f50f0234d5a37fe7571e52b67b0ae67403fdd937
[cascardo/ovs.git] / datapath / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/geneve.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
47 #include <net/mpls.h>
48
49 #include "datapath.h"
50 #include "flow.h"
51 #include "flow_netlink.h"
52 #include "vport-vxlan.h"
53
54 struct ovs_len_tbl {
55         int len;
56         const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61
62 static void update_range(struct sw_flow_match *match,
63                          size_t offset, size_t size, bool is_mask)
64 {
65         struct sw_flow_key_range *range;
66         size_t start = rounddown(offset, sizeof(long));
67         size_t end = roundup(offset + size, sizeof(long));
68
69         if (!is_mask)
70                 range = &match->range;
71         else
72                 range = &match->mask->range;
73
74         if (range->start == range->end) {
75                 range->start = start;
76                 range->end = end;
77                 return;
78         }
79
80         if (range->start > start)
81                 range->start = start;
82
83         if (range->end < end)
84                 range->end = end;
85 }
86
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88         do { \
89                 update_range(match, offsetof(struct sw_flow_key, field),    \
90                              sizeof((match)->key->field), is_mask);         \
91                 if (is_mask)                                                \
92                         (match)->mask->key.field = value;                   \
93                 else                                                        \
94                         (match)->key->field = value;                        \
95         } while (0)
96
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
98         do {                                                                \
99                 update_range(match, offset, len, is_mask);                  \
100                 if (is_mask)                                                \
101                         memcpy((u8 *)&(match)->mask->key + offset, value_p, len);\
102                 else                                                        \
103                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
104         } while (0)
105
106 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
107         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
108                                   value_p, len, is_mask)
109
110 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
111         do {                                                                \
112                 update_range(match, offsetof(struct sw_flow_key, field),    \
113                              sizeof((match)->key->field), is_mask);         \
114                 if (is_mask)                                                \
115                         memset((u8 *)&(match)->mask->key.field, value,      \
116                                sizeof((match)->mask->key.field));           \
117                 else                                                        \
118                         memset((u8 *)&(match)->key->field, value,           \
119                                sizeof((match)->key->field));                \
120         } while (0)
121
122 static bool match_validate(const struct sw_flow_match *match,
123                            u64 key_attrs, u64 mask_attrs, bool log)
124 {
125         u64 key_expected = 1ULL << OVS_KEY_ATTR_ETHERNET;
126         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
127
128         /* The following mask attributes allowed only if they
129          * pass the validation tests.
130          */
131         mask_allowed &= ~((1ULL << OVS_KEY_ATTR_IPV4)
132                         | (1ULL << OVS_KEY_ATTR_IPV6)
133                         | (1ULL << OVS_KEY_ATTR_TCP)
134                         | (1ULL << OVS_KEY_ATTR_TCP_FLAGS)
135                         | (1ULL << OVS_KEY_ATTR_UDP)
136                         | (1ULL << OVS_KEY_ATTR_SCTP)
137                         | (1ULL << OVS_KEY_ATTR_ICMP)
138                         | (1ULL << OVS_KEY_ATTR_ICMPV6)
139                         | (1ULL << OVS_KEY_ATTR_ARP)
140                         | (1ULL << OVS_KEY_ATTR_ND)
141                         | (1ULL << OVS_KEY_ATTR_MPLS));
142
143         /* Always allowed mask fields. */
144         mask_allowed |= ((1ULL << OVS_KEY_ATTR_TUNNEL)
145                        | (1ULL << OVS_KEY_ATTR_IN_PORT)
146                        | (1ULL << OVS_KEY_ATTR_ETHERTYPE));
147
148         /* Check key attributes. */
149         if (match->key->eth.type == htons(ETH_P_ARP)
150                         || match->key->eth.type == htons(ETH_P_RARP)) {
151                 key_expected |= 1ULL << OVS_KEY_ATTR_ARP;
152                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ARP;
154         }
155
156         if (eth_p_mpls(match->key->eth.type)) {
157                 key_expected |= 1ULL << OVS_KEY_ATTR_MPLS;
158                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159                         mask_allowed |= 1ULL << OVS_KEY_ATTR_MPLS;
160         }
161
162         if (match->key->eth.type == htons(ETH_P_IP)) {
163                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV4;
164                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV4;
166
167                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168                         if (match->key->ip.proto == IPPROTO_UDP) {
169                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
170                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
171                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
172                         }
173
174                         if (match->key->ip.proto == IPPROTO_SCTP) {
175                                 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
176                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
177                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
178                         }
179
180                         if (match->key->ip.proto == IPPROTO_TCP) {
181                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
182                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
183                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
185                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
186                                 }
187                         }
188
189                         if (match->key->ip.proto == IPPROTO_ICMP) {
190                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMP;
191                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
192                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMP;
193                         }
194                 }
195         }
196
197         if (match->key->eth.type == htons(ETH_P_IPV6)) {
198                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV6;
199                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV6;
201
202                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203                         if (match->key->ip.proto == IPPROTO_UDP) {
204                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
205                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
206                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
207                         }
208
209                         if (match->key->ip.proto == IPPROTO_SCTP) {
210                                 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
211                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
212                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
213                         }
214
215                         if (match->key->ip.proto == IPPROTO_TCP) {
216                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
217                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
218                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
220                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
221                                 }
222                         }
223
224                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
225                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMPV6;
226                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
227                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMPV6;
228
229                                 if (match->key->tp.src ==
230                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232                                         key_expected |= 1ULL << OVS_KEY_ATTR_ND;
233                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234                                                 mask_allowed |= 1ULL << OVS_KEY_ATTR_ND;
235                                 }
236                         }
237                 }
238         }
239
240         if ((key_attrs & key_expected) != key_expected) {
241                 /* Key attributes check failed. */
242                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243                           (unsigned long long)key_attrs,
244                           (unsigned long long)key_expected);
245                 return false;
246         }
247
248         if ((mask_attrs & mask_allowed) != mask_attrs) {
249                 /* Mask attributes check failed. */
250                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251                           (unsigned long long)mask_attrs,
252                           (unsigned long long)mask_allowed);
253                 return false;
254         }
255
256         return true;
257 }
258
259 size_t ovs_tun_key_attr_size(void)
260 {
261         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262          * updating this function.
263          */
264         return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
265                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
266                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
267                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
268                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
269                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
271                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
272                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275                  */
276                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278 }
279
280 size_t ovs_key_attr_size(void)
281 {
282         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
283          * updating this function.
