)
1919 {
1920         u8 *mask = data + len;
1921
1922         while (len--)
1923                 if (*data++ & ~*mask++)
1924                         return false;
1925
1926         return true;
1927 }
1928
1929 static int validate_set(const struct nlattr *a,
1930                         const struct sw_flow_key *flow_key,
1931                         struct sw_flow_actions **sfa,
1932                         bool *skip_copy, __be16 eth_type, bool masked, bool log)
1933 {
1934         const struct nlattr *ovs_key = nla_data(a);
1935         int key_type = nla_type(ovs_key);
1936         size_t key_len;
1937
1938         /* There can be only one key in a action */
1939         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1940                 return -EINVAL;
1941
1942         key_len = nla_len(ovs_key);
1943         if (masked)
1944                 key_len /= 2;
1945
1946         if (key_type > OVS_KEY_ATTR_MAX ||
1947             !check_attr_len(key_len, ovs_key_lens[key_type].len))
1948                 return -EINVAL;
1949
1950         if (masked && !validate_masked(nla_data(ovs_key), key_len))
1951                 return -EINVAL;
1952
1953         switch (key_type) {
1954         const struct ovs_key_ipv4 *ipv4_key;
1955         const struct ovs_key_ipv6 *ipv6_key;
1956         int err;
1957
1958         case OVS_KEY_ATTR_PRIORITY:
1959         case OVS_KEY_ATTR_SKB_MARK:
1960         case OVS_KEY_ATTR_ETHERNET:
1961                 break;
1962
1963         case OVS_KEY_ATTR_TUNNEL:
1964                 if (eth_p_mpls(eth_type))
1965                         return -EINVAL;
1966
1967                 if (masked)
1968                         return -EINVAL; /* Masked tunnel set not supported. */
1969
1970                 *skip_copy = true;
1971                 err = validate_and_copy_set_tun(a, sfa, log);
1972                 if (err)
1973                         return err;
1974                 break;
1975
1976         case OVS_KEY_ATTR_IPV4:
1977                 if (eth_type != htons(ETH_P_IP))
1978                         return -EINVAL;
1979
1980                 ipv4_key = nla_data(ovs_key);
1981
1982                 if (masked) {
1983                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1984
1985                         /* Non-writeable fields. */
1986                         if (mask->ipv4_proto || mask->ipv4_frag)
1987                                 return -EINVAL;
1988                 } else {
1989                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1990                                 return -EINVAL;
1991
1992                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1993                                 return -EINVAL;
1994                 }
1995                 break;
1996
1997         case OVS_KEY_ATTR_IPV6:
1998                 if (eth_type != htons(ETH_P_IPV6))
1999                         return -EINVAL;
2000
2001                 ipv6_key = nla_data(ovs_key);
2002
2003                 if (masked) {
2004                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2005
2006                         /* Non-writeable fields. */
2007                         if (mask->ipv6_proto || mask->ipv6_frag)
2008                                 return -EINVAL;
2009
2010                         /* Invalid bits in the flow label mask? */
2011                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
2012                                 return -EINVAL;
2013                 } else {
2014                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2015                                 return -EINVAL;
2016
2017                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2018                                 return -EINVAL;
2019                 }
2020                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2021                         return -EINVAL;
2022
2023                 break;
2024
2025         case OVS_KEY_ATTR_TCP:
2026                 if ((eth_type != htons(ETH_P_IP) &&
2027                      eth_type != htons(ETH_P_IPV6)) ||
2028                     flow_key->ip.proto != IPPROTO_TCP)
2029                         return -EINVAL;
2030
2031                 break;
2032
2033         case OVS_KEY_ATTR_UDP:
2034                 if ((eth_type != htons(ETH_P_IP) &&
2035                      eth_type != htons(ETH_P_IPV6)) ||
2036                     flow_key->ip.proto != IPPROTO_UDP)
2037                         return -EINVAL;
2038
2039                 break;
2040
2041         case OVS_KEY_ATTR_MPLS:
2042                 if (!eth_p_mpls(eth_type))
2043                         return -EINVAL;
2044                 break;
2045
2046         case OVS_KEY_ATTR_SCTP:
2047                 if ((eth_type != htons(ETH_P_IP) &&
2048                      eth_type != htons(ETH_P_IPV6)) ||
2049                     flow_key->ip.proto != IPPROTO_SCTP)
2050                         return -EINVAL;
2051
2052                 break;
2053
2054         default:
2055                 return -EINVAL;
2056         }
2057
2058         /* Convert non-masked non-tunnel set actions to masked set actions. */
2059         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2060                 int start, len = key_len * 2;
2061                 struct nlattr *at;
2062
2063                 *skip_copy = true;
2064
2065                 start = add_nested_action_start(sfa,
2066                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2067                                                 log);
2068                 if (start < 0)
2069                         return start;
2070
2071                 at = __add_action(sfa, key_type, NULL, len, log);
2072                 if (IS_ERR(at))
2073                         return PTR_ERR(at);
2074
2075                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2076                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2077                 /* Clear non-writeable bits from otherwise writeable fields. */
2078                 if (key_type == OVS_KEY_ATTR_IPV6) {
2079                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2080
2081                         mask->ipv6_label &= htonl(0x000FFFFF);
2082                 }
2083                 add_nested_action_end(*sfa, start);
2084         }
2085
2086         return 0;
2087 }
2088
2089 static int validate_userspace(const struct nlattr *attr)
2090 {
