datapath: fix coding style.
[cascardo/ovs.git] / datapath / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/geneve.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
47 #include <net/mpls.h>
48
49 #include "datapath.h"
50 #include "flow.h"
51 #include "flow_netlink.h"
52
53 static void update_range(struct sw_flow_match *match,
54                          size_t offset, size_t size, bool is_mask)
55 {
56         struct sw_flow_key_range *range;
57         size_t start = rounddown(offset, sizeof(long));
58         size_t end = roundup(offset + size, sizeof(long));
59
60         if (!is_mask)
61                 range = &match->range;
62         else
63                 range = &match->mask->range;
64
65         if (range->start == range->end) {
66                 range->start = start;
67                 range->end = end;
68                 return;
69         }
70
71         if (range->start > start)
72                 range->start = start;
73
74         if (range->end < end)
75                 range->end = end;
76 }
77
78 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
79         do { \
80                 update_range(match, offsetof(struct sw_flow_key, field),    \
81                              sizeof((match)->key->field), is_mask);         \
82                 if (is_mask)                                                \
83                         (match)->mask->key.field = value;                   \
84                 else                                                        \
85                         (match)->key->field = value;                        \
86         } while (0)
87
88 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
89         do {                                                                \
90                 update_range(match, offset, len, is_mask);                  \
91                 if (is_mask)                                                \
92                         memcpy((u8 *)&(match)->mask->key + offset, value_p, len);\
93                 else                                                        \
94                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
95         } while (0)
96
97 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
98         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
99                                   value_p, len, is_mask)
100
101 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
102         do {                                                                \
103                 update_range(match, offsetof(struct sw_flow_key, field),    \
104                              sizeof((match)->key->field), is_mask);         \
105                 if (is_mask)                                                \
106                         memset((u8 *)&(match)->mask->key.field, value,      \
107                                sizeof((match)->mask->key.field));           \
108                 else                                                        \
109                         memset((u8 *)&(match)->key->field, value,           \
110                                sizeof((match)->key->field));                \
111         } while (0)
112
113 static bool match_validate(const struct sw_flow_match *match,
114                            u64 key_attrs, u64 mask_attrs, bool log)
115 {
116         u64 key_expected = 1ULL << OVS_KEY_ATTR_ETHERNET;
117         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
118
119         /* The following mask attributes allowed only if they
120          * pass the validation tests.
121          */
122         mask_allowed &= ~((1ULL << OVS_KEY_ATTR_IPV4)
123                         | (1ULL << OVS_KEY_ATTR_IPV6)
124                         | (1ULL << OVS_KEY_ATTR_TCP)
125                         | (1ULL << OVS_KEY_ATTR_TCP_FLAGS)
126                         | (1ULL << OVS_KEY_ATTR_UDP)
127                         | (1ULL << OVS_KEY_ATTR_SCTP)
128                         | (1ULL << OVS_KEY_ATTR_ICMP)
129                         | (1ULL << OVS_KEY_ATTR_ICMPV6)
130                         | (1ULL << OVS_KEY_ATTR_ARP)
131                         | (1ULL << OVS_KEY_ATTR_ND)
132                         | (1ULL << OVS_KEY_ATTR_MPLS));
133
134         /* Always allowed mask fields. */
135         mask_allowed |= ((1ULL << OVS_KEY_ATTR_TUNNEL)
136                        | (1ULL << OVS_KEY_ATTR_IN_PORT)
137                        | (1ULL << OVS_KEY_ATTR_ETHERTYPE));
138
139         /* Check key attributes. */
140         if (match->key->eth.type == htons(ETH_P_ARP)
141                         || match->key->eth.type == htons(ETH_P_RARP)) {
142                 key_expected |= 1ULL << OVS_KEY_ATTR_ARP;
143                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
144                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ARP;
145         }
146
147         if (eth_p_mpls(match->key->eth.type)) {
148                 key_expected |= 1ULL << OVS_KEY_ATTR_MPLS;
149                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
150                         mask_allowed |= 1ULL << OVS_KEY_ATTR_MPLS;
151         }
152
153         if (match->key->eth.type == htons(ETH_P_IP)) {
154                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV4;
155                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
156                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV4;
157
158                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
159                         if (match->key->ip.proto == IPPROTO_UDP) {
160                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
161                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
162                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
163                         }
164
165                         if (match->key->ip.proto == IPPROTO_SCTP) {
166                                 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
167                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
168                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
169                         }
170
171                         if (match->key->ip.proto == IPPROTO_TCP) {
172                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
173                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
174                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
175                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
176                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
177                                 }
178                         }
179
180                         if (match->key->ip.proto == IPPROTO_ICMP) {
181                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMP;
182                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
183                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMP;
184                         }
185                 }
186         }
187
188         if (match->key->eth.type == htons(ETH_P_IPV6)) {
189                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV6;
190                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
191                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV6;
192
193                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
194                         if (match->key->ip.proto == IPPROTO_UDP) {
195                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
196                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
197                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
198                         }
199
200                         if (match->key->ip.proto == IPPROTO_SCTP) {
201                                 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
202                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
203                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
204                         }
205
206                         if (match->key->ip.proto == IPPROTO_TCP) {
207                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
208                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
209                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
210                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
211                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
212                                 }
213                         }
214
215                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
216                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMPV6;
217                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
218                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMPV6;
219
220                                 if (match->key->tp.src ==
221                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
222                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
223                                         key_expected |= 1ULL << OVS_KEY_ATTR_ND;
224                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
225                                                 mask_allowed |= 1ULL << OVS_KEY_ATTR_ND;
226                                 }
227                         }
228                 }
229         }
230
231         if ((key_attrs & key_expected) != key_expected) {
232                 /* Key attributes check failed. */
233                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
234                           (unsigned long long)key_attrs,
235                           (unsigned long long)key_expected);
236                 return false;
237         }
238
239         if ((mask_attrs & mask_allowed) != mask_attrs) {
240                 /* Mask attributes check failed. */
241                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
242                           (unsigned long long)mask_attrs,
243                           (unsigned long long)mask_allowed);
244                 return false;
245         }
246
247         return true;
248 }
249
250 size_t ovs_tun_key_attr_size(void)
251 {
252         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
253          * updating this function.
254          */
255         return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
256                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
257                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
258                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
259                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
260                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
261                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
262                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
263                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
264                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
265                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
266 }
267
268 size_t ovs_key_attr_size(void)
269 {
270         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
271          * updating this function.