284          */
285         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 25);
286
287         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
288                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
289                   + ovs_tun_key_attr_size()
290                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
291                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
292                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
293                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
294                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
295                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
296                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
297                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
298                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
299                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
300                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
301                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
302 }
303
304 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
305         [OVS_VXLAN_EXT_GBP]         = { .len = sizeof(u32) },
306 };
307
308 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
309         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
310         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
311         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
312         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
313         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
314         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
315         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
316         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
317         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
318         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
319         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
320         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
321                                                 .next = ovs_vxlan_ext_key_lens },
322 };
323
324 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
325 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
326         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
327         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
328         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
329         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
330         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
331         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
332         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
333         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
334         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
335         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
336         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
337         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
338         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
339         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
340         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
341         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
342         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
343         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
344         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
345         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
346                                      .next = ovs_tunnel_key_lens, },
347         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
348 };
349
350 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
351 {
352         return expected_len == attr_len ||
353                expected_len == OVS_ATTR_NESTED ||
354                expected_len == OVS_ATTR_VARIABLE;
355 }
356
357 static bool is_all_zero(const u8 *fp, size_t size)
358 {
359         int i;
360
361         if (!fp)
362                 return false;
363
364         for (i = 0; i < size; i++)
365                 if (fp[i])
366                         return false;
367
368         return true;
369 }
370
371 static int __parse_flow_nlattrs(const struct nlattr *attr,
372                                 const struct nlattr *a[],
373                                 u64 *attrsp, bool log, bool nz)
374 {
375         const struct nlattr *nla;
376         u64 attrs;
377         int rem;
378
379         attrs = *attrsp;
380         nla_for_each_nested(nla, attr, rem) {
381                 u16 type = nla_type(nla);
382                 int expected_len;
383
384                 if (type > OVS_KEY_ATTR_MAX) {
385                         OVS_NLERR(log, "Key type %d is out of range max %d",
386                                   type, OVS_KEY_ATTR_MAX);
387                         return -EINVAL;
388                 }
389
390                 if (attrs & (1ULL << type)) {
391                         OVS_NLERR(log, "Duplicate key (type %d).", type);
392                         return -EINVAL;
393                 }
394
395                 expected_len = ovs_key_lens[type].len;
396                 if (!check_attr_len(nla_len(nla), expected_len)) {
397                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
398                                   type, nla_len(nla), expected_len);
399                         return -EINVAL;
400                 }
401
402                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
403                         attrs |= 1ULL << type;
404                         a[type] = nla;
405                 }
406         }
407         if (rem) {
408                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
409                 return -EINVAL;
410         }
411
412         *attrsp = attrs;
413         return 0;
414 }
415
416 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
417                                    const struct nlattr *a[], u64 *attrsp,
418                                    bool log)
419 {
420         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
421 }
422
423 static int parse_flow_nlattrs(const struct nlattr *attr,
424                               const struct nlattr *a[], u64 *attrsp,
425                               bool log)
426 {
427         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
428 }
429
430 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
431                                      struct sw_flow_match *match, bool is_mask,
432                                      bool log)
433 {
434         unsigned long opt_key_offset;
435
436         if (nla_len(a) > sizeof(match->key->tun_opts)) {
437                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
438                           nla_len(a), sizeof(match->key->tun_opts));
439                 return -EINVAL;
440         }
441
442         if (nla_len(a) % 4 != 0) {
443                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
444                           nla_len(a));
445                 return -EINVAL;
446         }
447
448         /* We need to record the length of the options passed
449          * down, otherwise packets with the same format but
450          * additional options will be silently matched.
451          */
452         if (!is_mask) {
453                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
454                                 false);
455         } else {
456                 /* This is somewhat unusual because it looks at
457                  * both the key and mask while parsing the
458                  * attributes (and by extension assumes the key
459                  * is parsed first). Normally, we would verify
460                  * that each is the correct length and that the
461                  * attributes line up in the validate function.
462                  * However, that is difficult because this is
463                  * variable length and we won't have the
464                  * information later.
465                  */
466                 if (match->key->tun_opts_len != nla_len(a)) {
467                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
468                                   match->key->tun_opts_len, nla_len(a));
469                         return -EINVAL;
470                 }
471
472                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
473         }
474
475         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
476         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
477                                   nla_len(a), is_mask);
478         return 0;
479 }
480
481 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
482                                      struct sw_flow_match *match, bool is_mask,
483                                      bool log)
484 {
485         struct nlattr *a;
486         int rem;
487         unsigned long opt_key_offset;
488         struct ovs_vxlan_opts opts;
489
490         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
491
492         memset(&opts, 0, sizeof(opts));
493         nla_for_each_nested(a, attr, rem) {
494                 int type = nla_type(a);
495
496                 if (type > OVS_VXLAN_EXT_MAX) {
497                         OVS_NLERR(log, "VXLAN extension %d out of range max %d",
498                                   type, OVS_VXLAN_EXT_MAX);
499                         return -EINVAL;
500                 }
501
502                 if (!check_attr_len(nla_len(a),
503                                     ovs_vxlan_ext_key_lens[type].len)) {
504                         OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
505                                   type, nla_len(a),
506                                   ovs_vxlan_ext_key_lens[type].len);
507                         return -EINVAL;
508                 }
509
510                 switch (type) {
511                 case OVS_VXLAN_EXT_GBP:
512                         opts.gbp = nla_get_u32(a);
513                         break;
514                 default:
515                         OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
516                                   type);
517                         return -EINVAL;
518                 }
519         }
520         if (rem) {
521                 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
522                           rem);
523                 return -EINVAL;
524         }
525
526         if (!is_mask)
527                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
528         else
529                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
530
531         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
532         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
533                                   is_mask);
534         return 0;
535 }
536
537 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
538                                 struct sw_flow_match *match, bool is_mask,
539                                 bool log)
540 {
541         struct nlattr *a;
542         int rem;
543         bool ttl = false;
544         __be16 tun_flags = 0;
545         int opts_type = 0;
546
547         nla_for_each_nested(a, attr, rem) {
548                 int type = nla_type(a);
549                 int err;
550
551                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
552                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
553                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
554                         return -EINVAL;
555                 }
556
557                 if (!check_attr_len(nla_len(a),
558                                     ovs_tunnel_key_lens[type].len)) {
559                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
560                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
561                         return -EINVAL;
562                 }
563
564                 switch (type) {
565                 case OVS_TUNNEL_KEY_ATTR_ID:
566                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
567                                         nla_get_be64(a), is_mask);
568                         tun_flags |= TUNNEL_KEY;
569                         break;
570                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
571                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
572                                         nla_get_in_addr(a), is_mask);
573                         break;
574                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
575                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
576                                         nla_get_in_addr(a), is_mask);
577                         break;
578                 case OVS_TUNNEL_KEY_ATTR_TOS:
579                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
580                                         nla_get_u8(a), is_mask);
581                         break;
582                 case OVS_TUNNEL_KEY_ATTR_TTL:
583                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
584                                         nla_get_u8(a), is_mask);
585                         ttl = true;
586                         break;
587                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
588                         tun_flags |= TUNNEL_DONT_FRAGMENT;
589                         break;
590                 case OVS_TUNNEL_KEY_ATTR_CSUM:
591                         tun_flags |= TUNNEL_CSUM;
592                         break;
593                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
594                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
595                                         nla_get_be16(a), is_mask);
596                         break;
597                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
598                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
599                                         nla_get_be16(a), is_mask);
600                         break;
