ovn: Implement basic logical L3 routing.
[cascardo/ovs.git] / ovn / TODO
1 -*- outline -*-
2
3 * L3 support
4
5 ** OVN_Northbound schema
6
7 *** Needs to support extra routes
8
9 Currently a router port has a single route associated with it, but
10 presumably we should support multiple routes.  For connections from
11 one router to another, this doesn't seem to matter (just put more than
12 one connection between them), but for connections between a router and
13 a switch it might matter because a switch has only one router port.
14
15 ** OVN_SB schema
16
17 *** Allow output to ingress port
18
19 Sometimes when a packet ingresses into a router, it has to egress the
20 same port.  One example is a "one-armed" router that has multiple
21 routes on a single port (or in which a host is (mis)configured to send
22 every IP packet to the router, e.g. due to a bad netmask).  Another is
23 when a router needs to send an ICMP reply to an ingressing packet.
24
25 To some degree this problem is layered, because there are two
26 different notions of "ingress port".  The first is the OpenFlow
27 ingress port, essentially a physical port identifier.  This is
28 implemented as part of ovs-vswitchd's OpenFlow implementation.  It
29 prevents a reply from being sent across the tunnel on which it
30 arrived.  It is questionable whether this OpenFlow feature is useful
31 to OVN.  (OVN already has to override it to allow a packet from one
32 nested container to be forwarded to a different nested container.)
33 OVS make it possible to disable this feature of OpenFlow by setting
34 the OpenFlow input port field to 0.  (If one does this too early, of
35 course, it means that there's no way to actually match on the input
36 port in the OpenFlow flow tables, but one can work around that by
37 instead setting the input port just before the output action, possibly
38 wrapping these actions in push/pop pairs to preserve the input port
39 for later.)
40
41 The second is the OVN logical ingress port, which is implemented in
42 ovn-controller as part of the logical abstraction, using an OVS
43 register.  Dropping packets directed to the logical ingress port is
44 implemented through an OpenFlow table not directly visible to the
45 logical flow table.  Currently this behavior can't be disabled, but
46 various ways to ensure it could be implemented, e.g. the same as for
47 OpenFlow by allowing the logical inport to be zeroed, or by
48 introducing a new action that ignores the inport.
49
50 ** New OVN logical actions
51
52 *** arp
53
54 Generates an ARP packet based on the current IPv4 packet and allows it
55 to be processed as part of the current pipeline (and then pop back to
56 processing the original IPv4 packet).
57
58 TCP/IP stacks typically limit the rate at which ARPs are sent, e.g. to
59 one per second for a given target.  We might need to do this too.
60
61 We probably need to buffer the packet that generated the ARP.  I don't
62 know where to do that.
63
64 *** icmp4 { action... }
65
66 Generates an ICMPv4 packet based on the current IPv4 packet and
67 processes it according to each nested action (and then pops back to
68 processing the original IPv4 packet).  The intended use case is for
69 generating "time exceeded" and "destination unreachable" errors.
70
71 ovn-sb.xml includes a tentative specification for this action.
72
73 Tentatively, the icmp4 action sets a default icmp_type and icmp_code
74 and lets the nested actions override it.  This means that we'd have to
75 make icmp_type and icmp_code writable.  Because changing icmp_type and
76 icmp_code can change the interpretation of the rest of the data in the
77 ICMP packet, we would want to think this through carefully.  If it
78 seems like a bad idea then we could instead make the type and code a
79 parameter to the action: icmp4(type, code) { action... }
80
81 It is worth considering what should be considered the ingress port for
82 the ICMPv4 packet.  It's quite likely that the ICMPv4 packet is going
83 to go back out the ingress port.  Maybe the icmp4 action, therefore,
84 should clear the inport, so that output to the original inport won't
85 be discarded.
86
87 *** tcp_reset
88
89 Transforms the current TCP packet into a RST reply.
90
91 ovn-sb.xml includes a tentative specification for this action.
92
93 *** Other actions for IPv6.
94
95 IPv6 will probably need an action or actions for ND that is similar to
96 the "arp" action, and an action for generating
97
98 *** ovn-controller translation to OpenFlow
99
100 The following two translation strategies come to mind.  Some of the
101 new actions we might want to implement one way, some of them the
102 other, depending on the details.
103
104 *** Implementation strategies
105
106 One way to do this is to define new actions as Open vSwitch extensions
107 to OpenFlow, emit those actions in ovn-controller, and implement them
108 in ovs-vswitchd (possibly pushing the implementations into the Linux
109 and DPDK datapaths as well).  This is the only acceptable way for
110 actions that need high performance.  None of these actions obviously
111 need high performance, but it might be necessary to have fairness in
112 handling e.g. a flood of incoming packets that require these actions.
113 The main disadvantage of this approach is that it ties ovs-vswitchd
114 (and the Linux kernel module) to supporting these actions essentially
115 forever, which means that we'd want to make sure that they are
116 general-purpose, well designed, maintainable, and supportable.