2091         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2092                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2093                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2094                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2095         };
2096         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2097         int error;
2098
2099         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2100                                  attr, userspace_policy);
2101         if (error)
2102                 return error;
2103
2104         if (!a[OVS_USERSPACE_ATTR_PID] ||
2105             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2106                 return -EINVAL;
2107
2108         return 0;
2109 }
2110
2111 static int copy_action(const struct nlattr *from,
2112                        struct sw_flow_actions **sfa, bool log)
2113 {
2114         int totlen = NLA_ALIGN(from->nla_len);
2115         struct nlattr *to;
2116
2117         to = reserve_sfa_size(sfa, from->nla_len, log);
2118         if (IS_ERR(to))
2119                 return PTR_ERR(to);
2120
2121         memcpy(to, from, totlen);
2122         return 0;
2123 }
2124
2125 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2126                                   const struct sw_flow_key *key,
2127                                   int depth, struct sw_flow_actions **sfa,
2128                                   __be16 eth_type, __be16 vlan_tci, bool log)
2129 {
2130         const struct nlattr *a;
2131         int rem, err;
2132
2133         if (depth >= SAMPLE_ACTION_DEPTH)
2134                 return -EOVERFLOW;
2135
2136         nla_for_each_nested(a, attr, rem) {
2137                 /* Expected argument lengths, (u32)-1 for variable length. */
2138                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2139                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2140                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2141                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2142                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2143                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2144                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2145                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2146                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2147                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2148                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2149                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2150                         [OVS_ACTION_ATTR_CT] = (u32)-1,
2151                 };
2152                 const struct ovs_action_push_vlan *vlan;
2153                 int type = nla_type(a);
2154                 bool skip_copy;
2155
2156                 if (type > OVS_ACTION_ATTR_MAX ||
2157                     (action_lens[type] != nla_len(a) &&
2158                      action_lens[type] != (u32)-1))
2159                         return -EINVAL;
2160
2161                 skip_copy = false;
2162                 switch (type) {
2163                 case OVS_ACTION_ATTR_UNSPEC:
2164                         return -EINVAL;
2165
2166                 case OVS_ACTION_ATTR_USERSPACE:
2167                         err = validate_userspace(a);
2168                         if (err)
2169                                 return err;
2170                         break;
2171
2172                 case OVS_ACTION_ATTR_OUTPUT:
2173                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2174                                 return -EINVAL;
2175                         break;
2176
2177                 case OVS_ACTION_ATTR_HASH: {
2178                         const struct ovs_action_hash *act_hash = nla_data(a);
2179
2180                         switch (act_hash->hash_alg) {
2181                         case OVS_HASH_ALG_L4:
2182                                 break;
2183                         default:
2184                                 return  -EINVAL;
2185                         }
2186
2187                         break;
2188                 }
2189
2190                 case OVS_ACTION_ATTR_POP_VLAN:
2191                         vlan_tci = htons(0);
2192                         break;
2193
2194                 case OVS_ACTION_ATTR_PUSH_VLAN:
2195                         vlan = nla_data(a);
2196                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2197                                 return -EINVAL;
2198                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2199                                 return -EINVAL;
2200                         vlan_tci = vlan->vlan_tci;
2201                         break;
2202
2203                 case OVS_ACTION_ATTR_RECIRC:
2204                         break;
2205
2206                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2207                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2208
2209                         if (!eth_p_mpls(mpls->mpls_ethertype))
2210                                 return -EINVAL;
2211                         /* Prohibit push MPLS other than to a white list
2212                          * for packets that have a known tag order.
2213                          */
2214                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2215                             (eth_type != htons(ETH_P_IP) &&
2216                              eth_type != htons(ETH_P_IPV6) &&
2217                              eth_type != htons(ETH_P_ARP) &&
2218                              eth_type != htons(ETH_P_RARP) &&
2219                              !eth_p_mpls(eth_type)))
2220                                 return -EINVAL;
2221                         eth_type = mpls->mpls_ethertype;
2222                         break;
2223                 }
2224
2225                 case OVS_ACTION_ATTR_POP_MPLS:
2226                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2227                             !eth_p_mpls(eth_type))
2228                                 return -EINVAL;
2229
2230                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2231                          * as there is no check here to ensure that the new
2232                          * eth_type is valid and thus set actions could
2233                          * write off the end of the packet or otherwise
2234                          * corrupt it.
2235                          *
2236                          * Support for these actions is planned using packet
2237                          * recirculation.