601                 case OVS_TUNNEL_KEY_ATTR_OAM:
602                         tun_flags |= TUNNEL_OAM;
603                         break;
604                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
605                         if (opts_type) {
606                                 OVS_NLERR(log, "Multiple metadata blocks provided");
607                                 return -EINVAL;
608                         }
609
610                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
611                         if (err)
612                                 return err;
613
614                         tun_flags |= TUNNEL_GENEVE_OPT;
615                         opts_type = type;
616                         break;
617                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
618                         if (opts_type) {
619                                 OVS_NLERR(log, "Multiple metadata blocks provided");
620                                 return -EINVAL;
621                         }
622
623                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
624                         if (err)
625                                 return err;
626
627                         tun_flags |= TUNNEL_VXLAN_OPT;
628                         opts_type = type;
629                         break;
630                 default:
631                         OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
632                                   type);
633                         return -EINVAL;
634                 }
635         }
636
637         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
638
639         if (rem > 0) {
640                 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
641                           rem);
642                 return -EINVAL;
643         }
644
645         if (!is_mask) {
646                 if (!match->key->tun_key.ipv4_dst) {
647                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
648                         return -EINVAL;
649                 }
650
651                 if (!ttl) {
652                         OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
653                         return -EINVAL;
654                 }
655         }
656
657         return opts_type;
658 }
659
660 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
661                                const void *tun_opts, int swkey_tun_opts_len)
662 {
663         const struct ovs_vxlan_opts *opts = tun_opts;
664         struct nlattr *nla;
665
666         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
667         if (!nla)
668                 return -EMSGSIZE;
669
670         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
671                 return -EMSGSIZE;
672
673         nla_nest_end(skb, nla);
674         return 0;
675 }
676
677 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
678                                 const struct ovs_key_ipv4_tunnel *output,
679                                 const void *tun_opts, int swkey_tun_opts_len)
680 {
681         if (output->tun_flags & TUNNEL_KEY &&
682             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
683                 return -EMSGSIZE;
684         if (output->ipv4_src &&
685             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
686                 return -EMSGSIZE;
687         if (output->ipv4_dst &&
688             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
689                 return -EMSGSIZE;
690         if (output->ipv4_tos &&
691             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
692                 return -EMSGSIZE;
693         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
694                 return -EMSGSIZE;
695         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
696             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
697                 return -EMSGSIZE;
698         if ((output->tun_flags & TUNNEL_CSUM) &&
699             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
700                 return -EMSGSIZE;
701         if (output->tp_src &&
702             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
703                 return -EMSGSIZE;
704         if (output->tp_dst &&
705             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
706                 return -EMSGSIZE;
707         if ((output->tun_flags & TUNNEL_OAM) &&
708             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
709                 return -EMSGSIZE;
710         if (tun_opts) {
711                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
712                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
713                             swkey_tun_opts_len, tun_opts))
714                         return -EMSGSIZE;
715                else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
716                         vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
717                         return -EMSGSIZE;
718         }
719
720         return 0;
721 }
722
723 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
724                               const struct ovs_key_ipv4_tunnel *output,
725                               const void *tun_opts, int swkey_tun_opts_len)
726 {
727         struct nlattr *nla;
728         int err;
729
730         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
731         if (!nla)
732                 return -EMSGSIZE;
733
734         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
735         if (err)
736                 return err;
737
738         nla_nest_end(skb, nla);
739         return 0;
740 }
741
742 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
743                                   const struct ovs_tunnel_info *egress_tun_info)
744 {
745         return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
746                                     egress_tun_info->options,
747                                     egress_tun_info->options_len);
748 }
749
750 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
751                                  const struct nlattr **a, bool is_mask,
752                                  bool log)
753 {
754         if (*attrs & (1ULL << OVS_KEY_ATTR_DP_HASH)) {
755                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
756
757                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
758                 *attrs &= ~(1ULL << OVS_KEY_ATTR_DP_HASH);
759         }
760
761         if (*attrs & (1ULL << OVS_KEY_ATTR_RECIRC_ID)) {
762                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
763
764                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
765                 *attrs &= ~(1ULL << OVS_KEY_ATTR_RECIRC_ID);
766         }
767
768         if (*attrs & (1ULL << OVS_KEY_ATTR_PRIORITY)) {
769                 SW_FLOW_KEY_PUT(match, phy.priority,
770                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
771                 *attrs &= ~(1ULL << OVS_KEY_ATTR_PRIORITY);
772         }
773
774         if (*attrs & (1ULL << OVS_KEY_ATTR_IN_PORT)) {
775                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
776
777                 if (is_mask) {
778                         in_port = 0xffffffff; /* Always exact match in_port. */
779                 } else if (in_port >= DP_MAX_PORTS) {
780                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
781                                   in_port, DP_MAX_PORTS);
782                         return -EINVAL;
783                 }
784
785                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
786                 *attrs &= ~(1ULL << OVS_KEY_ATTR_IN_PORT);
787         } else if (!is_mask) {
788                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
789         }
790
791         if (*attrs & (1ULL << OVS_KEY_ATTR_SKB_MARK)) {
792                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
793
794                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
795                 *attrs &= ~(1ULL << OVS_KEY_ATTR_SKB_MARK);
796         }
797         if (*attrs & (1ULL << OVS_KEY_ATTR_TUNNEL)) {
798                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
799                                          is_mask, log) < 0)
800                         return -EINVAL;
801                 *attrs &= ~(1ULL << OVS_KEY_ATTR_TUNNEL);
802         }
803         return 0;
804 }
805
806 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
807                                 const struct nlattr **a, bool is_mask,
808                                 bool log)
809 {
810         int err;
811
812         err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
813         if (err)
814                 return err;
815
816         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) {
817                 const struct ovs_key_ethernet *eth_key;
818
819                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
820                 SW_FLOW_KEY_MEMCPY(match, eth.src,
821                                 eth_key->eth_src, ETH_ALEN, is_mask);
822                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
823                                 eth_key->eth_dst, ETH_ALEN, is_mask);
824                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERNET);
825         }
826
827         if (attrs & (1ULL << OVS_KEY_ATTR_VLAN)) {
828                 __be16 tci;
829
830                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
831                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
832                         if (is_mask)
833                                 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
834                         else
835                                 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
836
837                         return -EINVAL;
838                 }
839
840                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
841                 attrs &= ~(1ULL << OVS_KEY_ATTR_VLAN);
842         }
843
844         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) {
845                 __be16 eth_type;
846
847                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
848                 if (is_mask) {
849                         /* Always exact match EtherType. */
850                         eth_type = htons(0xffff);
851                 } else if (!eth_proto_is_802_3(eth_type)) {
852                         OVS_NLERR(log, "EtherType %x is less than min %x",
853                                   ntohs(eth_type), ETH_P_802_3_MIN);
854                         return -EINVAL;
855                 }
856
857                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
858                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
859         } else if (!is_mask) {
860                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
861         }
862
863         if (attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
864                 const struct ovs_key_ipv4 *ipv4_key;
865
866                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
867                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
868                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
869                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
870                         return -EINVAL;
871                 }
872                 SW_FLOW_KEY_PUT(match, ip.proto,
873                                 ipv4_key->ipv4_proto, is_mask);
874                 SW_FLOW_KEY_PUT(match, ip.tos,
875                                 ipv4_key->ipv4_tos, is_mask);
876                 SW_FLOW_KEY_PUT(match, ip.ttl,
877                                 ipv4_key->ipv4_ttl, is_mask);
878                 SW_FLOW_KEY_PUT(match, ip.frag,
879                                 ipv4_key->ipv4_frag, is_mask);
880                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
881                                 ipv4_key->ipv4_src, is_mask);
882                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
883                                 ipv4_key->ipv4_dst, is_mask);
884                 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV4);
885         }
886
887         if (attrs & (1ULL << OVS_KEY_ATTR_IPV6)) {
888                 const struct ovs_key_ipv6 *ipv6_key;
889
890                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
891                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
892                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
893                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
894                         return -EINVAL;
895                 }
896
897                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
898                         OVS_NLERR(log,
899                                   "Invalid IPv6 flow label value (value=%x, max=%x).",
900                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
901                         return -EINVAL;
902                 }
903
904                 SW_FLOW_KEY_PUT(match, ipv6.label,
905                                 ipv6_key->ipv6_label, is_mask);
906                 SW_FLOW_KEY_PUT(match, ip.proto,
907                                 ipv6_key->ipv6_proto, is_mask);
908                 SW_FLOW_KEY_PUT(match, ip.tos,
909                                 ipv6_key->ipv6_tclass, is_mask);
910                 SW_FLOW_KEY_PUT(match, ip.ttl,
911                                 ipv6_key->ipv6_hlimit, is_mask);
912                 SW_FLOW_KEY_PUT(match, ip.frag,
913                                 ipv6_key->ipv6_frag, is_mask);
914                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
915                                 ipv6_key->ipv6_src,
916                                 sizeof(match->key->ipv6.addr.src),
917                                 is_mask);
918                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
919                                 ipv6_key->ipv6_dst,
920                                 sizeof(match->key->ipv6.addr.dst),
921                                 is_mask);
922
923                 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6);