117
118 The other way to do this is to send the packets across an OpenFlow
119 channel to ovn-controller and have ovn-controller process them.  This
120 is acceptable for actions that don't need high performance, and it
121 means that we don't add anything permanently to ovs-vswitchd or the
122 kernel (so we can be more casual about the design).  The big
123 disadvantage is that it becomes necessary to add a way to resume the
124 OpenFlow pipeline when it is interrupted in the middle by sending a
125 packet to the controller.  This is not as simple as doing a new flow
126 table lookup and resuming from that point.  Instead, it is equivalent
127 to the (very complicated) recirculation logic in ofproto-dpif-xlate.c.
128 Much of this logic can be translated into OpenFlow actions (e.g. the
129 call stack and data stack), but some of it is entirely outside
130 OpenFlow (e.g. the state of mirrors).  To implement it properly, it
131 seems that we'll have to introduce a new Open vSwitch extension to
132 OpenFlow, a "send-to-controller" action that causes extra data to be
133 sent to the controller, where the extra data packages up the state
134 necessary to resume the pipeline.  Maybe the bits of the state that
135 can be represented in OpenFlow can be embedded in this extra data in a
136 controller-readable form, but other bits we might want to be opaque.
137 It's also likely that we'll want to change and extend the form of this
138 opaque data over time, so this should be allowed for, e.g. by
139 including a nonce in the extra data that is newly generated every time
140 ovs-vswitchd starts.
141
142 *** OpenFlow action definitions
143
144 Define OpenFlow wire structures for each new OpenFlow action and
145 implement them in lib/ofp-actions.[ch].
146
147 *** OVS implementation
148
149 Add code for action translation.  Possibly add datapath code for
150 action implementation.  However, none of these new actions should
151 require high-bandwidth processing so we could at least start with them
152 implemented in userspace only.  (ARP field modification is already
153 userspace-only and no one has complained yet.)
154
155 ** IPv6
156
157 *** ND versus ARP
158
159 *** IPv6 routing
160
161 *** ICMPv6
162
163 ** Dynamic IP to MAC bindings
164
165 Some bindings from IP address to MAC will undoubtedly need to be
166 discovered dynamically through ARP requests.  It's straightforward
167 enough for a logical L3 router to generate ARP requests and forward
168 them to the appropriate switch.
169
170 It's more difficult to figure out where the reply should be processed
171 and stored.  It might seem at first that a first-cut implementation
172 could just keep track of the binding on the hypervisor that needs to
173 know, but that can't happen easily because the VM that sends the reply
174 might not be on the same HV as the VM that needs the answer (that is,
175 the VM that sent the packet that needs the binding to be resolved) and
176 there isn't an easy way for it to know which HV needs the answer.
177
178 Thus, the HV that processes the ARP reply (which is unknown when the
179 ARP is sent) has to tell all the HVs the binding.  The most obvious
180 place for this in the OVN_Southbound database.
181
182 Details need to be worked out, including:
183
184 *** OVN_Southbound schema changes.
185
186 Possibly bindings could be added to the Port_Binding table by adding
187 or modifying columns.  Another possibility is that another table
188 should be added.
189
190 *** Logical_Flow representation
191
192 It would be really nice to maintain the general-purpose nature of
193 logical flows, but these bindings might have to include some
194 hard-coded special cases, especially when it comes to the relationship
195 with populating the bindings into the OVN_Southbound table.
196
197 *** Tracking queries
198
199 It's probably best to only record in the database responses to queries
200 actually issued by an L3 logical router, so somehow they have to be
201 tracked, probably by putting a tentative binding without a MAC address
202 into the database.
203
204 *** Renewal and expiration.
205
206 Something needs to make sure that bindings remain valid and expire
207 those that become stale.
208
209 ** MTU handling (fragmentation on output)
210
211 ** Ratelimiting.
212
213 *** ARP.
214
215 *** ICMP error generation, TCP reset, UDP unreachable, protocol unreachable, ...
216
217 As a point of comparison, Linux doesn't ratelimit TCP resets but I
218 think it does everything else.
219
220 * ovn-controller
221
222 ** ovn-controller parameters and configuration.
223
224 *** SSL configuration.
225
226     Can probably get this from Open_vSwitch database.
227
228 ** Security
229
230 *** Limiting the impact of a compromised chassis.
231
232     Every instance of ovn-controller has the same full access to the central
233     OVN_Southbound database.  This means that a compromised chassis can
234     interfere with the normal operation of the rest of the deployment.  Some
235     specific examples include writing to the logical flow table to alter
236     traffic handling or updating the port binding table to claim ports that are
237     actually present on a different chassis.  In practice, the compromised host
238     would be fighting against ovn-northd and other instances of ovn-controller
239     that would be trying to restore the correct state.  The impact could include
240     at least temporarily redirecting traffic (so the compromised host could
241     receive traffic that it shouldn't) and potentially a more general denial of
242     service.