272          */
273         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);
274
275         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
276                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
277                   + ovs_tun_key_attr_size()
278                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
279                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
280                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
281                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
282                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
283                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
284                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
285                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
286                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
287                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
288                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
289                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
290 }
291
292 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
293 static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
294         [OVS_KEY_ATTR_ENCAP] = -1,
295         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
296         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
297         [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
298         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
299         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
300         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
301         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
302         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
303         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
304         [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
305         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
306         [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
307         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
308         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
309         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
310         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
311         [OVS_KEY_ATTR_RECIRC_ID] = sizeof(u32),
312         [OVS_KEY_ATTR_DP_HASH] = sizeof(u32),
313         [OVS_KEY_ATTR_TUNNEL] = -1,
314         [OVS_KEY_ATTR_MPLS] = sizeof(struct ovs_key_mpls),
315 };
316
317 static bool is_all_zero(const u8 *fp, size_t size)
318 {
319         int i;
320
321         if (!fp)
322                 return false;
323
324         for (i = 0; i < size; i++)
325                 if (fp[i])
326                         return false;
327
328         return true;
329 }
330
331 static int __parse_flow_nlattrs(const struct nlattr *attr,
332                                 const struct nlattr *a[],
333                                 u64 *attrsp, bool log, bool nz)
334 {
335         const struct nlattr *nla;
336         u64 attrs;
337         int rem;
338
339         attrs = *attrsp;
340         nla_for_each_nested(nla, attr, rem) {
341                 u16 type = nla_type(nla);
342                 int expected_len;
343
344                 if (type > OVS_KEY_ATTR_MAX) {
345                         OVS_NLERR(log, "Key type %d is out of range max %d",
346                                   type, OVS_KEY_ATTR_MAX);
347                         return -EINVAL;
348                 }
349
350                 if (attrs & (1ULL << type)) {
351                         OVS_NLERR(log, "Duplicate key (type %d).", type);
352                         return -EINVAL;
353                 }
354
355                 expected_len = ovs_key_lens[type];
356                 if (nla_len(nla) != expected_len && expected_len != -1) {
357                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
358                                   type, nla_len(nla), expected_len);
359                         return -EINVAL;
360                 }
361
362                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
363                         attrs |= 1ULL << type;
364                         a[type] = nla;
365                 }
366         }
367         if (rem) {
368                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
369                 return -EINVAL;
370         }
371
372         *attrsp = attrs;
373         return 0;
374 }
375
376 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
377                                    const struct nlattr *a[], u64 *attrsp,
378                                    bool log)
379 {
380         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
381 }
382
383 static int parse_flow_nlattrs(const struct nlattr *attr,
384                               const struct nlattr *a[], u64 *attrsp,
385                               bool log)
386 {
387         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
388 }
389
390 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
391                                      struct sw_flow_match *match, bool is_mask,
392                                      bool log)
393 {
394         unsigned long opt_key_offset;
395
396         if (nla_len(a) > sizeof(match->key->tun_opts)) {
397                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
398                           nla_len(a), sizeof(match->key->tun_opts));
399                 return -EINVAL;
400         }
401
402         if (nla_len(a) % 4 != 0) {
403                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
404                           nla_len(a));
405                 return -EINVAL;
406         }
407
408         /* We need to record the length of the options passed
409          * down, otherwise packets with the same format but
410          * additional options will be silently matched.
411          */
412         if (!is_mask) {
413                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
414                                 false);
415         } else {
416                 /* This is somewhat unusual because it looks at
417                  * both the key and mask while parsing the
418                  * attributes (and by extension assumes the key
419                  * is parsed first). Normally, we would verify
420                  * that each is the correct length and that the
421                  * attributes line up in the validate function.
422                  * However, that is difficult because this is
423                  * variable length and we won't have the
424                  * information later.
425                  */
426                 if (match->key->tun_opts_len != nla_len(a)) {
427                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
428                                   match->key->tun_opts_len, nla_len(a));
429                         return -EINVAL;
430                 }
431
432                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
433         }
434
435         opt_key_offset = (unsigned long)GENEVE_OPTS((struct sw_flow_key *)0,
436                                                     nla_len(a));
437         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
438                                   nla_len(a), is_mask);
439         return 0;
440 }
441
442 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
443                                 struct sw_flow_match *match, bool is_mask,
444                                 bool log)
445 {
446         struct nlattr *a;
447         int rem;
448         bool ttl = false;
449         __be16 tun_flags = 0;
450
451         nla_for_each_nested(a, attr, rem) {
452                 int type = nla_type(a);
453                 int err;
454
455                 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
456                         [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
457                         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
458                         [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
459                         [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
460                         [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
461                         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
462                         [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
463                         [OVS_TUNNEL_KEY_ATTR_TP_SRC] = sizeof(u16),
464                         [OVS_TUNNEL_KEY_ATTR_TP_DST] = sizeof(u16),
465                         [OVS_TUNNEL_KEY_ATTR_OAM] = 0,
466                         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = -1,
467                 };
468
469                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
470                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
471                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
472                         return -EINVAL;
473                 }
474
475                 if (ovs_tunnel_key_lens[type] != nla_len(a) &&
476                     ovs_tunnel_key_lens[type] != -1) {
477                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
478                                   type, nla_len(a), ovs_tunnel_key_lens[type]);
479                         return -EINVAL;
480                 }
481
482                 switch (type) {
483                 case OVS_TUNNEL_KEY_ATTR_ID:
484                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
485                                         nla_get_be64(a), is_mask);
486                         tun_flags |= TUNNEL_KEY;
487                         break;
488                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
489                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
490                                         nla_get_be32(a), is_mask);
491                         break;
492                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
493                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
494                                         nla_get_be32(a), is_mask);
495                         break;
496                 case OVS_TUNNEL_KEY_ATTR_TOS:
497                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
498                                         nla_get_u8(a), is_mask);
499                         break;
500                 case OVS_TUNNEL_KEY_ATTR_TTL:
501                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
502                                         nla_get_u8(a), is_mask);
503                         ttl = true;
504                         break;
505                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
506                         tun_flags |= TUNNEL_DONT_FRAGMENT;
507                         break;
508                 case OVS_TUNNEL_KEY_ATTR_CSUM:
509                         tun_flags |= TUNNEL_CSUM;
510                         break;
511                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
512                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
513                                         nla_get_be16(a), is_mask);
514                         break;
515                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
516                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
517                                         nla_get_be16(a), is_mask);
518                         break;