924         }
925
926         if (attrs & (1ULL << OVS_KEY_ATTR_ARP)) {
927                 const struct ovs_key_arp *arp_key;
928
929                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
930                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
931                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
932                                   arp_key->arp_op);
933                         return -EINVAL;
934                 }
935
936                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
937                                 arp_key->arp_sip, is_mask);
938                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
939                         arp_key->arp_tip, is_mask);
940                 SW_FLOW_KEY_PUT(match, ip.proto,
941                                 ntohs(arp_key->arp_op), is_mask);
942                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
943                                 arp_key->arp_sha, ETH_ALEN, is_mask);
944                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
945                                 arp_key->arp_tha, ETH_ALEN, is_mask);
946
947                 attrs &= ~(1ULL << OVS_KEY_ATTR_ARP);
948         }
949
950         if (attrs & (1ULL << OVS_KEY_ATTR_MPLS)) {
951                 const struct ovs_key_mpls *mpls_key;
952
953                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
954                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
955                                 mpls_key->mpls_lse, is_mask);
956
957                 attrs &= ~(1ULL << OVS_KEY_ATTR_MPLS);
958         }
959
960         if (attrs & (1ULL << OVS_KEY_ATTR_TCP)) {
961                 const struct ovs_key_tcp *tcp_key;
962
963                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
964                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
965                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
966                 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP);
967         }
968
969         if (attrs & (1ULL << OVS_KEY_ATTR_TCP_FLAGS)) {
970                 SW_FLOW_KEY_PUT(match, tp.flags,
971                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
972                                 is_mask);
973                 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP_FLAGS);
974         }
975
976         if (attrs & (1ULL << OVS_KEY_ATTR_UDP)) {
977                 const struct ovs_key_udp *udp_key;
978
979                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
980                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
981                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
982                 attrs &= ~(1ULL << OVS_KEY_ATTR_UDP);
983         }
984
985         if (attrs & (1ULL << OVS_KEY_ATTR_SCTP)) {
986                 const struct ovs_key_sctp *sctp_key;
987
988                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
989                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
990                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
991                 attrs &= ~(1ULL << OVS_KEY_ATTR_SCTP);
992         }
993
994         if (attrs & (1ULL << OVS_KEY_ATTR_ICMP)) {
995                 const struct ovs_key_icmp *icmp_key;
996
997                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
998                 SW_FLOW_KEY_PUT(match, tp.src,
999                                 htons(icmp_key->icmp_type), is_mask);
1000                 SW_FLOW_KEY_PUT(match, tp.dst,
1001                                 htons(icmp_key->icmp_code), is_mask);
1002                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMP);
1003         }
1004
1005         if (attrs & (1ULL << OVS_KEY_ATTR_ICMPV6)) {
1006                 const struct ovs_key_icmpv6 *icmpv6_key;
1007
1008                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1009                 SW_FLOW_KEY_PUT(match, tp.src,
1010                                 htons(icmpv6_key->icmpv6_type), is_mask);
1011                 SW_FLOW_KEY_PUT(match, tp.dst,
1012                                 htons(icmpv6_key->icmpv6_code), is_mask);
1013                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMPV6);
1014         }
1015
1016         if (attrs & (1ULL << OVS_KEY_ATTR_ND)) {
1017                 const struct ovs_key_nd *nd_key;
1018
1019                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1020                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1021                         nd_key->nd_target,
1022                         sizeof(match->key->ipv6.nd.target),
1023                         is_mask);
1024                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1025                         nd_key->nd_sll, ETH_ALEN, is_mask);
1026                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1027                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1028                 attrs &= ~(1ULL << OVS_KEY_ATTR_ND);
1029         }
1030
1031         if (attrs != 0) {
1032                 OVS_NLERR(log, "Unknown key attributes %llx",
1033                           (unsigned long long)attrs);
1034                 return -EINVAL;
1035         }
1036
1037         return 0;
1038 }
1039
1040 static void nlattr_set(struct nlattr *attr, u8 val,
1041                        const struct ovs_len_tbl *tbl)
1042 {
1043         struct nlattr *nla;
1044         int rem;
1045
1046         /* The nlattr stream should already have been validated */
1047         nla_for_each_nested(nla, attr, rem) {
1048                 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1049                         if (tbl[nla_type(nla)].next)
1050                                 tbl = tbl[nla_type(nla)].next;
1051                         nlattr_set(nla, val, tbl);
1052                 } else {
1053                         memset(nla_data(nla), val, nla_len(nla));
1054                 }
1055         }
1056 }
1057
1058 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1059 {
1060         nlattr_set(attr, val, ovs_key_lens);
1061 }
1062
1063 /**
1064  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1065  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1066  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1067  * does not include any don't care bit.
1068  * @match: receives the extracted flow match information.
1069  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1070  * sequence. The fields should of the packet that triggered the creation
1071  * of this flow.
1072  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1073  * attribute specifies the mask field of the wildcarded flow.
1074  * @log: Boolean to allow kernel error logging.  Normally true, but when
1075  * probing for feature compatibility this should be passed in as false to
1076  * suppress unnecessary error logging.
1077  */
1078 int ovs_nla_get_match(struct sw_flow_match *match,
1079                       const struct nlattr *nla_key,
1080                       const struct nlattr *nla_mask,
1081                       bool log)
1082 {
1083         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1084         const struct nlattr *encap;
1085         struct nlattr *newmask = NULL;
1086         u64 key_attrs = 0;
1087         u64 mask_attrs = 0;
1088         bool encap_valid = false;
1089         int err;
1090
1091         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1092         if (err)
1093                 return err;
1094
1095         if ((key_attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1096             (key_attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) &&
1097             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1098                 __be16 tci;
1099
1100                 if (!((key_attrs & (1ULL << OVS_KEY_ATTR_VLAN)) &&
1101                       (key_attrs & (1ULL << OVS_KEY_ATTR_ENCAP)))) {
1102                         OVS_NLERR(log, "Invalid Vlan frame.");
1103                         return -EINVAL;
1104                 }
1105
1106                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1107                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1108                 encap = a[OVS_KEY_ATTR_ENCAP];
1109                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1110                 encap_valid = true;
1111
1112                 if (tci & htons(VLAN_TAG_PRESENT)) {
1113                         err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1114                         if (err)
1115                                 return err;
1116                 } else if (!tci) {
1117                         /* Corner case for truncated 802.1Q header. */
1118                         if (nla_len(encap)) {
1119                                 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1120                                 return -EINVAL;
1121                         }
1122                 } else {
1123                         OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1124                         return  -EINVAL;
1125                 }
1126         }
1127
1128         err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1129         if (err)
1130                 return err;
1131
1132         if (match->mask) {
1133                 if (!nla_mask) {
1134                         /* Create an exact match mask. We need to set to 0xff
1135                          * all the 'match->mask' fields that have been touched
1136                          * in 'match->key'. We cannot simply memset
1137                          * 'match->mask', because padding bytes and fields not
1138                          * specified in 'match->key' should be left to 0.
1139                          * Instead, we use a stream of netlink attributes,
1140                          * copied from 'key' and set to 0xff.
1141                          * ovs_key_from_nlattrs() will take care of filling
1142                          * 'match->mask' appropriately.
1143                          */
1144                         newmask = kmemdup(nla_key,
1145                                           nla_total_size(nla_len(nla_key)),
1146                                           GFP_KERNEL);
1147                         if (!newmask)
1148                                 return -ENOMEM;
1149
1150                         mask_set_nlattr(newmask, 0xff);
1151
1152                         /* The userspace does not send tunnel attributes that
1153                          * are 0, but we should not wildcard them nonetheless.
1154                          */
1155                         if (match->key->tun_key.ipv4_dst)
1156                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1157                                                          0xff, true);
1158
1159                         nla_mask = newmask;
1160                 }
1161
1162                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1163                 if (err)
1164                         goto free_newmask;
1165
1166                 /* Always match on tci. */
1167                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1168
1169                 if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
1170                         __be16 eth_type = 0;
1171                         __be16 tci = 0;
1172
1173                         if (!encap_valid) {
1174                                 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1175                                 err = -EINVAL;
1176                                 goto free_newmask;
1177                         }
1178
1179                         mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1180                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1181                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1182
1183                         if (eth_type == htons(0xffff)) {
1184                                 mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1185                                 encap = a[OVS_KEY_ATTR_ENCAP];
1186                                 err = parse_flow_mask_nlattrs(encap, a,
1187                                                               &mask_attrs, log);
1188                                 if (err)
1189                                         goto free_newmask;
1190                         } else {
1191                                 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1192                                           ntohs(eth_type));
1193                                 err = -EINVAL;
1194                                 goto free_newmask;
1195                         }
1196
1197                         if (a[OVS_KEY_ATTR_VLAN])
1198                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1199
1200                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
1201                                 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1202                                           ntohs(tci));
1203                                 err = -EINVAL;
1204                                 goto free_newmask;
1205                         }
1206                 }
1207
1208                 err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1209                 if (err)
1210                         goto free_newmask;
1211         }
1212
1213         if (!match_validate(match, key_attrs, mask_attrs, log))
1214                 err = -EINVAL;
1215
1216 free_newmask:
1217         kfree(newmask);
1218         return err;
1219 }
1220
1221 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1222 {
1223         size_t len;
1224
1225         if (!attr)
1226                 return 0;
1227
1228         len = nla_len(attr);
1229         if (len < 1 || len > MAX_UFID_LENGTH) {
1230                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1231                           nla_len(attr), MAX_UFID_LENGTH);
1232                 return 0;
1233         }
1234
1235         return len;
1236 }
1237
1238 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1239  * or false otherwise.