2238                          */
2239                         eth_type = htons(0);
2240                         break;
2241
2242                 case OVS_ACTION_ATTR_SET:
2243                         err = validate_set(a, key, sfa,
2244                                            &skip_copy, eth_type, false, log);
2245                         if (err)
2246                                 return err;
2247                         break;
2248
2249                 case OVS_ACTION_ATTR_SET_MASKED:
2250                         err = validate_set(a, key, sfa,
2251                                            &skip_copy, eth_type, true, log);
2252                         if (err)
2253                                 return err;
2254                         break;
2255
2256                 case OVS_ACTION_ATTR_SAMPLE:
2257                         err = validate_and_copy_sample(net, a, key, depth, sfa,
2258                                                        eth_type, vlan_tci, log);
2259                         if (err)
2260                                 return err;
2261                         skip_copy = true;
2262                         break;
2263
2264                 case OVS_ACTION_ATTR_CT:
2265                         err = ovs_ct_copy_action(net, a, key, sfa, log);
2266                         if (err)
2267                                 return err;
2268                         skip_copy = true;
2269                         break;
2270
2271                 default:
2272                         OVS_NLERR(log, "Unknown Action type %d", type);
2273                         return -EINVAL;
2274                 }
2275                 if (!skip_copy) {
2276                         err = copy_action(a, sfa, log);
2277                         if (err)
2278                                 return err;
2279                 }
2280         }
2281
2282         if (rem > 0)
2283                 return -EINVAL;
2284
2285         return 0;
2286 }
2287
2288 /* 'key' must be the masked key. */
2289 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2290                          const struct sw_flow_key *key,
2291                          struct sw_flow_actions **sfa, bool log)
2292 {
2293         int err;
2294
2295         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2296         if (IS_ERR(*sfa))
2297                 return PTR_ERR(*sfa);
2298
2299         (*sfa)->orig_len = nla_len(attr);
2300         err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2301                                      key->eth.tci, log);
2302         if (err)
2303                 ovs_nla_free_flow_actions(*sfa);
2304
2305         return err;
2306 }
2307
2308 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2309 {
2310         const struct nlattr *a;
2311         struct nlattr *start;
2312         int err = 0, rem;
2313
2314         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2315         if (!start)
2316                 return -EMSGSIZE;
2317
2318         nla_for_each_nested(a, attr, rem) {
2319                 int type = nla_type(a);
2320                 struct nlattr *st_sample;
2321
2322                 switch (type) {
2323                 case OVS_SAMPLE_ATTR_PROBABILITY:
2324                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2325                                     sizeof(u32), nla_data(a)))
2326                                 return -EMSGSIZE;
2327                         break;
2328                 case OVS_SAMPLE_ATTR_ACTIONS:
2329                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2330                         if (!st_sample)
2331                                 return -EMSGSIZE;
2332                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2333                         if (err)
2334                                 return err;
2335                         nla_nest_end(skb, st_sample);
2336                         break;
2337                 }
2338         }
2339
2340         nla_nest_end(skb, start);
2341         return err;
2342 }
2343
2344 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2345 {
2346         const struct nlattr *ovs_key = nla_data(a);
2347         int key_type = nla_type(ovs_key);
2348         struct nlattr *start;
2349         int err;
2350
2351         switch (key_type) {
2352         case OVS_KEY_ATTR_TUNNEL_INFO: {
2353                 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2354                 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2355
2356                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2357                 if (!start)
2358                         return -EMSGSIZE;
2359
2360                 err = ipv4_tun_to_nlattr(skb, &tun_info->key,
2361                                          tun_info->options_len ?
2362                                              ip_tunnel_info_opts(tun_info) : NULL,
2363                                          tun_info->options_len);
2364                 if (err)
2365                         return err;
2366                 nla_nest_end(skb, start);
2367                 break;
2368         }
2369         default:
2370                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2371                         return -EMSGSIZE;
2372                 break;
2373         }
2374
2375         return 0;
2376 }
2377
2378 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2379                                                 struct sk_buff *skb)
2380 {
2381         const struct nlattr *ovs_key = nla_data(a);
2382         size_t key_len = nla_len(ovs_key) / 2;
2383
2384         /* Revert the conversion we did from a non-masked set action to
2385          * masked set action.
2386          */
2387         if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a) - key_len, ovs_key))
2388                 return -EMSGSIZE;
2389
2390         return 0;
2391 }
2392
2393 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2394 {
2395         const struct nlattr *a;
2396         int rem, err;
2397
2398         nla_for_each_attr(a, attr, len, rem) {
2399                 int type = nla_type(a);
2400
2401                 switch (type) {
2402                 case OVS_ACTION_ATTR_SET:
2403                         err = set_action_to_attr(a, skb);
2404                         if (err)
2405                                 return err;
2406                         break;
2407
2408                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2409                         err = masked_set_action_to_set_action_attr(a, skb);
2410                         if (err)
2411                                 return err;
2412                         break;
2413
2414                 case OVS_ACTION_ATTR_SAMPLE:
2415                         err = sample_action_to_attr(a, skb);
2416                         if (err)
2417                                 return err;
2418                         break;
2419
2420                 case OVS_ACTION_ATTR_CT:
2421                         err = ovs_ct_action_to_attr(nla_data(a), skb);
2422                         if (err)
2423                                 return err;
2424                         break;
2425
2426                 default:
2427                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2428                                 return -EMSGSIZE;
2429                         break;
2430                 }
2431         }
2432
2433         return 0;
2434 }