519                 case OVS_TUNNEL_KEY_ATTR_OAM:
520                         tun_flags |= TUNNEL_OAM;
521                         break;
522                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
523                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
524                         if (err)
525                                 return err;
526
527                         tun_flags |= TUNNEL_OPTIONS_PRESENT;
528                         break;
529                 default:
530                         OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
531                                   type);
532                         return -EINVAL;
533                 }
534         }
535
536         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
537
538         if (rem > 0) {
539                 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
540                           rem);
541                 return -EINVAL;
542         }
543
544         if (!is_mask) {
545                 if (!match->key->tun_key.ipv4_dst) {
546                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
547                         return -EINVAL;
548                 }
549
550                 if (!ttl) {
551                         OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
552                         return -EINVAL;
553                 }
554         }
555
556         return 0;
557 }
558
559 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
560                                 const struct ovs_key_ipv4_tunnel *output,
561                                 const struct geneve_opt *tun_opts,
562                                 int swkey_tun_opts_len)
563 {
564         if (output->tun_flags & TUNNEL_KEY &&
565             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
566                 return -EMSGSIZE;
567         if (output->ipv4_src &&
568             nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
569                 return -EMSGSIZE;
570         if (output->ipv4_dst &&
571             nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
572                 return -EMSGSIZE;
573         if (output->ipv4_tos &&
574             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
575                 return -EMSGSIZE;
576         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
577                 return -EMSGSIZE;
578         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
579             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
580                 return -EMSGSIZE;
581         if ((output->tun_flags & TUNNEL_CSUM) &&
582             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
583                 return -EMSGSIZE;
584         if (output->tp_src &&
585             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
586                 return -EMSGSIZE;
587         if (output->tp_dst &&
588             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
589                 return -EMSGSIZE;
590         if ((output->tun_flags & TUNNEL_OAM) &&
591             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
592                 return -EMSGSIZE;
593         if (tun_opts &&
594             nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
595                     swkey_tun_opts_len, tun_opts))
596                 return -EMSGSIZE;
597
598         return 0;
599 }
600
601 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
602                               const struct ovs_key_ipv4_tunnel *output,
603                               const struct geneve_opt *tun_opts,
604                               int swkey_tun_opts_len)
605 {
606         struct nlattr *nla;
607         int err;
608
609         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
610         if (!nla)
611                 return -EMSGSIZE;
612
613         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
614         if (err)
615                 return err;
616
617         nla_nest_end(skb, nla);
618         return 0;
619 }
620
621 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
622                                   const struct ovs_tunnel_info *egress_tun_info)
623 {
624         return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
625                                     egress_tun_info->options,
626                                     egress_tun_info->options_len);
627 }
628
629 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
630                                  const struct nlattr **a, bool is_mask,
631                                  bool log)
632 {
633         if (*attrs & (1ULL << OVS_KEY_ATTR_DP_HASH)) {
634                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
635
636                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
637                 *attrs &= ~(1ULL << OVS_KEY_ATTR_DP_HASH);
638         }
639
640         if (*attrs & (1ULL << OVS_KEY_ATTR_RECIRC_ID)) {
641                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
642
643                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
644                 *attrs &= ~(1ULL << OVS_KEY_ATTR_RECIRC_ID);
645         }
646
647         if (*attrs & (1ULL << OVS_KEY_ATTR_PRIORITY)) {
648                 SW_FLOW_KEY_PUT(match, phy.priority,
649                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
650                 *attrs &= ~(1ULL << OVS_KEY_ATTR_PRIORITY);
651         }
652
653         if (*attrs & (1ULL << OVS_KEY_ATTR_IN_PORT)) {
654                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
655
656                 if (is_mask) {
657                         in_port = 0xffffffff; /* Always exact match in_port. */
658                 } else if (in_port >= DP_MAX_PORTS) {
659                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
660                                   in_port, DP_MAX_PORTS);
661                         return -EINVAL;
662                 }
663
664                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
665                 *attrs &= ~(1ULL << OVS_KEY_ATTR_IN_PORT);
666         } else if (!is_mask) {
667                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
668         }
669
670         if (*attrs & (1ULL << OVS_KEY_ATTR_SKB_MARK)) {
671                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
672
673                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
674                 *attrs &= ~(1ULL << OVS_KEY_ATTR_SKB_MARK);
675         }
676         if (*attrs & (1ULL << OVS_KEY_ATTR_TUNNEL)) {
677                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
678                                          is_mask, log))
679                         return -EINVAL;
680                 *attrs &= ~(1ULL << OVS_KEY_ATTR_TUNNEL);
681         }
682         return 0;
683 }
684
685 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
686                                 const struct nlattr **a, bool is_mask,
687                                 bool log)
688 {
689         int err;
690
691         err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
692         if (err)
693                 return err;
694
695         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) {
696                 const struct ovs_key_ethernet *eth_key;
697
698                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
699                 SW_FLOW_KEY_MEMCPY(match, eth.src,
700                                 eth_key->eth_src, ETH_ALEN, is_mask);
701                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
702                                 eth_key->eth_dst, ETH_ALEN, is_mask);
703                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERNET);
704         }
705
706         if (attrs & (1ULL << OVS_KEY_ATTR_VLAN)) {
707                 __be16 tci;
708
709                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
710                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
711                         if (is_mask)
712                                 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
713                         else
714                                 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
715
716                         return -EINVAL;
717                 }
718
719                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
720                 attrs &= ~(1ULL << OVS_KEY_ATTR_VLAN);
721         }
722
723         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) {
724                 __be16 eth_type;
725
726                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
727                 if (is_mask) {
728                         /* Always exact match EtherType. */
729                         eth_type = htons(0xffff);
730                 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
731                         OVS_NLERR(log, "EtherType %x is less than min %x",
732                                   ntohs(eth_type), ETH_P_802_3_MIN);
733                         return -EINVAL;
734                 }
735
736                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
737                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
738         } else if (!is_mask) {
739                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
740         }
741
742         if (attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
743                 const struct ovs_key_ipv4 *ipv4_key;
744
745                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
746                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
747                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
748                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
749                         return -EINVAL;
750                 }
751                 SW_FLOW_KEY_PUT(match, ip.proto,
752                                 ipv4_key->ipv4_proto, is_mask);
753                 SW_FLOW_KEY_PUT(match, ip.tos,
754                                 ipv4_key->ipv4_tos, is_mask);
755                 SW_FLOW_KEY_PUT(match, ip.ttl,
756                                 ipv4_key->ipv4_ttl, is_mask);
757                 SW_FLOW_KEY_PUT(match, ip.frag,
758                                 ipv4_key->ipv4_frag, is_mask);
759                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
760                                 ipv4_key->ipv4_src, is_mask);
761                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
762                                 ipv4_key->ipv4_dst, is_mask);
763                 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV4);
764         }
765
766         if (attrs & (1ULL << OVS_KEY_ATTR_IPV6)) {
767                 const struct ovs_key_ipv6 *ipv6_key;
768
769                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
770                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
771                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
772                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
773                         return -EINVAL;
774                 }
775                 if (ipv6_key->ipv6_label & htonl(0xFFF00000)) {
776                         OVS_NLERR(log,
777                                   "Invalid IPv6 flow label value (value=%x, max=%x).",
778                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
779                         return -EINVAL;
780                 }
781                 SW_FLOW_KEY_PUT(match, ipv6.label,
782                                 ipv6_key->ipv6_label, is_mask);