1240  */
1241 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1242                       bool log)
1243 {
1244         sfid->ufid_len = get_ufid_len(attr, log);
1245         if (sfid->ufid_len)
1246                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1247
1248         return sfid->ufid_len;
1249 }
1250
1251 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1252                            const struct sw_flow_key *key, bool log)
1253 {
1254         struct sw_flow_key *new_key;
1255
1256         if (ovs_nla_get_ufid(sfid, ufid, log))
1257                 return 0;
1258
1259         /* If UFID was not provided, use unmasked key. */
1260         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1261         if (!new_key)
1262                 return -ENOMEM;
1263         memcpy(new_key, key, sizeof(*key));
1264         sfid->unmasked_key = new_key;
1265
1266         return 0;
1267 }
1268
1269 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1270 {
1271         return attr ? nla_get_u32(attr) : 0;
1272 }
1273
1274 /**
1275  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1276  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1277  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1278  * sequence.
1279  * @log: Boolean to allow kernel error logging.  Normally true, but when
1280  * probing for feature compatibility this should be passed in as false to
1281  * suppress unnecessary error logging.
1282  *
1283  * This parses a series of Netlink attributes that form a flow key, which must
1284  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1285  * get the metadata, that is, the parts of the flow key that cannot be
1286  * extracted from the packet itself.
1287  */
1288
1289 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1290                               struct sw_flow_key *key,
1291                               bool log)
1292 {
1293         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1294         struct sw_flow_match match;
1295         u64 attrs = 0;
1296         int err;
1297
1298         err = parse_flow_nlattrs(attr, a, &attrs, log);
1299         if (err)
1300                 return -EINVAL;
1301
1302         memset(&match, 0, sizeof(match));
1303         match.key = key;
1304
1305         memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
1306         key->phy.in_port = DP_MAX_PORTS;
1307
1308         return metadata_from_nlattrs(&match, &attrs, a, false, log);
1309 }
1310
1311 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1312                              const struct sw_flow_key *output, bool is_mask,
1313                              struct sk_buff *skb)
1314 {
1315         struct ovs_key_ethernet *eth_key;
1316         struct nlattr *nla, *encap;
1317
1318         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1319                 goto nla_put_failure;
1320
1321         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1322                 goto nla_put_failure;
1323
1324         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1325                 goto nla_put_failure;
1326
1327         if ((swkey->tun_key.ipv4_dst || is_mask)) {
1328                 const void *opts = NULL;
1329
1330                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1331                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1332
1333                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1334                                        swkey->tun_opts_len))
1335                         goto nla_put_failure;
1336         }
1337
1338         if (swkey->phy.in_port == DP_MAX_PORTS) {
1339                 if (is_mask && (output->phy.in_port == 0xffff))
1340                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1341                                 goto nla_put_failure;
1342         } else {
1343                 u16 upper_u16;
1344                 upper_u16 = !is_mask ? 0 : 0xffff;
1345
1346                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1347                                 (upper_u16 << 16) | output->phy.in_port))
1348                         goto nla_put_failure;
1349         }
1350
1351         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1352                 goto nla_put_failure;
1353
1354         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1355         if (!nla)
1356                 goto nla_put_failure;
1357
1358         eth_key = nla_data(nla);
1359         ether_addr_copy(eth_key->eth_src, output->eth.src);
1360         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1361
1362         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1363                 __be16 eth_type;
1364                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1365                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1366                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1367                         goto nla_put_failure;
1368                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1369                 if (!swkey->eth.tci)
1370                         goto unencap;
1371         } else
1372                 encap = NULL;
1373
1374         if (swkey->eth.type == htons(ETH_P_802_2)) {
1375                 /*
1376                  * Ethertype 802.2 is represented in the netlink with omitted
1377                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1378                  * 0xffff in the mask attribute.  Ethertype can also
1379                  * be wildcarded.
1380                  */
1381                 if (is_mask && output->eth.type)
1382                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1383                                                 output->eth.type))
1384                                 goto nla_put_failure;
1385                 goto unencap;
1386         }
1387
1388         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1389                 goto nla_put_failure;
1390
1391         if (swkey->eth.type == htons(ETH_P_IP)) {
1392                 struct ovs_key_ipv4 *ipv4_key;
1393
1394                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1395                 if (!nla)
1396                         goto nla_put_failure;
1397                 ipv4_key = nla_data(nla);
1398                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1399                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1400                 ipv4_key->ipv4_proto = output->ip.proto;
1401                 ipv4_key->ipv4_tos = output->ip.tos;
1402                 ipv4_key->ipv4_ttl = output->ip.ttl;
1403                 ipv4_key->ipv4_frag = output->ip.frag;
1404         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1405                 struct ovs_key_ipv6 *ipv6_key;
1406
1407                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1408                 if (!nla)
1409                         goto nla_put_failure;
1410                 ipv6_key = nla_data(nla);
1411                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1412                                 sizeof(ipv6_key->ipv6_src));
1413                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1414                                 sizeof(ipv6_key->ipv6_dst));
1415                 ipv6_key->ipv6_label = output->ipv6.label;
1416                 ipv6_key->ipv6_proto = output->ip.proto;
1417                 ipv6_key->ipv6_tclass = output->ip.tos;
1418                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1419                 ipv6_key->ipv6_frag = output->ip.frag;
1420         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1421                    swkey->eth.type == htons(ETH_P_RARP)) {
1422                 struct ovs_key_arp *arp_key;
1423
1424                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1425                 if (!nla)
1426                         goto nla_put_failure;
1427                 arp_key = nla_data(nla);
1428                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1429                 arp_key->arp_sip = output->ipv4.addr.src;
1430                 arp_key->arp_tip = output->ipv4.addr.dst;
1431                 arp_key->arp_op = htons(output->ip.proto);
1432                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1433                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1434         } else if (eth_p_mpls(swkey->eth.type)) {
1435                 struct ovs_key_mpls *mpls_key;
1436
1437                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1438                 if (!nla)
1439                         goto nla_put_failure;
1440                 mpls_key = nla_data(nla);
1441                 mpls_key->mpls_lse = output->mpls.top_lse;
1442         }
1443
1444         if ((swkey->eth.type == htons(ETH_P_IP) ||
1445              swkey->eth.type == htons(ETH_P_IPV6)) &&
1446              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1447
1448                 if (swkey->ip.proto == IPPROTO_TCP) {
1449                         struct ovs_key_tcp *tcp_key;
1450
1451                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1452                         if (!nla)
1453                                 goto nla_put_failure;
1454                         tcp_key = nla_data(nla);
1455                         tcp_key->tcp_src = output->tp.src;
1456                         tcp_key->tcp_dst = output->tp.dst;
1457                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1458                                          output->tp.flags))
1459                                 goto nla_put_failure;
1460                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1461                         struct ovs_key_udp *udp_key;
1462
1463                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1464                         if (!nla)
1465                                 goto nla_put_failure;
1466                         udp_key = nla_data(nla);
1467                         udp_key->udp_src = output->tp.src;
1468                         udp_key->udp_dst = output->tp.dst;
1469                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1470                         struct ovs_key_sctp *sctp_key;
1471
1472                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1473                         if (!nla)
1474                                 goto nla_put_failure;
1475                         sctp_key = nla_data(nla);
1476                         sctp_key->sctp_src = output->tp.src;
1477                         sctp_key->sctp_dst = output->tp.dst;
1478                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1479                            swkey->ip.proto == IPPROTO_ICMP) {
1480                         struct ovs_key_icmp *icmp_key;
1481
1482                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1483                         if (!nla)
1484                                 goto nla_put_failure;
1485                         icmp_key = nla_data(nla);
1486                         icmp_key->icmp_type = ntohs(output->tp.src);
1487                         icmp_key->icmp_code = ntohs(output->tp.dst);
1488                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1489                            swkey->ip.proto == IPPROTO_ICMPV6) {
1490                         struct ovs_key_icmpv6 *icmpv6_key;
1491
1492                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1493                                                 sizeof(*icmpv6_key));
1494                         if (!nla)
1495                                 goto nla_put_failure;
1496                         icmpv6_key = nla_data(nla);
1497                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1498                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1499
1500                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1501                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1502                                 struct ovs_key_nd *nd_key;