243
244     There are different potential improvements to this area.  The first would be
245     to add some sort of ACL scheme to ovsdb-server.  A proposal for this should
246     first include an ACL scheme for ovn-controller.  An example policy would
247     be to make Logical_Flow read-only.  Table-level control is needed, but is
248     not enough.  For example, ovn-controller must be able to update the Chassis
249     and Encap tables, but should only be able to modify the rows associated with
250     that chassis and no others.
251
252     A more complex example is the Port_Binding table.  Currently, ovn-controller
253     is the source of truth of where a port is located.  There seems to be  no
254     policy that can prevent malicious behavior of a compromised host with this
255     table.
256
257     An alternative scheme for port bindings would be to provide an optional mode
258     where an external entity controls port bindings and make them read-only to
259     ovn-controller.  This is actually how OpenStack works today, for example.
260     The part of OpenStack that manages VMs (Nova) tells the networking component
261     (Neutron) where a port will be located, as opposed to the networking
262     component discovering it.
263
264 * ovsdb-server
265
266   ovsdb-server should have adequate features for OVN but it probably
267   needs work for scale and possibly for availability as deployments
268   grow.  Here are some thoughts.
269
270   Andy Zhou is looking at these issues.
271
272 *** Reducing amount of data sent to clients.
273
274     Currently, whenever a row monitored by a client changes,
275     ovsdb-server sends the client every monitored column in the row,
276     even if only one column changes.  It might be valuable to reduce
277     this only to the columns that changes.
278
279     Also, whenever a column changes, ovsdb-server sends the entire
280     contents of the column.  It might be valuable, for columns that
281     are sets or maps, to send only added or removed values or
282     key-values pairs.
283
284     Currently, clients monitor the entire contents of a table.  It
285     might make sense to allow clients to monitor only rows that
286     satisfy specific criteria, e.g. to allow an ovn-controller to
287     receive only Logical_Flow rows for logical networks on its hypervisor.
288
289 *** Reducing redundant data and code within ovsdb-server.
290
291     Currently, ovsdb-server separately composes database update
292     information to send to each of its clients.  This is fine for a
293     small number of clients, but it wastes time and memory when
294     hundreds of clients all want the same updates (as will be in the
295     case in OVN).
296
297     (This is somewhat opposed to the idea of letting a client monitor
298     only some rows in a table, since that would increase the diversity
299     among clients.)
300
301 *** Multithreading.
302
303     If it turns out that other changes don't let ovsdb-server scale
304     adequately, we can multithread ovsdb-server.  Initially one might
305     only break protocol handling into separate threads, leaving the
306     actual database work serialized through a lock.
307
308 ** Increasing availability.
309
310    Database availability might become an issue.  The OVN system
311    shouldn't grind to a halt if the database becomes unavailable, but
312    it would become impossible to bring VIFs up or down, etc.
313
314    My current thought on how to increase availability is to add
315    clustering to ovsdb-server, probably via the Raft consensus
316    algorithm.  As an experiment, I wrote an implementation of Raft
317    for Open vSwitch that you can clone from:
318
319        https://github.com/blp/ovs-reviews.git raft
320
321 ** Reducing startup time.
322
323    As-is, if ovsdb-server restarts, every client will fetch a fresh
324    copy of the part of the database that it cares about.  With
325    hundreds of clients, this could cause heavy CPU load on
326    ovsdb-server and use excessive network bandwidth.  It would be
327    better to allow incremental updates even across connection loss.
328    One way might be to use "Difference Digests" as described in
329    Epstein et al., "What's the Difference? Efficient Set
330    Reconciliation Without Prior Context".  (I'm not yet aware of
331    previous non-academic use of this technique.)
332
333 ** Support multiple tunnel encapsulations in Chassis.
334
335    So far, both ovn-controller and ovn-controller-vtep only allow
336    chassis to have one tunnel encapsulation entry.  We should extend
337    the implementation to support multiple tunnel encapsulations.
338
339 ** Update learned MAC addresses from VTEP to OVN
340
341    The VTEP gateway stores all MAC addresses learned from its
342    physical interfaces in the 'Ucast_Macs_Local' and the
343    'Mcast_Macs_Local' tables.  ovn-controller-vtep should be
344    able to update that information back to ovn-sb database,
345    so that other chassis know where to send packets destined
346    to the extended external network instead of broadcasting.
347
348 ** Translate ovn-sb Multicast_Group table into VTEP config
349
350    The ovn-controller-vtep daemon should be able to translate
351    the Multicast_Group table entry in ovn-sb database into
352    Mcast_Macs_Remote table configuration in VTEP database.
353
354 * Use BFD as tunnel monitor.
355
356    Both ovn-controller and ovn-contorller-vtep should use BFD to
357    monitor the tunnel liveness.  Both ovs-vswitchd schema and
358    VTEP schema supports BFD.
359
360 * ACL
361
362 ** Support FTP ALGs.
363
364 ** Support reject action.
365
366 ** Support log option.