783                 SW_FLOW_KEY_PUT(match, ip.proto,
784                                 ipv6_key->ipv6_proto, is_mask);
785                 SW_FLOW_KEY_PUT(match, ip.tos,
786                                 ipv6_key->ipv6_tclass, is_mask);
787                 SW_FLOW_KEY_PUT(match, ip.ttl,
788                                 ipv6_key->ipv6_hlimit, is_mask);
789                 SW_FLOW_KEY_PUT(match, ip.frag,
790                                 ipv6_key->ipv6_frag, is_mask);
791                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
792                                 ipv6_key->ipv6_src,
793                                 sizeof(match->key->ipv6.addr.src),
794                                 is_mask);
795                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
796                                 ipv6_key->ipv6_dst,
797                                 sizeof(match->key->ipv6.addr.dst),
798                                 is_mask);
799
800                 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6);
801         }
802
803         if (attrs & (1ULL << OVS_KEY_ATTR_ARP)) {
804                 const struct ovs_key_arp *arp_key;
805
806                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
807                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
808                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
809                                   arp_key->arp_op);
810                         return -EINVAL;
811                 }
812
813                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
814                                 arp_key->arp_sip, is_mask);
815                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
816                         arp_key->arp_tip, is_mask);
817                 SW_FLOW_KEY_PUT(match, ip.proto,
818                                 ntohs(arp_key->arp_op), is_mask);
819                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
820                                 arp_key->arp_sha, ETH_ALEN, is_mask);
821                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
822                                 arp_key->arp_tha, ETH_ALEN, is_mask);
823
824                 attrs &= ~(1ULL << OVS_KEY_ATTR_ARP);
825         }
826
827         if (attrs & (1ULL << OVS_KEY_ATTR_MPLS)) {
828                 const struct ovs_key_mpls *mpls_key;
829
830                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
831                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
832                                 mpls_key->mpls_lse, is_mask);
833
834                 attrs &= ~(1ULL << OVS_KEY_ATTR_MPLS);
835         }
836
837         if (attrs & (1ULL << OVS_KEY_ATTR_TCP)) {
838                 const struct ovs_key_tcp *tcp_key;
839
840                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
841                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
842                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
843                 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP);
844         }
845
846         if (attrs & (1ULL << OVS_KEY_ATTR_TCP_FLAGS)) {
847                 SW_FLOW_KEY_PUT(match, tp.flags,
848                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
849                                 is_mask);
850                 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP_FLAGS);
851         }
852
853         if (attrs & (1ULL << OVS_KEY_ATTR_UDP)) {
854                 const struct ovs_key_udp *udp_key;
855
856                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
857                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
858                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
859                 attrs &= ~(1ULL << OVS_KEY_ATTR_UDP);
860         }
861
862         if (attrs & (1ULL << OVS_KEY_ATTR_SCTP)) {
863                 const struct ovs_key_sctp *sctp_key;
864
865                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
866                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
867                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
868                 attrs &= ~(1ULL << OVS_KEY_ATTR_SCTP);
869         }
870
871         if (attrs & (1ULL << OVS_KEY_ATTR_ICMP)) {
872                 const struct ovs_key_icmp *icmp_key;
873
874                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
875                 SW_FLOW_KEY_PUT(match, tp.src,
876                                 htons(icmp_key->icmp_type), is_mask);
877                 SW_FLOW_KEY_PUT(match, tp.dst,
878                                 htons(icmp_key->icmp_code), is_mask);
879                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMP);
880         }
881
882         if (attrs & (1ULL << OVS_KEY_ATTR_ICMPV6)) {
883                 const struct ovs_key_icmpv6 *icmpv6_key;
884
885                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
886                 SW_FLOW_KEY_PUT(match, tp.src,
887                                 htons(icmpv6_key->icmpv6_type), is_mask);
888                 SW_FLOW_KEY_PUT(match, tp.dst,
889                                 htons(icmpv6_key->icmpv6_code), is_mask);
890                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMPV6);
891         }
892
893         if (attrs & (1ULL << OVS_KEY_ATTR_ND)) {
894                 const struct ovs_key_nd *nd_key;
895
896                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
897                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
898                         nd_key->nd_target,
899                         sizeof(match->key->ipv6.nd.target),
900                         is_mask);
901                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
902                         nd_key->nd_sll, ETH_ALEN, is_mask);
903                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
904                                 nd_key->nd_tll, ETH_ALEN, is_mask);
905                 attrs &= ~(1ULL << OVS_KEY_ATTR_ND);
906         }
907
908         if (attrs != 0) {
909                 OVS_NLERR(log, "Unknown key attributes %llx",
910                           (unsigned long long)attrs);
911                 return -EINVAL;
912         }
913
914         return 0;
915 }
916
917 static void nlattr_set(struct nlattr *attr, u8 val, bool is_attr_mask_key)
918 {
919         struct nlattr *nla;
920         int rem;
921
922         /* The nlattr stream should already have been validated */
923         nla_for_each_nested(nla, attr, rem) {
924                 /* We assume that ovs_key_lens[type] == -1 means that type is a
925                  * nested attribute
926                  */
927                 if (is_attr_mask_key && ovs_key_lens[nla_type(nla)] == -1)
928                         nlattr_set(nla, val, false);
929                 else
930                         memset(nla_data(nla), val, nla_len(nla));
931         }
932 }
933
934 static void mask_set_nlattr(struct nlattr *attr, u8 val)
935 {
936         nlattr_set(attr, val, true);
937 }
938
939 /**
940  * ovs_nla_get_match - parses Netlink attributes into a flow key and
941  * mask. In case the 'mask' is NULL, the flow is treated as exact match
942  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
943  * does not include any don't care bit.
944  * @match: receives the extracted flow match information.
945  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
946  * sequence. The fields should of the packet that triggered the creation
947  * of this flow.
948  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
949  * attribute specifies the mask field of the wildcarded flow.
950  * @log: Boolean to allow kernel error logging.  Normally true, but when
951  * probing for feature compatibility this should be passed in as false to
952  * suppress unnecessary error logging.
953  */
954 int ovs_nla_get_match(struct sw_flow_match *match,
955                       const struct nlattr *nla_key,
956                       const struct nlattr *nla_mask,
957                       bool log)
958 {
959         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
960         const struct nlattr *encap;
961         struct nlattr *newmask = NULL;
962         u64 key_attrs = 0;
963         u64 mask_attrs = 0;
964         bool encap_valid = false;
965         int err;
966
967         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
968         if (err)
969                 return err;
970
971         if ((key_attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
972             (key_attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) &&
973             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
974                 __be16 tci;
975
976                 if (!((key_attrs & (1ULL << OVS_KEY_ATTR_VLAN)) &&
977                       (key_attrs & (1ULL << OVS_KEY_ATTR_ENCAP)))) {
978                         OVS_NLERR(log, "Invalid Vlan frame.");
979                         return -EINVAL;
980                 }
981
982                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
983                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
984                 encap = a[OVS_KEY_ATTR_ENCAP];
985                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
986                 encap_valid = true;
987
988                 if (tci & htons(VLAN_TAG_PRESENT)) {
989                         err = parse_flow_nlattrs(encap, a, &key_attrs, log);
990                         if (err)
991                                 return err;
992                 } else if (!tci) {
993                         /* Corner case for truncated 802.1Q header. */
994                         if (nla_len(encap)) {
995                                 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
996                                 return -EINVAL;
997                         }
998                 } else {
999                         OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1000                         return  -EINVAL;
1001                 }
1002         }
1003
1004         err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1005         if (err)
1006                 return err;
1007
1008         if (match->mask) {
1009                 if (!nla_mask) {
1010                         /* Create an exact match mask. We need to set to 0xff
1011                          * all the 'match->mask' fields that have been touched
1012                          * in 'match->key'. We cannot simply memset
1013                          * 'match->mask', because padding bytes and fields not
1014                          * specified in 'match->key' should be left to 0.
1015                          * Instead, we use a stream of netlink attributes,
1016                          * copied from 'key' and set to 0xff.
1017                          * ovs_key_from_nlattrs() will take care of filling
1018                          * 'match->mask' appropriately.
1019                          */
1020                         newmask = kmemdup(nla_key,
1021                                           nla_total_size(nla_len(nla_key)),
1022                                           GFP_KERNEL);
1023                         if (!newmask)
1024                                 return -ENOMEM;
1025
1026                         mask_set_nlattr(newmask, 0xff);
1027
1028                         /* The userspace does not send tunnel attributes that
1029                          * are 0, but we should not wildcard them nonetheless.