1503
1504                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1505                                 if (!nla)
1506                                         goto nla_put_failure;
1507                                 nd_key = nla_data(nla);
1508                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1509                                                         sizeof(nd_key->nd_target));
1510                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1511                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1512                         }
1513                 }
1514         }
1515
1516 unencap:
1517         if (encap)
1518                 nla_nest_end(skb, encap);
1519
1520         return 0;
1521
1522 nla_put_failure:
1523         return -EMSGSIZE;
1524 }
1525
1526 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1527                     const struct sw_flow_key *output, int attr, bool is_mask,
1528                     struct sk_buff *skb)
1529 {
1530         int err;
1531         struct nlattr *nla;
1532
1533         nla = nla_nest_start(skb, attr);
1534         if (!nla)
1535                 return -EMSGSIZE;
1536         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1537         if (err)
1538                 return err;
1539         nla_nest_end(skb, nla);
1540
1541         return 0;
1542 }
1543
1544 /* Called with ovs_mutex or RCU read lock. */
1545 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1546 {
1547         if (ovs_identifier_is_ufid(&flow->id))
1548                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1549                                flow->id.ufid);
1550
1551         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1552                                OVS_FLOW_ATTR_KEY, false, skb);
1553 }
1554
1555 /* Called with ovs_mutex or RCU read lock. */
1556 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1557 {
1558         return ovs_nla_put_key(&flow->key, &flow->key,
1559                                 OVS_FLOW_ATTR_KEY, false, skb);
1560 }
1561
1562 /* Called with ovs_mutex or RCU read lock. */
1563 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1564 {
1565         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1566                                 OVS_FLOW_ATTR_MASK, true, skb);
1567 }
1568
1569 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1570
1571 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1572 {
1573         struct sw_flow_actions *sfa;
1574
1575         if (size > MAX_ACTIONS_BUFSIZE) {
1576                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1577                 return ERR_PTR(-EINVAL);
1578         }
1579
1580         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1581         if (!sfa)
1582                 return ERR_PTR(-ENOMEM);
1583
1584         sfa->actions_len = 0;
1585         return sfa;
1586 }
1587
1588 /* RCU callback used by ovs_nla_free_flow_actions. */
1589 static void rcu_free_acts_callback(struct rcu_head *rcu)
1590 {
1591         struct sw_flow_actions *sf_acts = container_of(rcu,
1592                         struct sw_flow_actions, rcu);
1593         kfree(sf_acts);
1594 }
1595
1596 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1597  * The caller must hold rcu_read_lock for this to be sensible.
1598  */
1599 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1600 {
1601         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
1602 }
1603
1604 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1605                                        int attr_len, bool log)
1606 {
1607
1608         struct sw_flow_actions *acts;
1609         int new_acts_size;
1610         int req_size = NLA_ALIGN(attr_len);
1611         int next_offset = offsetof(struct sw_flow_actions, actions) +
1612                                         (*sfa)->actions_len;
1613
1614         if (req_size <= (ksize(*sfa) - next_offset))
1615                 goto out;
1616
1617         new_acts_size = ksize(*sfa) * 2;
1618
1619         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1620                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1621                         return ERR_PTR(-EMSGSIZE);
1622                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1623         }
1624
1625         acts = nla_alloc_flow_actions(new_acts_size, log);
1626         if (IS_ERR(acts))
1627                 return (void *)acts;
1628
1629         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1630         acts->actions_len = (*sfa)->actions_len;
1631         kfree(*sfa);
1632         *sfa = acts;
1633
1634 out:
1635         (*sfa)->actions_len += req_size;
1636         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1637 }
1638
1639 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1640                                    int attrtype, void *data, int len, bool log)
1641 {
1642         struct nlattr *a;
1643
1644         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1645         if (IS_ERR(a))
1646                 return a;
1647
1648         a->nla_type = attrtype;
1649         a->nla_len = nla_attr_size(len);
1650
1651         if (data)
1652                 memcpy(nla_data(a), data, len);
1653         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1654
1655         return a;
1656 }
1657
1658 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1659                       void *data, int len, bool log)
1660 {
1661         struct nlattr *a;
1662
1663         a = __add_action(sfa, attrtype, data, len, log);
1664         if (IS_ERR(a))
1665                 return PTR_ERR(a);
1666
1667         return 0;
1668 }
1669
1670 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1671                                           int attrtype, bool log)
1672 {
1673         int used = (*sfa)->actions_len;
1674         int err;
1675
1676         err = add_action(sfa, attrtype, NULL, 0, log);
1677         if (err)
1678                 return err;
1679
1680         return used;
1681 }
1682
1683 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1684                                          int st_offset)
1685 {
1686         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1687                                                                st_offset);
1688
1689         a->nla_len = sfa->actions_len - st_offset;
1690 }
1691
1692 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1693                                   const struct sw_flow_key *key,
1694                                   int depth, struct sw_flow_actions **sfa,
1695                                   __be16 eth_type, __be16 vlan_tci, bool log);
1696
1697 static int validate_and_copy_sample(const struct nlattr *attr,
1698                                     const struct sw_flow_key *key, int depth,
1699                                     struct sw_flow_actions **sfa,
1700                                     __be16 eth_type, __be16 vlan_tci, bool log)
1701 {
1702         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1703         const struct nlattr *probability, *actions;
1704         const struct nlattr *a;
1705         int rem, start, err, st_acts;
1706
1707         memset(attrs, 0, sizeof(attrs));
1708         nla_for_each_nested(a, attr, rem) {
1709                 int type = nla_type(a);
1710                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1711                         return -EINVAL;
1712                 attrs[type] = a;
1713         }
1714         if (rem)
1715                 return -EINVAL;
1716
1717         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1718         if (!probability || nla_len(probability) != sizeof(u32))
1719                 return -EINVAL;
1720
1721         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1722         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1723                 return -EINVAL;
1724
1725         /* validation done, copy sample action. */
1726         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1727         if (start < 0)
1728                 return start;
1729         err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1730                          nla_data(probability), sizeof(u32), log);
1731         if (err)
1732                 return err;
1733         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1734         if (st_acts < 0)
1735                 return st_acts;
1736
1737         err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1738                                      eth_type, vlan_tci, log);
1739         if (err)
1740                 return err;
1741
1742         add_nested_action_end(*sfa, st_acts);
1743         add_nested_action_end(*sfa, start);
1744
1745         return 0;
1746 }
1747
1748 void ovs_match_init(struct sw_flow_match *match,
1749                     struct sw_flow_key *key,
1750                     struct sw_flow_mask *mask)
1751 {
1752         memset(match, 0, sizeof(*match));
1753         match->key = key;
1754         match->mask = mask;
1755
1756         memset(key, 0, sizeof(*key));
1757
1758         if (mask) {
1759                 memset(&mask->key, 0, sizeof(mask->key));
1760                 mask->range.start = mask->range.end = 0;
1761         }
1762 }
1763
1764 static int validate_geneve_opts(struct sw_flow_key *key)
1765 {
1766         struct geneve_opt *option;
1767         int opts_len = key->tun_opts_len;
1768         bool crit_opt = false;
1769
1770         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1771         while (opts_len > 0) {
1772                 int len;
1773
1774                 if (opts_len < sizeof(*option))
1775                         return -EINVAL;
1776
1777                 len = sizeof(*option) + option->length * 4;
1778                 if (len > opts_len)
1779                         return -EINVAL;
1780
1781                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1782
1783                 option = (struct geneve_opt *)((u8 *)option + len);
1784                 opts_len -= len;
1785         };
1786
1787         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1788
1789         return 0;
1790 }
1791
1792 static int validate_and_copy_set_tun(const struct nlattr *attr,
1793                                      struct sw_flow_actions **sfa, bool log)
1794 {
1795         struct sw_flow_match match;
1796         struct sw_flow_key key;
1797         struct ovs_tunnel_info *tun_info;
1798         struct nlattr *a;
1799         int start, opts_type;
1800         int err = 0;
1801
1802         ovs_match_init(&match, &key, NULL);
1803         opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1804         if (opts_type < 0)
1805                 return opts_type;
1806
1807         if (key.tun_opts_len) {
1808                 switch (opts_type) {
1809                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1810                         err = validate_geneve_opts(&key);
1811                         if (err < 0)
1812                                 return err;
1813                         break;
1814                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1815                         break;
1816                 }
1817         };
1818
1819         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1820         if (start < 0)
1821                 return start;
1822
1823         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1824                          sizeof(*tun_info) + key.tun_opts_len, log);
1825         if (IS_ERR(a))
1826                 return PTR_ERR(a);
1827
1828         tun_info = nla_data(a);
1829         tun_info->tunnel = key.tun_key;
1830         tun_info->options_len = key.tun_opts_len;
1831
1832         if (tun_info->options_len) {
1833                 /* We need to store the options in the action itself since
1834                  * everything else will go away after flow setup. We can append
1835                  * it to tun_info and then point there.
1836                  */
1837                 memcpy((tun_info + 1),
1838                        TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len);
1839                 tun_info->options = (tun_info + 1);
1840         } else {
1841                 tun_info->options = NULL;
1842         }
1843
1844         add_nested_action_end(*sfa, start);
1845
1846         return err;
1847 }
1848
1849 /* Return false if there are any non-masked bits set.
1850  * Mask follows data immediately, before any netlink padding.
1851  */
1852 static bool validate_masked(u8 *data, int len)
1853 {
1854         u8 *mask = data + len;
1855
1856         while (len--)
1857                 if (*data++ & ~*mask++)
1858                         return false;
1859
1860         return true;
1861 }
1862
1863 static int validate_set(const struct nlattr *a,
1864                         const struct sw_flow_key *flow_key,
1865                         struct sw_flow_actions **sfa,
1866                         bool *skip_copy, __be16 eth_type, bool masked, bool log)
1867 {
1868         const struct nlattr *ovs_key = nla_data(a);
1869         int key_type = nla_type(ovs_key);
1870         size_t key_len;
1871
1872         /* There can be only one key in a action */
1873         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1874                 return -EINVAL;
1875
1876         key_len = nla_len(ovs_key);
1877         if (masked)
1878                 key_len /= 2;
1879
1880         if (key_type > OVS_KEY_ATTR_MAX ||
1881             !check_attr_len(key_len, ovs_key_lens[key_type].len))
1882                 return -EINVAL;
1883
1884         if (masked && !validate_masked(nla_data(ovs_key), key_len))
1885                 return -EINVAL;
1886
1887         switch (key_type) {
1888         const struct ovs_key_ipv4 *ipv4_key;
1889         const struct ovs_key_ipv6 *ipv6_key;
1890         int err;
1891
1892         case OVS_KEY_ATTR_PRIORITY:
1893         case OVS_KEY_ATTR_SKB_MARK:
1894         case OVS_KEY_ATTR_ETHERNET:
1895                 break;
1896
1897         case OVS_KEY_ATTR_TUNNEL:
1898                 if (eth_p_mpls(eth_type))
1899                         return -EINVAL;
1900
1901                 if (masked)
1902                         return -EINVAL; /* Masked tunnel set not supported. */
1903
1904                 *skip_copy = true;
1905                 err = validate_and_copy_set_tun(a, sfa, log);
1906                 if (err)
1907                         return err;
1908                 break;
1909
1910         case OVS_KEY_ATTR_IPV4:
1911                 if (eth_type != htons(ETH_P_IP))
1912                         return -EINVAL;
1913
1914                 ipv4_key = nla_data(ovs_key);
1915
1916                 if (masked) {
1917                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1918
1919                         /* Non-writeable fields. */
1920                         if (mask->ipv4_proto || mask->ipv4_frag)
1921                                 return -EINVAL;
1922                 } else {
1923                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1924                                 return -EINVAL;
1925
1926                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1927                                 return -EINVAL;
1928                 }
1929                 break;
1930
1931         case OVS_KEY_ATTR_IPV6:
1932                 if (eth_type != htons(ETH_P_IPV6))
1933                         return -EINVAL;
1934
1935                 ipv6_key = nla_data(ovs_key);
1936
1937                 if (masked) {
1938                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
1939
1940                         /* Non-writeable fields. */
1941                         if (mask->ipv6_proto || mask->ipv6_frag)
1942                                 return -EINVAL;
1943
1944                         /* Invalid bits in the flow label mask? */
1945                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
1946                                 return -EINVAL;
1947                 } else {
1948                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1949                                 return -EINVAL;
1950
1951                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1952                                 return -EINVAL;
1953                 }
1954                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1955                         return -EINVAL;
1956
1957                 break;
1958
1959         case OVS_KEY_ATTR_TCP:
1960                 if ((eth_type != htons(ETH_P_IP) &&
1961                      eth_type != htons(ETH_P_IPV6)) ||
1962                     flow_key->ip.proto != IPPROTO_TCP)
1963                         return -EINVAL;
1964
1965                 break;
1966
1967         case OVS_KEY_ATTR_UDP:
1968                 if ((eth_type != htons(ETH_P_IP) &&
1969                      eth_type != htons(ETH_P_IPV6)) ||
1970                     flow_key->ip.proto != IPPROTO_UDP)
1971                         return -EINVAL;
1972
1973                 break;
1974
1975         case OVS_KEY_ATTR_MPLS:
1976                 if (!eth_p_mpls(eth_type))
1977                         return -EINVAL;
1978                 break;
1979
1980         case OVS_KEY_ATTR_SCTP:
1981                 if ((eth_type != htons(ETH_P_IP) &&
1982                      eth_type != htons(ETH_P_IPV6)) ||
1983                     flow_key->ip.proto != IPPROTO_SCTP)
1984                         return -EINVAL;
1985
1986                 break;
1987
1988         default:
1989                 return -EINVAL;
1990         }
1991
1992         /* Convert non-masked non-tunnel set actions to masked set actions. */
1993         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
1994                 int start, len = key_len * 2;
1995                 struct nlattr *at;
1996
1997                 *skip_copy = true;
1998
1999                 start = add_nested_action_start(sfa,
2000                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2001                                                 log);
2002                 if (start < 0)
2003                         return start;
2004
2005                 at = __add_action(sfa, key_type, NULL, len, log);
2006                 if (IS_ERR(at))
2007                         return PTR_ERR(at);
2008
2009                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2010                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2011                 /* Clear non-writeable bits from otherwise writeable fields. */
2012                 if (key_type == OVS_KEY_ATTR_IPV6) {
2013                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2014
2015                         mask->ipv6_label &= htonl(0x000FFFFF);
2016                 }
2017                 add_nested_action_end(*sfa, start);
2018         }
2019
2020         return 0;
2021 }
2022
2023 static int validate_userspace(const struct nlattr *attr)
2024 {
2025         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2026                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2027                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2028                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2029         };
2030         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2031         int error;
2032
2033         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2034                                  attr, userspace_policy);
2035         if (error)
2036                 return error;
2037
2038         if (!a[OVS_USERSPACE_ATTR_PID] ||
2039             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2040                 return -EINVAL;
2041
2042         return 0;
2043 }
2044
2045 static int copy_action(const struct nlattr *from,
2046                        struct sw_flow_actions **sfa, bool log)
2047 {
2048         int totlen = NLA_ALIGN(from->nla_len);
2049         struct nlattr *to;
2050
2051         to = reserve_sfa_size(sfa, from->nla_len, log);
2052         if (IS_ERR(to))
2053                 return PTR_ERR(to);
2054
2055         memcpy(to, from, totlen);
2056         return 0;
2057 }
2058
2059 static int __ovs_nla_copy_actions(const struct nlattr *attr,
2060                                   const struct sw_flow_key *key,
2061                                   int depth, struct sw_flow_actions **sfa,
2062                                   __be16 eth_type, __be16 vlan_tci, bool log)
2063 {
2064         const struct nlattr *a;
2065         int rem, err;
2066
2067         if (depth >= SAMPLE_ACTION_DEPTH)
2068                 return -EOVERFLOW;
2069
2070         nla_for_each_nested(a, attr, rem) {
2071                 /* Expected argument lengths, (u32)-1 for variable length. */
2072                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2073                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2074                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2075                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2076                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2077                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2078                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2079                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2080                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2081                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2082                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2083                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
2084                 };
2085                 const struct ovs_action_push_vlan *vlan;
2086                 int type = nla_type(a);
2087                 bool skip_copy;
2088
2089                 if (type > OVS_ACTION_ATTR_MAX ||
2090                     (action_lens[type] != nla_len(a) &&
2091                      action_lens[type] != (u32)-1))
2092                         return -EINVAL;
2093
2094                 skip_copy = false;
2095                 switch (type) {
2096                 case OVS_ACTION_ATTR_UNSPEC:
2097                         return -EINVAL;
2098
2099                 case OVS_ACTION_ATTR_USERSPACE:
2100                         err = validate_userspace(a);
2101                         if (err)
2102                                 return err;
2103                         break;
2104
2105                 case OVS_ACTION_ATTR_OUTPUT:
2106                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2107                                 return -EINVAL;
2108                         break;
2109
2110                 case OVS_ACTION_ATTR_HASH: {
2111                         const struct ovs_action_hash *act_hash = nla_data(a);
2112
2113                         switch (act_hash->hash_alg) {
2114                         case OVS_HASH_ALG_L4:
2115                                 break;
2116                         default:
2117                                 return  -EINVAL;
2118                         }
2119
2120                         break;
2121                 }
2122
2123                 case OVS_ACTION_ATTR_POP_VLAN:
2124                         vlan_tci = htons(0);
2125                         break;
2126
2127                 case OVS_ACTION_ATTR_PUSH_VLAN:
2128                         vlan = nla_data(a);
2129                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2130                                 return -EINVAL;
2131                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2132                                 return -EINVAL;
2133                         vlan_tci = vlan->vlan_tci;
2134                         break;
2135
2136                 case OVS_ACTION_ATTR_RECIRC:
2137                         break;
2138
2139                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2140                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2141
2142                         if (!eth_p_mpls(mpls->mpls_ethertype))
2143                                 return -EINVAL;
2144                         /* Prohibit push MPLS other than to a white list
2145                          * for packets that have a known tag order.