1030                          */
1031                         if (match->key->tun_key.ipv4_dst)
1032                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1033                                                          0xff, true);
1034
1035                         nla_mask = newmask;
1036                 }
1037
1038                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1039                 if (err)
1040                         goto free_newmask;
1041
1042                 /* Always match on tci. */
1043                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1044
1045                 if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
1046                         __be16 eth_type = 0;
1047                         __be16 tci = 0;
1048
1049                         if (!encap_valid) {
1050                                 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1051                                 err = -EINVAL;
1052                                 goto free_newmask;
1053                         }
1054
1055                         mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1056                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1057                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1058
1059                         if (eth_type == htons(0xffff)) {
1060                                 mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1061                                 encap = a[OVS_KEY_ATTR_ENCAP];
1062                                 err = parse_flow_mask_nlattrs(encap, a,
1063                                                               &mask_attrs, log);
1064                                 if (err)
1065                                         goto free_newmask;
1066                         } else {
1067                                 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1068                                           ntohs(eth_type));
1069                                 err = -EINVAL;
1070                                 goto free_newmask;
1071                         }
1072
1073                         if (a[OVS_KEY_ATTR_VLAN])
1074                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1075
1076                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
1077                                 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1078                                           ntohs(tci));
1079                                 err = -EINVAL;
1080                                 goto free_newmask;
1081                         }
1082                 }
1083
1084                 err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1085                 if (err)
1086                         goto free_newmask;
1087         }
1088
1089         if (!match_validate(match, key_attrs, mask_attrs, log))
1090                 err = -EINVAL;
1091
1092 free_newmask:
1093         kfree(newmask);
1094         return err;
1095 }
1096
1097 /**
1098  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1099  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1100  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1101  * sequence.
1102  * @log: Boolean to allow kernel error logging.  Normally true, but when
1103  * probing for feature compatibility this should be passed in as false to
1104  * suppress unnecessary error logging.
1105  *
1106  * This parses a series of Netlink attributes that form a flow key, which must
1107  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1108  * get the metadata, that is, the parts of the flow key that cannot be
1109  * extracted from the packet itself.
1110  */
1111
1112 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1113                               struct sw_flow_key *key,
1114                               bool log)
1115 {
1116         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1117         struct sw_flow_match match;
1118         u64 attrs = 0;
1119         int err;
1120
1121         err = parse_flow_nlattrs(attr, a, &attrs, log);
1122         if (err)
1123                 return -EINVAL;
1124
1125         memset(&match, 0, sizeof(match));
1126         match.key = key;
1127
1128         memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
1129         key->phy.in_port = DP_MAX_PORTS;
1130
1131         return metadata_from_nlattrs(&match, &attrs, a, false, log);
1132 }
1133
1134 int ovs_nla_put_flow(const struct sw_flow_key *swkey,
1135                      const struct sw_flow_key *output, struct sk_buff *skb)
1136 {
1137         struct ovs_key_ethernet *eth_key;
1138         struct nlattr *nla, *encap;
1139         bool is_mask = (swkey != output);
1140
1141         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1142                 goto nla_put_failure;
1143
1144         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1145                 goto nla_put_failure;
1146
1147         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1148                 goto nla_put_failure;
1149
1150         if ((swkey->tun_key.ipv4_dst || is_mask)) {
1151                 const struct geneve_opt *opts = NULL;
1152
1153                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1154                         opts = GENEVE_OPTS(output, swkey->tun_opts_len);
1155
1156                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1157                                        swkey->tun_opts_len))
1158                         goto nla_put_failure;
1159         }
1160
1161         if (swkey->phy.in_port == DP_MAX_PORTS) {
1162                 if (is_mask && (output->phy.in_port == 0xffff))
1163                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1164                                 goto nla_put_failure;
1165         } else {
1166                 u16 upper_u16;
1167                 upper_u16 = !is_mask ? 0 : 0xffff;
1168
1169                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1170                                 (upper_u16 << 16) | output->phy.in_port))
1171                         goto nla_put_failure;
1172         }
1173
1174         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1175                 goto nla_put_failure;
1176
1177         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1178         if (!nla)
1179                 goto nla_put_failure;
1180
1181         eth_key = nla_data(nla);
1182         ether_addr_copy(eth_key->eth_src, output->eth.src);
1183         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1184
1185         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1186                 __be16 eth_type;
1187                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1188                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1189                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1190                         goto nla_put_failure;
1191                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1192                 if (!swkey->eth.tci)
1193                         goto unencap;
1194         } else
1195                 encap = NULL;
1196
1197         if (swkey->eth.type == htons(ETH_P_802_2)) {
1198                 /*
1199                  * Ethertype 802.2 is represented in the netlink with omitted
1200                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1201                  * 0xffff in the mask attribute.  Ethertype can also
1202                  * be wildcarded.
1203                  */
1204                 if (is_mask && output->eth.type)
1205                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1206                                                 output->eth.type))
1207                                 goto nla_put_failure;
1208                 goto unencap;
1209         }
1210
1211         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1212                 goto nla_put_failure;
1213
1214         if (swkey->eth.type == htons(ETH_P_IP)) {
1215                 struct ovs_key_ipv4 *ipv4_key;
1216
1217                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1218                 if (!nla)
1219                         goto nla_put_failure;
1220                 ipv4_key = nla_data(nla);
1221                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1222                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1223                 ipv4_key->ipv4_proto = output->ip.proto;
1224                 ipv4_key->ipv4_tos = output->ip.tos;
1225                 ipv4_key->ipv4_ttl = output->ip.ttl;
1226                 ipv4_key->ipv4_frag = output->ip.frag;
1227         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1228                 struct ovs_key_ipv6 *ipv6_key;
1229
1230                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1231                 if (!nla)
1232                         goto nla_put_failure;
1233                 ipv6_key = nla_data(nla);
1234                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1235                                 sizeof(ipv6_key->ipv6_src));
1236                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1237                                 sizeof(ipv6_key->ipv6_dst));
1238                 ipv6_key->ipv6_label = output->ipv6.label;
1239                 ipv6_key->ipv6_proto = output->ip.proto;
1240                 ipv6_key->ipv6_tclass = output->ip.tos;
1241                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1242                 ipv6_key->ipv6_frag = output->ip.frag;
1243         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1244                    swkey->eth.type == htons(ETH_P_RARP)) {
1245                 struct ovs_key_arp *arp_key;
1246
1247                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1248                 if (!nla)
1249                         goto nla_put_failure;
1250                 arp_key = nla_data(nla);
1251                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1252                 arp_key->arp_sip = output->ipv4.addr.src;
1253                 arp_key->arp_tip = output->ipv4.addr.dst;
1254                 arp_key->arp_op = htons(output->ip.proto);
1255                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1256                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1257         } else if (eth_p_mpls(swkey->eth.type)) {
1258                 struct ovs_key_mpls *mpls_key;
1259
1260                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1261                 if (!nla)
1262                         goto nla_put_failure;
1263                 mpls_key = nla_data(nla);
1264                 mpls_key->mpls_lse = output->mpls.top_lse;
1265         }
1266
1267         if ((swkey->eth.type == htons(ETH_P_IP) ||
1268              swkey->eth.type == htons(ETH_P_IPV6)) &&
1269              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1270
1271                 if (swkey->ip.proto == IPPROTO_TCP) {
1272                         struct ovs_key_tcp *tcp_key;
1273
1274                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1275                         if (!nla)
1276                                 goto nla_put_failure;
1277                         tcp_key = nla_data(nla);
1278                         tcp_key->tcp_src = output->tp.src;
1279                         tcp_key->tcp_dst = output->tp.dst;
1280                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1281                                          output->tp.flags))
1282                                 goto nla_put_failure;
1283                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1284                         struct ovs_key_udp *udp_key;
1285
1286                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1287                         if (!nla)
1288                                 goto nla_put_failure;
1289                         udp_key = nla_data(nla);
1290                         udp_key->udp_src = output->tp.src;
1291                         udp_key->udp_dst = output->tp.dst;
1292                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1293                         struct ovs_key_sctp *sctp_key;