2146                          */
2147                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2148                             (eth_type != htons(ETH_P_IP) &&
2149                              eth_type != htons(ETH_P_IPV6) &&
2150                              eth_type != htons(ETH_P_ARP) &&
2151                              eth_type != htons(ETH_P_RARP) &&
2152                              !eth_p_mpls(eth_type)))
2153                                 return -EINVAL;
2154                         eth_type = mpls->mpls_ethertype;
2155                         break;
2156                 }
2157
2158                 case OVS_ACTION_ATTR_POP_MPLS:
2159                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2160                             !eth_p_mpls(eth_type))
2161                                 return -EINVAL;
2162
2163                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2164                          * as there is no check here to ensure that the new
2165                          * eth_type is valid and thus set actions could
2166                          * write off the end of the packet or otherwise
2167                          * corrupt it.
2168                          *
2169                          * Support for these actions is planned using packet
2170                          * recirculation.
2171                          */
2172                         eth_type = htons(0);
2173                         break;
2174
2175                 case OVS_ACTION_ATTR_SET:
2176                         err = validate_set(a, key, sfa,
2177                                            &skip_copy, eth_type, false, log);
2178                         if (err)
2179                                 return err;
2180                         break;
2181
2182                 case OVS_ACTION_ATTR_SET_MASKED:
2183                         err = validate_set(a, key, sfa,
2184                                            &skip_copy, eth_type, true, log);
2185                         if (err)
2186                                 return err;
2187                         break;
2188
2189                 case OVS_ACTION_ATTR_SAMPLE:
2190                         err = validate_and_copy_sample(a, key, depth, sfa,
2191                                                        eth_type, vlan_tci, log);
2192                         if (err)
2193                                 return err;
2194                         skip_copy = true;
2195                         break;
2196
2197                 default:
2198                         OVS_NLERR(log, "Unknown Action type %d", type);
2199                         return -EINVAL;
2200                 }
2201                 if (!skip_copy) {
2202                         err = copy_action(a, sfa, log);
2203                         if (err)
2204                                 return err;
2205                 }
2206         }
2207
2208         if (rem > 0)
2209                 return -EINVAL;
2210
2211         return 0;
2212 }
2213
2214 /* 'key' must be the masked key. */
2215 int ovs_nla_copy_actions(const struct nlattr *attr,
2216                          const struct sw_flow_key *key,
2217                          struct sw_flow_actions **sfa, bool log)
2218 {
2219         int err;
2220
2221         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2222         if (IS_ERR(*sfa))
2223                 return PTR_ERR(*sfa);
2224
2225         err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
2226                                      key->eth.tci, log);
2227         if (err)
2228                 kfree(*sfa);
2229
2230         return err;
2231 }
2232
2233 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2234 {
2235         const struct nlattr *a;
2236         struct nlattr *start;
2237         int err = 0, rem;
2238
2239         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2240         if (!start)
2241                 return -EMSGSIZE;
2242
2243         nla_for_each_nested(a, attr, rem) {
2244                 int type = nla_type(a);
2245                 struct nlattr *st_sample;
2246
2247                 switch (type) {
2248                 case OVS_SAMPLE_ATTR_PROBABILITY:
2249                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2250                                     sizeof(u32), nla_data(a)))
2251                                 return -EMSGSIZE;
2252                         break;
2253                 case OVS_SAMPLE_ATTR_ACTIONS:
2254                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2255                         if (!st_sample)
2256                                 return -EMSGSIZE;
2257                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2258                         if (err)
2259                                 return err;
2260                         nla_nest_end(skb, st_sample);
2261                         break;
2262                 }
2263         }
2264
2265         nla_nest_end(skb, start);
2266         return err;
2267 }
2268
2269 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2270 {
2271         const struct nlattr *ovs_key = nla_data(a);
2272         int key_type = nla_type(ovs_key);
2273         struct nlattr *start;
2274         int err;
2275
2276         switch (key_type) {
2277         case OVS_KEY_ATTR_TUNNEL_INFO: {
2278                 struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
2279
2280                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2281                 if (!start)
2282                         return -EMSGSIZE;
2283
2284                 err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
2285                                          tun_info->options_len ?
2286                                                 tun_info->options : NULL,
2287                                          tun_info->options_len);
2288                 if (err)
2289                         return err;
2290                 nla_nest_end(skb, start);
2291                 break;
2292         }
2293         default:
2294                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2295                         return -EMSGSIZE;
2296                 break;
2297         }
2298
2299         return 0;
2300 }
2301
2302 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2303                                                 struct sk_buff *skb)
2304 {
2305         const struct nlattr *ovs_key = nla_data(a);
2306         size_t key_len = nla_len(ovs_key) / 2;
2307
2308         /* Revert the conversion we did from a non-masked set action to
2309          * masked set action.
2310          */
2311         if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a) - key_len, ovs_key))
2312                 return -EMSGSIZE;
2313
2314         return 0;
2315 }
2316
2317 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2318 {
2319         const struct nlattr *a;
2320         int rem, err;
2321
2322         nla_for_each_attr(a, attr, len, rem) {
2323                 int type = nla_type(a);
2324
2325                 switch (type) {
2326                 case OVS_ACTION_ATTR_SET:
2327                         err = set_action_to_attr(a, skb);
2328                         if (err)
2329                                 return err;
2330                         break;
2331
2332                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2333                         err = masked_set_action_to_set_action_attr(a, skb);
2334                         if (err)
2335                                 return err;
2336                         break;
2337
2338                 case OVS_ACTION_ATTR_SAMPLE:
2339                         err = sample_action_to_attr(a, skb);
2340                         if (err)
2341                                 return err;
2342                         break;
2343                 default:
2344                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2345                                 return -EMSGSIZE;
2346                         break;
2347                 }
2348         }
2349
2350         return 0;
2351 }