1294
1295                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1296                         if (!nla)
1297                                 goto nla_put_failure;
1298                         sctp_key = nla_data(nla);
1299                         sctp_key->sctp_src = output->tp.src;
1300                         sctp_key->sctp_dst = output->tp.dst;
1301                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1302                            swkey->ip.proto == IPPROTO_ICMP) {
1303                         struct ovs_key_icmp *icmp_key;
1304
1305                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1306                         if (!nla)
1307                                 goto nla_put_failure;
1308                         icmp_key = nla_data(nla);
1309                         icmp_key->icmp_type = ntohs(output->tp.src);
1310                         icmp_key->icmp_code = ntohs(output->tp.dst);
1311                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1312                            swkey->ip.proto == IPPROTO_ICMPV6) {
1313                         struct ovs_key_icmpv6 *icmpv6_key;
1314
1315                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1316                                                 sizeof(*icmpv6_key));
1317                         if (!nla)
1318                                 goto nla_put_failure;
1319                         icmpv6_key = nla_data(nla);
1320                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1321                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1322
1323                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1324                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1325                                 struct ovs_key_nd *nd_key;
1326
1327                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1328                                 if (!nla)
1329                                         goto nla_put_failure;
1330                                 nd_key = nla_data(nla);
1331                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1332                                                         sizeof(nd_key->nd_target));
1333                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1334                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1335                         }
1336                 }
1337         }
1338
1339 unencap:
1340         if (encap)
1341                 nla_nest_end(skb, encap);
1342
1343         return 0;
1344
1345 nla_put_failure:
1346         return -EMSGSIZE;
1347 }
1348
1349 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1350
1351 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1352 {
1353         struct sw_flow_actions *sfa;
1354
1355         if (size > MAX_ACTIONS_BUFSIZE) {
1356                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1357                 return ERR_PTR(-EINVAL);
1358         }
1359
1360         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1361         if (!sfa)
1362                 return ERR_PTR(-ENOMEM);
1363
1364         sfa->actions_len = 0;
1365         return sfa;
1366 }
1367
1368 /* RCU callback used by ovs_nla_free_flow_actions. */
1369 static void rcu_free_acts_callback(struct rcu_head *rcu)
1370 {
1371         struct sw_flow_actions *sf_acts = container_of(rcu,
1372                         struct sw_flow_actions, rcu);
1373         kfree(sf_acts);
1374 }
1375
1376 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1377  * The caller must hold rcu_read_lock for this to be sensible.
1378  */
1379 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1380 {
1381         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
1382 }
1383
1384 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1385                                        int attr_len, bool log)
1386 {
1387
1388         struct sw_flow_actions *acts;
1389         int new_acts_size;
1390         int req_size = NLA_ALIGN(attr_len);
1391         int next_offset = offsetof(struct sw_flow_actions, actions) +
1392                                         (*sfa)->actions_len;
1393
1394         if (req_size <= (ksize(*sfa) - next_offset))
1395                 goto out;
1396
1397         new_acts_size = ksize(*sfa) * 2;
1398
1399         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1400                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1401                         return ERR_PTR(-EMSGSIZE);
1402                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1403         }
1404
1405         acts = nla_alloc_flow_actions(new_acts_size, log);
1406         if (IS_ERR(acts))
1407                 return (void *)acts;
1408
1409         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1410         acts->actions_len = (*sfa)->actions_len;
1411         kfree(*sfa);
1412         *sfa = acts;
1413
1414 out:
1415         (*sfa)->actions_len += req_size;
1416         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1417 }
1418
1419 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1420                                    int attrtype, void *data, int len, bool log)
1421 {
1422         struct nlattr *a;
1423
1424         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1425         if (IS_ERR(a))
1426                 return a;
1427
1428         a->nla_type = attrtype;
1429         a->nla_len = nla_attr_size(len);
1430
1431         if (data)
1432                 memcpy(nla_data(a), data, len);
1433         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1434
1435         return a;
1436 }
1437
1438 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1439                       void *data, int len, bool log)
1440 {
1441         struct nlattr *a;
1442
1443         a = __add_action(sfa, attrtype, data, len, log);
1444         if (IS_ERR(a))
1445                 return PTR_ERR(a);
1446
1447         return 0;
1448 }
1449
1450 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1451                                           int attrtype, bool log)
1452 {
1453         int used = (*sfa)->actions_len;
1454         int err;
1455
1456         err = add_action(sfa, attrtype, NULL, 0, log);
1457         if (err)
1458                 return err;
1459
1460         return used;
1461 }
1462
1463 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1464                                          int st_offset)
1465 {
1466         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1467                                                                st_offset);
1468
1469         a->nla_len = sfa->actions_len - st_offset;
1470 }
1471
1472 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1473                                   const struct sw_flow_key *key,
1474                                   int depth, struct sw_flow_actions **sfa,
1475                                   __be16 eth_type, __be16 vlan_tci, bool log);
1476
1477 static int validate_and_copy_sample(const struct nlattr *attr,
1478                                     const struct sw_flow_key *key, int depth,
1479                                     struct sw_flow_actions **sfa,
1480                                     __be16 eth_type, __be16 vlan_tci, bool log)
1481 {
1482         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1483         const struct nlattr *probability, *actions;
1484         const struct nlattr *a;
1485         int rem, start, err, st_acts;
1486
1487         memset(attrs, 0, sizeof(attrs));
1488         nla_for_each_nested(a, attr, rem) {
1489                 int type = nla_type(a);
1490                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1491                         return -EINVAL;
1492                 attrs[type] = a;
1493         }
1494         if (rem)
1495                 return -EINVAL;
1496
1497         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1498         if (!probability || nla_len(probability) != sizeof(u32))
1499                 return -EINVAL;
1500
1501         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1502         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1503                 return -EINVAL;
1504
1505         /* validation done, copy sample action. */
1506         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1507         if (start < 0)
1508                 return start;
1509         err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1510                          nla_data(probability), sizeof(u32), log);
1511         if (err)
1512                 return err;
1513         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1514         if (st_acts < 0)
1515                 return st_acts;
1516
1517         err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1518                                      eth_type, vlan_tci, log);
1519         if (err)
1520                 return err;
1521
1522         add_nested_action_end(*sfa, st_acts);
1523         add_nested_action_end(*sfa, start);
1524
1525         return 0;
1526 }
1527
1528 static int validate_tp_port(const struct sw_flow_key *flow_key,
1529                             __be16 eth_type)
1530 {
1531         if ((eth_type == htons(ETH_P_IP) || eth_type == htons(ETH_P_IPV6)) &&
1532             (flow_key->tp.src || flow_key->tp.dst))
1533                 return 0;
1534
1535         return -EINVAL;
1536 }
1537
1538 void ovs_match_init(struct sw_flow_match *match,
1539                     struct sw_flow_key *key,
1540                     struct sw_flow_mask *mask)
1541 {
1542         memset(match, 0, sizeof(*match));
1543         match->key = key;
1544         match->mask = mask;
1545
1546         memset(key, 0, sizeof(*key));
1547
1548         if (mask) {
1549                 memset(&mask->key, 0, sizeof(mask->key));
1550                 mask->range.start = mask->range.end = 0;
1551         }
1552 }
1553
1554 static int validate_and_copy_set_tun(const struct nlattr *attr,
1555                                      struct sw_flow_actions **sfa, bool log)
1556 {
1557         struct sw_flow_match match;
1558         struct sw_flow_key key;
1559         struct ovs_tunnel_info *tun_info;
1560         struct nlattr *a;
1561         int err, start;
1562
1563         ovs_match_init(&match, &key, NULL);
1564         err = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1565         if (err)
1566                 return err;
1567
1568         if (key.tun_opts_len) {
1569                 struct geneve_opt *option = GENEVE_OPTS(&key,
1570                                                         key.tun_opts_len);
1571                 int opts_len = key.tun_opts_len;
1572                 bool crit_opt = false;
1573
1574                 while (opts_len > 0) {
1575                         int len;
1576
1577                         if (opts_len < sizeof(*option))
1578                                 return -EINVAL;
1579
1580                         len = sizeof(*option) + option->length * 4;
1581                         if (len > opts_len)
1582                                 return -EINVAL;
1583
1584                         crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1585
1586                         option = (struct geneve_opt *)((u8 *)option + len);
1587                         opts_len -= len;
1588                 };
1589
1590                 key.tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1591         };
1592
1593         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1594         if (start < 0)
1595                 return start;
1596
1597         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1598                          sizeof(*tun_info) + key.tun_opts_len, log);
1599         if (IS_ERR(a))
1600                 return PTR_ERR(a);
1601
1602         tun_info = nla_data(a);
1603         tun_info->tunnel = key.tun_key;
1604         tun_info->options_len = key.tun_opts_len;
1605
1606         if (tun_info->options_len) {
1607                 /* We need to store the options in the action itself since
1608                  * everything else will go away after flow setup. We can append
1609                  * it to tun_info and then point there.
1610                  */
1611                 memcpy((tun_info + 1), GENEVE_OPTS(&key, key.tun_opts_len),
1612                        key.tun_opts_len);
1613                 tun_info->options = (struct geneve_opt *)(tun_info + 1);
1614         } else {
1615                 tun_info->options = NULL;
1616         }
1617
1618         add_nested_action_end(*sfa, start);
1619
1620         return err;
1621 }
1622
1623 static int validate_set(const struct nlattr *a,
1624                         const struct sw_flow_key *flow_key,
1625                         struct sw_flow_actions **sfa,
1626                         bool *set_tun, __be16 eth_type, bool log)
1627 {
1628         const struct nlattr *ovs_key = nla_data(a);
1629         int key_type = nla_type(ovs_key);
1630
1631         /* There can be only one key in a action */
1632         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1633                 return -EINVAL;
1634
1635         if (key_type > OVS_KEY_ATTR_MAX ||
1636             (ovs_key_lens[key_type] != nla_len(ovs_key) &&
1637              ovs_key_lens[key_type] != -1))
1638                 return -EINVAL;
1639
1640         switch (key_type) {
1641         const struct ovs_key_ipv4 *ipv4_key;
1642         const struct ovs_key_ipv6 *ipv6_key;
1643         int err;
1644
1645         case OVS_KEY_ATTR_PRIORITY:
1646         case OVS_KEY_ATTR_SKB_MARK:
1647         case OVS_KEY_ATTR_ETHERNET:
1648                 break;
1649
1650         case OVS_KEY_ATTR_TUNNEL:
1651                 if (eth_p_mpls(eth_type))
1652                         return -EINVAL;
1653
1654                 *set_tun = true;
1655                 err = validate_and_copy_set_tun(a, sfa, log);
1656                 if (err)
1657                         return err;
1658                 break;
1659
1660         case OVS_KEY_ATTR_IPV4:
1661                 if (eth_type != htons(ETH_P_IP))
1662                         return -EINVAL;
1663
1664                 if (!flow_key->ip.proto)
1665                         return -EINVAL;
1666
1667                 ipv4_key = nla_data(ovs_key);
1668                 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1669                         return -EINVAL;
1670
1671                 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1672                         return -EINVAL;
1673
1674                 break;
1675
1676         case OVS_KEY_ATTR_IPV6:
1677                 if (eth_type != htons(ETH_P_IPV6))
1678                         return -EINVAL;
1679
1680                 if (!flow_key->ip.proto)
1681                         return -EINVAL;
1682
1683                 ipv6_key = nla_data(ovs_key);
1684                 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1685                         return -EINVAL;
1686
1687                 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1688                         return -EINVAL;
1689
1690                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1691                         return -EINVAL;
1692
1693                 break;
1694
1695         case OVS_KEY_ATTR_TCP:
1696                 if (flow_key->ip.proto != IPPROTO_TCP)
1697                         return -EINVAL;
1698
1699                 return validate_tp_port(flow_key, eth_type);
1700
1701         case OVS_KEY_ATTR_UDP:
1702                 if (flow_key->ip.proto != IPPROTO_UDP)
1703                         return -EINVAL;
1704
1705                 return validate_tp_port(flow_key, eth_type);
1706
1707         case OVS_KEY_ATTR_MPLS:
1708                 if (!eth_p_mpls(eth_type))
1709                         return -EINVAL;
1710                 break;
1711
1712         case OVS_KEY_ATTR_SCTP:
1713                 if (flow_key->ip.proto != IPPROTO_SCTP)
1714                         return -EINVAL;
1715
1716                 return validate_tp_port(flow_key, eth_type);
1717
1718         default:
1719                 return -EINVAL;
1720         }
1721
1722         return 0;
1723 }
1724
1725 static int validate_userspace(const struct nlattr *attr)
1726 {
1727         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1728                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1729                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1730                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
1731         };
1732         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1733         int error;
1734
1735         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1736                                  attr, userspace_policy);
1737         if (error)
1738                 return error;
1739
1740         if (!a[OVS_USERSPACE_ATTR_PID] ||
1741             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1742                 return -EINVAL;
1743
1744         return 0;
1745 }
1746
1747 static int copy_action(const struct nlattr *from,
1748                        struct sw_flow_actions **sfa, bool log)
1749 {
1750         int totlen = NLA_ALIGN(from->nla_len);
1751         struct nlattr *to;
1752
1753         to = reserve_sfa_size(sfa, from->nla_len, log);
1754         if (IS_ERR(to))
1755                 return PTR_ERR(to);
1756
1757         memcpy(to, from, totlen);
1758         return 0;
1759 }
1760
1761 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1762                                   const struct sw_flow_key *key,
1763                                   int depth, struct sw_flow_actions **sfa,
1764                                   __be16 eth_type, __be16 vlan_tci, bool log)
1765 {
1766         const struct nlattr *a;
1767         bool out_tnl_port = false;
1768         int rem, err;
1769
1770         if (depth >= SAMPLE_ACTION_DEPTH)
1771                 return -EOVERFLOW;
1772
1773         nla_for_each_nested(a, attr, rem) {
1774                 /* Expected argument lengths, (u32)-1 for variable length. */
1775                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
1776                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
1777                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
1778                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
1779                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
1780                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
1781                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
1782                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
1783                         [OVS_ACTION_ATTR_SET] = (u32)-1,
1784                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
1785                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
1786                 };
1787                 const struct ovs_action_push_vlan *vlan;
1788                 int type = nla_type(a);
1789                 bool skip_copy;
1790
1791                 if (type > OVS_ACTION_ATTR_MAX ||
1792                     (action_lens[type] != nla_len(a) &&
1793                      action_lens[type] != (u32)-1))
1794                         return -EINVAL;
1795
1796                 skip_copy = false;
1797                 switch (type) {
1798                 case OVS_ACTION_ATTR_UNSPEC:
1799                         return -EINVAL;
1800
1801                 case OVS_ACTION_ATTR_USERSPACE:
1802                         err = validate_userspace(a);
1803                         if (err)
1804                                 return err;
1805                         break;
1806
1807                 case OVS_ACTION_ATTR_OUTPUT:
1808                         if (nla_get_u32(a) >= DP_MAX_PORTS)
1809                                 return -EINVAL;
1810                         out_tnl_port = false;
1811
1812                         break;
1813
1814                 case OVS_ACTION_ATTR_HASH: {
1815                         const struct ovs_action_hash *act_hash = nla_data(a);
1816
1817                         switch (act_hash->hash_alg) {
1818                         case OVS_HASH_ALG_L4:
1819                                 break;
1820                         default:
1821                                 return  -EINVAL;
1822                         }
1823
1824                         break;
1825                 }
1826
1827                 case OVS_ACTION_ATTR_POP_VLAN:
1828                         vlan_tci = htons(0);
1829                         break;
1830
1831                 case OVS_ACTION_ATTR_PUSH_VLAN:
1832                         vlan = nla_data(a);
1833                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
1834                                 return -EINVAL;
1835                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
1836                                 return -EINVAL;
1837                         vlan_tci = vlan->vlan_tci;
1838                         break;
1839
1840                 case OVS_ACTION_ATTR_RECIRC:
1841                         break;
1842
1843                 case OVS_ACTION_ATTR_PUSH_MPLS: {
1844                         const struct ovs_action_push_mpls *mpls = nla_data(a);
1845
1846                         /* Networking stack do not allow simultaneous Tunnel
1847                          * and MPLS GSO.
1848                          */
1849                         if (out_tnl_port)
1850                                 return -EINVAL;
1851
1852                         if (!eth_p_mpls(mpls->mpls_ethertype))
1853                                 return -EINVAL;
1854                         /* Prohibit push MPLS other than to a white list
1855                          * for packets that have a known tag order.
1856                          */
1857                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
1858                             (eth_type != htons(ETH_P_IP) &&
1859                              eth_type != htons(ETH_P_IPV6) &&
1860                              eth_type != htons(ETH_P_ARP) &&
1861                              eth_type != htons(ETH_P_RARP) &&
1862                              !eth_p_mpls(eth_type)))
1863                                 return -EINVAL;
1864                         eth_type = mpls->mpls_ethertype;
1865                         break;
1866                 }
1867
1868                 case OVS_ACTION_ATTR_POP_MPLS:
1869                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
1870                             !eth_p_mpls(eth_type))
1871                                 return -EINVAL;
1872
1873                         /* Disallow subsequent L2.5+ set and mpls_pop actions
1874                          * as there is no check here to ensure that the new
1875                          * eth_type is valid and thus set actions could
1876                          * write off the end of the packet or otherwise
1877                          * corrupt it.
1878                          *
1879                          * Support for these actions is planned using packet
1880                          * recirculation.
1881                          */
1882                         eth_type = htons(0);
1883                         break;
1884
1885                 case OVS_ACTION_ATTR_SET:
1886                         err = validate_set(a, key, sfa,
1887                                            &out_tnl_port, eth_type, log);
1888                         if (err)
1889                                 return err;
1890
1891                         skip_copy = out_tnl_port;
1892                         break;
1893
1894                 case OVS_ACTION_ATTR_SAMPLE:
1895                         err = validate_and_copy_sample(a, key, depth, sfa,
1896                                                        eth_type, vlan_tci, log);
1897                         if (err)
1898                                 return err;
1899                         skip_copy = true;
1900                         break;
1901
1902                 default:
1903                         OVS_NLERR(log, "Unknown Action type %d", type);
1904                         return -EINVAL;
1905                 }
1906                 if (!skip_copy) {
1907                         err = copy_action(a, sfa, log);
1908                         if (err)
1909                                 return err;
1910                 }
1911         }
1912
1913         if (rem > 0)
1914                 return -EINVAL;
1915
1916         return 0;
1917 }
1918
1919 int ovs_nla_copy_actions(const struct nlattr *attr,
1920                          const struct sw_flow_key *key,
1921                          struct sw_flow_actions **sfa, bool log)
1922 {
1923         int err;
1924
1925         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
1926         if (IS_ERR(*sfa))
1927                 return PTR_ERR(*sfa);
1928
1929         err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
1930                                      key->eth.tci, log);
1931         if (err)
1932                 kfree(*sfa);
1933
1934         return err;
1935 }
1936
1937 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
1938 {
1939         const struct nlattr *a;
1940         struct nlattr *start;
1941         int err = 0, rem;
1942
1943         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
1944         if (!start)
1945                 return -EMSGSIZE;
1946
1947         nla_for_each_nested(a, attr, rem) {
1948                 int type = nla_type(a);
1949                 struct nlattr *st_sample;
1950
1951                 switch (type) {
1952                 case OVS_SAMPLE_ATTR_PROBABILITY:
1953                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
1954                                     sizeof(u32), nla_data(a)))
1955                                 return -EMSGSIZE;
1956                         break;
1957                 case OVS_SAMPLE_ATTR_ACTIONS:
1958                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
1959                         if (!st_sample)
1960                                 return -EMSGSIZE;
1961                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
1962                         if (err)
1963                                 return err;
1964                         nla_nest_end(skb, st_sample);
1965                         break;
1966                 }
1967         }
1968
1969         nla_nest_end(skb, start);
1970         return err;
1971 }
1972
1973 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
1974 {
1975         const struct nlattr *ovs_key = nla_data(a);
1976         int key_type = nla_type(ovs_key);
1977         struct nlattr *start;
1978         int err;
1979
1980         switch (key_type) {
1981         case OVS_KEY_ATTR_TUNNEL_INFO: {
1982                 struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
1983
1984                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
1985                 if (!start)
1986                         return -EMSGSIZE;
1987
1988                 err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
1989                                          tun_info->options_len ?
1990                                                 tun_info->options : NULL,
1991                                          tun_info->options_len);
1992                 if (err)
1993                         return err;
1994                 nla_nest_end(skb, start);
1995                 break;
1996         }
1997         default:
1998                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
1999                         return -EMSGSIZE;
2000                 break;
2001         }
2002
2003         return 0;
2004 }
2005
2006 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2007 {
2008         const struct nlattr *a;
2009         int rem, err;
2010
2011         nla_for_each_attr(a, attr, len, rem) {
2012                 int type = nla_type(a);
2013
2014                 switch (type) {
2015                 case OVS_ACTION_ATTR_SET:
2016                         err = set_action_to_attr(a, skb);
2017                         if (err)
2018                                 return err;
2019                         break;
2020
2021                 case OVS_ACTION_ATTR_SAMPLE:
2022                         err = sample_action_to_attr(a, skb);
2023                         if (err)
2024                                 return err;
2025                         break;
2026                 default:
2027                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2028                                 return -EMSGSIZE;
2029                         break;
2030                 }
2031         }
2032
2033         return 0;
2034 }